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Abstract

We consider the problem of automatically re-identifying a person of interest seen in a
“probe” camera view among several candidate people in a “gallery” camera view. This
problem, called person re-identification, is of fundamental importance in several video
analytics applications. While extracting knowledge from high-dimensional visual rep-
resentations based on the notions of sparsity and regularization has been successful for
several computer vision problems, such techniques have not been fully exploited in the
context of the re-identification problem. Here, we develop a principled algorithm for
the re-identification problem in the general framework of learning sparse visual repre-
sentations. Given a set of feature vectors for a person in one camera view (correspond-
ing to multiple images as they are tracked), we show that a feature vector representing
the same person in another view approximately lies in the linear span of this feature
set. Furthermore, under certain conditions, the associated coefficient vector can be
characterized as being block sparse. This key insight allows us to design an algorithm
based on block sparse recovery that achieves state-of-the-art results in multi-shot per-
son re-identification. We also revisit an older feature transformation technique, Fisher
discriminant analysis, and show that, when combined with our proposed formulation,
it outperforms many sophisticated methods. Additionally, we show that the proposed
algorithm is flexible and can be used in conjunction with existing metric learning algo-
rithms, resulting in improved ranking performance. We perform extensive experiments
on several publicly available datasets to evaluate the proposed algorithm.

1. Introduction

Automated human re-identification, or re-id, systems play a key role in several se-
curity and surveillance applications. Given a sequence of images of a person of interest
in one camera view (the probe view), the goal is to re-identify the same person among
several candidate person image sequences in another camera view (the gallery view).
This is a particularly challenging problem since inter-camera appearance and illumina-
tion variations are often quite pronounced. Background clutter, viewpoint variations,
and occlusions can further complicate this task. Some of these commonly encountered
challenges are visually summarized in Figure 1.
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Figure 1: Person re-identification in networks of non-overlapping camera views is a challenging problem due
to background clutter, illumination variations, occlusions, and viewpoint variations. Each column illustrates
two images of the same person in two different camera views.

Recent advances in compressed sensing and sparse recovery have motivated sev-
eral solutions for traditional computer vision problems such as face recognition [1, 2]
and object tracking [3, 4]. The basic idea in such sparse recovery methods is to model
high-dimensional visual data using sparse vectors. These methods are generally char-
acterized by learning representations of high-dimensional visual data that are more
discriminative for making downstream recognition and classification decisions. While
it is conceivable that such methods would naturally extend to the re-id problem, they
are currently not well represented in existing re-id algorithms.

In this article, we present a principled approach to address the multi-shot re-id prob-
lem. Our algorithm design is inspired by the success of learning sparse representations
of visual data and based on the following key observations:

• In some discriminative feature space, the feature vector corresponding to a probe
image of a person can be approximately expressed as a linear combination of the
feature vectors of the corresponding gallery images of the same person.

• If we construct a matrix D (a dictionary) of feature vectors corresponding to
all the available images for each unique person in the gallery view, the intuition
above suggests that the probe feature vector can be expressed as a sparse linear
combination of the columns of D.

• Due to the manner of its construction, the dictionary D will have a block struc-
ture because multiple images are available for each unique person in the gallery.
Furthermore, these sets of images corresponding to each person will ideally re-
sult in clustered sets of points in the feature space. This suggests that the sparse
coefficient vector will also have a block structure.

Based on these observations, we formulate the task of re-identifying a person of
interest as a block sparse recovery problem. We construct the feature dictionary D
using the available gallery feature vectors and solve the associated optimization prob-
lem in the framework of alternating directions minimization. The feature space for the
dictionary is learned using a well-established technique, Fisher discriminant analysis
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(FDA). We show that using features learned with FDA and ranking gallery candidates
based on our block sparse minimization approach outperforms many sophisticated and
recently proposed algorithms for re-id.

We show that our block sparse formulation is flexible and can be used in conjunc-
tion with any existing metric learning technique to rank gallery candidates. Typically,
a metric learning technique ranks candidates using the Euclidean distance metric in
the learned feature space. We empirically demonstrate that using our approach to rank
candidates after learning the feature space transformation can result in significant per-
formance improvement. In this regard, our approach is complementary to existing
metric learning methods and can improve their performance.

To evaluate each of our primary contributions, we perform extensive quantitative
evaluations on three publicly available multi-shot re-id datasets: iLIDS-VID [5], PRID
2011 [6], and SAIVT-SoftBio[7]. Our results show a rank-1 performance improvement
of about 6% for iLIDS-VID, 6% for PRID 2011 and 12% for SAIVT-SoftBio over the
existing state of the art. An earlier version of a portion of this paper appeared in [8].

2. Related work

Most existing research on person re-id is focused on the single-shot version of the
problem [9, 10, 11, 12, 13], i.e., the assumption that only one image per person per
camera is available. However, in practice, this is not the case. In a typical surveil-
lance application, such as the “tag and track” problem described in [14, 15], after the
person of interest is identified in the probe view, s/he is tracked until the end of the
current view. Similarly, candidates observed in the gallery view will also be tracked,
generating a sequence of images for each candidate person. Therefore, real-world re-id
necessitates the formulation of the task as a “multi-shot”, or image sequence matching
problem rather than the usual single-image matching problem.

A typical approach to address the re-id problem is to compute features from all the
available probe and gallery images and then compare them. This has led to consid-
erable research in two directions: (1) determining the most discriminative appearance
features and subsequently ranking gallery candidate images using a traditional met-
ric, such as the Euclidean distance, and (2) starting with basic feature vectors, such as
global color histograms, and learning, in a supervised fashion, a distance metric such
that feature vectors belonging to the same person are close while those belonging to
different people are far apart. In the following, we summarize some key methods in
these directions.

2.1. Appearance features, distance metric learning and single-shot re-id

An early appearance based re-id method was proposed by Gray and Tao [16], where
color and texture histograms were extracted from locally sampled image regions. Color
histograms were extracted in the RGB, YCbCr, and HSV color spaces and texture his-
tograms were computed as filter responses to several channels of Schmid [17] and
Gabor [18] filters. Following this work, several metric learning methods were pro-
posed that started with these color and texture histograms as the basic features. Prosser
et al. [9] used these features to learn a RankSVM [19] model by enforcing explicit
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constraints that the feature vectors belonging to the same person be close whereas the
feature vectors of different people be far apart. Mignon and Jurie [20] formulated the
problem of learning the metric as a generalized logistic loss minimization problem,
while enforcing pairwise similarity and dissimilarity constraints. Zhang et al. [21]
also started with the basic color and texture histograms and formulated re-id as a rela-
tive distance comparison problem, where a logistic objective function in a soft margin
framework was employed to learn the distance metric. Pedagadi et al. [22] employed
dense patch-based image sampling, computed color histograms in each patch, and used
local Fisher discriminant analysis [23] [24] to learn a distance metric. Recently, Xiong
et al. [12] proposed kernelized variants of several popularly used metric learning tech-
niques.

