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Abstract

This paper describes an automated method to profile the velocity patterns of
small organelles (BDNF granules) being transported along a selected section
of axon of a cultured neuron imaged by time-lapse fluorescence microscopy.
Instead of directly detecting the granules as in conventional tracking, the pro-
posed method starts by generating a two-dimensional spatiotemporal map
(kymograph) of the granule traffic along an axon segment. Temporal sharp-
ening during the kymograph creation helps to highlight granule movements
while suppressing clutter due to stationary granules. A voting algorithm de-
fined over orientation distribution functions is used to refine the locations
and velocities of the granules. The refined kymograph is analyzed using an
algorithm inspired from the minimum set cover framework to generate mul-
tiple motion trajectories of granule transport paths. The proposed method is
computationally efficient, robust to significant levels of noise and clutter, and
can be used to capture and quantify trends in transport patterns quickly and
accurately. When evaluated on a collection of image sequences, the proposed
method was found to detect granule movement events with 94% recall rate
and 82% precision compared to a time-consuming manual analysis. Further,
we present a study to evaluate the efficacy of velocity profiling by analyzing
the impact of oxidative stress on granule transport in which the fully auto-
mated analysis correctly reproduced the biological conclusion generated by
manual analysis.
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1. Introduction

Quantitative analysis of transport of organelles in neurons is important to
several biomedical investigations. For instance, the transport of membranous
organelles along axons is of vital interest in studies of neurodegenerative
diseases, especially Huntington’s and Alzheimer’s [1-4]. For example, Ferrer
et al. in [3] found that a key role of huntingtin (HTT) protein is to regulate
transport of secretory granules containing Brain-derived Neurotrophic Factor
(BDNF), and that loss of this function may contribute to pathogenesis in
Huntington’s disease. These processes can now be imaged by time-lapse
microscopy of live cultured neurons using a combination of fluorescent protein
labeling and sensitive instrumentation [5]. However, tracking of granules in
the resulting video sequences is a laborious, time-consuming, and subjective
task that is currently performed manually. In this paper, we propose robust,
automated computational tools to extract measurements of granule transport
accurately, objectively, and rapidly. Such automated analysis of these time-
lapse movies can enable high-throughput applications such as screening of
interventional drug candidates.

Automated tracking of fluorescently tagged BDNF granules from time-
lapse video image sequences is challenging for several reasons. First, the
granules are tiny (0.2 — 0.5um), occupying only a few pixels in images when
the magnification is chosen to capture at least 150um of the axon length in
a single video frame. They move very rapidly compared to currently practi-
cal video sampling rates (about 2 Hertz). These rates represent a trade-off
between several factors including the need for granules to be distinguish-
able from the background noise and for capturing their dynamic activity.
Even then, the granules appear as barely-discernible changes in image in-
tensity, lacking temporal persistence, and are especially difficult to discern
when crossing other granules. Sometimes, the axon segments dip in and
out of the depth of field of the microscope causing the granules to “disap-
pear” temporarily. The granules exhibit a high variability in morphology and
appearance due to motion blur induced in the images as well as the point
spread function of the microscope. In addition, some granules can move



much faster than others (e.g., in some cases a distance several times their
diameter is covered within two successive frames). Sometimes, they pause for
brief periods before resuming movement. The granules travel in both direc-
tions (anterograde/retrograde) along the axon, and their paths often cross.
Figure 1(a-c) shows cropped (100-by-100 pixel) sections from frames of a
video where moving granules are indicated by arrows. Figure 1(a) shows two
granules traveling in opposite directions and crossing each other, Figure 1(b)
shows a change in apparent granule morphology while traveling due to imag-
ing artifacts, and Figure 1(c) shows two granules passing bright stationary
granules during their traversal.

The granule movements show certain regularities in their movements that
provide a valuable clue for locating and tracking them. Their movements are
not altogether erratic — they exhibit some consistency in velocity. This is due
to the fact that these movements are caused by attached molecular motors,
whose speed is determined by the geometry of the vesicle, and molecular
properties of the motor proteins, which are relatively stable over time.

