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ABSTRACT
Automatic algorithms for tracking and associating passengers and
their divested objects at an airport security screening checkpoint
would have great potential for improving checkpoint efficiency,
including flow analysis, theft detection, line-of-sight maintenance,
and risk-based screening. In this paper, we present algorithms for
these tracking and association problems and demonstrate their
effectiveness in a full-scale physical simulation of an airport security
screening checkpoint. Our algorithms leverage both hand-crafted
and deep-learning-based approaches for passenger and bin tracking,
and are able to accurately track and associate objects through a
ceiling-mounted multi-camera array. We validate our algorithm
on ground-truthed datasets collected at the simulated checkpoint
that reflect natural passenger behavior, achieving high rates of
passenger/object/transfer event detection while maintaining low
false alarm and mismatch rates.
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1 INTRODUCTION
Video surveillance is a critical aspect of airport security, and can
make a particular difference at security screening checkpoints. For
example, automatically tracking the flow rates of passengers can
help determine when a new lane should be opened. Robustly main-
taining associations between passengers and their belongings can
help detect thefts in real time, or mitigate ownership disputes after
the fact. Maintaining a specific passenger’s identity as s/he moves
through the airport can enable “risk-based screening” in which
certain passengers are given more or less scrutiny. In this paper,
we present a first step in these directions: a set of computer vision
algorithms specifically tailored to the problems of tracking and
associating passengers and divested objects at security checkpoints.
The algorithms were designed and tested in a highly accurate repro-
duction of a security checkpoint, ensuring their direct applicability
to the real-world scenario.

In particular, we address three main problems. The first is pas-
senger tracking through a network of several cameras with slightly
overlapping fields of view.We combine optical flow detectors with a
deep-learning detector trained on overhead passenger images. The
second problem is tracking passenger belongings (here, confined to
the contents of standard-sized bins). A passenger can divest objects
into one or more bins. We solve the bin tracking problem with
a background-aware correlation filter, and use a simple template
matching algorithm to determinewhether a bin is empty or contains
divested objects. The third problem is passenger-to-bin association,
which is important both at the moment of divestment and at the ta-
ble where passengers pick up their belongings after screening. Since
the problem of bin ownership is critical, we use a deep-learning-
based arm pose detector to detect passenger contacts with bins. We
test and train our algorithms with footage collected from the mock
checkpoint, and validate the results against hand-annotated ground
truth for passenger/bin locations and transfer events. We demon-
strate that the algorithms operate at high detection and low false
alarm rates, indicating their promise for real-world deployment.

1This material is based upon work supported by the U.S. Department of Homeland Security un-
der Award Number 2013-ST-061-ED0001-04 and by the National Science Foundation under Grant
Numbers IIS-1318145 and ECCS-1404163. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing the official poli-
cies, either expressed or implied, of the U.S. Department of Homeland Security. Thanks to Deanna
Beirne, John Beaty, and Carl Crawford for the design, data collection, and management of the sim-
ulated checkpoint. Thanks to Tim Rupprecht for the evaluation tool. Thanks to Mengran Guo for
additional help on algorithm development.
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2 RELATEDWORK
Many modern video surveillance systems use some form of com-
puter vision algorithm. One of the most common scenarios is the
detection of abandoned objects. San Miguel et al. [12] proposed
an approach to detect unattended or stolen objects in surveillance
video based on three simple detectors. Initially, the moving regions
are detected and then classified as static/dynamic and human/non-
human objects. Next, objects that are detected as static and non-
human are analyzed with each detector. The best detection hypoth-
esis is selected based on a fusion-based approach to discriminate
between stolen objects. Singh et al. [14] used a dual-time back-
ground subtraction algorithm and an approximate median model to
detect abandoned objects. Lin et al. [9] adopted a similar approach
for detecting abandoned luggage by combining short- and long-
term background models to extract foreground objects. However,
these approaches, while performing well in a simple environment
for a particular task (detecting abandoned objects), are not suitable
to solve the problems of tracking and association in a complex
real-world airport surveillance system.

