Supplementary material：Particle dynamics and multi－channel feature dictionaries for robust visual tracking

Srikrishna Karanam
karans3＠rpi．edu
Yang Li
yangli625＠gmail．com
Richard J．Radke
rjradke＠ecse．rpi．edu

Department of Electrical，Computer， and Systems Engineering
Rensselaer Polytechnic Institute 110 8th St．
Troy，NY USA

1 Additional results

The mean CLE and success rate for each individual test sequence are shown in Tables 1 and 2 respectively．The success plots for the following attributes：background clutter（BC）， motion blur（MB），fast motion（FM），occlusion（OCC），non－rigid object deformation（DEF）， out－of－view（OV），and low resolution are shown in Figure 1.

2 Adaptive candidate filtering

We first derive the expression representing the number of particles to be chosen in each frame：

$$
\begin{equation*}
n=\frac{1}{2 v} \chi_{k-1,1-\delta}^{2} \approx \frac{k-1}{2 v}\left(1-\frac{2}{9(k-1)}+\sqrt{\frac{2}{9(k-1)}} z_{1-\delta}\right)^{3} \tag{1}
\end{equation*}
$$

Consider two probability distributions p_{1} and p_{2} ．The Kullback－Leibler distance $[\square] K$ be－ tween p_{1} and p_{2} is defined as

$$
\begin{equation*}
K\left(p_{1}, p_{2}\right)=\sum_{x} p_{1}(x) \log \left(\frac{p_{1}(x)}{p_{2}(x)}\right) \tag{2}
\end{equation*}
$$

The basic idea of KLD－sampling $[⿴ 囗 十$ is to find the number of particles in each iteration such that the error between the true posterior probability density and the probability density approximated by the particle filter is less than v with probability $(1-\delta)$ ．At any particular iteration，suppose we draw n particles from a discrete probability distribution that has k disparate bins．Defining the vector $\mathbf{N}=\left[N_{1}, N_{2}, \ldots, N_{k}\right]$ as the number of particles drawn from each bin，we can see that \mathbf{N} follows a multinomial distribution $f_{k}(n, \mathbf{p})$ ，where $\mathbf{p}=$ ［ $\left.p_{1}, p_{2}, \ldots, p_{k}\right]$ represents the probability of each of the k bins．We can use the maximum

Table 1: Mean center location error (in pixels) for each of the 25 test sequences. Red - Best, Blue - Second best.

Sequence	Ours	L1	MTT	ONDL	SCM	LSH	ASLA	SPT	LOT	MIL	IVT
Basketball	$\mathbf{6 . 1 7}$	128	94.3	8.80	55.4	7.65	6.40	13.7	6.57	97.4	86.6
Boy	4.44	4.05	15.9	2.74	51.1	6.37	$\mathbf{2 . 1 8}$	4.93	66	12.8	91.8
Car4	2.7	85.0	22.8	2.26	4.05	54.8	$\mathbf{1 . 7 0}$	98.1	167	50.7	2.04
CarScale	5.27	82.7	74.2	15.7	28.8	10.2	20.8	$\mathbf{3 . 9}$	91.8	31.6	10.3
Coke	$\mathbf{8 . 7}$	117	24.8	67.2	49.1	73.9	60.9	11.8	62.4	43.6	83.1
Crossing	$\mathbf{1 . 3 0}$	2.8	56.3	1.85	1.31	50.3	1.67	39.7	36.7	3.04	2.6
David	$\mathbf{6 . 8}$	54.4	10	23.7	10	14	6.82	27.1	38.5	17.7	9.21
David2	1.61	15.3	$\mathbf{1 . 2 7}$	3.96	3.81	2.69	1.36	46.6	4.1	10.9	1.43
Deer	$\mathbf{5 . 2 7}$	163	8.97	7.87	12.2	7.69	$\mathbf{4 . 9 6}$	36.3	97.5	101	182
Dudek	$\mathbf{9 . 2 9}$	33.5	14.7	10.1	10.7	12.5	14.9	70.2	85.1	17.7	9.49
FaceOcc2	6.7	13.6	8.9	$\mathbf{5 . 9}$	15.5	11.5	19	21.4	15	13.6	7.1
FleetFace	$\mathbf{1 5 . 5}$	26.3	69	19.4	27.8	28.6	31.7	234	33.7	63.1	62.5
Football1	5.1	12.8	13.1	8.4	20	$\mathbf{5 . 0 9}$	11.6	48.3	6.85	5.62	24.3
Girl	$\mathbf{3 . 5}$	5.1	9	37.9	64.6	37.1	6.3	10.6	21.4	13.8	22.6
MountainBike	$\mathbf{6}$	210	7.3	6.58	10.4	7.8	8.8	11.8	24.9	73	7.4
Shaking	7.64	125	97.2	7.21	10.8	8.04	22.7	130	82.6	24	85.3
Singer1	$\mathbf{2 . 7 6}$	3.36	35.1	3.33	3.28	14.5	2.87	80.5	140	16.5	11.5
Singer2	7.04	184	210	179	113	8.71	175	225	76.9	22.5	175
Skating1	$\mathbf{6 . 0 2}$	132	298	7.12	9.21	68.2	48.6	188	88.5	139	146
Soccer	$\mathbf{1 9 . 1}$	129	84.3	89.4	77.8	101	119	53.8	42.2	77.8	145
Sylvester	$\mathbf{1 2 . 7}$	49.8	7.37	7.54	8.08	$\mathbf{6 . 4 5}$	15.3	33.6	11.4	15.4	34.3
Trellis	$\mathbf{2 . 9 8}$	84.9	59.3	18.3	5.61	32.7	7.81	11.69	47.6	71.5	119
Walking	2.26	3.5	2.76	3.45	2.44	12.8	2.02	37.3	2.42	3.42	$\mathbf{1 . 7 1}$
Walking2	2.37	2.67	3.36	36.1	$\mathbf{1 8 5}$	23.4	37.7	25.7	64.7	60.4	2.76
Woman	$\mathbf{3 . 3 8}$	356	105	5.7	123	7.52	3.71	7.44	114	102	142

