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1 Additional results
The mean CLE and success rate for each individual test sequence are shown in Tables 1
and 2 respectively. The success plots for the following attributes: background clutter (BC),
motion blur (MB), fast motion (FM), occlusion (OCC), non-rigid object deformation (DEF),
out-of-view (OV), and low resolution are shown in Figure 1.

2 Adaptive candidate filtering
We first derive the expression representing the number of particles to be chosen in each
frame:
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Consider two probability distributions p1 and p2. The Kullback-Leibler distance [2] K be-
tween p1 and p2 is defined as

K(p1, p2) = ∑
x

p1(x)log
(

p1(x)
p2(x)

)
(2)

The basic idea of KLD-sampling [3] is to find the number of particles in each iteration
such that the error between the true posterior probability density and the probability density
approximated by the particle filter is less than ν with probability (1−δ ). At any particular
iteration, suppose we draw n particles from a discrete probability distribution that has k
disparate bins. Defining the vector N = [N1,N2, . . . ,Nk] as the number of particles drawn
from each bin, we can see that N follows a multinomial distribution fk(n,p), where p =
[p1, p2, . . . , pk] represents the probability of each of the k bins. We can use the maximum
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Table 1: Mean center location error (in pixels) for each of the 25 test sequences. Red - Best,
Blue - Second best.

Sequence Ours L1 MTT ONDL SCM LSH ASLA SPT LOT MIL IVT
Basketball 6.17 128 94.3 8.80 55.4 7.65 6.40 13.7 6.57 97.4 86.6

Boy 4.44 4.05 15.9 2.74 51.1 6.37 2.18 4.93 66 12.8 91.8
Car4 2.7 85.0 22.8 2.26 4.05 54.8 1.70 98.1 167 50.7 2.04

CarScale 5.27 82.7 74.2 15.7 28.8 10.2 20.8 3.9 91.8 31.6 10.3
Coke 8.7 117 24.8 67.2 49.1 73.9 60.9 11.8 62.4 43.6 83.1

Crossing 1.30 2.8 56.3 1.85 1.31 50.3 1.67 39.7 36.7 3.04 2.6
David 6.8 54.4 10 23.7 10 14 6.82 27.1 38.5 17.7 9.21
David2 1.61 15.3 1.27 3.96 3.81 2.69 1.36 46.6 4.1 10.9 1.43
Deer 5.27 163 8.97 7.87 12.2 7.69 4.96 36.3 97.5 101 182

Dudek 9.29 33.5 14.7 10.1 10.7 12.5 14.9 70.2 85.1 17.7 9.49
FaceOcc2 6.7 13.6 8.9 5.9 15.5 11.5 19 21.4 15 13.6 7.1
FleetFace 15.5 26.3 69 19.4 27.8 28.6 31.7 234 33.7 63.1 62.5
Football1 5.1 12.8 13.1 8.4 20 5.09 11.6 48.3 6.85 5.62 24.3

Girl 3.5 5.1 9 37.9 64.6 37.1 6.3 10.6 21.4 13.8 22.6
MountainBike 6 210 7.3 6.58 10.4 7.8 8.8 11.8 24.9 73 7.4

Shaking 7.64 125 97.2 7.21 10.8 8.04 22.7 130 82.6 24 85.3
Singer1 2.76 3.36 35.1 3.33 3.28 14.5 2.87 80.5 140 16.5 11.5
Singer2 7.04 184 210 179 113 8.71 175 225 76.9 22.5 175
Skating1 6.02 132 298 7.12 9.21 68.2 48.6 188 88.5 139 146
Soccer 19.1 129 84.3 89.4 77.8 101 119 53.8 42.2 77.8 145

Sylvester 12.7 49.8 7.37 7.54 8.08 6.45 15.3 33.6 11.4 15.4 34.3
Trellis 2.98 84.9 59.3 18.3 5.61 32.7 7.81 11.69 47.6 71.5 119

Walking 2.26 3.5 2.76 3.45 2.44 12.8 2.02 37.3 2.42 3.42 1.71
Walking2 2.37 2.67 3.36 36.1 1.85 23.4 37.7 25.7 64.7 60.4 2.76
Woman 3.38 356 105 5.7 123 7.52 3.71 7.44 114 102 142
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Table 2: Mean success rate for each of the 25 test sequences. Red - Best, Blue - Second best.