A kymograph is a distillation of a video sequence into a spatio-temporal
map that summarizes granule motion along a one-dimensional path defined
by the central axis of an axon segment. For example, the kymograph in
Figure 1(e) is created from an axonal segment shown in Figure 1(d). The
kymograph has time along the x-axis and the length along the axonal path
along the y-axis. The intensity of each spatio-temporal pixel in the kymo-
graph represents the likelihood of an organelle being present at that location
and time. Thus, the kymograph mapping provides a reduced-dimensional
spatio-temporal representation that isolates only the relevant portion of the
video. For the purpose of visualization, we render a kymograph using inverted
intensities, i.e., bright background and dark foreground. For the purpose of
illustration, Figure 1(e) shows the representative granules in Figure 1(a-c)
overlaid on the kymograph, showing that they follow near-linear trajectories.

The kymograph representation offers multiple advantages. First, this for-
mulation avoids the need to detect individual granules in individual video
frames. Instead, it provides a quantitave approach for estimating the pres-
ence and movement of granules based on multiple video frames. This is
particularly useful in the case of BDNF granules where the motion can only
be ascertained after observing a granule over a sufficient number of frames. A
second advantage of the kymograph is its ability to express a path constraint
for the particle trajectories, enabling far more reliable automated analysis
than would be possible without such a constraint. A helpful side effect is



to eliminate irrelevant pixels without loss of relevant information. It focuses
the analysis on the interesting longitudinal component of motion of granules
rather than the transverse motion that is both negligible and uninteresting.
The central axis also provides a reference path along which the relative veloc-
ities of the granules can be compared and analyzed. As discussed in Section
2, kymographs are a common tool in transport analysis, but few automated
algorithms exist for their analysis.

This paper presents an automated system to: (i) generate kymographs
from a selected section of axon of a cultured neuron in multi-channel im-
age data, (ii) enhance the kymographs for subsequent image analysis, and
(iii) process the kymographs to quantify the aggregate velocity patterns of
fluorescently tagged secretory granules in axons. Section 3 details the basic
construction of kymographs from time-lapse image sequences and the initial
processing steps. Section 4 describes a new method to enhance the kymo-
graph, improving the visual continuity of trajectories using a method based
on orientation voting. Section 5 describes an algorithm for processing the
enhanced kymograph to automatically extract the set of granule trajectories.
In Section 6, we validate these trajectories against a manual observer, and
show how automatically extracted measurements of trajectory length, tra-
jectory counts, velocity distribution, and anterograde-to-retrograde bias can
be used to profile granule motion patterns. We present a study of the impact
of oxidative stress on granule transport, in which the fully automated anal-
ysis correctly reproduces biological conclusions generated by tedious manual
analysis. Section 7 concludes the paper with discussion of potential appli-
cations of our method. The steps of the algorithm are pictorially shown in
Figure 2.

2. Related Work

Traditional video tracking and motion analysis algorithms (e.g., the mean
shift algorithm [6]) are unsuitable for the BDNF granule tracking problem
because of some of the peculiarities described in Section 1. Formulating the
problem as frame-to-frame tracking of blobs would require accurate detection
of the granules at each frame, which can be unreliable for BDNF granules
due to several reasons: their small size, low signal-to-noise ratio, high speeds
at lower frame rates, and frequent crossing of particle trajectories. Jagaman
et al. [7], described single particle tracking methods for time-lapse sequences
that can handle erratic Brownian motion. However, these methods would



probably be ineffective for BDNF granules where the average displacement
of granules between frames is greater than average nearest-neighbor distance
between granules in the same frame. Statistical tracking methods [8] and
methods using particle filters [9] also would require detection of objects prior
to finding their trajectories. Another approach for tracking uses a spatio-
temporal image [10, 11] that detects a temporal trace of particles in a com-
posite (x,y,t) map. This approach is advantageous because contextual in-
formation from multiple frames is directly available to the analysis at a given
frame. For example, Padfield et al.[11] showed that using spatiotemporal im-
ages can improve segmentation and localization of multiple cells, for tracking
cell cycle phases and enabling movements to be estimated accurately. Ky-
mographs can be considered as a special case of this spatiotemporal method
for motion analysis and detection. The idea of using kymographs of video
sequences to form a spatiotemporal image representation has been proposed
in several prior works [12-14], although they are constructed differently than
in this paper. Welzel et al. [12] evaluated axonal transport by cross- and
auto-correlation of kymograph columns. Ludington et al.[13] generated ky-
mographs by hand and analyzed them using the Radon transform to detect
peak velocities of particles. Kymographs have also been used to track im-
age features over time; for example, the algorithm of Smal et al.[14] used a
variable-rate particle filter to enhance the accuracy of the extracted edges
corresponding to the tip of micro-tubules from a kymograph-like image rep-
resentation. Our framework for kymograph analysis is illustrated in Figure
2 and discussed in detail in the next three sections. We begin with the ba-
sic process of generating the kymograph for BDNF granules, followed by a
temporal sharpening filter to highlight fast-moving granules.

