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Using Time-of-Flight Measurements for
Privacy-Preserving Tracking in a Smart Room

Li Jia, Student Member, IEEE and Richard J. Radke, Senior Member, IEEE

Abstract— We present a method for real-time person tracking
and coarse pose recognition in a smart room using time-
of-flight measurements. The time-of-flight images are severely
downsampled to preserve the privacy of the occupants and
simulate future applications that use single-pixel sensors in
“smart” ceiling panels. The tracking algorithms use grayscale
morphological image reconstruction to avoid false detections,
and are designed not to mistakenly detect pieces of furniture as
people. A maximum likelihood estimation method using a simple
Markov model was implemented for robust pose classification. We
show that the algorithms work effectively even when the sensors
are spaced apart by 25cm, using both real-world experiments
and environmental simulation.

Index Terms— time-of-flight, smart room, pose recognition,
visual tracking, privacy preservation, occupancy detection

I. INTRODUCTION

Low-cost solid-state lighting technologies, computer vision
algorithms, and advanced control systems are converging

to make “smart rooms” — environments that react intelligently
to the presence and activities of their occupants — a real-
ity. In particular, we are concerned with reducing the cost
and improving the efficient use of lighting, which currently
consumes 19% of electrical energy globally [1]. About 20%-
25% of the electricity used in buildings and about 5% of
the total energy consumption in the US is used for lighting
[2]. Energy-conserving lighting control systems for buildings
and offices could cut these expenses to a large degree. For
example, smart rooms could automatically create task-specific
lighting (e.g., focusing light on the desk in front of a seated
person and dimming the lights behind him/her), create lighting
paths and cues for human assistance, or even detect anomalies
in occupant behavior (e.g., alerting staff if an occupant in a
nursing home suddenly falls over). While there have been sig-
nificant advances in the computer vision research community
in detecting human presence and classifying human activity
from video, occupants would no doubt be unsettled by the
impression that their room was “watching them”. Therefore,
we seek technologies that strike a balance between accurately
detecting human presence, location, and pose, and preserving
the privacy of a room’s occupants.
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In this paper, we propose to use ceiling-mounted,
downward-pointed time-of-flight (ToF) sensors [3] to estimate
human occupancy and pose in real time. The idea is to
mount a sparse array of single-pixel range sensors on the
ceiling of a room, which can detect the height of any object
under them, as illustrated in Figure 1. We apply algorithms
based on morphological image processing to this data for
tracking humans, disambiguating humans from furniture, and
coarse pose estimation. We also analyze how the algorithms’
performance degrades as a function of element spacing and
person density. The issue of element spacing is particularly
important from the perspective of preserving privacy; we show
that our algorithms produce accurate results even when the
ToF elements are spaced at approximately 4×4 elements per
square meter. Our ultimate goal is to use the prototype system
described here to guide the design and deployment of “smart”
ceiling panels, each of which contains a single ray of ToF
depth information, as illustrated in Figure 1. We also discuss
the use of realistic computer simulations to prototype detection
and control algorithms, which can be used to investigate larger-
scale deployments until smart panels are widely available.

Fig. 1. Future smart ceiling panels, each mounted with a single-pixel depth
sensor. The red spots represent the position where the ToF depth sensors are
mounted, and the dashed lines indicate ToF rays.

II. RELATED WORK

Real-time time-of-flight imaging is a topic of recent in-
terest in the computer vision community, largely due to
the increased availability of moderate-cost sensors. Time-of-
flight approaches have the advantage of quick, straightforward
information processing [3], and offer reasonably accurate low-
resolution depth images at video frame rates, which can be
quite useful for surveillance and human-machine interaction
applications. On the other hand, compared to direct depth
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sensing technologies such as LiDAR, time-of-flight cameras
have less accuracy, may work poorly outdoors or at very close
range, and typically exhibit a systematic distance error [4].
Computer vision researchers have recently made progress in
applying super-resolution techniques to time-of-flight cameras,
combining multiple successive images from a moving sensor
to improve the quality of each frame [5].

