KARANAM, LI, RADKE: VISUAL TRACKING 1

Supplementary material: Particle dynamics
and multi-channel feature dictionaries for
robust visual tracking

Srikrishna Karanam Department of Electrical, Computer,
karans3@rpi.edu and Systems Engineering
Yang Li Rensselaer Polytechnic Institute
yangli625@gmail.com 110 8th St.

Troy, NY USA

Richard J. Radke
riradke@ecse.rpi.edu

1 Additional results

The mean CLE and success rate for each individual test sequence are shown in Tables |
and 2 respectively. The success plots for the following attributes: background clutter (BC),
motion blur (MB), fast motion (FM), occlusion (OCC), non-rigid object deformation (DEF),
out-of-view (OV), and low resolution are shown in Figure 1.

2 Adaptive candidate filtering

We first derive the expression representing the number of particles to be chosen in each
frame:

1

3
k-1 2 [ 2
=2 ~ 1-— 1
" M- Ty < ok—1) 9(k—1)Z1_5> M

Consider two probability distributions p; and p,. The Kullback-Leibler distance [2] K be-
tween p; and p» is defined as

K(p1,p2) = ¥ pi(x)log (i ;8) @)

The basic idea of KLD-sampling [3] is to find the number of particles in each iteration
such that the error between the true posterior probability density and the probability density
approximated by the particle filter is less than v with probability (1 — J). At any particular
iteration, suppose we draw n particles from a discrete probability distribution that has k
disparate bins. Defining the vector N = [N, N,,...,Ni] as the number of particles drawn
from each bin, we can see that N follows a multinomial distribution fi(n,p), where p =
[p1,P2,- .-, Pi] Tepresents the probability of each of the k bins. We can use the maximum
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Table 1: Mean center location error (in pixels) for each of the 25 test sequences. Red - Best,
Blue - Second best.

[ Sequence [Ours] L1 [MTT[ONDL[SCM[LSH[ASLAT SPT [LOT[MIL[IVT]
Basketball [6.17[128[94.3 ] 8.80 [55.4 [7.65] 6.40 | 13.7 [6.57]97.4]86.6

Boy 4441405159 | 2.74 |51.1|6.37| 2.18 | 493 | 66 |12.8|91.8
Car4 2.7 |85.0(22.8| 226 |4.05|54.8| 1.70 | 98.1 | 167 | 50.7 | 2.04
CarScale 5271827742 | 157 | 28.8|10.2| 20.8 | 3.9 |91.8|31.6|10.3
Coke 87 | 117248 | 672 |49.1 |73.9| 60.9 | /1.8 |62.4|43.683.1

Crossing 1.30| 2.8 563 | 1.85 | 1.31 |50.3| 1.67 | 39.7 |36.7|3.04| 2.6
David 6.8 [54.4| 10 | 23.7 10 | 14 | 6.82 | 27.1 |38.5|17.7|9.21
David2 1.61 153 1.27 | 396 |3.81 |2.69| 1.36 | 46.6 | 4.1 |10.9(1.43
Deer 527163897 | 7.87 |12.2|7.69| 4.96 | 363 |97.5| 101 | 182
Dudek 9.29133.5|14.7 | 10.1 | 10.7 | 12.5] 149 | 70.2 | 85.1|17.7|9.49
FaceOcc2 6.7 [13.6| 8.9 59 | 155|115 19 [214| 15 |13.6] 7.1
FleetFace |15.5[263| 69 | 19.4 |27.8 28.6| 31.7 | 234 |33.7]63.1|62.5
Footballl 5.1 1128 13.1| 84 20 [5.09| 11.6 | 48.3 | 6.85|5.62|24.3
Girl 35151 | 9 379 | 64.6 |37.1| 63 | 10.6 |[21.4|13.8(22.6
MountainBike| 6 |[210| 7.3 | 6.58 | 104 | 7.8 | 8.8 | 11.8 |249| 73 | 74
Shaking 7.64 125972 | 7.21 |10.8 [8.04| 22.7 | 130 [82.6| 24 [85.3
Singerl 2.76 |13.36| 35.1 | 3.33 | 328 |14.5| 2.87 | 80.5 | 140 | 16.5|11.5
Singer2 7.04| 184 | 210 | 179 | 113 |871| 175 | 225 |76.9|22.5| 175
Skating1 6.02| 132|298 | 7.12 |9.21 |68.2| 48.6 | 188 |88.5| 139 | 146
Soccer 19.1 129 | 843 | 894 | 778|101 | 119 | 53.8 |42.2|77.8| 145
Sylvester 12.7|149.8| 7.37 | 7.54 |8.08 |6.45| 153 | 33.6 |11.4|154(34.3
Trellis 298849593 | 183 | 561 |32.7| 7.81 |11.69|47.6|71L.5| 119
Walking 226|35 (276 | 345 | 244|128 | 2.02 | 373 |242|3.42|1.71
Walking2 | 2.37(2.67|3.36 | 36.1 | 1.85|23.4| 37.7 | 25.7 | 64.7|60.4|2.76
‘Woman 3.38|356| 105 | 5.7 123 |7.52| 3.71 | 7.44 | 114 | 102 | 142
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Table 2: Mean success rate for each of the 25 test sequences. Red - Best, Blue - Second best.