3. Constructing the Kymograph

The transport of BDNF granules is confined within an axon, which forms
a narrow tube that can be labeled with an appropriate fluorescent marker
(e.g., enhanced green fluorescent protein, eGFP) and detected in a separate
channel (Figure 3a). For biological analysis, the movement of the granules
in a direction parallel to the length of the axon is important, but the motion
component that is normal to the micro-tube is uninteresting and negligible.
This fact can be used to our advantage by collapsing the frames in the video
sequence along a one-dimensional curved axis, so that granule movements
along that axis can be studied and analyzed in a lower-dimensional space.



During the imaging process, the orientation of the axon of interest relative
to the nucleus is not always obvious from the limited view of axon segment
that captured by the camera. For this reason, we ask the investigator to
indicate a pair of points on the axon segment - one point is closer to the
neuronal soma and is termed the “proximal point” and the other point is
termed the “distal point”. The granule transport patterns along the specified
segment of the neuronal anatomy delimited by the proximal and distal points
are then examined.

The first step in the construction of a kymograph is to trace the central
axis of the intervening axon segment accurately and automatically. For esti-
mating the central axis, we follow a method similar to that described in [15]
and [16]. Denoting the eGFP image of axon segment as J(x), where x refers
to the spatial coordinates, a vesselness potential map [17] is first computed.
The vesselness potential map uses a kernel function to detect longitudinal
structures at each pixel of the image using the eigenvalues of the local Hes-
sian estimated at scale . The scale of the Hessian is selected so that the
response of the vesselness potential is maximized. The central axis is then
estimated by minimizing the integral of the vesselness potential over a set of
simple, non-intersecting curves connecting the proximal and distal points on
this potential map. That is, if £(z) is the vesselness potential, then the central

axis C' is chosen to minimize the function E(C) = [ &(s)ds. The Eikonal
seC
equation with boundary conditions (from the proximal and distal points) is

solved using the Fast Marching algorithm [18, 19] for the minimization. An
example central axis is shown in Figure 3(a) as a blue line.

Next, the basic kymograph is generated automatically using the central
axis obtained in the previous step and the video sequences of granule trans-
port denoted by I(z,t). As shown in Figure 4(a), the central axis C' is
parameterized into discrete steps denoted by s; along the axon length. The
kymograph, denoted K (¢, s;) , encodes the likelihood that a granule is present
at discrete position s; and the video frame with time index t. For each time
frame, we dilate the axon centerline by a user defined width 7 (typically 4-
8 pixels). We then compute compartmental regions X (s;) that form strips
along the central axis by selecting all the points in the dilated region that
are closer to s; than any other s;.; (see Figure 4). Following this step, we
select the pixel location x7 , from each set X (s;) that has the maximum pixel
intensity, i.e., ¥}, , = arg maxex(s,) I(7,1).

Finally, we apply a temporal filter on pixel intensities to construct the



final kymograph using the following formula:

K1) = 5 (I(a1) = 20 (0,0) + 1 000)) (1)

The temporal sharpening filter accentuates the moving granules, while
filtering out the stationary granules that are generally brighter than the mov-
ing ones. The effect of the temporal sharpening filter is illustrated in Figures
4(b) and (c). The stationary particles (horizontal lines) are diminished and
fast-moving particles (diagonal lines) are accentuated.

The motion of the granules as seen on the kymograph can be interpreted
as follows. If the granule is moving from the proximal point to the distal
point, it is said to be engaged in anterograde motion, and the corresponding
trajectory appears with a positive slope. If the granule is moving from the
distal point to the proximal point (i.e., retrograde motion), then the line
appears with a negative slope. Trajectories of faster moving granules have
larger absolute slopes. Our next goal is to enhance the kymograph to make
it easier to extract the motion trajectories.