Table 2: Mean success rate for each of the 25 test sequences. Red - Best, Blue - Second best.

Sequence	Ours	L1	MTT	ONDL	SCM	LSH	ASLA	SPT	LOT	MIL	IVT
Basketball	$\mathbf{9 6 . 5}$	10.8	25.2	90.2	31.2	94.3	95.1	80.5	89.2	30.6	10.3
Boy	94.8	96.8	44.5	97.8	43.8	89.2	99.5	$\mathbf{1 0 0}$	64.9	38.5	32.5
Car4	$\mathbf{1 0 0}$	15.6	31.4	$\mathbf{1 0 0}$	97.2	27.2	$\mathbf{1 0 0}$	19.6	4.8	27.6	100
CarScale	$\mathbf{1 0 0}$	68	57.7	74.3	68	46.9	73.0	98.8	48.6	46.9	73.9
Coke	$\mathbf{9 6 . 8}$	10.4	69.6	23.2	40.8	6.8	15.2	87.2	10.4	12.4	15.2
Crossing	$\mathbf{1 0 0}$	35.8	22.5	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	12.5	100	35.8	30.8	98.3	24.2
David	$\mathbf{9 0}$	24.7	85.5	36	79	47.5	80.5	9	2.75	20	68
David2	$\mathbf{1 0 0}$	72.8	$\mathbf{1 0 0}$	75	91.3	100	94.6	27.6	76.9	32.4	92.4
Deer	$\mathbf{1 0 0}$	5.63	95.7	$\mathbf{1 0 0}$	92.9	94.4	$\mathbf{1 0 0}$	52.1	2.82	12.7	2.82
Dudek	$\mathbf{1 0 0}$	71.8	92.7	96.9	97.5	97.6	89.8	56.8	61.8	85.7	96.9
FaceOcc2	98.3	72.7	90.6	$\mathbf{9 9 . 7}$	71.5	97.2	43.2	65.5	35	93.6	91.6
FleetFace	$\mathbf{9 4 . 3}$	79.6	54.7	83.6	70.6	71.4	59.5	0.6	57.8	53.7	46.5
Football1	75.7	28.4	59.5	54	41.9	$\mathbf{8 5 . 1}$	44.6	17.6	41.9	78.4	49.5
Girl	$\mathbf{9 1 . 4}$	62.6	62.4	24	34.2	15.4	85.6	53.8	58.6	29.4	18.4
MountainBike	$\mathbf{1 0 0}$	28.5	95.2	95.2	96.9	$\mathbf{1 0 0}$	89.9	36.8	68.8	57.5	$\mathbf{1 0 0}$
Shaking	$\mathbf{1 0 0}$	0.5	1.1	94.8	90.1	95.9	32.6	8.49	7.67	22.7	1.1
Singer1	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	35.6	99.7	$\mathbf{1 0 0}$	27.6	$\mathbf{1 0 0}$	23.4	24.8	27.6	44.2
Singer2	97.5	3.55	3.55	3.55	16.4	$\mathbf{1 0 0}$	3.55	3.28	15.8	47.5	3.8
Skating1	$\mathbf{9 9}$	9.25	13	41.7	35.2	9.25	51.7	19	24	10.2	9.5
Soccer	$\mathbf{3 3}$	16.3	18.1	17.9	23.5	8.9	12.5	26	21.7	15.6	17.3
Sylvester	82.4	29.5	82.2	85.2	88.5	$\mathbf{9 6 . 3}$	74.8	24.5	67.7	54.6	67.4
Trellis	$\mathbf{1 0 0}$	21.3	23.7	79.6	96.5	44.1	85	74.5	33	24.4	30.9
Walking	$\mathbf{9 9 . 7}$	96.6	99	99	96.1	29.8	$\mathbf{9 9 . 7}$	43	96.8	54.1	$\mathbf{9 9 . 7}$
Walking2	99.2	99.6	99.2	40.6	$\mathbf{1 0 0}$	38.8	39.8	29.6	39	38	99.8
Woman	$\mathbf{9 9 . 7}$	23.5	29.7	90.5	30	97	96.2	95.5	15.5	28	27.7