Constructing appearance descriptors that are robust to common inter-camera varia-
tions has also been an extensive line of study. Such an approach typically uses existing
distance functions to compute the similarity score between the probe and the gallery
feature vector. Farenzena et al. [25] constructed an ensemble of localized features, in-
cluding weighted color histograms and maximally stable color regions to describe the
appearance of each image. Subsequently, similarity scores were accumulated across
the feature channels using the Euclidean and Bhattacharya distance measures. Cheng et
al. [26] described the appearance of each image using an ensemble of multiple feature
channels. These features were computed from parts of the image that were found auto-
matically by fitting a pictorial structure to each image. Bak et al. [27] also employed a
part-based appearance modeling scheme, where the body parts were determined using
histograms of oriented gradients [28]. Each part was then described using a covariance
matrix of multiple feature cues, and a spatial pyramid matching [29] scheme was used
to compute the similarity score.

Martinel et al. [30] hypothesized that identifying salient regions in the image of a
person would lead to robust appearance descriptors. To this end, a saliency detection
method based on kernelized graphs was proposed. The detected salient regions were
then used as priors in constructing appearance features, following which a Mahalanobis
distance metric was learned to account for inter-camera variations. Zheng et al. [31]
approached the re-id problem from an open-world perspective, where it is likely that
a probe person might not appear in the search gallery. Such a scenario is common
in real-world re-id applications such as the tag-and-track problem described in Camps
et al. [15]. While not directly solving this problem, Zheng et al. [31] proposed to
verify whether each of the observed gallery persons exists in a pre-existing watch-list
of people provided beforehand. In this way, the problem of person re-identification
was converted to one of person verification, which was tackled using a distance metric
learning method based on the principle of transfer learning.

However, as noted earlier, these techniques were developed specifically to address
the single-shot setting of the re-id problem and do not have any mechanism to exploit
the inherent discriminability available in the multi-shot setting. In the following, we
summarize some key techniques that specifically address the multi-shot re-id problem.

2.2. Multi-shot re-id
An early approach that used multi-shot data was based on gait analysis [32], where

gait patterns extracted from video were used to identify people. Subsequently, the
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advances in appearance models and distance metric learning for single-shot re-id moti-
vated several specialized multi-shot re-id methods. Most methods follow one or more
of the following lines of thought: (i) exploiting all the available data to build aggre-
gated appearance descriptors that can then be compared using either existing distance
functions or learned distance metrics, (ii) selecting images or fragments from the set
of available images that are most discriminative, and (iii) representing the set of avail-
able images as a sequence of feature vectors that can then be used to perform direct
sequence-to-sequence matching.

Cong et al. [33] used a graph embedding approach to learn a manifold and em-
ployed Euclidean distances between the centers of the points in the new space to mea-
sure similarity/dissimilarity. Bazzani et al. [34] constructed histogram and epitome-
based features to embed discriminative information from all the available images and
used the Bhattacharya distance metric to measure similarity/dissimilarity. Wang et
al. [5] constructed a model based on a combination of optical flow, space-time features
and multiple-instance learning to simultaneously select and match fragments from the
available data that are most discrminative for re-id. Li et al. [35] learned discriminative
random forests and aggregated classification scores for all the available images for each
person to make a decision. Li et al. [36] also developed a feature transformation al-
gorithm that combined hierarchical image sequence clustering and Fisher discriminant
analysis to learn a discriminative feature space. Subsequently, a RankSVM model was
used to rank the gallery candidates. Image sequences have also been used to perform di-
rect sequence matching. Simonnet et al. [37] used a tracking-by-detection approach to
generate a track of images for each candidate, followed by direct sequence-to-sequence
appearance feature matching using the dynamic time warping algorithm.

Martinel et al. [38] proposed a novel concept called warp functions, based on the
observation that inter-camera feature variations lie in a non-linear function space of all
the possible feature transformations between two cameras. Subsequently, a discrimi-
native surface was learned using a random forest classifier, separating warp functions
of images of the same person and the warp functions of images of different people.
Chakraborty et al. [39] proposed a generalized technique to address the re-id problem
in camera networks with more than two cameras. Their framework involved formu-
lating a binary integer programming problem that minimizes the cost of associating
pairs of target persons across the entire camera network, while enforcing network con-
sistency constraints depending on whether a single image or multiple images were
available for a person in each camera view.

2.3. Sparsity and regularization in computer vision
The notion of sparse data representations has seen a surge in interest due to recent

results [40, 41] from signal processing. Since then, sparsity has gained traction in sev-
eral computer vision tasks including face recognition [1, 42], object tracking [3, 43, 4]
and image restoration [44]. The notion of using l1 regularization to promote sparse
solutions has, in part, motivated several algorithms that adopt some form of regular-
ization in the problem formulation. Xiong et al. [12] developed a regularized variant
of the popular PCCA metric learing algorithm [20], enforcing a Frobenius norm reg-
ularization on the associated feature space projection matrix. Hu et al. [45] reformu-
lated the problem of finding the pair of closest points on affine hulls of data, enforcing
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sparsity-promoting l1 regularization in the problem formulation. l1 regularization is
also extremely popular in so-called online object tracking algorithms, and as discussed
in the benchmarking paper of [46], these methods perform well in the presence of target
appearance changes, such as occlusions. A nice review of the various types of penalty
and regularization methods, with specific focus on formulations that promote sparse
solutions, can be found in the paper by Bach et al. [47].