4. Refining the Kymograph Using Orientation Voting

The granule trajectories that are revealed in the kymograph as intensity
ridges have a systematic velocity pattern due to the characteristics of the
molecular motors (kinesins and dyneins) that drive them. This regularity in
the velocity patterns of the granules motivated us to develop a voting scheme
based on the orientation of neighborhood points to refine the ridge-like struc-
tures in the kymograph. Detecting such structures, is challenging due to the
presence of gaps, noise and ridge intersections. The original video is typi-
cally captured at a slow frame rate to achieve sufficient exposure times. As a
result, the fast moving granules have little or no overlap between successive
frames. This creates gaps along the ridges (see Figures 3b, 4b), making it dif-
ficult for conventional ridge detection algorithms that rely on eigen-analysis
20, 21] or matched filters [22].

To overcome this difficulty we propose a novel voting based algorithm
that refines the kymograph, making it easier to automatically extract ridges.
Similar to voting based methods [23-25], the proposed algorithm uses an
inferencing method inspired by Gestalt principles of proximity and good
continuation. The first step is to compute what we term the orientation
distribution function (ODF) at each pixel of the kymograph, which is simply

7



a set of discrete line integrals over orientations as shown in Figure 5, weighted
by a bell-shaped kernel given by:

Qu,0) = [ K(utro(p))es dp, (2)

p=—l

where u = (t,s;) is a point in the kymograph, 6 is a discrete orientation,
ro(p) = [pcos(8),psin(f)] and [ is the width of the ODF. Any ridge passing
through wu creates a peak in §2 at the angle 8 coinciding with the orientation of
the ridge. Note that the line integration is not done with 6 perpendicular to
the time axis because it would imply a direction of infinite velocity, which is
not possible. A schematic of the kernel is shown in Figure 5(a). Importantly,
the ODF can represent multiple peaks that occur at intersections of multiple
ridges (i.e., overlapping granules) which would not be possible using an eigen-
analysis approach that assumes only one orientation per pixel.

The ODFs are used in a voting scheme to fill in the gaps and inconsis-
tencies in the appearance of the motion paths, while preserving ridgelines at
the trajectory intersections. The basic idea is that each point in the neigh-
borhood of a given point u casts a “vote” for what the refined intensity at u
should be. The votes are constructed so that points on the ridges are ampli-
fied, points between ridges are down-weighted, and gaps in ridges are filled
from strong ridges on either side.

Similar to concepts from tensor voting [26], the magnitude of the vote is
computed by comparing the ODF Q(u, §) with a uniform distribution over ¢
that represents an isotropic ODF. In particular, we define a quantity ¥(u, 6)
obtained by removing the isotropic part of the distribution from Q(u, #), that
is,

U(u, 0) = Qu, 0) — é (3)
where ¢ is the number of bins used to discretize the ODF. The value of
U(u, d) is positive for peaks in the ODF that indicate ridge directions and is
negative for valleys between peaks. During the voting process, this results in
a positive vote cast by a neighboring pixel if there is agreement in the ridge
orientations between the voter and the receiver, and a negative vote would
be cast if there is an orientation mismatch. We also define another quantity
U, (u,d) that is equal to ¥ (u,0) if U(u,d) > 0 and 0 otherwise. Intuitively,
U, (u, d) consists of only the positive anisotropy that indicates the presence
of a ridge, but does not penalize its absence.



The voting also depends on a neighborhood decay function, denoted
N..(0) that defines the spatial relationship between the voter v and the
receiver u, so that the neighborhood points that are further away from or
angularly misaligned with u have less influence on the vote. Here, we use the
form N, ,(0) = ||du||"Go(Ldyn—0), where d,,,, = u—v and G, is a Gaussian
with standard deviation o applied to the angular discrepancy between 6 and
the direction of vector d, ,. The neighborhood parameters m and o are set by
the user based on the desired angular resolution (i.e., velocity resolution for
the granules) and permissible sizes of gaps or inconsistencies in intensities.
For the results in this paper, we used m = —0.1 and o = 15 degrees. Figure
5(b) shows neighborhood decay functions for a few sample orientations.