Several methods specially tackled multi-camera tracking prob-
lems. Stauffer et al. [15] used a planar tracking correspondence
model to reliably track objects in multiple cameras with limited
visual overlap. Chen et al. [3] used inter-camera transfer models
to track objects in multiple cameras even with non-overlapping
views. They generally worked with side-view cameras or cameras
with large fields of view where calculating homography matrices
between cameras is tractable, which is not the case in our system.

The most closely related work is by Wu et al. [16], who created
a realistic airport checkpoint environment and a real-time system
to track baggage and passengers and maintain correct associations.
They used Gaussian mixture models to segment foreground blobs
from the background and defined a state machine for bag tracking
and association. Though the results were promising, the simulation
environment was not entirely realistic in that the cameras were
much further off the ground (10m) than would be practical, the
camera image quality was relatively poor, and the illumination of
the space was uncharacteristic (e.g., no natural light).

3 SIMULATION ENVIRONMENT
Our algorithms are trained and tested in a custom-built mock check-
point testbed, illustrated in Figure 1, which is located at Northeast-
ern University’s Kostas Research Institute in Burlington, MA, USA.
The testbed includes real-world airport equipment arranged at real-
istic scale and configuration, including rollers, bins, tables, podiums,
and automated conveyor belts. The testbed also contains a real x-
ray machine for baggage and a walk-through metal detector for
passengers (neither of which is activated in our experiments). An
accurately-sized plywood structure plays the role of a millimeter-
wave advanced imaging technology (AIT) passenger screener.

The testbed contains many fixed-focus Bosch Flexidome IP 7000
RD cameras mounted on the 10-foot-high ceiling grid and pointed
downward, five of which are used in this project to cover passengers’
entry to the checkpoint, travel through the metal detector/AIT, and
post-screening baggage pickup, as well as each bin’s entire path
(except when occluded by the x-ray). Each camera has a frame rate
of 30 Hz and resolution of 1920×1080 pixels.

Figure 1: Divestment area of the mock checkpoint.
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Figure 2: Floor plan of the mock checkpoint.

We label the cameras from 1 to 5 according to the typical path
of the passengers, as illustrated in Figure 2. Camera 2 (divestment
into bins) and Camera 4 (bin pickup) are the most important ones
for our algorithm and the ones where our quantitative evaluation
is performed.

Over several months, large groups of volunteers have been
recorded in the testbed. Each of the volunteers was given an in-
struction card, directing him/her to divest items onto the conveyor,
proceed through personal screening, pick up his/her divested items,
and exit the screening area. In some cases, passengers were in-
structed to perform anomalous activities, such as taking an item
from another passenger’s bin. Many such group recordings were
used to develop the algorithms described here; several recordings
were manually annotated for quantitative evaluation, as discussed
in Section 7.

4 PASSENGER DETECTION AND TRACKING
We combine two approaches for passenger detection and track-
ing: an optical flow-based segmentation and a deep learning-based
person detection algorithm.

4.1 Single-Camera Detection
We adopt optical flow-based segmentation to extract passenger
blobs from the background. Since the initial frames of the video
normally contain no passengers, subtracting the initial frames from
all subsequent frames of the video would be a natural approach.
However, we found that quite often there are substantial matches
between the color of the background and the passengers’ clothes,
in which case background subtraction fails. We found that incor-
porating motion-based segmentation is effective regardless of the
color of passengers’ clothes.
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We incorporated a local-global optical flow method that is robust
to local noise and at the same time produces dense flow fields, as
suggested by Bruhn et al. [1]. We construct flow fields only in
the passengers’ areas (i.e., corresponding to the ground, not the
conveyor). We then apply Gaussian blurring to the flow field, and
assign the pixels that have flow magnitude greater than a threshold
as foreground pixels belonging to the passengers.