2.3.1. Sparsity in re-identification
In spite of their demonstrated success in these areas, classification methods based

on sparse representations have not received much attention in the context of the re-
id problem. Harandi et al. [48] posed the re-id problem as a dictionary learning task
and constructed the associated sparse codes on a Riemannian manifold. Kheder et
al. [49] represented each gallery image using the SURF [50] features, constructed the
appearance dictionary in a dynamic fashion by finding the closest gallery SURF fea-
ture vectors to a given test feature vector using a k-d tree, and posed re-id as a sparse
vector retrieval problem. Lisanti et al. [51] designed a discriminative feature descrip-
tor based on weighted histograms and used them as part of a sparse basis expansion
scheme, which was iteratively re-weighted to rank the gallery candidates. Martinel et
al. [52] constructed a localized person descriptor by randomly sampling image patches
and used the notion of sparsity to only consider relevant patches during the descriptor
matching process. Zheng et al. [53] addressed a variant of the traditional re-id problem
wherein only a partial observation, likely due to inaccurate detection or occlusions,
of each person was available. To solve this problem, a local patch-to-patch matching
framework was proposed. A sparse modeling framework was proposed to select the
most suitable patches for matching at test time.

In contrast to these approaches, we exploit the inherent block sparsity that charac-
terizes the multi-shot re-id problem. Furthermore, our algorithm is very flexible and
can be used in conjunction with any existing metric learning method.

3. Algorithm Description

3.1. Features, image clustering, and feature transformation

We begin by describing each image using the Fisher vector (LDFV) approach of
Ma et al. [54] to compute features, which has been demonstrated to be effective for
re-id. As proposed in that work, we convert the image from the RGB space to the HSV
space, divide the image uniformly into 6 horizontally-striped regions, construct 17-
dimensional local pixel descriptors comprising of spatial, intensity and gradient infor-
mation, and estimate a Gaussian mixture model in each region using the Expectation-
Maximization algorithm [55] as implemented in the VLFeat library [56]. We set the
number of Gaussian components to 16. The local descriptors in each region are then
encoded in the Fisher vector representation [57, 58], giving a 3264-dimensional de-
scriptor f for the image I. Since this feature extraction process involves access to
training data, we use the generated data splits described in Section 4.2 to compute the
training and testing features separately for each split.
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Figure 2: Clustering a tracking sequence of a person from the iLIDS-VID dataset into ten clusters.

Next, we cluster the feature vectors of a person in both the gallery and the probe
views to obtain a clustered feature space. Clustering the feature vectors is motivated
by several observations:

• Since people are tracked in a real-world re-id application, it is often the case that
we obtain redundant image data as the output of a tracking algorithm. Clustering
the feature vectors can result in a more compact and meaningful representation
of the trajectory of the person.

• As we will see briefly in the next section and in more empirical detail in Sec-
tion 4, the time required to retrieve the identity of a probe image is directly
related to the number of gallery feature vectors used per person. Clustering the
available feature vectors results in significant computational gains when com-
pared to using all the available data.

An example of clustering a tracking sequence of a person from the iLIDS-VID
dataset into ten clusters using the K-Means clustering algorithm is shown in Figure 2.
The figure illustrates that considering the centers of each of the clusters as representa-
tive points of the tracking sequence is a succinct representation of the available data.
Therefore, we compute the mean of the points in each cluster, resulting in n feature
vectors for each person in each of the probe and gallery views, where n is the number
of clusters.

Given the feature vectors ygij in the gallery view and ypij in the probe view in
the clustered feature space, where the index j denotes the jth cluster center for the
person denoted by index i, we learn a new feature space using Fisher discriminant
analysis (FDA). In the following, we give a brief overview of FDA. The goal of FDA
is to learn a feature space transformation that maximizes the between-class data scatter
while minimizing the within-class data scatter. By stacking all the N gallery and probe
feature vectors in the clustered space column-wise, we construct the matrix F ∈ Rc×N ,
where c = 3264. We can then define the associated within-class and between-class data
scatter matrices as:

Sw =
1

2

N∑
a,b=1

Aw
ab(Fa − Fb)(Fa − Fb)

> (1)
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Sb =
1

2

N∑
a,b=1

Ab
ab(Fa − Fb)(Fa − Fb)

> (2)

where Fa denotes the ath column of the matrix F, and Aw
ab and Ab

ab are defined as

Aw
ab =

{
1
nc

if class(Fa) = class(Fb) = c

0 if class(Fa) 6= class(Fb)
(3)

Ab
ab =

{
1
N −

1
nc

if class(Fa) = class(Fb) = c
1
N if class(Fa) 6= class(Fb)

(4)

Here, nc denotes the number of feature vectors available for the person indexed
by c. We then take the trace of the resulting within-class and between-class data scat-
ter matrix in the d−dimensional projected feature space as the scalar measure of the
data variance and learn a transformation T ∈ Rd1×d from the following optimization
problem:

T = argmax
T

trace{(T>SwT)−1T>SbT} (5)

3.2. Block Sparsity for Re-Identification

In this section, we first describe our formulation of re-id as a block sparse recovery
problem. We then describe an efficient algorithm in the alternating directions frame-
work to recover the block sparse vector given the data dictionary and an observation
vector.

3.2.1. Preliminaries and Notation
Let T be the feature space transformation matrix learned as described above us-

ing the available training data. Let K be the number of unique people in the gallery
view of the test dataset. Given the feature vectors in the LDFV space for each of the
available images in the gallery and the probe views for each person in the test set, we
first cluster them into n clusters and determine the cluster centers. We then project
these cluster centers into the learned feature space using the transformation matrix T.
Let gij = T>ygij and pij = T>ypij denote these projected gallery and probe cluster
centers respectively, where i represents the ith test person, with i = 1, 2, . . . ,K and j
represents the jth projected cluster center, with j = 1, 2, . . . , n.

We let Gi ∈ Rd×n denote the dictionary specific to the person with index i, and
define it as:

Gi =
[
gi1 gi2 · · · gin

]
(6)

Essentially, the columns of Gi are the n cluster centers in the gallery view of the
person indexed by i. Now, we construct the gallery feature dictionary D ∈ Rd×N ,
where N = K × n is total number of available gallery feature vectors across all the
people, as:

D =
[
G1 G2 · · · GK

]
(7)
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By construction, the dictionary has a block structure since it is a concatenation ofK
disparate blocks of vectors. This is further illustrated in Figure 3. This characterization
is unique to the multi-shot setting of the re-id problem, which we exploit as explained
next to develop a block sparsity approach to person re-id.

Figure 3: The dictionary D, comprised of K disparate blocks of feature vectors, has a block structure.

3.2.2. Problem Formulation
Consider the jth feature vector in the probe view pij of person i. If the feature

space is sufficiently discriminative, pij should approximately lie in the feature sub-
space spanned by the corresponding gallery feature vectors of the same person i, i.e.,

pij ≈ xi1gi1 + xi2gi2 + · · ·+ xingin (8)

where each xik ∈ R, with k = 1, 2, . . . , n. This equation can be conveniently re-
written as

pij ≈ Gixi (9)

where Gi is the feature dictionary corresponding to person i as defined above and
xi ∈ Rn.