Figure 1: Success plots for background clutter, fast motion, occlusion, non-rigid object deformation, out-of-view, motion blur, fast motion, and low-resolution attributes.
likelihood estimation procedure to obtain $\hat{\mathbf{p}}$ as

$$
\begin{equation*}
\hat{\mathbf{p}}=\frac{\mathbf{N}}{n} \tag{3}
\end{equation*}
$$

The likelihood ratio λ_{n} statistic for \mathbf{p} is given by

$$
\begin{equation*}
\log \lambda_{n}=\sum_{j=1}^{k} N_{j} \log \frac{\hat{p}_{j}}{p_{j}} \tag{4}
\end{equation*}
$$

Since $N_{j}=n \hat{p}_{j}$ ，this equation becomes

$$
\begin{equation*}
\log \lambda_{n}=n \sum_{j=1}^{k} \hat{p}_{j} \log \frac{\hat{p}_{j}}{p_{j}}=n \mathbf{K}(\hat{\mathbf{p}}, \mathbf{p}) \tag{5}
\end{equation*}
$$

Noting that $2 \log \lambda_{n}$ converges in distribution to a chi－square distribution as $n \rightarrow \infty$［⿴囗十⿴囗口阝 sider the probability $P(\mathrm{~K}(\hat{\mathbf{p}}, \mathbf{p}) \leq v)$ ：

$$
\begin{align*}
P(\mathrm{~K}(\hat{\mathbf{p}}, \mathbf{p}) \leq v) & =P(2 n \mathrm{~K}(\hat{\mathbf{p}}, \mathbf{p}) \leq 2 n v) \\
& =P\left(2 \log \lambda_{n} \leq 2 n v\right) \tag{6}\\
& =P\left(\chi_{k-1}^{2} \leq 2 n v\right)
\end{align*}
$$

Using the fact that $P\left(\chi_{k-1}^{2} \leq \chi_{k-1,1-\delta}^{2}\right)=1-\delta$ ，if we choose n according to the following expression：

$$
\begin{equation*}
2 n v=\chi_{k-1,1-\delta}^{2} \tag{7}
\end{equation*}
$$

we get

$$
\begin{equation*}
P(\mathrm{~K}(\hat{\mathbf{p}}, \mathbf{p}) \leq v)=1-\delta \tag{8}
\end{equation*}
$$

which is exactly what we wished to achieve，hence completing the proof．We see that equa－ tion 1 follows from Equation 7.