Applications for smart rooms include tracking occupancy
and recognizing poses and gestures. The first step for such ap-
plications is segmenting people from the background. Bianchi
et al. [6] exploited the intensity signal produced by a ToF
camera for foreground segmentation based on smart-seeded
region growing and Kalman tracking, which allows for using
a moving camera and multiple objects. Guðmundsson et al. [7]
addressed the issue of real-time 3D reconstruction in a smart
room, which creates more robust inputs for person tracking.
They used a probabilistic background model based on ToF
data to help in foreground person segmentation.

Real-time tracking and pose recognition in time-of-flight
video has been addressed by several researchers. Gokturk and
Tomasi [8] incorporated ToF depth data into a head tracking al-
gorithm, reporting greater than 90% success rates. Malassiotis
and Strintzis [9] described real-time 3D head pose estimation
based on feature localization and tracking techniques using
range data, which proved robust to illumination conditions.
Hansen et al. [10] proposed a method for cluster tracking
using a ToF camera in a smart environment, in which intensity
and depth images are fused to build a background model.
While this model doesn’t distinguish different object types,
the detection accuracy is high. Cai et al. [11] presented a
regularized maximum likelihood deformable model that fitted
color and depth images for 3D face tracking. Ganapathi et
al. [12] derived a filtering method for human pose tracking
using a side-looking ToF camera. A set of discriminatively
trained patch classifiers is applied to detect body parts.

Despite this type of research into time-of-flight imaging,
it’s important to note that such systems are not in themselves
suitable for smart lighting systems. The first problem is the
limited field of view. A typical ToF camera has a field of
view of 43◦×34◦ [13]. Mounting the camera on the ceiling
(2.5m high for a typical room) gives a coverage footprint of
2.0m×1.6m on the floor. In order to cover a single office envi-
ronment (e.g., 20m×15m), we would need to mount over 100
cameras, which would be extremely expensive. Furthermore,
real-time processing of the large amount of data generated
by such an array would be computationally costly (and hence
energy-consumptive). Finally, high-resolution coverage could
lead to justifiable concerns in environments where occupants
reasonably expect privacy. For these reasons, this paper fo-
cuses on methods that downsample the ToF sensor output as
much as possible while maintaining reliable performance on
localization and pose estimation problems relevant to smart
lighting.

III. SYSTEM SETUP

In our experiments, we used a ceiling-mounted, downward-
pointed SwissRanger SR4000 ToF camera produced by Mesa

Imaging [14] as a proxy for the type of system illustrated
in Figure 1. The camera emits RF-modulated (30MHz) near-
infrared light (850nm), which is back-scattered by the scene
and received by a CMOS CCD. The sensor continuously
collects range and intensity measurements at a resolution of
176×144 pixels. The angular resolution for each pixel is 0.39◦

at the center of the image, which corresponds to a 1.7 cm
square on the ground, a 9 mm square on the head of a
sitting person, and a 4.5 mm square on the head of a standing
person (assuming a 2.5m ceiling). Since the ToF sensor emits
divergent rays from a single center of projection, we modify
each distance measurement by multiplying the raw sensor
value by the cosine of the viewing angle to mimic orthographic
projection. Distance measurements discussed in this paper
always refer to this orthographic projection. The absolute
accuracy in the distance measurements is approximately 10
mm within a range of 0.8–5.0 m.

The frame rate (FR) is related to the integration time (IT)
and read-out time (RO) of the sensor by

FR =
1

4 · (IT +RO)
(1)

The integration time of the sensor plays a critical role; it
should be set just high enough to maximize signal amplitude
across the field of view without saturating the sensor. The
signal amplitude depends on object distance and reflectance;
the noise level at low-reflectance objects is relatively high. An-
other parameter, the amplitude threshold, defines the minimum
amplitude that needs to be exceeded to accept a measurement.
This is used to suppress noisy values where the pixels have
low amplitude (reflectance), as well as around the edges of the
sensor [15]. In our experiments, we used integration times of
6.3–8.3ms leading to frame rates of 23.4–19.4fps respectively.
We set the amplitude threshold in the range 70–100 (on a scale
of 0 to 16382).