We found that this flow-based method provides a crude estimate
of each passenger’s location. We then refine this region by incorpo-
rating a deep-learning based approach based on the Faster R-CNN
architecture [11]. We decided to use this architecture because it has
been shown to be capable of detecting multiple targets simultane-
ously and at fast speeds. Faster R-CNN attains this performance
by using a region proposal network (RPN) that shares the full con-
volutional features used by the detection network to create region
proposals (i.e., bounding boxes that are likely to contain an object
of interest) almost for free. The network can then simultaneously
predict object bounding boxes and objectness scores (i.e., the like-
lihood that the box contains the desired object) at every position.
The two networks are trained together end-to-end by alternating
fine-tuning for region proposal and object detection.

The off-the-shelf Faster R-CNN network is available pre-trained
using the VGG-16 net [13], which in turnwas trainedwith ImageNet
[6]. In order to use this architecture for our passenger tracking
problem, we fine-tuned it using hand-labeled data captured at the
testbed. We labeled 676 frames containing persons whose head and
upper body were visible. Retraining was done using a learning rate
starting at 0.001, with a decay of 0.1 at 60,000 and 80,000 steps, and
steepest gradient descent (SGD) with 0.9 momentum, and threshold
of positive detection 0.7. Figure 3 illustrates the steps of passenger
detection and refinement in an example frame.

(a) Original frame.

(b) Crude estimate from optical flow.

(c) Refined bounding boxes from R-CNN.

Figure 3: Steps for passenger detection.

Optical flow also provides the direction of motion of the pas-
sengers, and hence the passengers’ probable positions in the next
frame. To track a passenger, we calculate the mean magnitude of
the optical flow vector around the bounding box using a weighted
average:

θ̄ =

∑
x ∈W θ (x)M(x)∑

x ∈W M(x)
Here, x is the pixel coordinate in bounding box windowW , and
θ (x) andM(x) are the direction and magnitude of the optical flow
at location x . From θ̄ we have an estimate of the direction of motion
of the passenger. We search for a blob in this direction in the optical
flow field of the next frame, associate this blob with the correspond-
ing passenger, and refine the bounding box using R-CNN. If the
passenger does not move, there is no blob from the optical flow
field, and we keep the bounding box at the same location.

4.2 Multi-Camera Person Tracking
Referring to Figure 2, the general flow is that a passenger enters the
scene in Camera 1, then appears in Camera 2 where s/he divests
items. S/he next leaves Camera 2 and appears in Camera 1 again;
then s/he walks to the Camera 3 and Camera 4 area where s/he
retrieves items from bins, and finally leaves the scene through
Camera 5. Although the passengers appear in Camera 1 initially,
we start labelling and tracking the passengers in Camera 2, since
the field of view of Camera 1 has high radial distortion and thus is
not suitable for tracking effectively. We use the frames of Camera 1
when passengers leave Camera 2 (i.e., to track the passengers from
Camera 2 to Camera 3 or to maintain correct labelling if passengers
return to Camera 2’s view, as illustrated in Figure 4). We also note
that while there is overlap between cameras, it is so limited that we
cannot calculate robust homography matrices between them. Since
the cameras are synchronized, when a passenger leaves one camera
s/he should immediately appear in the next camera in a predictable
region, which we search to maintain the correct passenger label.
The passenger tracking is finalized after s/he leaves Camera 5.

(a) Camera 2, 46.4 sec (b) Camera 1, 48.5 sec (c) Camera 2, 51 sec

Figure 4: (a) Passenger P3 leaves Camera 2’s FOV, (b) appears
in Camera 1, and (c) reappears in Camera 2 to grab a bin and
put it on the conveyor belt.

