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Abstract

In this paper, we show how the Metropolis-Hastings al-
gorithm can be used to sample shapes from a distribution
defined over the space of signed distance functions. We ex-
tend the basic random walk Metropolis-Hastings method
to high-dimensional curves using a proposal distribution
that can simultaneously maintain the signed distance func-
tion property and the ergodic requirement. We show that
detailed balance is approximately satisfied and that the
Markov chain will asymptotically converge. A key advan-
tage of our approach is that the shape representation is im-
plicit throughout the process, as compared to existing work
where explicit curve parameterization is required. Further-
more, our framework can be carried over to 3D situations
easily. We show several applications of the framework to
shape sampling from multimodal distributions and medical
image segmentation.

1. Introduction

In radiotherapy planning, a planning Computed Tomog-
raphy (CT) scan is usually given to a patient on the first
day of his/her arrival. The target organ is outlined by a
physician and a comprehensive treatment plan is calculated
based on these contours- a time-consuming process. Due
to the organ’s deformation, on each day of the radiotherapy,
the contours will no longer be accurate, resulting in a sub-
optimal delivery of radiation. Our motivating problem is
to define a probability distribution over possible shapes of
the target organ, sample shapes from it, precompute corre-
sponding treatment plans, and select the best matching plan
on the day of treatment. We hope that this approach will
improve the accuracy and efficacy of treatment.

Therefore, we are interested in the problem of gener-
ating likely shapes from a target distribution 7(z). Gen-
erating samples from arbitrary distributions 7(x) plays a
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fundamental role in Bayesian inference, optimization and
simulation problems. Such problems have important ap-
plications in machine learning, physics, statistics and eco-
nomics [14]. For relatively simple and low-dimensional dis-
tributions, standard sampling techniques such as matching
cumulative distributions [3] can be used. However, when
the distribution is complex and higher-dimensional, itera-
tive techniques such as rejection sampling and importance
sampling need to be applied [3]. These techniques typically
require a “proposal distribution” that is both easy to sam-
ple from and similar to 7(z). It is often difficult to satisfy
both requirements, and when such a proposal distribution
is not obtainable, a more complicated algorithm known as
Markov Chain Monte Carlo MCMC) is used [14].

In this paper, we propose an MCMC-based method of
sampling simple closed curves from an arbitrary distribu-
tion defined over the space of signed distance functions.
The main advantage of our technique is that the shape rep-
resentation is implicit throughout the sampling process, in
contrast to existing work where explicit curve parameteri-
zation is required.

The rest of the paper is organized as follows. In Section 2
we review related work on geometric level sets and MCMC
in computer vision. Section 3 gives a brief overview of
MCMC theory and the Metropolis-Hastings algorithm. Sec-
tion 4 presents the main shape sampling formulation using
our new approach. Section 5 describes several experiments
on shape sampling and image segmentation using the new
formulation. Section 6 concludes the paper with discussion
and ideas for future work.

2. Related Work
2.1. Geometric Level Sets

To avoid problems associated with explicit shape repre-
sentations (e.g., reparametrization [19]), it is common to
represent a contour C' in a domain €2 using the zero level
set of a higher level embedding function ¢ : @ — R. In or-
der to guarantee a unique embedding, we assume that ¢ is a
signed distance function (SDF) with ¢ < 0 inside the shape,



¢ > 0 outside the shape and |V¢$| = 1 almost everywhere
[27].

Much work on geometric level set methods has been pro-
posed to solve a large number of computer vision problems.
Leventon et al. [22] proposed to represent shapes by SDFs
and perform Principal Component Analysis (PCA) on the
set of training SDFs. Various groups have proposed to use
a distance measure between the evolving level set and a ref-
erence level set as a shape prior term [5, 10, 31] to guide
the curve evolution in segmentation problems. Recently,
Cremers et al. [8] and Kim et al. [20] modeled shape vari-
ation with such distance measures and the nonparametric
technique of Kernel Density Estimation (KDE). Zhao et
al. [36] addressed shape reconstruction from unorganized
points with a weighted minimal-surface-like model. Breen
and Whitaker [4] optimized a similarity measure between a
deforming surface and a target to achieve 3D shape meta-
morphosis. Variational level set methods have also been
used in image inpainting, denoising, registration and many
other computer vision problems [26]. Typically, these ap-
proaches all consider the problem of local optimization, us-
ing the gradient descent technique to optimize a given func-
tional starting from an initial shape. This is in significant
contrast to the MCMC method, in which not only can a
global optimum be reached, but also the underlying distri-
bution can be explored.