Now, define x =
[
x>1 x>2 · · · x>K

]>
and consider the following linear inverse

problem:

pij = Dx (10)

where D is the gallery feature dictionary as defined above. This equation can be re-
written as:

pij = G1x1 +G2x2 + · · ·+GKxK (11)

Since our hypothesis is that pij approximately lies in the span of the columns of
the dictionary Gi of person i, we note that in the most desirable solution vector x,
the contribution from the vector block xi dominates the contributions from the vector
blocks xk, k = 1, 2, . . . ,K, k 6= i. Thus, we are looking for such a solution x to
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the linear inverse problem of Equation 10 that has a property of being block sparse.
Furthermore, we also note that this hypothesis is stronger than the model

pij = Dx (12)

with the hypothesis that x is sparse. Put another way, instead of looking for a solution
vector that has as few non-zero entries as possible, our approach seeks a solution vector
that has these non-zero entries concentrated in one of the person-specific blocks of the
feature dictionary.

Following [59], we mathematically pose our problem as the following l1/l2 mini-
mization task:

min
x

∑K
l=1 ‖xl‖2

s.t. pij = Dx
(13)

Intuitively, this problem formulation attempts to minimize the l2 norm, or the en-
ergy, of the blocks in the coefficient vector x =

[
x1 x2 · · · xK

]
. Once we have

the solution vector xs, the identity of the person represented by the test feature vector
pij is found by determining the vector block m giving the least residual value for the
solution vector. Specifically, we determine the residual vector rl = ‖plj − Glx

s
l ‖,

l = 1, 2, . . . ,K. Subsequently, m is determined as the index of the minimum value in
the vector r. Figure 4 provides a visual summary of our entire multi-shot re-id pipeline.

3.2.3. Dealing with clutter and noise
In a typical surveillance application, it is likely that the images of people captured

by the cameras will be cluttered with spurious background or noise. Our problem
formulation, as described in the previous section, enables us to explicitly deal with such
issues. Specifically, we introduce an error term e ∈ Rd into the problem formulation
of Equation 10. The modified hypothesis is written as:

pij = Dx+ e (14)

The l1/l2 optimization problem of Equation 13 is appropriately modified to:

min
x,e

K∑
l=1

‖xl‖2 + ‖e‖1

s.t. pij = Dx+ e

(15)

Similarly, the procedure to determine the identity of the test feature vector pij given
solution vector xs and the error vector es is modified to include the effect of the error
vector. Specifically, the residual computation becomes rl = ‖plj −Glx

s
l − e‖, l =

1, 2, . . . ,K and the identity is determined as before.

3.2.4. Block Sparse Recovery using Alternating Directions
In this section, we describe an iterative scheme to obtain the solution vector xs

given the test feature vector pij and the feature dictionary D. Our approach fits into
the general framework of alternating directions minimization [60].
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We begin describing the approach by re-formulating Equation 15 using an auxiliary
variable s ∈ RN as:

min
s,x,e

K∑
l=1

‖sl‖2 + ‖e‖1

s.t. s = x

pij = Dx+ e

(16)

We convert this constrained minimization problem into an unconstrained one by in-
troducing two Lagrange multipliers α ∈ RN and β ∈ Rd. The resulting minimization
problem is:

Figure 4: A visual summary of our approach to re-identify a test probe image. In the training stage, given
the gallery and probe images for each person, we cluster the feature vectors in the LDFV feature space,
giving n cluster centers in both the gallery and probe views for that person. We then learn a feature space
transformation using Fisher discriminant analysis and project the cluster centers into the learned feature
space. In the testing stage, we first cluster the gallery and probe images and project the resulting cluster
centers into the learned feature space. We then construct the feature dictionary D using the projected gallery
feature vectors. Given a probe feature vector, we formulate a block-sparse recovery problem to retrieve the
associated identity.
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min
s,x,e

K∑
l=1

‖sl‖2 + ‖e‖1 −α>(s− x)− β>(Dx+ e− pij) (17)

We add two quadratic penalty terms η1
2 ‖s − x‖2 and η2

2 ‖Dx+ e− pij‖2 to the
cost function, resulting in a smooth minimization objective. The overall unconstrained
minimization problem we now work with is:

min
s,x,e

K∑
l=1

‖sl‖2 + ‖e‖1 −α>(s− x)− β>(Dx+ e− pij)+

η1
2
‖s− x‖2 + η2

2
‖Dx+ e− pij‖2

(18)

We note that this minimization problem involves three variables s, x, and e. We
minimize the objective iteratively with respect to only one variable at a time, while
keeping the other two fixed. First, we fix s and e, and minimize the cost function with
respect to x. In this case, the cost function reduces to:

min
x
−α>(s− x)− β>(Dx+ e− pij)

+
η1
2
‖s− x‖2 + η2

2
‖Dx+ e− pij‖2

(19)

This x sub-problem involves optimizing a straightforward quadratic objective, and
has a closed-form solution, given by:

x∗ = (η1I + η2D
>D)−1(η2D

>(pij − e) + η1s+ β>D−α) (20)

Next, we fix s and x, resulting in the following minimization problem with respect
to e:

min
e
‖e‖1 − β>(Dx∗ + e− pij) +

η2
2
‖Dx∗ + e− pij‖2 (21)

where x∗ is the x sub-problem optimal solution. This minimization problem also re-
sults in a closed-form solution, given by:

e∗ = shrink
(
β

η2
−Dx∗ − pij ,

1

η2

)
(22)

where shrink(t, α) = sgn(t) � max{|t| − α, 0}, and � denotes element-by-element
multiplication.

Finally, by fixing x and e, we get the following minimization problem with respect
to s:

min
s

K∑
l=1

‖sl‖2 −α>(s− x∗) +
η1
2
‖s− x∗‖2 (23)

This minimization problem also admits a closed-form solution, with the elements in
each block l = 1, 2, . . . ,K given by the following block shrink [61] scheme:

s∗l = max
(∥∥∥∥x∗l + αl

η1

∥∥∥∥− 1

η1
, 0

)
x∗l +

αl
η1

‖x∗l +
αl
η1
‖2

(24)
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We then update the Lagrange multipliers as α = α − η1(s
∗ − x∗) and β = β −

η1(Dx∗ + e∗ − pij). We summarize the entire iterative block sparse recovery scheme
in Algorithm 1.

