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ABSTRACT
Designing useful person re-identification systems for real-world
applications requires attention to operational aspects not typically
considered in academic research. Here, we focus on the temporal
aspect of re-identification; that is, instead of finding a match to a
probe person of interest in a fixed candidate gallery, we consider the
more realistic scenario in which the gallery is continuously populated
by new candidates over a long time period. A key question of interest
for an operator of such a system is: how long is a correct match to
a probe likely to remain in a rank-k shortlist of candidates? We
propose to distill this information into a Rank Persistence Curve
(RPC), which allows different algorithms’ temporal performance to
be directly compared. We present examples to illustrate the RPC
using a new dataset with multiple candidate reappearances, and
discuss considerations for future research that explicitly involves
temporal aspects.

CCS CONCEPTS
• Computing methodologies�Temporal reasoning; Object iden-
tification; Visual content-based indexing and retrieval;
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1 INTRODUCTION
Research in the area of automatic human re-identification, or re-id,
has exploded in the past ten years. The re-id problem is generally
stated as: given an image of a person of interest as seen in a “probe"
camera view, how can we find the same person among a set of
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candidate people seen in a “gallery" camera view? Re-id research to
date typically falls into one or more of the following categories:

• Appearance modeling, in which the goal is to design or learn
a feature representation for re-id candidates that is invariant
to challenges like viewpoint and illumination variation (e.g.,
[1, 12, 15, 17])

• Metric learning, in which the goal is to learn, in a supervised
fashion, a distance metric that is used to search for the person
of interest in the gallery set (e.g., [10, 16, 21, 22]).

• Multi-shot re-id, in which both the probe and gallery can-
didates are represented as short image sequences instead of
single frames (e.g., [8, 9, 11, 20]).

While critical to the success of a real-world deployment of a
re-identification algorithm, research in these areas generally over-
simplifies the problem that would face a real-world user of a re-id
system. In particular, the temporal aspect of the re-id problem is
totally ignored in most academic re-id research. That is, in the real
world, candidates would be constantly added to the gallery as new
subjects are automatically tracked, as opposed to presented to an
algorithm all at once. Even if a correct match to the probe appears in
a rank-ordered shortlist shortly after they appear in a gallery camera,
this isn’t helpful to a user if the candidate is immediately “pushed off”
the list after a few minutes by a new wave of incoming candidates.
To the user, a natural question is, how long can a correct match
be expected to stay in the shortlist under typical circumstances?
Proposed re-id algorithms should be judged based on this notion of
persistence in time, not just raw batch performance as presented in a
cumulative match characteristic (CMC) curve. Figure 1 illustrates
the problem; an incoming correct match arrives at a low rank upon
its first appearance, but is quickly pushed down the list as more
candidates arrive. In this example, the correct candidate would have
only stayed on a shortlist of the top 10 candidates for 10 minutes
(about the same duration as a typical coffee break!).

In this paper, we explore several temporal aspects of re-id and
propose new evaluation methodologies that allow different re-id
algorithms to be compared based on the concept of rank persistence.
We discuss strategies for evaluating algorithms in circumstances
when the same person of interest can appear multiple times in the
gallery (which could occur if the gallery spans several hours or days)
as well as when the performance on multiple persons of interest
should be aggregated. The key concept we propose is called the
Rank Persistence Curve (RPC), which quantifies the percentage of
candidates that remain at a certain rank for a given duration. RPCs for
different algorithms can be directly compared on the same dataset to
allow a user to make informed choices about expected performance
in real-world deployments.
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Figure 1: An example showing the temporal evolution of a gallery set captured in a real surveillance system, and the corresponding
time-varying rank for a given query achieved by a re-id algorithm. The candidate arrives at t = 2 at rank 5, and drops in rank over
time as more candidates arrive in the target camera.

We illustrate our proposed methodology with examples and exper-
iments drawn from a dataset we collected over many hours at a light
rail station, which contains multiple time-stamped reappearances
of multiple actors. We conclude the paper with further discussion
about the temporal implications of re-id, and suggestions for future
research in this area.