2.2. Markov-Chain Monte Carlo

Metropolis et al. [23] and Hastings [17] formed the
groundbreaking Markov-Chain Monte Carlo (MCMC)
work known as the Metropolis-Hastings (MH) algorithm.
Geman and Geman [13] were the first to apply MCMC
to computer vision problems using the Gibbs Sampler in
Markov Random Fields (MRFs). Grenander and Miller [16]
proposed the jump and diffusion MCMC approaches. Green
[15] further proposed the reversible jump MCMC, which
was applied to sampling and learning by Zhu and Yuille
[37]. Storvik [33] used simulated annealing to solve ac-
tive contour problems. Later, Tu and Zhu [34] proposed a
data-driven MCMC-based image segmentation framework.
Allassonniere et al. [1] used a MCMC based stochastic ver-
sion of the EM algorithm to estimate deformable template
parameters in shape modeling problems.

Recently, Juan et al. [18] and Law et al. [21] both pro-
posed stochastic optimization methods for a level-set-based
segmentation algorithm in order to avoid local minima.
However, the primary focus of these approaches was look-
ing for a global optimum instead of drawing samples from
the shape distribution, so they did not need to maintain the
detailed balance condition.

The most related work to what we propose here was pre-
sented by Fan et al. [11, 12]. Both approaches use the MH
algorithm to sample curves from an arbitrary distribution.
Compared to their work, our framework has two advan-
tages:

1. The proposal distribution in their work requires ex-
plicit parametrization of the curve, which is both com-
plicated and time-consuming. In our work, sampling is
done entirely in the implicit representation. Due to the
explicit parametrization, their method would be diffi-
cult to extend to full 3D (e.g., volumetric medical im-
ages). Working in the implicit representation allows us
to easily extend our work to 3D.

2. We present a new proposal distribution that can simul-
taneously satisfy the signed distance function property
and the requirements of MCMC. This opens up the
possibility of incorporating more advanced proposal
distributions from MCMC theory into our method that
can give better mixing.

3. MCMC Basics

To estimate a target distribution 7 (), MCMC uses the
previous sample x*~! to randomly generate the next sample
2%, exploring the entire state space based on a Markov chain
mechanism. The Markov chain is carefully constructed so
that it will asymptotically converge to a stationary distribu-
tion (designed to be () up to a normalizing constant). The
time before the stationary distribution is reached is called
the “mixing time”. A chain is said to be “poorly mixing”
if it remains in one region of the state space for a long pe-
riod of time, as opposed to a “well mixing” chain where all
the modes are visited. In order to guarantee the asymptotic
convergence to an invariant distribution, the Markov transi-
tion matrix 7" must obey two properties: irreducibility and
aperiodicity, together known as the ergodic property. Fur-
thermore, a sufficient, but not necessary, condition to ensure
that 7(z) is the desired invariant distribution is the so-called
detailed balance condition:

(@)@ o) = 7@ T2 (1)

Typically, the transition matrix 7" is the composition of
two operations. First, a candidate sample y° is generated
from a proposal distribution ¢(y’|zi~1), which is easy to
sample from, but may not exhibit any resemblance to m(x).
Then y? is accepted or rejected according to an acceptance
function a(y?,x*~1) where 2° = y° if the sample is ac-
cepted or ' = ! if the sample is rejected. Among
MCMC methods, the Metropolis-Hastings (MH) algorithm
[17, 23] given in Algorithm 1 is the most frequently used.