We mounted the system in an office setting in which the
height of the ceiling is 2.5m; the sensor’s field of view is about
2.0m×1.6m on the ground. Figure 2 illustrates an example
image of the office environment and the corresponding time-
of-flight image, which shows the measured distance from the
sensor to each point in the scene.
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Fig. 2. (a) The office environment; the sensor is mounted in the ceiling above
the desk. (b) The corresponding time-of-flight image, indicating distance from
the sensor. The color bar represents measurements in meters. Entirely black
pixels indicate missing measurements.

To investigate time-of-flight imaging in larger environments,
we also created a 3D simulated lab space using the Unity
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Fig. 3. The simulated environment of a lab with 5 people. The red lines
denote the time-of-flight rays cast from the ceiling. The distance map (upper
right corner) is created from sensors spaced 10cm apart.

game engine [16]. The 18×14 m2 simulated space is illustrated
in Figure 3. The distance images are created by casting rays
downwards from simulated sensors that are spaced regularly
on the ceiling and return the range to hit points. These images
are processed by the algorithms we describe next in exactly
the same way as the images output from the real ToF sensor.

We recorded several videos, both in the real and simulated
environments, containing multiple people and pieces of furni-
ture to design and test our algorithms. The most complicated
real video contains four people entering the scene at different
times, introducing and moving office chairs, sitting down
close together, and leaving at different times. The simulated
environment includes up to 30 people entering the lab, walking
around, sitting down, standing up, standing close to each other,
gathering around the conference table and in front of the
experimental bench, and leaving the room.

IV. REAL-TIME TRACKING AND POSE ESTIMATION

Our main problems of interest are the real-time detection
of humans, tracking of their positions, and estimation of their
pose (i.e., either standing or sitting) from the distance measure-
ments described above. Our approach combines morphological
image processing algorithms with higher-level logic about how
objects can move and interact. Each person entering the scene
is detected at the image boundary and given a unique label.
Each person blob is then tracked throughout the following
images until it leaves the frame. Each person blob’s location
and height is measured in each frame, and its coarse pose is
estimated from the height information. We begin by describing
our overall approach to the problem on the full-resolution real-
world video, and then analyze the algorithms’ performance as
the distance image is downsampled (simulating widely-spaced
ToF elements) and as we move to the larger-environment
simulation.

A. Pre-processing

While the integration time and amplitude threshold settings
mentioned in Section III noticeably reduce the noise in the
distance images, missing returns in low-reflectivity areas are
still present (e.g., the person’s dark hair and the keyboard

on the desk in Figure 2a). We use a morphological “flood-
fill” algorithm [17] to interpolate the lost values in any holes
that are completely surrounded by known pixels, though some
regions of missing data that are not totally surrounded remain.

We obtain a real-time elevation map by subtracting the real-
time distance images from the known height of the ceiling. We
also assume that we have a background elevation map that
contains no people or movable furniture, denoted as B(x, y),
which can be acquired during system calibration. From the
current elevation map Et(x, y), we obtain an elevation map of
the foreground objects in the scene Ft(x, y) using background
subtraction and thresholding:

Ft(x, y) =

{
0 if |Et(x, y)−B(x, y)| < τ

Et(x, y) otherwise
(2)

We set the threshold τ to 10cm, which is lower than the
height of a human (even while lying on the ground). Figure 4
illustrates example elevation maps of the foreground objects
in the real and simulated environments, respectively.
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Fig. 4. The elevation maps of (a) the real environment and (b) the simulated
environment shown in Figures 2 and 3.

B. Estimation Problems in Full-Resolution Video

After background subtraction, humans can be easily de-
tected in the scene simply by thresholding the foreground
map. With the assumption that every person walks into the
scene, we threshold the foreground image with a height of T1

= 0.9m, classifying every connected region (or “blob”) above
this height as a person. Every person blob in the current frame
is compared against the person blobs in the previous frame to
find the closest spatial match. We assign the height of the blob
to be the elevation value at the weighted centroid [18] of the
blob. We denote this height observation in frame t as yt. We
apply a median filter to yt to mitigate impulsive sensor noise
prior to subsequent processing.