2 PRELIMINARIES
Although the focus of this paper is not the proposal of a new re-id
dataset or algorithm, we need instances of each to illustrate our pro-
posed methodology. In particular, since existing re-id benchmarking
datasets lack temporal annotation, we collected a new dataset more
suitable for this study.

The dataset is composed of 10 hours of surveillance video data
from a wall-mounted camera located in an indoor light rail station
in the United States. We had 7 known actors participate in the data
collection activity. Each actor appeared once in a morning session,
and subsequently re-appeared in the same camera view in multiple
afternoon and evening sessions. In each re-appearance, the actor
wore slightly different clothes or accessories than in the previous
session, to make the re-id problem more realistic and challenging.
We used each actor’s appearance in the morning session as the
“probe" for subsequent re-id queries. In total, we ground-truthed 3
known re-appearances of each actor, each randomly spread across
the 10-hour duration.

To generate candidate tracks for the gallery (i.e., for both the
actors and the distractor pedestrians that entered the camera view
over the 10-hour video), we used an off-the-shelf person detector,
based on the aggregated channel features (ACF) algorithm of Dollar
et al.[3, 4], to crop out person images. Sample images from the
different appearances of the actors in our dataset are shown in Figure
2. A statistical summary of our dataset is provided in Table 1.

Table 1: Statistical summary of our dataset

Property Total/Type
Bounding Boxes 4,639
Known Actors 7

Known Actor Re-Appearances 3
Candidates (incl. actors) 535

Video Hours 10
Detection algorithm ACF [3, 4]

As a baseline re-id algorithm, we used the recently proposed
Gaussian of Gaussian (GOG) descriptor [14] to rank gallery candi-
dates. GOG is an unsupervised algorithm that constructs an appear-
ance model given image data and uses Euclidean distance to rank
candidates. The baseline algorithm is multi-shot in that it uses multi-
ple frames of each candidate’s appearance to form feature vectors to
be compared, instead of a single rectangle.

Specifically, given a track of images for the probe appearance
of the person of interest and each gallery candidate, we extract
features for each image using GOG. Let xkp , k = 1, . . . ,n and xki ,
k = 1, . . . ,m denote the n feature vectors of the probe and the m

feature vectors of the ith gallery candidate, respectively. We then
determine the appearance model for the probe, fp , and the gallery
candidate, fi , as the mean feature vector of the available feature
vectors. Specifically,

fp =
1
n

n∑
k=1

xkp

fi =
1
m

m∑
k=1

xki
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Figure 2: Examples of actors and their appearances in our dataset.

The similarity score si , used to rank gallery candidates, is com-
puted using the Euclidean distance as

si = ∥fp − fi ∥

3 RANK PERSISTENCE
In this section, we present the concept of rank persistence in steps,
working up to evaluating situations in which multiple persons of
interest each appear multiple times over the course of a long video
sequence.

3.1 One probe, one reappearance
We first consider the case of a single probe/query that has exactly one
reappearance over the course of an entire video. In this case, we can
easily graph their rank over time with respect to an ever-increasing
gallery, as illustrated in Figure 3.

The horizontal axis is real time (i.e., minutes from the beginning
of our 10-hour test sequence). The vertical axis shows the rank of
the true reappearance in the gallery over time. Clearly, the rank can
only decrease as more candidates arrive in the gallery. Also, the
graph does not start at t = 0 but indicates the time at which the
reappearance occurs. These per-probe curves will form the basis for
the aggregate Rank Persistence Curve discussed in Section 3.3.

Figure 4 illustrates three rank curves for probe/gallery pairs of
increasing difficulty. In the first example, the gallery reappearance
is very similar to the probe, and also dissimilar to other candidates
seen over the course of the video, so the rank is fairly constant at
a low value. In the last example, the gallery reappearance is quite
unlike the probe, so the rank increases quickly as new candidates
appear.

3.2 One probe, multiple reappearances
In a real-world scenario, when we are searching for a person of
interest in streaming video over many hours or even days, it is
possible that s/he may re-appear multiple times at different ranks.