Algorithm 1 Metropolis-Hastings Algorithm
0

Initialize x
fori=1to N do
Sample u ~ Ujg 1
Sample y* ~ q(y'|z")

if u < a(y’,2'~1) = min (1 M) then

P (i) g(ytlatTt)

2t =y
else
:I:l — I’L*l
end if
end for

4. Formulation

Our MCMC curve sampling framework is similar to
the basic MH method called the symmetric random-walk
Metropolis algorithm (RWM) [23]. In this case, the pro-
posal distribution ¢(y|x) = q(y — x) where ¢ is a symmet-
ric function about 0 such as a Gaussian. In other words,
y = « +r where 7 ~ N[0, 0pnqg] and 0paq (OF Xiqq in
the multivariate case) controls the perturbation, called the
“scaling” in MCMC theory. Since we embed the curve C'
using a SDF ¢, in a real implementation, the dimensional-
ity of the domain 2 is the number of the grid points used
to sample ¢. It is impossible to perturb each point indepen-
dently with a Gaussian while maintaining the SDF property
that |V¢| = 1. In the following, we present a new proposal
distribution in which different regions of the curve are up-
dated simultaneously in order to maintain the SDF property,
and show that the perturbation approximately satisfies the
detailed balance and ergodic requirements.

4.1. Proposal Distribution

The proposal distribution in our work is similar to the
RWM method. Let ¢*~! and ¢° be the level set represen-
tations of the curves C*~! and C? respectively, where C*
is locally perturbed from C?~!. The perturbation can be
expressed as:

(bi — ¢i—1 +T’i—1 (2)
where 77! is also a function: Q — R. It is critical to
maintain the SDF property of ¢’ when ¢*~! is a valid SDF.
Zhao et al. [35] proved the following lemma:

Lemma 1: If '~ is a SDF, then ¢' = ¢~ 4 ri71
remains a SDF if

ri N z) =N (F(2)) 3)

where

F(z) =z~ ¢ 1 (2)V¢' ™ (2) 4)

That is, 7*~!(z) must be a function of the point on C*~!
closest to x, also called the “foot point” of . We specify a
particular perturbation by choosing a source point S*~! on
C*~1 and locally “pushing” the curve in the normal direc-
tion at S*—1. That is, we choose

11 (2) — mexp < D?(Sil,m») )

2
20bump

where D is the geodesic distance between S*~! and F(x)
on the curve, and m is the magnitude of the perturbation.
This means that points on the curve further away from S%~1
are perturbed less, depending on the variance opymp. ™M is
drawn from another Gaussian distribution with mean 0 and
variance o,,q4, Which controls the magnitude of the noise
and the direction of the perturbation, either inward or out-
ward. We illustrate the perturbation with two examples in
Fig. 1.

(@) (b)
Figure 1. Perturbation examples. The black curve is C*™!, the
green curve is C*, and the source point is plotted as a blue square.
(a@)m = 5. (b)m = —5.

The ergodic condition requires both irreducibility and
aperiodicity, and both of these properties are generally dif-
ficult to prove [14]. In our work, because the state space
(simple closed curves) is so large and the perturbation is
random, it is virtually impossible that the chain is periodic.
For irreducibility, we need to show there is a positive prob-
ability of visiting any state starting from any other state.
We heuristically argue that our MCMC framework is irre-
ducible for 3 reasons. First of all, opymp is not fixed and
allowed to change from perturbation to perturbation, so we
can approximate sharp corners when o, — 0 and flat re-
gions when oy, — 0. Second, the “foot point™ S*—1 is
chosen over the entire curve, which means any “part” of the
curve can be reached. Finally, the perturbation magnitude
m comes from a Gaussian distribution that extends from
—o0 to oo, which means any “scale” of the curve can be
reached. However, rigorous mathematical analysis is chal-
lenging and is left for future work.



4.2. Detailed Balance

In the MH algorithm, we must calculate both g(¢¢|¢* 1)
and g(¢*~1|¢"). Given opym, at each perturbation, the only
thing that affects ¢’ given ¢! is the source point location
S%~1 and the noise m. Since they are independent of each
other, we have the following forward proposal:

q(¢'|¢" ") = p(S*1) - p(m) (6)

Computing the backward proposal is more difficult and
we make some simplifying approximations. We construct
the analog to (2):

¢t =o'+ (7)

We conjecture that r° can be approximated by

—mexp (—w), where S is the foot point of

2abump 4
Si=1 with respect to C".
Recall that
. . D2 Si—l F
5 = 61 - mexp <_ (5", <w>>> )

2
20bump

If the conjecture is correct, we can plug the above equation
into (7) and show that