Sequence Ours L1 MTT ONDL SCM LSH ASLA SPT LOT MIL IVT
Basketball 96.5 10.8 25.2 90.2 31.2 94.3 95.1 80.5 89.2 30.6 10.3

Boy 94.8 96.8 44.5 97.8 43.8 89.2 99.5 100 64.9 38.5 32.5
Car4 100 15.6 31.4 100 97.2 27.2 100 19.6 4.8 27.6 100

CarScale 100 68 57.7 74.3 68 46.9 73.0 98.8 48.6 46.9 73.9
Coke 96.8 10.4 69.6 23.2 40.8 6.8 15.2 87.2 10.4 12.4 15.2

Crossing 100 35.8 22.5 100 100 12.5 100 35.8 30.8 98.3 24.2
David 90 24.7 85.5 36 79 47.5 80.5 9 2.75 20 68

David2 100 72.8 100 75 91.3 100 94.6 27.6 76.9 32.4 92.4
Deer 100 5.63 95.7 100 92.9 94.4 100 52.1 2.82 12.7 2.82

Dudek 100 71.8 92.7 96.9 97.5 97.6 89.8 56.8 61.8 85.7 96.9
FaceOcc2 98.3 72.7 90.6 99.7 71.5 97.2 43.2 65.5 35 93.6 91.6
FleetFace 94.3 79.6 54.7 83.6 70.6 71.4 59.5 0.6 57.8 53.7 46.5
Football1 75.7 28.4 59.5 54 41.9 85.1 44.6 17.6 41.9 78.4 49.5

Girl 91.4 62.6 62.4 24 34.2 15.4 85.6 53.8 58.6 29.4 18.4
MountainBike 100 28.5 95.2 95.2 96.9 100 89.9 36.8 68.8 57.5 100

Shaking 100 0.5 1.1 94.8 90.1 95.9 32.6 8.49 7.67 22.7 1.1
Singer1 100 100 35.6 99.7 100 27.6 100 23.4 24.8 27.6 44.2
Singer2 97.5 3.55 3.55 3.55 16.4 100 3.55 3.28 15.8 47.5 3.8
Skating1 99 9.25 13 41.7 35.2 9.25 51.7 19 24 10.2 9.5
Soccer 33 16.3 18.1 17.9 23.5 8.9 12.5 26 21.7 15.6 17.3

Sylvester 82.4 29.5 82.2 85.2 88.5 96.3 74.8 24.5 67.7 54.6 67.4
Trellis 100 21.3 23.7 79.6 96.5 44.1 85 74.5 33 24.4 30.9

Walking 99.7 96.6 99 99 96.1 29.8 99.7 43 96.8 54.1 99.7
Walking2 99.2 99.6 99.2 40.6 100 38.8 39.8 29.6 39 38 99.8
Woman 99.7 23.5 29.7 90.5 30 97 96.2 95.5 15.5 28 27.7
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Figure 1: Success plots for background clutter, fast motion, occlusion, non-rigid object de-
formation, out-of-view, motion blur, fast motion, and low-resolution attributes.
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likelihood estimation procedure to obtain p̂ as

p̂ =
N
n

(3)

The likelihood ratio λn statistic for p is given by

logλn =
k

∑
j=1

N j log
p̂ j

p j
(4)

Since N j = np̂ j, this equation becomes

logλn = n
k

∑
j=1

p̂ j log
p̂ j

p j
= nK(p̂,p) (5)

Noting that 2 logλn converges in distribution to a chi-square distribution as n→ ∞ [4], con-
sider the probability P(K(p̂,p)≤ ν):

P(K(p̂,p)≤ ν) = P(2nK(p̂,p)≤ 2nν)

= P(2logλn ≤ 2nν)

= P
(
χ

2
k−1 ≤ 2nν

) (6)

Using the fact that P
(

χ2
k−1 ≤ χ2

k−1,1−δ

)
= 1−δ , if we choose n according to the following

expression:
2nν = χ

2
k−1,1−δ

(7)

we get
P(K(p̂,p)≤ ν) = 1−δ (8)

which is exactly what we wished to achieve, hence completing the proof. We see that equa-
tion 1 follows from Equation 7.