Figure 5(c) presents a schematic of the voting procedure. Here, u denotes
a candidate spatiotemporal point in the kymograph, and v and w denote two
points in its neighborhood. Votes cast from point v for each discrete orien-
tation are accumulated at point v . The magnitude of the vote depends on
three quantities: the modified ODFs U, (u, 6), ¥(v, #) and the neighborhood
decay function N, ,(6). With this notation, the vote cast by v on u is denoted
V(u,v), and computed by:

Vi, v) = /9 U (u, )T (v, 0) N, o(8)d6, (@)

Note that we have used ¥, for v and ¥ for v, which means that the
receiver point u seeks votes only for directions for which positive anisotropy
is found (i.e., ridges are present), whereas the voters v cast both positive and
negative votes to the receiver u.

Considering the examples in Figure 5(c), ¥, (u, ) and ¥(v, §) have posi-
tive anisotropies in the retrograde direction and the corresponding neighbor-
hood decay function N, ,(6) also shows a peak near the angle § that matches
with the positive anisotropies of ¥, (u, #) and W(v,0) . Thus a positive vote
would be cast on u from v . On the other hand, while ¥(w, §) has a positive
anisotropy in the retrograde direction similar to u , the peak of the neigh-
borhood function N, () does not match the anisotropy direction, making
the weights almost negligible at those angles. Therefore, a near zero vote is
cast from w to u for an angle # in this case. However, if a neighboring point
has a negative anisotropy for any # and the neighborhood decay function is
nonzero for that angle, a negative vote is cast on u . The total votes from



all neighbors are accumulated over the entire neighborhood as follows:

Ew= Y V(uwv), (5)

vEND(u)

where K (u) denotes the kymograph K (u) after the voting process.

In this way, 6 ’s for all positive anisotropies of u accumulate positive as
well as negative votes from the neighboring points that have non-negligible
weights in the decay function according to (4). In the end, the receiver
point u appears to be a ridge if the sum of positive votes exceeds that of
the negative votes. In other words, if the neighborhood of u has a sufficient
number of matching peaks in its anisotropy direction, it receives a large
number of positive votes even if it was not originally a ridge point due to
a gap. On the other hand, if the receiver point u is a noisy pixel or small
“island” that does not belong to any trajectory in the kymograph, it receives
a large number of negative votes from its neighbors and gets suppressed.

As a final step of refinement, we use the Weingarten matrix [27] to thin
the ridgelines and sharpen the K (u) image. In our case, the ridgelines are
obtained using a voting process and their cross-section shows a unique peak
with monotonic descent on either sides. The Weingarten representation ex-
tracts the peak of the ridgeline using available curvature information instead
of the height of the ridge, and therefore helps recover the low-contrast ridge-
lines. In contrast to Hessian-based ridge operators that use the second order
derivative matrix, the Weingarten operator uses first and second derivatives,
and its response is less sensitive to the height (contrast) and cross-sectional
width (scale) of the ridge-lines. The Weingarten matrix W, is expressed as

W(u) = FQFl_la
o 1+ I/(\? ]’?tl?s
YT RK, 1+ K2
F2 _ -1 I:S\vtt I//S\'ts (6)
14 K2+ R2 B B

where F| and F, denote the first and second fundamental forms and the
subscripts denote derivatives with respect to the spatial (s) and temporal ()
axes, respectively. The largest magnitude eigenvalue of W (u) at each pixel
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gives us the refined kymograph K, ineq that we use for detecting trajectories
as explained in the next section. The pixel values of this refined kymograph
can be interpreted as saliencies, or likelihoods that a trajectory is present at
a given point.

Figure 6 illustrates the overall voting scheme for a small section of a
sample kymograph. A, B and C are 3 points on the kymograph and its re-
finement. They are chosen so that A lies on a valley between two trajectories,
B lies on a trajectory and C lies at the junction of two trajectories. Figure
6(a) shows these locations on the raw kymograph, whereas Figure 6(b) and
Figure 6(c) show these locations on K and Kyefined, respectively. The ODFs
before voting are shown in Figure 6 (d)-(f), where the isotropic ODFs are
shown using a circle. The values of 6’s where the radius is greater than the
isotropic value constitute positive anisotropy and those with lesser radius
represent negative anisotropy. The result of voting is shown in Figure 6(g)-
(1) which is equivalent to the vector of values for each 6 before the integration
step in (4).