§71(a) = 6 (@)+mexp (— D F ““”)

2Ul?ump
D(S', F,
e ( (5" <m>>) o
2O-bump
that is,
2(qi—1 X 2(qQi :
oxp (DS Ra@) | _ (DS R@)
20bump 2abump

(10)
where F;_1(z) and F;(x) are the foot points of x with re-
spect to C*~! and C*. It can be shown that the line con-
necting S* and S*~! is orthogonal to both C*~! and C*
[25]. Therefore, if x is on this line (like x; in Fig. 2),
Fi_1($) = S 1 and Fz(l‘) = S% So D(Sl, Fz(l‘)) =
D(S*1, F;_1(x)) = 0 and (10) holds. If z is far away from
St and S*~! (like z2 in Fig. 2), although D(S, Fi(x)) #
D(S*=1, F;_1(x)), they are both large compared to Tymp
since they approach the tail of the Gaussian. So (10) also
approximately holds since both exponentials vanish to zero.
If x is in the intermediate region between x; and s, as x ap-
proaches z1, D(S*~!, F;_(x)) approaches D(S%, F;(x));
as x approaches x,, both exponentials approach zero. This
shows why the conjecture is approximately correct.

The experiments in Fig. 3 verify the conjecture in prac-
tice. In Fig. 3(a), we take C*~! and perturb it to C? with

iSi-1
Fi1(X2) i
1

Figure 2. Sketch proof of detailed balance equations

noise magnitude m using source point S?~!. In Fig. 3(b),
we perturb C* to C**! with magnitude —m using the source
point S®. As Fig. 3(c) shows, C*~! is almost exactly the
same as C*t!. This shows equation (10) approximately
holds.

OO

(a) (b) (©)
Figure 3. The detailed balance examples. (a) The black curve is
C*~1, the green curve is C*, and the blue square is S*~*. (b) The
black curve is C*, the green curve is Siany (c) We overlay Cci1
and C*; the result shows they are almost the same.

Given the above analysis, the backward proposal can be
approximated as:

q(¢"¢") = p(S*) - p(—m) (11)

If the source point is randomly chosen along the curve
under a uniform distribution on the arc length, we can show

1 ; 1

p(Sh) = p(S") = Length(Ch)

~ Length(Ci-1) (12)
The overall proposed MCMC curve sampling algorithm is
given in Algorithm 2.

We mention that in computer vision applications, the tar-
get distribution 7(¢) is sometimes so complex that we only
know it up to a constant of proportionality. This is not a
problem in the MH algorithm since the acceptance ratio will
cancel the normalizing constants.



Algorithm 2 MCMC curve sampling algorithm
Initialize ¢°
for i = 1to N do
Sample u ~ Ujg 1
Randomly pick S~ over the zero level set of ¢!
Sample m ~ N0, 0]
Generate the candidate curve 1)(?) as described in Sec-

tion 4.1
Calculate
i i1y _ (") q(¢' ") )
a(y',¢'"") = min (17 (¢ (Wi

where q(¢*|¢* 1) and q(¢*~t|¢?) are given by (6) and
(11).
if u < a(y?, ¢~ 1) then

¢ =y
else_ _
¢1 — ¢171
end if
end for

4.3. Implementation

Our implementation is similar to that of the narrowband
level set [28], which considerably reduces computational
complexity. We maintain re-initialization [28] as an impor-
tant step in our algorithm, even though Lemma 1 shows that
¢" is a valid SDF, for two reasons:

1. Numerical errors, (e.g, |V¢| is not strictly equal to 1
everywhere, and the foot point calculated in (4) is only
approximately accurate as we describe below), will
tend to accumulate and re-initialization is necessary.

2. In gradient descent curve evolution, where the curve
only moves a short distance each time step, the band
that holds the zero level set does not need to be recon-
structed very often. However, in our work, since per-
turbation may lead to large jumps, reconstructing the
narrow band is done quite often and re-initialization is
a standard technique for this problem.

Due to numerical errors in the computation of V¢, the
foot point calculated in (4) may not lie on the curve, and
errors may be introduced in the geodesic distance cal-
culation. Since the curve is numerically quantized into
grid vertices x1, s, . ..,Z N, We can approximate F'(z) =
argmin, ||z; — ||, which can be implemented by fast
searching algorithms such as Qhull [2].