Probabilistic models are widely used for activity recogni-
tion, since they are well-suited to dealing with noise and
uncertainty [19]. Here, we assign a label of “standing” or
“sitting” to each person blob using a maximum likelihood
estimator that takes into account both the current height
observation and a simple Markov model for the probabilities
of transitions between states. That is, the label is computed as

lt = arg max
l
{p(yt | l) + λ · p(l | lt−1)} (3)

where lt ∈ {“stand”, “sit”}. The first term reflects the
likelihood of the observed height given a proposed label;
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for “stand” this is modeled as a Gaussian distribution with
mean equal to the observed height of the person on their
first appearance. The “sit” distribution is similar, but the
mean of the Gaussian is half the entrance height, based
on measured data of humans’ sitting height ratio [20]. The
standard deviations for “sit” and “stand” are 0.1 and 0.2,
which were learned from the training datasets described in
Section V. The second term p(l | lt−1) denotes the transition
probability, which simply encourages the label to stay the
same so that compelling evidence is required in the height
observation to change the label. The transition probability
matrix we used here is[

p(“sit” | “sit”) p(“sit” | “stand”)
p(“stand” | “sit”) p(“stand” | “stand”)

]
=
[
0.8 0.2
0.2 0.8

]
which was also learned from the training datasets. This makes
the pose estimation more robust to noise in the measurement.
The parameter λ can be tuned to trade off the prior and
measured information; in practice we use a value of 1. The
overall pseudo-code for tracking people and estimating their
poses is shown in Algorithm 1.

Algorithm 1: Person tracking and pose classification
Input: foreground elevation map Ft(x, y)
Output: location, height and pose for each person in the scene

1 for t = 1 to end do
2 extract the blobs, record the locations and heights;
3 if labeled blobs exist in Ft−1(x, y) then
4 pass the labels in Ft−1(x, y) to the nearest matched

blobs in Ft(x, y);
5 else
6 skip this occurrence and wait for new person blob

entering the scene;
7 end
8 if new blob without label in Ft(x, y) then
9 if at the boundary then

10 Assign a new label if higher than T1;
11 else
12 erroneous split;
13 assign with the nearest label in current frame;
14 end
15 end
16 if blob is labeled then
17 classify the pose using (3);
18 end
19 end

Due to the low resolution and limited features we can extract
from the elevation map, people and pieces of furniture (e.g.,
moving office chairs) are difficult to robustly segment and
distinguish, and often merge into one blob in the elevation
map. Thus, the main challenges to this approach are splitting
blobs that arise when multiple people are close together, and
designing a detector that responds to humans but not to moving
furniture (e.g., the back of a chair is often at a comparable
height to a seated person’s head).

The multi-object merging problem is illustrated in Figure 5a,
in which two people P1 and P2 merge into one blob. Here, we
describe an approach to split the touching objects, resulting
in a subset of local maxima. The basic idea is to process

the elevation map to create plateaus with constant intensity
around the main peaks. We use a process called morphological
reconstruction [18]. The procedure is:

1) Use the original image as a “mask” image;
2) Erode the original image to produce a “marker” image;
3) Repeatedly dilate the marker image until it fits “under”

the mask image.
Compared with simple morphological opening, this process

tends to “flood” the small maxima, recognize the main local
maxima, and preserve the overall shapes of the objects, as
illustrated in Figure 6. Without the shape-preserving recon-
struction, any maxima, even small ones, will be recognized
as local maxima, leading to an overestimate of the number
of occupants. Figure 5 shows the procedure of processing the
image in Figure 2. We also need to carefully select the struc-
turing elements to erode the images for creating the markers.
We use a disk structuring element with a diameter of 7 times
the downsampling factor (so that the structuring element is
the same effective size regardless of resolution). Figure 7a-
b compares simple morphological opening to the result of
opening by reconstruction, illustrating the improvement.

Grayscale image

Erode

Reconstruct

MarkerMask

Local maxima

(a)

(c) (d)

P1

P2

(b)

Fig. 5. Extracting local maxima using opening by reconstruction.

(a) (d)(c)(b)

Fig. 6. Finding peaks in blobs created by touching objects. (a) Three Gaussian
functions that merge into a single blob when thresholded. (b) The intensity
image. The shapes of the local maxima found by (c) simple morphological
opening and (d) opening by reconstruction. We prefer the result in (d) since
the peak shapes are preserved, and small peaks can be detected and rejected.