3 Optimization problem
In each feature channel, we solve the following optimization problem:

min
x j ,ε j

‖x j‖1 +‖ε j‖1

s.t. y j = A jx j + ε j
(9)

This problem is of the general form

min
x,ε

f1(x,ε)

s.t. f2(x,ε) = 0
(10)

where f2(x,ε) = y−Ax−ε . Both f2(x,ε), and f1(x,ε) are continuous and convex functions
in (x,ε), and hence the problem

min
x,ε

f1(x,ε)+ ζ

2 ‖ f2(x,ε)‖2
2

s.t. f2(x,ε) = 0
(11)
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has the same optimal value pair (x∗,ε∗) as the problem defined in Equation 10. We now
eliminate the equality constraints in this problem by introuducing the Lagrange multipliers.
The augmented Lagrangian for this problem is

Lζ (x,ε,ρ) = f1(x,ε)+
ζ

2
‖ f2(x,ε)‖2

2 +ρ
T f2(x,ε) (12)

The minimization problem of Equation 11 is equivalent to minimizing the augmented La-
grangian of Equation 12. Therefore, we now have

(x∗,ε∗) = arg min
x,ε

Lζ (x,ε,ρ) (13)

The minimization problem of Equation 13 can be solved using the framework of alternating
directions algorithms [6]. Specifically, in each iteration, we compute x and ε separately, and
then update ρ . Formally, the optimal solution pair (x∗,ε∗) is computed as

xi+1 = arg min
x
Lζ (x,εi,ρi) (14)

εi+1 = arg min
ε

Lζ (xi+1,ε,ρi) (15)

ρi+1 = ρi +ζ ( f2(xi+1,εi+1)) (16)

The sub-problem defined by

εi+1 = arg min
ε

Lζ (xi+1,ε,ρi) (17)

has a closed form solution, which we derive next. Consider the definition

Lζ (xi+1,ε,ρi) = ‖xi+1‖1 +‖ε‖1 +
ζ

2
‖ f2(xi+1,ε)‖2

2 +ρ
T
i ( f2(xi+1,ε)) (18)

Defining εd = y−Axi+1, minimizing Lζ (xi+1,ε,ρi) is equivalent to

ε
∗ = arg min

ε

{‖ε‖1 +
ζ

2
‖ f2(xi+1,ε)‖2

2 +ρ
T
i ( f2(xi+1,ε))}

= arg min
ε

{‖ε‖1 +ρ
T
i (εd− ε)+

ζ

2
(εd− ε)T (εd− ε)}

= arg min
ε

{
‖ε‖1 +

ζ

2

∥∥∥∥ε−
(

εd +
ρi

ζ

)∥∥∥∥2

2

}

= T 1
ζ

(
εd +

ρi

ζ

)
(19)

where Tα(t)i = sgn(ti)max{|ti|−α,0}, i = 1,2, . . . ,n. Thus, the update step for εi+1 has an
analytic solution given by

εi+1 = T 1
ζ

(
εd +

ρi

ζ

)
(20)

However, the sub-problem defined by

xi+1 = arg min
x
Lζ (x,εi,ρi) (21)
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does not have an analytic solution, and we hence must resort to iterative schemes. To solve
this problem, we use the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [1]. We
first show that this optimization problem is basically the classic lasso [5] problem. Defining
b′ = y− εi, and b′′ = b′ + ρi

ζ
, we have

xi+1 = arg min
x
{‖x‖1 +ρi

T (b
′ −Ax)+

ζ

2
(b
′ −Ax)T (b

′ −Ax)}

= arg min
x

{
‖x‖1 +

ζ

2

∥∥∥∥Ax−b
′ − ρi

ζ

∥∥∥∥2

2

}

= arg min
x

{
‖x‖1 +

ζ

2
‖Ax−b

′′‖2
2

} (22)

Thus, we see that the problem of Equation 21 reduces to the lasso framework, which can be
efficiently solved using FISTA.
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