Figure 3: An example of how the rank r of a person of interest
changes in a temporally-varying gallery set. This candidate’s
first re-appearance is at t = 2 minutes.

Therefore, we modify the temporal rank curve from the previous
section as illustrated in Figure 5. That is, the vertical axis shows the
highest instantaneous rank held by any reappearance of the probe.

In this example, the first reappearance of the candidate in the
gallery looks rather unlike the probe, so the initial rank is relatively
high and increases sharply with time. However, in the next reappear-
ance, the gallery image looks very much like the probe; the rank
of this new candidate is low, and the candidate persists at this rank
for the rest of the long video. A third reappearance of the candi-
date occurs later in the video, but is not as similar as the second
reappearance, so does not affect the temporal rank plot.
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Figure 4: Temporal rank curves for three sample queries. In each case, the image on the top is the probe/query and the image on the
bottom is the known reappearance in the gallery. The graph to the right of these images shows the temporal evolution of the rank of
the known reappearance.

Figure 5: Temporal rank plot for a query with multiple re-appearances.

3.3 Multiple probes, multiple reappearances
Finally, we arrive at the most general situation, in which we char-
acterize the performance of a given re-id algorithm across multi-
ple probes, each of which may have multiple reappearances in the
gallery. We define the Rank Persistence Curve (RPC) to evaluate
performance as follows. First, we fix a specific rank r . For each du-
ration d (in real units) on the horizontal axis, we plot the percentage
of candidates that appear continuously in the top-r list for at least
d units. Thus, the RPC is monotonically decreasing, and RPCs at
higher ranks dominate those at lower ranks.

Figure 6a illustrates RPCs for our dataset/baseline re-id algorithm
combination. In contrast, a traditional Cumulative Match Charac-
teristic (CMC) curve, also for our dataset/baseline re-id algorithm
combination (averaging all available feature vectors for every candi-
date), is shown in Figure 6b. We can see that the two types of curves
are qualitatively different. Since we want to capture the temporal
aspect of rank in the RPC, the dependent axis is no longer rank but

duration, and we need a third “axis” (in this case color) to indicate
rank.

Let’s focus on the RPC for r = 1, shown in red. This captures our
objective of visualizing how likely and how long a candidate is to
stay at rank 1 across a long video sequence. Clearly, this is a stringent
requirement, and we can see that only 1 of the 7 probes ever had a
reappearance at rank 1 at all. If we consider the RPC for r = 5, we see
that more candidates are likely to persist at rank 5 for longer amounts
of time. RPCs can help operators of re-id systems answer questions
like: can my re-id algorithm be expected to preserve correct matches
in the top-10 shortlist for at least 15 minutes at least 90% of the time?
These considerations are important both in terms of the length of the
shortlist (real-world end users, typically not computer vision experts,
would not want to scroll through pages and pages of candidates
to find the person of interest) and the duration of persistence (in
real-world scenarios, end users may only get around to checking the
output of a re-id surveillance system a few times an hour).
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Figure 6: (a) The proposed Rank Persistence Curve (RPC) at different ranks for our dataset/baseline re-id algorithm combination.
(b) The traditional Cumulative Match Characteristic (CMC) curve for our dataset/baseline re-id algorithm combination.

Thus, RPCs can be used to quickly visualize the performance
of competing re-id systems applied in the same environment. For
example, Figure 7 shows the RPCs for our baseline algorithm using
GOG vs. the ColorTexture algorithm proposed by Gray and Tao
[6], which uses an ensemble of localized color and texture features.
We can see that the GOG algorithm dominates the older algorithm
with respect to temporal persistence, and that the RPCs capture the
essence of both algorithms’ performance in an easy-to-read graph.

3.4 Video Flow Density
We conclude this section with a brief discussion on video flow
density, a topic we have not considered in this paper but has a direct
impact on the behavior of the rank of the person of interest. We
define video flow density as the instantaneous number of people
seen by the gallery camera per unit time. To understand how this
might impact rank persistence, consider two nonoverlapping time
blocks with the same duration. In the first block, the gallery camera
sees x people walking by. In the second block, the gallery camera
sees y people walking by. If x ≫ y, we add many more people in the
gallery in the first time block, likely resulting in a steeper increase
in a candidate’s re-id rank compared to the second time block. This
suggests we should pay close attention to the rate at which new
people in the video are added to the gallery.