The choices of 0,44 and oy, depend on the appli-
cation. A large opymp Will give curves without fine de-
tails, and a small o,y allows for high-frequency variation.
For example, in our shape simulation experiment below, we

chose opymp = 0.05 - length( (C%) - \/[Im]], which guaran-
tees the curves generated are smooth

Choosing 0,44 is more subtle; if 7,44 is too big, large
jumps are encouraged, but these jumps are also likely to be
rejected and the overall effect is that the state doesn’t change
much. If 7,44 is small, although perturbations are likely to
be accepted, it will take a tremendous amount of time to
explore the whole state space. Both cases are examples of
a poorly mixing chain. Various research in pure MCMC
analysis provides some intuitive methods for how to choose
this “scaling” [29, 30]. For example, Roberts et al. [29]
observed that for RWM, the optimal value should scale with
dimension d as O(d~1), with an optimal acceptance rate of
0.234. In our experiments, we chose the 0,44 that leads to
an acceptance rate of 0.25.

5. Experiments

In this section, we present numerical results for our curve
sampling algorithm in several different situations. For each
case, several hundred or thousand curves are typically gen-
erated from the target distribution. In order to abstract use-
ful information out of these large number of samples, we
use the techniques introduced by Fan [11] to summarize this
information:

1. The sample curves with the highest probability among
all the samples generated. These can be viewed as the
modes of the target distribution, and also the globally
optimal solutions that an optimization method could
possibly reach.

2. Histogram images. H (z) is the sample probability that
x is inside all the curves generated.

3. Marginal confidence bounds. The level contours where
H(z)=0.1, H(z) =0.9.

In our experiments with C++ code on an Intel Core
2.66G CPU, 3.5GB RAM computer, our algorithm runs
about 0.3 second for each iteration, which includes the
curve generation process and the acceptance ratio evalua-
tion.

5.1. Shape Simulations

As a first experiment, we show the application of curve
sampling in shape simulation. Given one training curve or
multiple training curves C;, we would like to generate new
curves C' that are “similar” to the given ones. We define the
similarity by a nonparametric shape distribution [8, 20]:

2
7(C|C) K—Zex ( —D CC)) (13)

T4

where the distance measure D is the symmetric area differ-
ence. Unlike the approach of Fan [11], we do not require a
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Figure 4. Single target curve simulation results. (a) The initial
curve in red and the target curve in blue. (b)—(g) The histogram
images at time stamps 100, 200, 400, 800, 1600, 3200, 5000 re-
spectively. The 10% and 90% confidence bounds are shown as
yellow and green curves respectively. (i) The red curve is the most
likely curve generated among the 5000 samples. This figure is best
viewed in color.

separate term in 7 to enforce smoothness, since the proposal
distribution is designed to generate smooth curves.

In Fig. 4, we show the results of using a single curve as
the target curve. The target curve and the initial curve are
illustrated in Fig. 4(a). In Fig. 4(b)—(g), we show the evolv-
ing histogram image with respect to time ¢. We collect all
the samples up to time ¢ and display the confidence bounds
of 10/90% with yellow and green curves. The result indi-
cates that the marginal confidence bounds and the histogram
image do not change much after ¢ = 1600, which shows
that the samples converge to a final distribution. The tar-
get curve is well bounded by the confidence bounds, which
also indicates that the final distribution is the desired dis-
tribution. Fig. 4(i) shows the most likely shape among the
5000 generated samples.

In Fig. 5, we show the results of using two curves in
(13). In Fig. 5(b)—(g), we show the histogram image at
various times . The mixing time in this case is around
t = 20000, which is much longer compared with the sin-
gle target curve experiment. The reason is that since the
distribution has two modes, the random walk algorithm will
take many steps of very low acceptance probability to make
the trip. In Fig. 5(i), we show the 20 most likely curves
among the 40000 samples, demonstrating that the station-
ary distribution is indeed bimodal. In both experiments, we
note that increasing o4 would make the target distributions
less sharp or bimodal, and therefore the histogram images

(b) t = 500 (c) t = 1000
(d) t= 5000 (e)t=10000  (f) t="20000
(2)t=30000  (h) t=40000 ()

Figure 5. Double target curve simulation results. (a) The initial
curve in red and the target curves in blue. (b)—(g) The histogram
images at time stamps 500, 1000, 5000, 10000, 20000, 30000,
40000 respectively. The 10% and 90% confidence bounds are
shown as yellow and green curves respectively. (i) The red curves
are the 20 most likely curves generated among the 40000 samples.
This figure is best viewed in color.

would span a larger region.