5 DIVESTED ITEM DETECTION AND
TRACKING

Passengers place bins that move along the conveyor belt area. Di-
vested items like bags, backpacks, and wallets are placed into the
bins. The current project is constrained so that only one divested
item is placed into each bin, and no objects are placed on the belt



ICDSC ’18, September 3–4, 2018, Eindhoven, Netherlands Ashraful Islam, Yuexi Zhang, Dong Yin, Octavia Camps, and Richard J. Radke

outside of bins. Since the bins generally move along the long axis of
the rollers/conveyor belt/table and come out of the x-ray machine
in the same order as they enter, bin tracking is generally easier than
passenger tracking.

5.1 New Bin Detection
First, we detect each incoming bin in the conveyor belt area. Since
the conveyor belt region is mostly dark and an empty bin is light
gray, we detect an incoming bin simply by detecting a change of
intensity profile in the conveyor belt region. In an ideal situation, if
a grey bin is placed with perfect alignment on a black conveyor belt,
the intensity profile along the direction of motion of the conveyor
belt will be a rectangular window signal with the same length as
the width of the bin and magnitude proportional to the height of
the bin. Even though an incoming bin might not be placed with
perfect alignment on the conveyor belt in practice, we can detect
a bin by measuring the Euclidean distance between an ideal rect-
angular window function and the horizontal intensity profile of
the incoming blob. In our case, we assume that the bin rectangular
window isW =100 pixels wide and has grayscale intensity 140.

We subtract the current conveyor belt area from the first frame
(where there are no bins on the conveyor belt) and calculate the
intensity profile t(m) by summing the intensity of this subtracted re-
gion in the horizontal direction (see Figure 5). We next measure the
cross-correlation between the intensity profile t(m) of the conveyor
belt and the ideal window function s(m):

C(n) =
∑
m

t(m)s(m − n)

If maxC(n) > τ where τ is a threshold, we assign a new bin id to
the belt region covering the horizontal length between n̂ and n̂+W ,
where n̂ = arg maxC(n) .

(a) (b)

Intensity

t(m)
s(m)

(c)

Figure 5: (a) Original imagewith incoming empty bin. (b) Re-
sult of subtracting static background (note that the “stripes”
are due to the pattern of the underlying rollers). (c) Intensity
profile of the foreground image compared to thewindow sig-
nal.

5.2 Bin Tracking
After assigning a unique id and bounding box to an incoming bin,
we perform correlation filter (CF) based tracking to track the bin
through the conveyor belt. CF trackers model an object using an

adaptive correlation filter and track the target with convolution.
A target window is selected in the first frame, from which the
filter is initialized. The tracking is performed by correlating the
filter over a search window in the next frame. The point where
the correlation response is maximum is assigned as the new target
location. The correlation is performed in the Fourier domain, so
the tracking is extremely computationally efficient. Many methods
have recently been proposed to exploit this filter-based tracking
strategy; we adopt the Background Aware Correlation Filter (BACF)
[7], which uses discriminative and well-generalized multi-channel
features and is quite robust to initialization. Moreover, the BACF
tracker uses the surrounding background around the target for
negative samples at the training stage. We occasionally re-initialize
the correlation filter when the appearance of the bin changes (for
example, when an item is placed into the bin) so that the tracker
becomes robust to sudden appearance changes of the target.

5.3 Divested Item Detection
We apply a template matching algorithm to determine whether
there is any divested item (denoted DVI) inside the bin. There are
several issues to consider. First, we do not have tight segmentation
of the bin, so the bounding box of a bin may cover the background
conveyor belt area and/or some parts of neighboring bins. Therefore,
simple approaches like color histograms will not work in situations
when the bin is diagonally aligned on the conveyor belt or the
bounding box expands to nearby bins. Moreover, there might be
sudden variations of color intensity of a bin for various reasons,
such as a passenger’s hand waving above the bin, placement of the
bin in a shaded region, or angular displacement of the bin.