4 DISCUSSION AND FUTURE WORK
Now that the underlying computer vision and machine learning tech-
nologies for re-id have matured [7, 25], we contend that researchers
should begin to take a broader view of evaluating how re-id al-
gorithms should integrate into functional real-world systems. For
example, as noted in Camps et al. [2], the problem of comparing
one candidate rectangle of pixels to another is only a small part of
a fully automated re-id system. Instead, we must take into account
that the candidate rectangles are likely generated by an automatic
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Figure 7: RPCs can be used to easily compare the temporal per-
formance of competing re-id algorithms. In this example, the
GOG algorithm’s RPC (solid curve) dominates the ColorTex-
ture’s algorithm’s RPC (dashed curve) at r = 5 and r = 20,
demonstrating the superiority of GOG from a temporal persis-
tence perspective.

(and possibly inaccurate) human detection and tracking subsystem,
that the overall system needs to operate in real time, and that the
system may be in operation for very long periods of time. Instead
of benchmarking datasets in which the gallery images are acquired
only a few moments after the probe images, we must consider crime
prevention applications in which a perpetrator may return to the
scene of the crime days after their initial detection. In such cases,
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the gallery of candidates is ever-expanding, and for long periods of
time may not contain the person of interest at all.

These real-world considerations present several challenges to the
re-id research community, several of which we discuss below.

• While they are derived from real-world surveillance video,
current re-id benchmarking datasets such as VIPeR [6], iLIDS-
VID [19], and MARS [23] lack time stamps for the gallery
sets, rendering them inappropriate for the type of temporal
research discussed here. While it might be possible to repur-
pose them for temporal re-id research, adding artificial time
stamps seems suboptimal. It would be better to generate a
new temporal re-id dataset for this purpose, ideally spanning
several days and thousands of tracked candidates. For val-
idation, multiple reappearances of a substantial number of
actors would need to be included. The dataset discussed in
this paper is a step in this direction, but has too few unique
actors to be broadly useful.

• The concept of “splits” is critical for fair comparisons of re-id
algorithms using current benchmarking datasets. That is, the
provider of the dataset typically specifies a random subset
of the data to be used for training and another to be used
for testing. A similar concept would need to be developed
for temporal re-id datasets, i.e., not only specifying which
candidates should be used for training/testing, but also which
temporal spans should be used in the time-evolving galleries.

• As discussed in Section 3.4, the x-axis of the proposed Rank
Persistence Curves is critically coupled to the video flow
density of candidates in the underlying camera. Operationally,
it would be more useful to characterize rank persistence in
real units of minutes or hours; however, this ties the RPC
strongly to a particular dataset and possibly a time of day. For
example, different rail stations may have different levels of
traffic, and the traffic would vary during rush hour vs. off-
peak times. Temporal re-id benchmarking protocols would
need to distinguish subsets of data with respect to video flow
rate.

• The temporal dimension, in terms of both the ever-increasing
gallery size and multiple probe appearances, discussed here
leads to natural challenges from a feature and metric learning
point of view. These can potentially be addressed by using
temporally incremental approaches to learning re-id models
[13, 18] where the model can be temporally adapted over
time using either automated or human-in-the-loop feedback.

• In our experience with integrating academic re-id algorithms
into operational surveillance command centers, we found the
issue of user interfaces to be extremely important. The similar-
ity between a rank-k shortlist and a police lineup was an effec-
tive analogy. However, the potentially very long time scales
for crime prevention applications requires the re-evaluation of
an operationally meaningful shortlist. Should candidates “age
out” of the ranked list using some sort of forgetting factor or
re-ranking scheme [5, 24]? Should extremely promising can-
didates from long ago be kept alongside less-certain but more
timely recent candidates? Should the time-varying gallery
contain all candidates ever seen or only those from the last
N minutes? These considerations require close consultation

with the potential users of the system to understand and set
expectations and corresponding interface choices.
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