5.2. Medical Image Segmentation

As a second experiment, we apply our curve sampling
framework to a medical image segmentation application.
Direct gradient descent optimization methods are often
trapped in regions of local minima. By formulating the cost
functional as a probability distribution and drawing curves
from this distribution accordingly, we have more informa-
tive information regarding the solution’s possible locations.

In this experiment, we assume that there are multiple
training shapes C; available, and a reference histogram for
the foreground object h;,, and the background h,,; respec-
tively. We formulate our cost functional as a probability
distribution [9]:

p(C[I) o p(I|C) - p(C|Cy) (14)
where p(C|C;) is given by the nonparametric shape distri-
bution (13) and p(I|C) is given by

. T \2
p(IIC) =exp (D(h;?h’) x

7 2
exp (_D(h(mt(c)a h(mt) ) (15)

202

which drives the object and background histograms to the



reference histograms [6]. D is taken as the Wasserstein cu-
mulative distance measure between histograms [6].

In Fig. 6, we show a segmentation result for the prostate
in the CT imagery. This problem is considered to be diffi-
cult due to the prostate’s indistinguishable intensity distri-
bution compared with surrounding organs such as the blad-
der. In this example, we used 9 other prostate shapes from
the same patient on different days as training data in (13),
and used the known reference inside/outside histograms in
(15). In Fig. 6(a), we show the 9 training shapes. In
Fig. 6(b), we show the initial curve and the ground truth. In
Fig. 6(c), we show the confidence bounds after 20000 sam-
ples are generated. The ground truth is well bounded by
the confidence level contours as expected. In Fig. 6(d), we
show the most likely curve among 20000 samples in cyan,
which overlays almost exactly with the ground truth.

(c) t=20000 (d)
Figure 6. Image segmentation results. (a) The training shapes in
red. (b) The initial curve in cyan and the ground truth in blue. (c)
The histogram image at time stamp 20000. The 10% and 90%
confidence bounds are shown as yellow and green curves respec-
tively. (d) The cyan curve is the most likely curve generated among
20000 samples.

6. Conclusions and Future Work

In this paper, we proposed to use the MH algorithm
to draw simple closed curves from a distribution defined
over the space of signed distance functions. By represent-
ing the shapes implicitly, we avoid the problem of com-
plex re-parametrizations typical of explicit shape represen-
tations. We illustrated our algorithm with shape simula-
tions and an image segmentation application, and experi-
mentally demonstrated that the Markov chain will asymp-
totically converge to the desired distribution. We believe
our method is an important first step in making MCMC on
high-dimensional level set functions viable.

The success or failure of any MCMC algorithm often de-

pends on the choice of the proposal distribution, especially
for a complex distribution that has multiple modes. In this
work, we illustrated the basic idea of using an RWM-like
algorithm for the curve sampling problem. In future work,
we plan to investigate other proposal distributions such as
Hybrid Monte Carlo (HMC), which incorporates the gradi-
ent of the target distribution to improve mixing [24].

To extend our curve sampling algorithm to 3D, we note
that while the geodesic distance is easy to compute in 2D,
it is more complex in higher dimensions. However, the Fast
Marching method can be used to calculate it [32].

Although the level set shape representation is ideal to
handle topology change issues, our current framework is
restricted to simple closed curves due to the construction
of the foot point and its induced perturbation. We plan to
investigate whether it is possible to extend our method to
different topology situations.

Finally, we are investigating improved segmentation al-
gorithms based on the curve sampling approach. In medi-
cal image segmentation problems, the image intensity often
has a highly inhomogeneous distribution, and objects to be
segmented contain very weak and diffuse boundary edges
[11]. Fig. 6 indicates the promise of the idea, but we plan
to refine the segmentation cost function in (15) based on a
multimodal distribution learned from training data [7].
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