The accumulation of votes generates a resultant vote that has a high value
only when there is a spatial and angular alignment of the underlying ridge-
line(s). This ensures sharp and narrow peaks at the center of the ridgelines
that robustly indicate the location and direction of the ridges. For example,
in Figure 6(d), the ODF at Point A has some local anisotropy that is due to
the nearby ridges. However, Point A does not lie on a ridge-line and therefore
the peak was suppressed after the voting process because the orientation of
Point A did not match with other ODFs in the direction of the peak. Point
B, on the other hand, collected enough votes from the neighbors that lie in
the direction of its ODF peak and it survived the voting process. Similarly,
Point C collected votes from two ridges passing through it and retained both
ridgelines. Since the direction of the ridges in the kymograph is an indicator
of the speed of granules in the video, we can also estimate granule veloc-
ity using this technique. The next section describes methods to extract the
ridgelines as curves, thus recovering the motion trajectories of the granules.

5. Multiple Trajectory Detection

Extracting motion trajectories of granules amounts to extracting curves
along the ridgelines of K,¢fineq. Our approach to multiple trajectory detec-
tion is organized into two steps; the first step incrementally grows multiple
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trajectories along ridgeline pixels and the second step joins fragmented trajec-
tories using multiple regression to recover more complete motion trajectories.

Felzenszwalb et al.[28] proposed a framework for detecting multiple curves
in an image based on principles of minimum set covering, a simple yet power-
ful approach. Their greedy approximation algorithm ensured that the total
cost of curve-coverage per unit area of the image remains minimal. Our pro-
posed algorithm recovers multiple granule trajectories that appear as spatio-
temporal curves on the refined kymograph based on similar principles. The
minimum set cover approach uses a best-first search based on a cost function
of our curve model (given below) to find multiple curves that cover granule
trajectories in K¢ fined-

We define a curve T; as a sequence of vertices denoted by {uf, uj, ...u}, },
where p; denotes the number of vertices in the curve. We call the tips of
each curve on either end the “head” and the “tail”, respectively, such that
the head always points towards the positive time axis and the tail points
towards the negative time axis. Our general approach is to evaluate a curve
cost at each current tip, and to extend the curve at the tip with the lowest
cost, until the lowest-cost tip is above a stopping threshold. To initiate the
process, we compute a set of seed points, defined as local peaks in K¢ fined
above a given value with respect to 5x5 pixel neighborhoods. FEach seed
point acts as the head and tail of an initial curve. At each step, a curve is
selected to grow at one of its tips, by selecting the tip with overall minimal
cost computed using:

)

cost(Th)m; (C— > logn(ul,uly,) — Y log@h(ululy ) — > logpr(

j€last [ j€last [ j€last [

(7)

where h € {head, tail} and p; = min{p;,(}. Note that all the sums are taken
over the last [ vertices, counting from the tip in the backward (for heads) or
forward (for tails) directions. If [ segments are not available for short curves,
all curve vertices are used in the sum. We used [ = 10 for the experiments
in this paper. In (7), C' is a constant that generally makes shorter curves
more costly than longer curves. The ¢; term models a smoothness constraint
that limits the bending of the curve between adjacent segments to 45 degrees
from a predicted direction. This direction d,,.q is computed by averaging the
last [ directions between consecutive segments starting from the tip under

12



consideration. The ¢ term models a feasibility constraint, which prohibits
the curve from becoming normal to the time axis (this would mean that
a granule is located at two positions at the same time). The pr term is
a likelihood function for the intensities of pixels on trajectories, computed
USiIlg Krefined‘

In our implementation, we approximate ¢, and ¢# in (7) using the forms
shown in Figure 7(a,c,d). The smoothness term ¢;, defined as a function
of the difference between the predicted (dpeq) and actual (d = ujq — u;)
directions, is assumed to be constant for values less than 45 degrees and 0
otherwise. Similarly, ¢5°*? and ¢i* are assumed to be constants for directions
moving strictly forward and backward in time, respectively, and 0 otherwise.
In other words, the costs due to these terms remain constant as long as
the smoothness and feasibility constraints are satisfied, and they become
prohibitively large upon their violation, like a binary switch. The last term
in eqn(7) associates the cost of the curve with the local value of K, fineq, and
dominates the overall cost. Since K¢ fineq is the largest magnitude eigenvalue
of the Weingarten matrix, it can be considered being proportional to the
likelihood that a pixel lies on the trajectory [27]. Therefore, we assume
Pr X Kyepinea, as illustrated in Figure 7(b). This formulation ensures that
the curves covering many dark pixels (Kcfineq low) have a high cost and
vice-versa.