Algorithm 1: An alternating directions algorithm to solve the minimization prob-
lem of Equation 15

Input : pij , D ∈ Rd×N
Output: xs, es
Initialize s = 0, e = 0, α = 0, β = 0;
η1 = 2d

‖pij‖1 , η2 = η1;
for t← 1, 2, . . . do

xt = (η1I + η2D
>D)−1(η2D

>(pij − et−1) + η1s
t−1 + β>D−α);

et = shrink( β
η2
−Dxt − pij ,

1
η2
);

stl = max
(
‖xtl +

αl
η1
‖ − 1

η1
, 0

)
xtl+

αl
η1

‖xtl+
αl
η1
‖2 , l = 1, 2, . . . ,K;

α = α− η1(st − xt);
β = β − η1(Dxt + et − pij)

end
xs = xt;
es = et;

3.2.5. Re-identification
Given the n cluster centers pij , j = 1, 2, . . . , n for the person with index i, we

solve the minimization problem of Equation 15 for each cluster center. We compute
the residual vector rjl = ‖plj − Glx

s
l − e‖, l = 1, 2, . . . ,K associated with each

cluster center and then determine the net residual vector R =
∑n
j=1 r

j . Subsequently,
the identity of the person represented by the n cluster centers is found as the index
of the least element in R. Our overall multi-shot re-id framework is summarized in
Algorithm 2.

4. Experiments and Results

4.1. Datasets

We experimentally validate the proposed multi-shot person re-identification algo-
rithm on three publicly available multi-shot image sequence based datasets: iLIDS-
VID [5], PRID 2011 [6] and SAIVT-SoftBio [7].

4.1.1. iLIDS-VID
The iLIDS-VID dataset was created from person images obtained from two cam-

eras with non-overlapping fields of view. The cameras were located in an airport arrival
hall. For each camera view, image sequences of variable length for 300 distinct indi-
viduals are available. The number of images in each sequence varies from 23 frames
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Algorithm 2: The proposed block sparse algorithm framework for multi-shot
person re-identification

Input : Feature vectors pij ∈ Rd, j = 1, 2, . . . , n, of the person Pi in the probe
view, person-specific gallery dictionaries Gi, i = 1, 2, . . . ,K

Output: Class c of person Pi
R = 0;
for j ← 1, 2, . . . , n do

Solve Equation 15 for pij and obtain xs and es;
rjl = ‖plj −Glx

s
l − es‖, l = 1, 2, . . . ,K;

R = R+ rj ;
end
c = index of the least element in R;

to 192 frames, with an average of 73 frames. The images in each sequence across both
views suffer from extreme lighting and viewpoint variations, occlusions and cluttered
background.

4.1.2. PRID 2011
The PRID 2011 dataset was created from person images obtained from two cam-

eras with non-overlapping adjacent fields of view. The cameras were located in an
outdoor environment. For the first camera view, image sequences of variable length
for 385 distinct individuals are available, whereas for the second camera view, image
sequences of variable length for 749 distinct individuals are available. The images
in each sequence across both views involve viewpoint, illumination, and background
variations. However, in this dataset, occlusion is less severe than in the iLIDS-VID
dataset.

In our experiments, to ensure consistency with the evaluation protocol presented
in [5], we only consider image sequences corresponding to the 178 distinct individu-
als that appear in both the camera views and that have more than 21 frames in each
sequence. The average number of frames available in image sequences for these indi-
viduals is 100.

4.1.3. SAIVT-SoftBio
The SAIVT-SoftBio dataset was created from a multi-camera surveillance network

installed in an indoor environment. It consists of image sequences of variable length
for 150 distinct individuals passing through the fields of view of the eight cameras in
the surveillance network. However, since the dataset was created in an uncontrolled
setting, not all of these people appear in each of the 8 camera views.

To ensure consistency with the evaluation protocol presented in [7], we only con-
sider two camera pairs: cameras 3 and 8 (hereby referred to as SAIVT-38), and cameras
5 and 8 (hereby referred to as SAIVT-58). SAIVT-38 consists of image sequences cor-
responding to 99 distinct individuals, whereas SAIVT-58 consists of image sequences
corresponding to 103 distinct individuals. The images in each sequence across both
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pairs of views suffer from illumination and background variations. Furthermore, the
images in SAIVT-58 suffer from extreme viewpoint variations.

4.2. Evaluation protocol and implementation details

For the iLIDS-VID and PRID 2011 datasets, we randomly split the available image
sequences into equal-sized training and testing sets. For the SAIVT-38 dataset, we
consider image sequences corresponding to 31 people for training and 68 people for
testing. For the SAIVT-58 dataset, we consider image sequences corresponding to 33
people for training and 70 people for testing. We generate 10 such train-test splits1 and
report the overall average performance across all 10 splits.

For each split, we cluster the available training images for each person and learn
the feature space projection matrix using Fisher discriminant analysis, as described in
Section 3.1.

4.2.1. Parameters
We set the number of clusters n to 20. The value of the feature space transforma-

tion parameter d was set to the same dimensions as the original feature space, 3264.
Sections 4.3 and 4.5 present experiments to justify these parameter choices. The update
parameters η1 and η2 in Equation 18 were both set to 0.1. The number of iterations in
Algorithm 1 was set to 5.

4.3. Evaluating image clustering

We begin the evaluation of the proposed algorithm by studying the impact of image
clustering. In this experiment, we perform re-id tests on each of the four datasets twice
— first with all available images in each sequence for each person in the gallery set,
and second using the clustered feature space for each person in the gallery set. In both
these tests, we learn the feature space projection matrix T and project the available
feature vectors prior to constructing the gallery dictionary. We repeat this experimen-
tal procedure for each of the 10 train-test splits and report the average performance
in the cumulative match characteristic (CMC) curves shown in Figure 5. As can be
seen from these plots, we have not lost any performance accuracy by clustering the
available images prior to re-id. In fact, counter-intuitively, we observe that the use of
clustered feature vectors results in a rank-1 performance improvement of 16.5%, 4.2%,
2.9%, and 8.4% on the iLIDS-VID, PRID 2011, SAIVT-38 and SAIVT-58 datasets
respectively.