However, the proposed method is still susceptible to un-
desired local maxima. This problem is pronounced when a
person leans forward in or gets up from an office chair,
generating a new local maximum when the back of the chair is
strongly separated from the person’s head. This is illustrated in
Figure 7c. We address this problem by simply observing that
new blobs are only allowed to enter the scene at the edges of
the image. That is, a new human cannot spontaneously appear
in the middle of the frame. Therefore, we only track the head
of the person as they lean forward in the chair and rule out
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(a) (b) (c) (d) (e)

Fig. 8. Multiple person tracking in full-scale frames. Despite the presence of multiple moving office chairs, the correct number of people is maintained.

(a) (b) (c)

Fig. 7. Extracting local maxima using (a) simple morphological opening and
(b) opening by reconstruction from the frame illustrated in Figure 5. In (a),
maxima are detected in the wrong places (person P2’s shoulder and the back
of the chair), while in (b) only the heads are detected. However, in a later
frame (c), local maxima extraction using opening by reconstruction finds a
maximum corresponding to P2’s chair back when P2 leans forward.

spontaneous local maxima. We ensure that in the case of a
split, the person label remains with the higher-elevation blob.
Conversely, if a blob disappears in the middle of the room (i.e.,
an instantaneous tracking failure), we store its information to
match against future frames.

C. Estimation Problems in Sparsely Sampled Video
The basic algorithm described above works effectively on

full-frame images, as illustrated in Figure 8 for several frames.
However, our main concern is downsampling the ToF video
to simulate widely-spaced single-pixel ToF elements, in order
to determine the design requirements for future “smart” ceil-
ing panels. Here, we downsample the full resolution video
(using nearest-neighbor sampling) at different spacings to
create lower-density video streams, and investigate applying
the proposed algorithm to each stream. Figure 9 shows the
tracking results in the same frame as Figure 8c for several
sensor spacings. Since the downsampled frames are much
smaller, the algorithm is much faster and can run at roughly
the same rate as the input video.

However, as we push the simulated sparsity to wide spac-
ings, the local maxima extraction algorithm begins to fail due
to the limited number of pixels and lack of smoothness in
the measurements. In such situations (e.g., a sensor spacing
of 25cm), we stop trying to separate multiple people within
a blob, and simply keep track of which people are combined
in a multi-person blob until they separate (Figure 10). This is
expected to suffice for the lighting control application, since
maintaining the identity of each person blob is not important.

V. EXPERIMENTAL RESULTS

In this section, we quantify the performance of the detection
and pose estimation algorithms as functions of sensor spacing,

(a)

(c)

(b)

(d)

Fig. 9. Privacy-preserving person tracking in the same frame as Figure 8c
with different sensor spacing levels of (a)-(d): 0.03m, 0.06m, 0.09m and 0.1m,
respectively.

number of people, and type of video.1 We collected the
following datasets for our experiments:

1) real video, 3790 frames, 1–2 people (only used for
training)

2) real video, 1050 frames, 1–3 people (only used for
testing)

3) real video, 15000 frames, 1–4 people (testing)
4) simulated video, 3000 frames, 6 people (training)
5) simulated video, 2700 frames, 6 people (testing)
6) six simulated videos, 6000 frames each, 5, 10, 15, 20,

25 and 30 people (testing)

A. Experiments on Real Video

We tested the local maxima extraction and tracking algo-
rithm on Datasets 2 and 3. The first video recorded 3 people
entering the scene at different times, walking around, sitting
on chairs close together, standing up, and leaving. Figure 8
shows one example of tracking on this video.

In every tenth frame of the original elevation video, we
manually recorded each person’s ID, position, height, and
pose. We refer to such manual recordings as “ground truth”,
and use them to evaluate the performance of our algorithm.
Figure 11 shows the absolute errors in location measurements

1Videos of the algorithms’ results are available at www.ecse.rpi.edu/
~rjradke/tii/.
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(a) (e)(d)(c)(b)

Fig. 10. Privacy-preserving person tracking at a sensor spacing of 25cm. At this level, we don’t attempt to separate the people within a multi-person blob.

of the 3 people who enter and leave the scene sequentially in
the full-resolution video of Dataset 2. The errors for persons
P2 and P3 are higher than for person P1. P2 has long black
hair that results in low ToF return intensity, high noise, and
missing data (Figure 8c,d). P3 is standing and close to the ToF
camera; hence P3’s head occupies more pixels. These issues
cause the location estimates to be further from the ground
truth. In practice, we believe that 10cm location accuracy is
sufficient for smart lighting applications. We also noted the
general noisiness of the ToF camera, and the spatial non-
uniformity of this noise.
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Fig. 11. The errors in location measurements in Dataset 2 with 3 people
entering and leaving the scene sequentially.