To overcome these issues, we adopt a robust template matching
algorithm from Dekel et al. [5], named Best-Buddies Similarity
(BBS) Template matching. In this algorithm, the Best-Buddies Pairs
(BBP) are detected from two sets of points. A pair of points is called
a Best-Buddies Pair if each point is the nearest neighbor of the
other corresponding point. The ratio of the number of BBPs to
the total number of points in the set is called the BBS. As BBS
relies on a small subset of point pairs, it is robust to appearance or
illumination changes. Also, instead of using actual distance values,
BBS counts the number of Best-Buddies Pairs, which is a robust
similarity measure.

We record a template image to represent an empty bin. Since the
bounding box around a target bin might not be tight enough, we
expand the bounding box window on both sides (≈20% of the bin
width), and divide the window into several overlapping rectangular
regions with the same area as the template image. We then apply
the BBS measure between the template image and the candidate
windows of the target image in RGB color space. The maximum BBS
value represents the similarity between the template and the target.
We store this value for several consecutive frames (30 frames in
our case). If this similarity value is less than a threshold (0.5 in our
method) for several frames, then we consider the bin as containing
a divested item. Otherwise, we mark the bin as empty.

6 PASSENGER-TO-DVI ASSOCIATION
The main task of the system is to associate bins with passengers,
maintain the associations, and detect whether there is an anomalous
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event (e.g., theft). A simple approach to association is to measure
the distance between the centroid of a bin and nearby passengers,
and associate the bin with the nearest passenger. However, this
approach fails in situations when there are several passengers in
close proximity. Specifically, we need to determine which passenger
actually interacts with items in a bin. We perform association in
two situations: in Camera 2 when divestiture occurs (the DVI drop
area) and in Camera 4 when the bin is emptied (the pick-up area).

6.1 Multi-Person Upper Body Pose Estimation
When the passengers are well-separated in the images, it is easy
to associate them with their belongings and bins by simply using
proximity. However, when passengers come closer to each other (as
is common at security checkpoints), proximity alone does not work
well, leading to incorrect associations. In order to overcome this
challenge, we used an upper body detector to capture the events
when the passengers divest or pick up personal items. In particular,
we used a convolutional pose machine deep architecture network
[2], fine-tuned to detect the two arms of each passenger.

The pose machine uses a multi-stage network with two parallel
branches. A feature map of an image is first extracted using a VGG-
19 network [13], and is then passed to the first stage of each branch.
Afterwards, confidence maps of the locations of each body part are
predicted by the first branch, and the second branch predicts the
association relationship between the parts. The predictions from
the two branches, along with the image features, are then delivered
to the next stage.

To train this network, we built our own dataset following the
training protocol from the COCO challenge [10] and the framework
from CAFFE [8] to construct a database that can be properly read
by the designed network. We prepared all the data by using a
customized Sloth labeling tool [4]. We first defined the categories
to be labeled. For each person, we labeled 7 joints in total: the head,
two wrists, two elbows, and two shoulders. We used 364 frames
from 3 videos from Cameras 2 and 4. During training, we fine-tuned
the pre-trained model from [2] with the initial learning rate 8e−6
with decay of 5e−4 every 130,000 iterations. We trained 300,000
iterations in total.

6.2 DVI Drop Area
The passengers enter Camera 2 from Camera 1 after the boarding
pass checkpoint. Since the passengers enter this area only from one
direction, we label the passenger according to the sequence they
enter. We label the bins in the same manner, i.e., by the order of
entrance. Although the bins are labeled as soon as they are dropped
onto the conveyor belt, we do not associate an empty bin with a
passenger. When an item is divested inside the bin (determined by
the BBS measure as discussed in Section 5.3), we keep track of the
passenger whose left or right palm coordinates (determined by the
deep learning-based pose estimation algorithm) are nearest to the
centroid of the bin for 30 frames. If the bin is fully divested after
that, we assign the bin to the passenger whose palm is closest for
most of the frames (as illustrated in Figure 6). We do not alter this
assignment until pick-up, so that passengers other than the owner
can temporarily move the bin (which frequently happens in the
airport environment). Moreover, we also save the order of the bin

labels as they exit to the x-ray machine and the states of the bins
so that they can be tracked after coming out of the x-ray machine
in the pick-up area (i.e., Camera 4).