The impact of image clustering is further evident when we consider the average
time needed to recover the identity of a particular test person. In this experiment, we
compute the time taken by our algorithm to return the identity of a test person, given
the corresponding n feature vectors. As before, we perform this twice, first using
all the available images for each person, and second in the clustered feature space.
We compute the average time over all the 10 train-test splits and report the results in

1Note that in the case of the iLIDS-VID and PRID 2011 datasets, we use the splits available at http://
www.eecs.qmul.ac.uk/˜xz303/project_video_ranking/index.html. Code, data splits,
and features to reproduce our results will be made available online.
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Figure 5: Evaluating the impact of image clustering. Working in the clustered feature space results in
improved re-identification performance when compared to using all the available feature vectors.

Table 1. Specifically, in both clustered and non-clustered feature spaces, we determine
the time required to recover the block sparse coefficient vector for each of the available
feature vectors for each probe person and compute the average of all these values. All
the running times are obtained in MATLAB on an Alienware PC running on an Intel
Core i7 CPU with 16.0 GB of RAM. Clearly, we see a significant reduction in the
average probe recovery time. The average size (over all the 10 train-test splits) of the
gallery dictionary when no clustering is employed is as follows for each of the datasets:
d × 9957 for iLIDS-VID, d × 10426 for PRID 2011, d × 2804 for SAIVT-38 and
d × 2906 for SAIVT-58. Here, d is the dimension of the projected feature space. The
corresponding dictionary sizes after clustering are d× 2777 for iLIDS-VID, d× 1667
for PRID 2011, d × 1083 for SAIVT-38 and d × 1114 for SAIVT-58. Clearly, the
numbers of feature vectors after clustering are significantly lower than those when all
the available images are used. Therefore, we should expect a significant run-time gain
in the clustered feature space, as reflected in the numbers in Table 1.
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Table 1: Average probe recovery time (in seconds) for the PRID 2011, iLIDS-VID, SAIVT-38 and SAIVT-
58 datasets. The clustered feature space offers substantial computational advantages over the non-clustered
feature space.

Dataset PRID 2011 iLIDS-VID SAIVT-38 SAIVT-58
Without clustering 24.57 19.96 0.89 0.79
With clustering 0.1 0.2 0.06 0.04

4.3.1. Discussion
We conclude this section with additional empirical observations.
Number of clusters: We repeated experiments in the clustered feature space using

four different values for the number of clusters parameter: 5, 10, 15, and 20. The
CMC curves of the performance obtained in each case is shown in Figure 6. We do
not observe any consistent trend in the performance as we vary the number of clusters.
While the performance on SAIVT-38 and SAIVT-58 is essentially the same as we vary
the number of clusters, we notice a non-negligible difference on the PRID-2011 dataset,
where 5 clusters seem to be giving the best performance. In the case of iLIDS-VID,
while there seems to be a non-negligible rank-1 performance difference between 5 and
20 clusters, the performance at later ranks is similar. Intuitively, we should expect to
use a higher value for the number of clusters parameter in the case of datasets with
a high degree of variability in the available images for each person. However, as can
be seen from the results, this does not seem to be the case, with no consistent trends
emerging. In such cases, we can resort to cross-validation techniques to pick the best
parameter value.

4.4. Evaluating block sparsity

We next study the impact of formulating re-id as a block sparse recovery prob-
lem as opposed to a more traditional sparse recovery problem. Let us first revisit the
problem of Equation 15. Here, our hypothesis is that the coefficient vector x is block
sparse. In this section, we validate this hypothesis by means of empirical experimental
comparison with the hypothesis that x is sparse. To this end, we conduct experiments
twice. First, we consider the problem formulation of Equation 15. Next, we change
this formulation as follows:

min
x,e
‖x‖1 + ‖e‖1

s.t. pij = Dx+ e
(25)

i.e., we now solve a traditional sparse recovery problem. To ensure consistency with
the way we solved the block sparse recovery problem in Section 3.2.4, we reformulate
the above problem in the Lagrangian framework as follows:

min
x,e
‖x‖1 + ‖e‖1 −m>(Dx+ e− pij) +

η

2
‖Dx+ e− pij‖2 (26)
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Figure 6: Impact of the number of clusters parameter on the average performance.

We minimize the above objective function using the primal augmented Lagrangian
algorithm [2]. The re-identification protocol for a test person with n available feature
vectors in this case will be similar to that described in Algorithm 2. The only difference
is that now we solve for a sparse xs instead of a block sparse xs. As before, we repeat
this experiment for all 10 train-test splits and report the overall average performance in
the CMC curves shown in Figure 7.

From these results, it is evident that the block sparse formulation of Equation 15
gives significantly better results than the sparse recovery formulation of Equation 25.
In particular, we note that block sparse recovery results in a rank-1 performance im-
provement of 7.7%, 4.7%, 3.7%, and 3.9% on iLIDS-VID, PRID 2011, SAIVT-38 and
SAIVT-58 datasets respectively when compared with the sparse recovery formulation.
These results validate our hypothesis of formulating the person re-id problem as a block
sparse recovery problem instead of a sparse recovery problem.

4.4.1. Discussion
We conclude this section with additional empirical observations.
Error term: Let us revisit the problem formulation of Equation 15. While it is
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Figure 7: Evaluating the impact of block sparsity. The block sparse problem formulation offers improved
performance when compared to the sparse recovery formulation.

quite intuitive to see why we might need the error term e, the goal of this section is
to empirically verify if it is indeed necessary to achieve good results. To this end, we
conducted experiments with both these problem formulations twice - first with the error
term, and second without the error term. A bar plot of the average rank-1 performance
in both the cases for each of the four datasets is shown in Figure 8. As can be seen
from the Figure, the error term does seem to improve, albeit marginally, the rank-1
performance of the block sparse recovery formulations. Specifically, the improvement
is about 1.1%, 1.4%, and 0.4% on iLIDS-VID, PRID 2011, and SAIVT-58 datasets
respectively. On the SAIVT-38 dataset, we notice a rank-1 performance drop of about
0.2%.

4.5. Evaluating feature space projection

We next study the impact of the choice of the feature space on the performance of
our block sparsity formulation. To this end, we perform experiments twice: first in the
original feature space, and next in the feature space learned using FDA. Note that in
each case, we work with the cluster centers as before. The average re-id performance
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Figure 8: Impact of the error term e on the average rank-1 performance of the block sparse recovery formu-
lation of Equation 15.

obtained in each case is shown in the CMC curves in Figure 9. It is evident from
these figures that formulating the problem in the feature space learned using FDA of-
fers substantially improved performance when compared to the original feature space.
Specifically, we note that the rank-1 performance improvement is about 27.5%, 66%,
47.9%, and 37.3% for the iLIDS-VID, PRID 2011, SAIVT-38 and SAIVT-58 datasets
respectively.