To analyze the performance at different sensor densities,
we spatially downsampled the input video to simulate sensor
spacings from 1cm to 10cm in steps of 1cm, as illustrated in
Figure 9. At each spacing level, the detections and estimated
poses are recorded. Figure 12a shows the error rate of detection
and pose estimation, computed as the number of incorrectly
detected/missed people (or the number of misclassified poses)
divided by the total number of person appearances in all
frames. Figure 12b shows the mean error in location and
height measurements. We can see that all three people are
well-detected and tracked at all spacing levels up to 8cm.
When the frames are downsampled to 8cm spacing, the local
maxima extraction becomes unstable. The objects are easily
missed or merged with each other. Considering Figure 9c and
d, in which persons P1 and P2 are both sitting on chairs close
to each other, this is not surprising. The algorithm can process
12 frames per second of full-resolution video and 20 frames
per second above a sensor spacing of 3cm (i.e., processing
frames as quickly as the sensor delivers them).

We also conducted a longer term experiment (Dataset
3) in which the same office environment was continuously
monitored for 15000 frames. During this time, each person
entrance/exit and pose change (e.g., sitting to standing) was
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Fig. 12. Performance at different sensor spacing levels from 1cm to 10cm
in steps of 1cm. (a) Error rates in detection and pose classification. (b) Mean
errors of location and height measurements.

TABLE I
PERFORMANCE COMPARED WITH GROUND TRUTH FOR EXPERIMENTS ON

REAL VIDEO

Ground Truth Detected False Alarm
Entrance 31 31 2

Exit 31 31 2
Stand up 54 53 2
Sit down 53 50 3

manually recorded, using the full-frame video for ground truth.
The algorithms were run in real time on the 4cm spacing
level video and compared with the ground truth. In the ground
truth, there were 31 entrance and exit events each, and 54 total
stand up and 53 sit down events. The algorithm running on the
downsampled video successfully detected all of the entrance
and exit events, and almost all of the pose change events, with
only a few false alarms. The results are summarized in Table
I.

B. Experiments on Environmental Simulation

As discussed in Section III, we simulated a large 18×14
m2 lab environment using the Unity game engine. To test our
privacy-preserving tracking algorithm, we recorded a video
containing 2700 frames (Dataset 5), involving six people
entering the lab, walking around, sitting down, standing up,
standing close to each other, grouped together around the
conference table and in front of the experimental bench, and
leaving the room. The elevation maps can be directly obtained
by the game engine, and processed into video that mimics
the output of the actual time-of-flight sensor. To reflect the
observed noise in the SR4000 sensor, we added Gaussian
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(a) (b) (c) (d) (e)

Fig. 13. Snapshots of the scene and tracking result in full-scale frames for the simulated experiment.

random noise with standard deviation σ = 4 mm to every
pixel in the simulated data. Figure 13 shows several snapshots
of the simulation, which include several challenging situations.
In Figure 13a-b two or three people merge into a blob and later
split apart; in Figure 13c-e person P5 moves with a chair, sits
on the chair and then leaves the chair. The ground truth of each
person’s identity, location, and pose are directly recorded from
Unity.
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Fig. 14. Performance for the simulated experiment at different sensor spacing
levels from 10cm to 40cm in steps of 5cm. (a) Error rates in person detection
and pose classification. (b) Mean errors of location and height measurements.

As before, we gradually increased the sample spacing, this
time from 10cm to 40cm in increments of 5cm. Figure 14
reports the error rate in person detection, pose classification,
and location estimation. The error rate and estimation errors
are acceptably low up to a spacing level of about 35cm, at
which point people are frequently lost between sensors and can
easily become mislabeled. That is, above this spacing level,
a person can fit “in between” two ToF rays, leading to an
inaccurate measurement of their height. At all sensor spacings,
the algorithms run at about 30 fps on the synthesized video.