The order of incremental growth of the multiple curves in the kymograph
is maintained using a priority queue, as summarized in Algorithm 1. At each
step, the priority queue selects the best curve tip (head or tail) based on (7)
to extend the curve by a single pixel in the 8-neighborhood of the chosen
tip. The process stops when the cost of the chosen tip exceeds a stopping
threshold. If two curves intersect, they are merged if the angle between the
“colliding” head and tail is less than 45 degrees. If the angle is greater,
or if the tip of one curve intersects another curve in the middle, then the
growing tip is allowed to jump over the other curve. This is accomplished by
extending the search radius for the next point to the set of pixels just beyond
the other curve, as described in Algorithm 1.

The final step of multiple trajectory detection is joining fragmented curves
to form a more complete granule trajectory. Due to occasional high density of
trajectories, there could be multiple candidates for joining to a given head (or
tail). In order to select the best possible candidates for joining, we propose a
multiple regression based scheme. As illustrated in Figure 8, for each curve-
head, we use a search window that is directed towards the positive time
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Input: 1) Refined Kymograph,

2) Background value b (default median K, fineq )

Output: List of Trajectories

Initialize Label image L <— O

Find the local peaks greater than b and assign as seed points

foreach seed point do
Assign head (forward in time) and tail (negative in time) directions
Push each head/tail to min-priority-queue using w as sorting key
Update L

end

while size(min-priority-queue) > 0 do
Pop tip T]h(u) having least average w ; // Tip h € {head, tail}
if cost(T)"(u)) > —log(b) then // Check termination

continue

radius = 1

v=argmax (C —log¢:(u,q) —log¢}(u,q) —logpr(u}))
quradiuS(u)

if L(v) == O then
L(v) «+— L(u)

Update head (or tail) direction and average w of curve,
Push tip T7'(v) to the min-priority-queue
else if v and u have matching trajectories* then
L(v) +— L(u) , Remove T}'(v) from min-priority-queue
Assign all pixels with L(v) to L(u),
Update head (and tail) directions and average w of new Tjh
else if radius < 3 then
radius = radius + 1 and repeat

end
*matching implies that one tip is head and other tail from different trajectories.

Algorithm 1: Multiple Trajectory Detection

axis, and covers later time points in that direction. Similarly, for each curve-
tail the search window is directed towards the negative time axis, and covers
earlier time points. All curves that lie inside the search window corresponding
to a given head (or tail), form a candidate connection for that head (or
trajectory-tail).

We denote by Cj; a feasible connection between curves T; and T such that
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out of the two connecting points lying in 7; and T}, at least one is a head
or tail, and the other could be an interior point on the curve. If multiple
connections are feasible between a pair of curves, then we retain only the

nearest one that minimizes the separation between trajectories.

Table 1: List of features assigned to each connection in the multiple regression analysis.

Feature Description

1,2 | Mean and Sum of abso- | Each connection is composed of a track-head (or
lute deviation of Kyefinea | tail) and a section of another track at two ends. A
on the interpolated track. | cubic polynomial is fit to interpolate between these

3-5 | Coefficients of cubic poly- | two end locations. Statistics computed from this
nomial interpolated track forms features.

6 Cosine of angle of ap- | The angle between the two track fragments forming
proach the connection, such that when they are aligned, the

angle is 0 and when they are perpendicular, the angle
is 90 degrees.

7-9 | Average Kicfinea(u) of | If a connection is formed such that a track head
track retained, and dis- | is connected to another track in the middle, the
carded, and the ratio of | other track gets split into two parts. One part that
these two quantities obeys the time-axis direction forms a part of the new

track, and another part is discarded. The average
Kiefinea(u) values from the two parts, i.e., part of
the track retained and the part that is discarded is
used as feature.

10 | Average K,cfinea(u) of | Average K cfined(u) value computed on the com-
track plete track.