[ Sequence [Ours[ L1 [MTT[ONDL|SCM [LSH[ASLA[SPT|LOT[MIL[IVT]

Basketball |96.5|10.8| 252 | 90.2 |31.2 {943 | 95.1 |80.5|89.2|30.6|10.3
Boy 94.8196.8|44.5| 97.8 |43.8 89.2| 99.5 | 100 | 64.9|38.5|32.5
Car4 100 | 15.6| 31.4 | 100 |97.2(27.2| 100 |19.6| 4.8 |27.6| 100

CarScale 100 | 68 | 57.7 | 743 | 68 |469| 73.0 {98.8|48.6|46.9|73.9
Coke 96.81104|69.6 | 232 |40.8 | 6.8 | 152 |87.2|104|12.4|15.2

Crossing 100 {35.8|22.5| 100 | 100 |12.5| 100 |35.8(30.8|98.3(24.2

David 90 (24.7]855| 36 79 |475] 805 | 9 |275| 20 | 68
David2 100 (72.8| 100 | 75 |91.3 | 100 | 94.6 |27.6]|76.9|32.4|92.4
Deer 100 [5.63] 957 | 100 |929 [94.4| 100 |52.1(2.82|12.7(2.82

Dudek 100 |71.8192.7 | 969 |97.5|97.6| 89.8 |56.8|61.8|85.7|96.9
FaceOcc2 | 98.3(72.7|90.6 | 99.7 | 71.5|97.2| 432 |65.5| 35 [93.6|91.6
FleetFace [94.3|79.6|54.7| 83.6 |70.6 |71.4| 59.5 | 0.6 | 57.8|53.7|46.5
Footballl 75.7 (284|595 | 54 |41.9|851| 446 (17.6|41.9|78.4(49.5

Girl 91.4162.6( 624 | 24 |342|154| 85.6 |53.8]58.6(29.4|18.4

MountainBike | 100 [28.5]| 952 | 952 | 96.9 | 100 | 89.9 |36.8|68.8|57.5| 100

Shaking 100 | 0.5 | 1.1 | 94.8 | 90.1 |95.9| 32.6 [8.49|7.67|22.7]| 1.1
Singerl 100 | 100 | 35.6 | 99.7 | 100 [27.6| 100 (23.4|24.8|27.6(44.2
Singer2 97.513.55|3.55| 3.55 | 164 | 100 | 3.55 |3.28|15.847.5| 3.8
Skating1 99 (9.25| 13 | 41.7 352 (9.25| 51.7 | 19 | 24 |10.2| 9.5

Soccer 33 (163|181 | 179 [235| 89| 125 | 26 |21.7|15.6(17.3
Sylvester | 82.4(29.5| 822 | 852 |885(96.3| 74.8 [24.5|67.7|54.6|67.4

Trellis 100 [21.3|23.7 | 79.6 | 96.5|44.1| 85 |74.5| 33 |24.4|30.9
Walking 99.7196.6| 99 99 196.129.8| 99.7 | 43 |96.8|54.1]99.7
Walking2 {99.299.6|99.2 | 40.6 | 100 |38.8 | 39.8 [29.6| 39 | 38 |99.8
‘Woman 99.7123.5(29.7| 905 | 30 | 97 | 96.2 |95.5|15.5| 28 |27.7
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Success plot of background clutters (11)
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Overlap threshold