4.5.1. Discussion
We conclude this section with additional empirical observations.
Block sparsity vs. sparsity in the original feature space: To further evaluate the

impact of block sparsity, we compared its performance with that of sparse recovery
in the original feature space. Specifically, we performed experiments using the clus-
tered feature vectors in the original feature space and the results obtained are shown in
Figure 9. We see that block sparsity offers improved performance even in the original
feature space. Specifically, the rank-1 performance improvement is about 4%, 2.9%,
and 2.1% on iLIDS-VID, SAIVT-38 and SAIVT-58 datasets respectively. On PRID-
2011, however, we notice a rank-1 performance drop of about 0.23%.

Dimension of the projected feature space: In this experiment, we study the im-
pact of the feature space transformation parameter. To this end, we uniformly sampled
3 values for d, in addition to d = 3264. Specifically, we projected the feature space to
d/20, d/10, and d/5 dimensions and performed experiments using the clustered feature
vectors. The results obtained are shown in Figure 10, which plots the average rank-1
performance versus d for all the four test datasets. We observe that the rank-1 perfor-
mance improves as the number of dimensions increases, and this supports our general
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Figure 9: Evaluating the impact of feature space projection. Formulating our approach in a feature space
learned using Fisher discriminant analysis results in substantial performance improvement over the original
feature space.

intuition that we retain more information in a higher-dimensional feature space.

4.6. Comparison with the state of the art

In this section, we compare the results of our approach with several recently pro-
posed approaches that report state-of-the-art re-id performance. Specifically, we con-
sider the following algorithms: SDALF [25], Fusion Model [7], Salience [10], DVR
[5], DVDL [62], ISR [51], AFDA [36], and STFV3D [63]. Furthermore, as evaluated
in [5], we also consider a combination of color histograms and local binary patterns
(LBP) [64] in conjunction with both RankSVM and DVR as the metric. We abbreviate
our algorithm as SRID. In addition to these methods, we also implemented two base-
line methods that serve as useful reference points with which to compare our results.
These are described next.
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Figure 10: Evaluating the impact of the feature space projection dimension on the average rank-1 perfor-
mance of the block sparse recovery formulation of Equation 15. d = 3264 in the legend.

4.6.1. Clustering+FDA+L2

In this approach, we use the same clustered and projected feature space as in SRID,
but instead of using block sparse recovery, we use the Euclidean, or L2 distance to rank
candidates. Prior to ranking using the L2 distance, we average all the feature vectors
available for each person in both the gallery and probe sets.

4.6.2. Clustering+FDA+RankSVM
In this approach, we use the same clustered and projected feature space as in SRID,

but instead of using block sparse recovery, we use the RankSVM [9] formulation to
rank candidates. If fg and fp correspond to the average feature vector of a gallery
candidate g and a probe candidate p, the basic idea of the RankSVM formulation is to
learn a weight vector w using which a similarity score

sp = w>|fg − fp| (27)

can be computed. The gallery candidates can then be ranked according to the similarity
scores. To learn the weight vector w, we minimize its norm subject to the following
ranking relationship:

w>(|fgi − fpi | − |f
g
i − fpj |) > 0

i, j = 1, 2, . . . ,K, i 6= j
(28)

where K is the number of people in the training set. The RankSVM method learns w
by solving the following minimization problem:
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min
x,ξ

(
1

2
‖w‖2 + C

K∑
i=1

ξi

)
s.t. w>(|fgi − fpi | − |f

g
i − fpj |) ≥ 1− ξi

ξi ≥ 0

(29)

where C is a margin trade-off parameter and ξi is a slack variable.

4.6.3. Results
The average performance across all the train-test splits is plotted in the CMC curves

in Figure 11 and summarized in Tables 2 and 3. A point to note from these results
is that the baseline methods we implemented are already very strong, offering supe-
rior performance when compared to several state-of-the-art techniques. Furthermore,
we note that our algorithm results in state-of-the-art performance on all four datasets.
Specifically, the rank-1 performance improvement over the best performing approach
is about 6.1%, 6.2%, 12.2%, and 12.1% for the iLIDS-VID, PRID 2011, SAIVT-38
and SAIVT-58 datasets respectively.

Table 2: Comparison with the state of the art: Results on the PRID 2011 and iLIDS-VID datasets.

Dataset PRID 2011 iLIDS-VID
Rank 1 5 10 1 5 10
SDALF [25] 5.2 20.7 32 6.3 18.8 27.1
Salience [10] 25.8 43.6 52.6 10.2 24.8 35.5
DVR [5] 28.9 55.3 65.5 23.3 42.4 55.3
Color & LBP [64] + RankSVM [9] 34.3 56 65.5 23.2 44.2 54.1
Color & LBP [64] + DVR [5] 37.6 63.9 75.3 34.5 56.7 67.5
Color + DVR [5] 41.8 63.8 76.7 32.7 56.5 67.0
AFDA [36] 51.8 79.7 89.2 28.3 53.1 66.5
Clustering+FDA+RankSVM [9] 56.0 82.0 89.3 37.7 62.4 72.5
ISR [51] 59.3 72.8 76.7 14.1 22.3 28.7
STFV3D+KISSME [63] 64.1 87.3 89.9 44.3 71.7 83.7
Clustering+FDA+L2 65.6 89.2 94.7 16.1 28.7 36.1
DVDL [62] 66.2 88 95.4 42.4 66.8 76.9
SRID 72.4 87.6 92.8 50.4 73.0 80.2

4.7. Improving metric learning methods

In our work, we used Fisher discriminant analysis to perform feature space projec-
tion. We could, in principle, use any metric learning algorithm prior to ranking gallery
candidates. Typically, a metric learning algorithm ranks candidates by computing the
distance D(x,y) = (x− y)>T>T(x− y), where T is the learned projection matrix.
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Figure 11: A comparison of the performance of the proposed algorithm with the current state of the art. We
improve the rank-1 state of the art by about 6.1%, 6.2%, 12.2%, and 12.1% for the iLIDS-VID, PRID 2011,
SAIVT-38 and SAIVT-58 datasets respectively.

Table 3: Comparison with the state of the art: Results on the SAIVT-38 and SAIVT-58 datasets.