Table II reports the detection and false alarm rates for
entrance, exit, sit down and stand up events at the 30cm
spacing level, indicating excellent performance.

TABLE II
PERFORMANCE COMPARED WITH GROUND TRUTH FOR EXPERIMENTS ON

ENVIRONMENTAL SIMULATION

Ground Truth Detected False Alarm
Entrance 10 10 0

Exit 10 10 0
Stand up 10 10 1
Sit down 10 10 1

TABLE III
PERFORMANCE COMPARED WITH GROUND TRUTH FOR EXPERIMENTS ON

DIFFERENT NUMBERS OF PEOPLE IN REAL DATA

Number of people 1 2 3 4
Detection error rate (%) 0 0 0.16 0.82
Location mean error (m) 0.10 0.11 0.12 0.12

C. Performance With Respect to Person Density

Finally, we analyzed the performance of the proposed
algorithms with respect to the number of people in the frame,
for both the real and simulated datasets.

In the real case, we studied the long video in Dataset 3,
using a large sensor spacing of 8 cm. Table III reports the
results, breaking down the detection error rate and location
error with respect to the number of people in the frame at
each instant. As expected, the detection error rate is perfect
(i.e., 0) when only one or two people are in the frame,
and only increases slightly (still less than 1%) as the frame
becomes more crowded. The occasional errors are due to lost
local maxima inside multi-person blobs. The location error for
detected objects stays roughly constant at about 10cm (which
makes sense given the human head radius). Since only four
people can fit into the field of view of the real sensor, we now
proceed to discuss our simulated environment, which can hold
many more people.

In the simulated case, we can populate the environment with
many more people, from 5 to 30 (Dataset 6). We used a wide
sensor spacing of 20cm for this experiment. Table IV reports
the results. Again, the detection error rate is 0 up to a certain
level of crowding (15 people), at which point occasional errors
are made. Even for 30 people, the detection error rate remains
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TABLE IV
PERFORMANCE COMPARED WITH GROUND TRUTH FOR EXPERIMENTS ON

DIFFERENT NUMBERS OF PEOPLE IN SIMULATION

Number of people 5 10 15 20 25 30
Detection error rate (%) 0 0 0 0.02 0.53 0.72
Location mean error (m) 0.11 0.10 0.11 0.11 0.11 0.12

below 1%. As in the real data, we found the location error for
detected objects to be roughly constant at about 11cm.

VI. CONCLUSIONS AND DISCUSSION

We described a method for accurate, real-time person track-
ing and coarse pose recognition using a ToF camera that
preserves the privacy of a room’s inhabitants. These results
will inform the design of future smart ceiling panels, as well
as adaptive lighting control algorithms in smart rooms. While
single-pixel ToF sensors are not yet commercially available,
we expect they can be designed at low cost in the near future
using methods based on nanoplasmonic devices [21].

We observed that while the local maxima extraction works
well on the full-scale images, objects can be lost in the
downsampled images due to occlusions or morphological
processing. This reflects a natural tradeoff between the com-
peting goals of high accuracy and privacy preservation. The
user could tune the downsampling rate to correspond to a
comfortable tradeoff.

The current Markov model acts as a temporal smoothing,
to avoid “jitter” during situations when a person is bent over
at approximately the sit/stand threshold, but this could be
improved by considering more than just the previous frame.
Since lighting control algorithms need not operate at video
frame rates, we would probably be willing to tolerate increased
processing time to obtain increased accuracy. Depending on
the sensor spacing, we also plan to investigate further heuris-
tics for reasoning about locations and heights in multi-person
blobs.

Our next investigations in this area involve extensions of
the Unity game engine to create larger and more realistic
environment simulations (e.g., a student union or a multi-floor
office building). This requires not only larger-scale building
models but also more accurate behavior simulations for the
simulated human participants. An alternate approach is to
integrate simulated time-of-flight measurements into research
tools such as the virtual environment simulator proposed by
Starzyk and Qureshi [22].

Finally, we plan to integrate the occupancy and pose de-
tection framework described here with actual lighting control
systems, to investigate strategies for saving energy and im-
proving human comfort and task performance.
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