3 Optimization problem

In each feature channel，we solve the following optimization problem：

$$
\begin{array}{cc}
\min _{\mathbf{x}^{j}, \varepsilon^{j}} & \left\|\mathbf{x}^{j}\right\|_{1}+\left\|\varepsilon^{j}\right\|_{1} \tag{9}\\
\text { s.t. } & \mathbf{y}^{j}=\mathbf{A}^{j} \mathbf{x}^{j}+\varepsilon^{j}
\end{array}
$$

This problem is of the general form

$$
\begin{array}{lc}
\min _{\mathbf{x}, \varepsilon} & f_{1}(\mathbf{x}, \varepsilon) \tag{10}\\
\text { s.t. } & f_{2}(\mathbf{x}, \varepsilon)=\mathbf{0}
\end{array}
$$

where $f_{2}(\mathbf{x}, \boldsymbol{\varepsilon})=\mathbf{y}-\mathbf{A x}-\varepsilon$ ．Both $f_{2}(\mathbf{x}, \boldsymbol{\varepsilon})$ ，and $f_{1}(\mathbf{x}, \boldsymbol{\varepsilon})$ are continuous and convex functions in $(\mathbf{x}, \varepsilon)$ ，and hence the problem

$$
\begin{array}{cc}
\min _{\mathbf{x}, \varepsilon} & f_{1}(\mathbf{x}, \boldsymbol{\varepsilon})+\frac{\zeta}{2}\left\|f_{2}(\mathbf{x}, \boldsymbol{\varepsilon})\right\|_{2}^{2} \tag{11}\\
\text { s.t. } & f_{2}(\mathbf{x}, \boldsymbol{\varepsilon})=\mathbf{0}
\end{array}
$$

has the same optimal value pair $\left(\mathbf{x}^{*}, \varepsilon^{*}\right)$ as the problem defined in Equation 10. We now eliminate the equality constraints in this problem by introuducing the Lagrange multipliers. The augmented Lagrangian for this problem is

$$
\begin{equation*}
\mathcal{L}_{\zeta}(\mathbf{x}, \varepsilon, \rho)=f_{1}(\mathbf{x}, \varepsilon)+\frac{\zeta}{2}\left\|f_{2}(\mathbf{x}, \varepsilon)\right\|_{2}^{2}+\rho^{T} f_{2}(\mathbf{x}, \varepsilon) \tag{12}
\end{equation*}
$$

The minimization problem of Equation 11 is equivalent to minimizing the augmented Lagrangian of Equation 12. Therefore, we now have

$$
\begin{equation*}
\left(\mathbf{x}^{*}, \varepsilon^{*}\right)=\underset{\mathbf{x}, \varepsilon}{\arg \min } \mathcal{L}_{\zeta}(\mathbf{x}, \varepsilon, \rho) \tag{13}
\end{equation*}
$$

The minimization problem of Equation 13 can be solved using the framework of alternating directions algorithms [\mathbf{B}]. Specifically, in each iteration, we compute \mathbf{x} and ε separately, and then update ρ. Formally, the optimal solution pair $\left(\mathbf{x}^{*}, \varepsilon^{*}\right)$ is computed as

$$
\begin{align*}
& \mathbf{x}_{i+1}=\underset{\mathbf{x}}{\arg \min } \mathcal{L}_{\zeta}\left(\mathbf{x}, \varepsilon_{i}, \rho_{i}\right) \tag{14}\\
& \varepsilon_{i+1}=\underset{\varepsilon}{\arg \min } \mathcal{L}_{\zeta}\left(\mathbf{x}_{i+1}, \varepsilon, \rho_{i}\right) \tag{15}\\
& \rho_{i+1}=\rho_{i}+\zeta\left(f_{2}\left(\mathbf{x}_{i+1}, \varepsilon_{i+1}\right)\right) \tag{16}
\end{align*}
$$

The sub-problem defined by

$$
\begin{equation*}
\varepsilon_{i+1}=\underset{\varepsilon}{\arg \min } \mathcal{L}_{\zeta}\left(\mathbf{x}_{i+1}, \varepsilon, \rho_{i}\right) \tag{17}
\end{equation*}
$$

has a closed form solution, which we derive next. Consider the definition

$$
\begin{equation*}
\mathcal{L}_{\zeta}\left(\mathbf{x}_{i+1}, \varepsilon, \rho_{i}\right)=\left\|\mathbf{x}_{i+1}\right\|_{1}+\|\varepsilon\|_{1}+\frac{\zeta}{2}\left\|f_{2}\left(\mathbf{x}_{i+1}, \varepsilon\right)\right\|_{2}^{2}+\rho_{i}^{T}\left(f_{2}\left(\mathbf{x}_{i+1}, \varepsilon\right)\right) \tag{18}
\end{equation*}
$$