Dataset SAIVT-38 SAIVT-58
Rank 1 5 10 1 5 10
Fusion Model [7] 36.37 60.35 76.04 20.04 33.02 50.39
DVDL [62] 65.6 88.8 94.9 36.3 66 77.9
Clustering+FDA+L2 51.6 82.1 89.4 18.9 44.9 61.0
AFDA [36] 65.6 88.8 94.9 36.3 66 77.9
Clustering+FDA+RankSVM [9] 60.4 89.0 95.9 36.0 69.0 78.4
ISR [51] 68.4 89.9 95.6 26.7 54.4 65.1
SRID 80.6 97.1 99.0 48.4 78.4 88.4

This is equivalent to computing the L2 distance between the feature vectors x and y in
the projected feature space. In addition to the Euclidean distance, we can also use the
RankSVM formulation, described in Section 4.6.2 to rank gallery candidates. In this
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section, we show that we can improve upon the results obtained using these methods
with our block sparse recovery formulation. To this end, we consider several popu-
larly used metric learning techniques from the re-id literature: marginal Fisher analysis
(MFA) [65], local Fisher discriminant analysis (LFDA) [22], and keep-it-simple-and-
straightforward (KISSME) [66].

The experimental setup is as follows: for each metric learning method, we learn
the feature space projection matrix and rank candidates in the projected feature space
using the L2 distance and the RankSVM formulation. We then rank the candidates
in the projected feature space using our block sparse recovery formulation of Equa-
tion 15. We repeat this for all 10 train-test splits and report the average performance in
the CMC curves in Figure 12. In particular, the results for MFA, LFDA and KISSME
are shown in Figures 12(a)-(d), 12(e)-(f), and 12(i)-(l) respectively. Clearly, we can see
that the block sparse recovery formulation gives consistently better results when com-
pared to both the L2 distance and RankSVM formulations. It is worth noting that, as
seen from the results in Section 4.6, these baselines already give strong performance.
Therefore, the performance improvement achieved by our proposed formulation in sig-
nificant. Specifically, our approach improves the rank-1 performance of MFA by about
4.9%, 11.5%, 12.8%, and 5.4% on iLIDS-VID, PRID 2011, SAIVT-38 and SAIVT-58
datasets respectively. The corresponding improvements in the case of KISSME are
1.7%, 39.32%, 7.35%, and 6.7%. In the case of LFDA, the corresponding improve-
ments are 7.4%, 12.1%, 19.4%, and 10.6% on the iLIDS-VID, PRID 2011, SAIVT-38
and SAIVT-58 datasets respectively.

5. Conclusions and future work

We presented an algorithm based on block sparse recovery for the multi-shot per-
son re-identification problem. The formulation was motivated by the observation that
the available feature vectors for each person form disparate feature sets, and that a dic-
tionary constructed using these features will exhibit a block structure. Consequently, a
test feature vector is expressed as a linear combination of the columns of this dictionary,
with the resulting coefficient vector characterized as being block sparse. This insight
enabled us to develop a principled approach to exploit the availability of multi-shot
data, and subsequently, the identity of a test feature vector was determined using an
optimization approach in the alternating directions framework. We extensively eval-
uated the proposed algorithm on three publicly available multi-shot re-identification
datasets, and demonstrated new state-of-the-art results.

We conclude with a brief discussion on factors that are crucial to achieve good
performance with our approach while working in the general framework of re-id based
on image sequences. Here, we also provide avenues for promising directions for future
research.

5.1. Features and discriminability

As our results in Section 4.5 demonstrated, formulating the block sparse recovery
problem in a feature space learned using FDA offered substantial performance im-
provements over the original feature space. While this suggests that feature space
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Figure 12: Improving the ranking performance of metric learning methods using SRID. (a)-(d): MFA. (e)-
(f): LFDA. (i)-(l): KISSME. In each case, ranking candidates using the proposed algorithm after learning
the metric offers improved re-id performance.

discriminability is key to achieving good performance with our approach, it also in-
dicates that using learned features rather than hand-crafted features offers superior per-
formance. A natural extension in this direction, in line with recent advances, is to em-
ploy data-hungry feature learning frameworks such as convolutional neural networks
[67] prior to using our approach.

5.2. Ranking methodology

As our experiments in Section 4.7 demonstrated, ranking candidates using our
block sparse recovery formulation offers superior performance when compared to the
traditionally used Euclidean distance and RankSVM based approaches. These results
are also intuitively satisfying since the block sparse recovery approach is a principled
methodology to exploit the availability of multiple images per person.

In this work, we constructed the dictionary D manually using the available training
data. A natural extension could be to learn the dictionary instead. In our recent work
[62], we proposed a technique to learn discriminative dictionaries capable of sparsely
encoding feature vectors corresponding to different people. However, this method does
not fully exploit the availability of multiple images per person as part of its training
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and testing procedure. One possible way to use multi-shot data is to model it as an
affine hull or convex hull. In fact, there has been increased recent interest in learning
distance metrics for set-based recognition [68]. Learning discriminative dictionaries in
conjunction with such set-based data modeling schemes could be a worthwhile research
direction to pursue.

5.3. Representative data selection

As our experiments in Section 4.3 demonstrated, clustering the available image data
prior to learning the feature space projection matrix can offer significant computational
advantages in addition to possibly resulting in a more discriminative feature space.

Since the basic idea behind the use of image clustering is to find representative seg-
ments from the available track of images for the person of interest, we could use more
advanced segment selection schemes. A closely related area is video summarization
[69, 70]. Such sample selection schemes can determine the most representative parts
in each image sequence, potentially leading to a more discriminative feature space in
which to formulate the ranking methods discussed above.

5.4. Dealing with similar appearances

We conclude with a discussion on a specific scenario where our problem formula-
tion of Equation 15 might fail. Consider the following case: all the observed people
in the gallery camera wear similar clothes, for instance, blue jeans and a black shirt.
In such a scenario, the computed appearance features will all look very similar in the
feature space, giving feature dictionaries Gi that have similar entries for all the peo-
ple. Solving the linear inverse problem of Equation 15 in this case would lead to a
coefficient vector that will have similar, if not the same, entries in each block, thereby
leading to an ambiguity in retrieving the identity of the probe feature vector. While
such a scenario is unlikely in real-world re-id problems such as an airport [15], it is
possible in environments that have a certain dress code. In such cases, clearly, we can-
not solely rely on appearance features to retrieve the identity of the person of interest.
A possible solution would be to integrate additional features into the problem formu-
lation. For instance, we can use a face detector to detect person faces and compute
face-specific features. We could also use person-specific gait information to construct
dynamics-based features [71]. Such additional information can be integrated into our
feature dictionary construction mechanism to deal with scenarios where pure appear-
ance features might fail.
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