Success plot of occlusion (13)

Success plot of deformation (9)

Success plot of fast motion (8)
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Success plot of out-of-view (1)
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Figure 1: Success plots for background clutter, fast motion, occlusion, non-rigid object de-
formation, out-of-view, motion blur, fast motion, and low-resolution attributes.
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likelihood estimation procedure to obtain p as

N
p=— 3)

n

The likelihood ratio A, statistic for p is given by

k 5.
logA, = Zleog& 4)
j=1 Pj
Since N; = np;, this equation becomes
k pA i
loglnznZﬁjIng%=nK(ﬁ,p) (5)
j=1 J

Noting that 21log A,, converges in distribution to a chi-square distribution as n — e [4], con-
sider the probability P (K (p,p) < v):

P
= P(2logA, < 2nv) ©)
P

Using the fact that P (szq < x,f_m_ 5) =10, if we choose n according to the following
expression:
2V =211 s @)
we get
P(K(pp)<v)=1-6 ®)

which is exactly what we wished to achieve, hence completing the proof. We see that equa-
tion 1 follows from Equation 7.

3 Optimization problem

In each feature channel, we solve the following optimization problem:

min [|x/|[; + &’y
xel o )
st. y=A/x/+¢/

This problem is of the general form

min  fix.e) w0
st fa(x,6)=0

where f>(x,€) =y— Ax—¢&. Both f>(x,€), and f(x, €) are continuous and convex functions
n (x, €), and hence the problem

min  fi(x,€)+ 5[ 2(x.)[3

11
s.t. H(x,€)=0 (an
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has the same optimal value pair (x*,€*) as the problem defined in Equation 10. We now
eliminate the equality constraints in this problem by introuducing the Lagrange multipliers.
The augmented Lagrangian for this problem is

Le(x,€,p) = fi(x,€)+ %Hfz(x,e)H%*-Psz(Xﬁ) (12)

The minimization problem of Equation 11 is equivalent to minimizing the augmented La-
grangian of Equation 12. Therefore, we now have

(x*,€") = arg min L¢(x,€,p) (13)
X,€
The minimization problem of Equation 13 can be solved using the framework of alternating

directions algorithms [6]. Specifically, in each iteration, we compute x and € separately, and
then update p. Formally, the optimal solution pair (x*,€*) is computed as

X; ] = arg )I(nin L¢(x, €, pi) (14)

€41 = arg ;nin Le(Xiy1,€,0;) (15)

Pit1 = Pi+ E(f2(Xit1,&iv1)) (16)
The sub-problem defined by

g1 =arg ;nin L;(xm L E,0i) 17)

has a closed form solution, which we derive next. Consider the definition

L (Xit1,€,pi) = [xit1][1 + €] +%Hfz(xiﬂ,8)||§+PiT(f2(Xi+178)) (18)

Defining €g =y — AX; 1, minimizing L¢(X;11,€,p;) is equivalent to

&” = arg min {[le][1 + ngZ(XiJrlag)”% +pi (f2(xis1,€))}

= arg min { el +p] (24— )+ 5 (s~ ) (ea — )}

-}

= i € =
a@gm{m+2
Pi
=T <s + >
e\ T
where T (t); = sgn(z;)max{|t;] — a,0}, i = 1,2,...,n. Thus, the update step for & has an
analytic solution given by

€yl = 7% <£d + ’Z) (20)
However, the sub-problem defined by

X;+1 = arg min L¢ (X, &,p;) 2D
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does not have an analytic solution, and we hence must resort to iterative schemes. To solve
this problem, we use the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [1]. We
first show that this optimization problem is basically the classic lasso [5] problem. Defining
b =y—¢g,andb’ =b + 5, we have

X;+1 = arg min {||x]|; +p,~T(b/ —Ax)+ g(b, —AX)T(bl —Ax)}
2

(22)
2

Thus, we see that the problem of Equation 21 reduces to the lasso framework, which can be
efficiently solved using FISTA.

= arg min {”XHI—’_EHAX—I)/—M
X

4

= arg min {x||1 + §|Ax—b”||%}
X
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