Defining $\varepsilon_{\mathbf{d}}=\mathbf{y}-\mathbf{A} \mathbf{x}_{i+1}$, minimizing $\mathcal{L}_{\zeta}\left(\mathbf{x}_{i+1}, \varepsilon, \rho_{i}\right)$ is equivalent to

$$
\begin{align*}
& \varepsilon^{*}=\underset{\varepsilon}{\arg \min }\left\{\|\varepsilon\|_{1}+\frac{\zeta}{2}\left\|f_{2}\left(\mathbf{x}_{i+1}, \varepsilon\right)\right\|_{2}^{2}+\rho_{i}^{T}\left(f_{2}\left(\mathbf{x}_{i+1}, \varepsilon\right)\right)\right\} \\
& =\underset{\varepsilon}{\arg \min }\left\{\|\varepsilon\|_{1}+\rho_{i}^{T}\left(\varepsilon_{d}-\varepsilon\right)+\frac{\zeta}{2}\left(\varepsilon_{d}-\varepsilon\right)^{T}\left(\varepsilon_{d}-\varepsilon\right)\right\} \\
& =\underset{\varepsilon}{\arg \min }\left\{\|\varepsilon\|_{1}+\frac{\zeta}{2}\left\|\varepsilon-\left(\varepsilon_{d}+\frac{\rho_{i}}{\zeta}\right)\right\|_{2}^{2}\right\} \tag{19}\\
& =\mathcal{T}_{\frac{1}{\zeta}}\left(\varepsilon_{d}+\frac{\rho_{i}}{\zeta}\right)
\end{align*}
$$

where $\mathcal{T}_{\alpha}(\mathbf{t})_{i}=\operatorname{sgn}\left(t_{i}\right) \max \left\{\left|t_{i}\right|-\alpha, 0\right\}, i=1,2, \ldots, n$. Thus, the update step for ε_{i+1} has an analytic solution given by

$$
\begin{equation*}
\varepsilon_{i+1}=\mathcal{T}_{\frac{1}{\zeta}}\left(\varepsilon_{\mathbf{d}}+\frac{\rho_{i}}{\zeta}\right) \tag{20}
\end{equation*}
$$

However, the sub-problem defined by

$$
\begin{equation*}
\mathbf{x}_{i+1}=\underset{\mathbf{x}}{\arg \min } \mathcal{L}_{\zeta}\left(\mathbf{x}, \boldsymbol{\varepsilon}_{i}, \rho_{i}\right) \tag{21}
\end{equation*}
$$

does not have an analytic solution, and we hence must resort to iterative schemes. To solve this problem, we use the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [⿴囗 We first show that this optimization problem is basically the classic lasso [\square] problem. Defining $\mathbf{b}^{\prime}=\mathbf{y}-\varepsilon_{i}$, and $\mathbf{b}^{\prime \prime}=\mathbf{b}^{\prime}+\frac{\rho_{i}}{\zeta}$, we have

$$
\begin{align*}
& \mathbf{x}_{i+1}=\underset{\mathbf{x}}{\arg \min }\left\{\|\mathbf{x}\|_{1}+\rho_{i}^{T}\left(\mathbf{b}^{\prime}-\mathbf{A} \mathbf{x}\right)+\frac{\zeta}{2}\left(\mathbf{b}^{\prime}-\mathbf{A} \mathbf{x}\right)^{T}\left(\mathbf{b}^{\prime}-\mathbf{A} \mathbf{x}\right)\right\} \\
& =\underset{\mathbf{x}}{\arg \min }\left\{\|\mathbf{x}\|_{1}+\frac{\zeta}{2}\left\|\mathbf{A} \mathbf{x}-\mathbf{b}^{\prime}-\frac{\rho_{i}}{\zeta}\right\|_{2}^{2}\right\} \tag{22}\\
& =\underset{\mathbf{x}}{\arg \min }\left\{\|\mathbf{x}\|_{1}+\frac{\zeta}{2}\left\|\mathbf{A} \mathbf{x}-\mathbf{b}^{\prime \prime}\right\|_{2}^{2}\right\}
\end{align*}
$$

Thus, we see that the problem of Equation 21 reduces to the lasso framework, which can be efficiently solved using FISTA.

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIIMS, 2(1):183-202, March 2009.
[2] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley \& Sons, 2012.
[3] Dieter Fox. Kld-sampling: Adaptive particle filters. In NIPS, pages 713-720, 2001.
[4] John A Rice. Mathematical Statistics and Data Analysis. Duxbury Advanced Series, Belmont, CA, 2006.
[5] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol., pages 267-288, 1996.
[6] Junfeng Yang and Yin Zhang. Alternating direction algorithms for l_{1}-problems in compressive sensing. 33(1):250-278, February 2011.