(a) (b)

Figure 6: (a) The bins are labeled but not associated. (b) Per-
son P1 divests item in bin B2; thus B2 is assigned to P1.

6.3 Pick-Up Area
The pick-up area (Camera 4) is crucial for deciding whether there
is a correct pick-up or a potential theft. Here, an important point
to consider is that the bins come out of the x-ray machine in the
same order as they enter the machine. Initially an incoming bin is
detected by intensity profile matching (discussed in Section 5.1),
and we assign the corresponding label and BACF tracker to the bin.

In this area, passengers pick up their items from the bins. Pas-
sengers are tracked through Cameras 2, 1 and 3 to Camera 4; thus
we know the labels of each passenger. During a pick-up event,
we detect the recipient as the passenger who is closest to the bin
by measuring the distance between the bin centroid and palm co-
ordinates. We determine whether there is a potential occurrence of
theft by comparing the bin owner label with the bin recipient label,
as illustrated in Figure 7. After the item is picked up, we no longer
track the bin.

Figure 7: Potential theft: Person P3 is picking up item B3
that belongs to Person P2 (i.e., mismatch between owner and
recipient labels). The arm pose points of P3 are visible here.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Sample evaluation results. Here, green symbolizes ground truth data, red symbolizes algorithm data, and yellow
symbolizes false alarms for the algorithm data. (a)-(c) Sample frames with correct detections. (d), (e) Sample frames with false
alarms for passenger detection, all of which are caused by partial views of the passengers. (f) A sample frame of a missed DVI
detection. Here, the bin is just coming out of the x-ray machine. Our algorithm has not detected the bin yet, as it is not fully
in the camera view.

7 EXPERIMENTAL RESULTS
Here, we report the results of our algorithm on two datasets that
we denote “training” and “testing” (though many other videos were
used in the design and tuning of the algorithms). For the training
dataset, the ground-truth annotations of passenger and bin bound-
ing boxes and timing of transfer events were known. However,
for the testing dataset, the annotations were unknown to the re-
searchers and evaluated by an independent “oracle”. Both datasets
consist of two full runs of passengers in the testbed; the training
data includes five cameras having video length of 136 seconds each,
and the testing data includes five cameras having video length of
132 seconds each.

For evaluation, we define the probability of detection, PD, as the
number of true detections divided by the number of total detection
events, and the probability of false alarm, PFA, as the number of false
detections divided by the number of total events. The PD and PFA
are evaluated for passengers, divested items, and transfer events
(divestment or picking up of items from bins). A true detection
for a passenger or DVI occurs when the intersection-over-union
(IoU) of the detected bounding box and the ground truth bounding
box is greater than a threshold; otherwise it is a false alarm. The
default threshold is 0.3 for passenger (PAX) detection and 0.5 for
divested item (DVI) detection. A transfer event is a “hit” (correctly
detected) if it occurs within ±30 frames of the ground truth transfer.
Moreover, the evaluation tool also calculates the probability of
switch (both for PAX and DVI) and probability of mismatch (for
transfer events). A switch is registered when there is any change of
label of a DVI or PAX, and a mismatch is registered if a PAX-DVI
association disagrees with ground truth on divestment or pick-up.

Clearly, we want the PD to be high and PFA, switch and mismatch
to be low.

The evaluation is performed only for Cameras 2 and 4, since the
divestment and pick-up occur in these two cameras respectively.
We use the other cameras for tracking the passengers so that there
are few switch or mismatch events in the final results. The results
on the training and testing datasets are tabulated in Table 1 below.
All of the values are converted to percentages. The top row of Figure
8 shows example frames with correct passenger and bin detections.

Table 1: Experimental results

training testing
Camera 2 4 2 4
PD(PAX) 81.5 88.6 95.0 100.0
PD(DVI) 87.5 91.4 91.4 92.0
PD(XFR) 88.9 75.0 87.5 62.5
PFA(PAX) 34.1 14.6 27.5 7.5
PFA(DVI) 7.3 12.2 25.0 25.0
PFA(XFR) 0.3 0.0 0.1 0.1

P(PAX Switch) 7.4 0.0 0.0 3.3
P(DVI Switch) 7.5 0.0 0.0 2.0
P(Mismatch) 0.0 12.5 0.0 6.2

The bottom row of Figure 8 shows several example frames where
our algorithm disagrees with the ground truth annotations. We
can see that there are subtle evaluation issues for which the al-
gorithm results in “false alarm” or “miss”. One issue is that the
ground truth denotes someone as a passenger only when his/her
head appears. However, our algorithm detects passengers even
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when some body parts are partially visible. The high false alarm
in the passenger tracking is mainly due to this evaluation issue.
The same goes for DVI detection; there are disagreements be-
tween the ground truth and our algorithm with respect to when
should we start or stop labeling a DVI, which are difficult to re-
solve automatically or with a heuristic rule. The video at https:
//www.youtube.com/watch?v=CJqeqhKfNFk shows an example of
the algorithm, which additionally includes a “news feed” visualiza-
tion of the automatically detected, time-stamped video events.

Figure 9 explores the algorithm performance as the intersection-
over-union (IoU) threshold that determines a “hit” is varied for
the training dataset. As expected, decreasing the IoU threshold
increases the detection rates, though we note that the DVI detection
rate is robust to changing the IoU threshold in the range between
0.2 and 0.6.

Figure 9: PD vs. IoU threshold

We also found a subtle ground-truthing issue with respect to
transfer events. A transfer event occurs when a passenger divests an
item into a bin or picks up an item. We found that the divestment
event is triggered in the ground truth at the instant the item is
placed in the bin. However, our algorithm waits several frames
to be sure that it is a divestment rather than some illumination
change or waving of passengers’ hands. Though a transfer event
is a “hit” within ±30 frames (1 second) of the ground truth event,
we observed that a 1 second window is not enough to capture all
transfer issues.

8 CONCLUSIONS
We presented an airport surveillance system for security check-
points based on a highly accurate testbed and realistic passen-
ger/divestment behavior. The proposed algorithms can accurately
detect, track, and associate passengers and divested items, as well
as detect complex activities like theft or person-to-bin mismatches.
In addition, our algorithm is robust to changes in camera posi-
tion, lighting and shadows. There are several frames in which the
lighting changes dramatically but our algorithm is unaffected.

In order to use deep learning architectures for the problem, we
had to manually label data to fine-tune the networks. While this is
a tedious process, it should be noted that we were able to achieve
very good performance with a very small labeled dataset. We are
currently working on domain adaptation techniques with the goal

of further reducing the number of labels needed to fine-tune or
even eliminating the need for them altogether.

Despite the ground-truth annotation issues mentioned above,
there is still room to improve the passenger detection algorithm, in
particular by by decreasing false detections. Estimating accurate
transformations to convert coordinates between cameras would
make the tracking system more robust.

In short-term future work, we can use the described system
to automatically produce statistics from the event log, such as
histograms of the number of bags per passenger, time taken by each
passenger/bag to clear the screening process, number of seconds a
passenger is physically separated/out of the line-of-sight of their
belongings, and so on. Longer-term work would involve making
the system robust to common “corner cases” such as families with
children, passengers in wheelchairs, and oddly shaped items that
do not fit into standard bins. Families present a particular challenge
(that may be too difficult to solve by video alone) in that it should
be “legal” for one family member to pick up an object that was
divested by another family member.
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