11 | Ratio of Feature 10 and 7 | Ratio of average K. fineq(u) value track retained to

the complete track.

12 | Ratio of Feature 10 and 8 | Ratio of average K efined(u) value track discarded

to the complete track.

We compute a list of features (shown in Table 1) corresponding to each
feasible connection. Using multiple regression on the feature list, each con-
nection is mapped to a scalar quantity that measures the validity of the
connection. We used linear support vector regression to learn the weights
of regression analysis from a sample training set that was manually scored
by an expert. The scalar output of the regression analysis is then sorted in
order of the connection validity and bad connections are discarded. If there
is more than one connection possible for a tip, then the one with higher
validity is retained. The qualified connections result in a merger of the cor-
responding curves forming complete granule trajectories. Lastly, we apply
a minimum trajectory duration criteria of 1 second to filter out small frag-
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mented trajectories that were due to artifacts and noise to obtain the final
set of trajectories.

6. Experimental Results and Analysis

The video sequences for our experiments were collected using the proto-
col described in [5], [29]. Briefly, an expression construct for mCherry-tagged
BDNF was transfected into mouse cortical neurons, derived from E18 em-
bryos and cultured for 7 days. Co-expression of soluble EGFP was used
to delineate neuronal morphology and identify areas where the orientation
of the axon relative to the cell body was clear and the direction of trans-
port (anterograde/retrograde) was evident. Cells grown on a coverslip were
mounted in a closed and heated chamber and imaged by a Yokogawa CSU-10
spinning disk confocal microscope on a Nikon TE2000 inverted scope with
continuous axial-drift compensation. For illumination, an AOTF-controlled
laser line selection on a Coherent Innova 70C Krypton Argon lon laser was
used. Images were collected at ~2Hz on a high-resolution Hamamatsu Orca
ER CCD camera with resolution of 0.18 pixels per micron.

The algorithm was evaluated on a sample dataset containing 12 video
sequences. Each video sequence was collected from an axon located in the
“middle region” that was a few hundred microns from the cell body. The
granule transport in this region is dominated by long-range movements. The
granule motion was studied using the kymographs along with frame-by-frame
examination of the video.

The algorithm parameters described in the previous sections are set as
follows: The ¢ used in the tracing of the central axis is set proportional
to the average width of the axon. In this study, the axons were about 4-
8 pixels in width, and therefore, the value of o is set to 5 pixels. The
orientation distribution function was generated using a kernel of width [ = 12
in (2). The voting neighborhood size was set to IV, = 30 pixels in (4). The
stopping threshold b in Algorithm 1 was set as the median value of the
K,cfinea intensity. The joining step used a width of the search window that
was set at b pixels. We ran all of our analysis programs on a personal
computer running Windows XP OS with 4GB RAM in native MATLAB
R2007a with a few modules coded in C++. The kymograph generation code
ran in a few seconds, while the total time to process voting and trajectory
detection modules was on the order of 1 minute depending on the kymograph
size.
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6.1. General Validation

We validated the performance of the algorithm against the judgment of
an expert biologist for each of 12 kymographs, which we refer as ground
truth. Figure 9 shows a typical result produced by the algorithm with tra-
jectories overlaid on the kymograph in different colors. The biologist could
review the original video to help determine the ground truth trajectories.
The automated algorithm’s results were compared to the ground truth and
classified based on the amount by which the trajectories generated by the
automated algorithm overlapped with the ground truth trajectories. A point
on a ground truth trajectory is considered “covered” by an automatically
detected trajectory if the automatically detected trajectory lies within one
frame along the time axis and 1um along the spatial axis of the ground truth
trajectory on the kymograph.

The amount by which an automatically detected trajectory covered a
ground truth trajectory is thus measured by a coverage fraction. At a given
coverage fraction, each algorithm trajectory is classified as a hit or true posi-
tive (TP), i.e., a ground truth trajectory was covered by the specified fraction,
or a false positive (FP), i.e., it did not cover any ground truth trajectory by
the specified fraction. If a ground truth trajectory was covered by no algo-
rithm trajectory, it was classified as miss or false negative (FN). Biologists
can set a coverage fraction to characterize the performance of the algorithm;
here, we varied this fraction from 30% to 90%.

For a fixed coverage fraction, the performance of the automated algorithm
is determined by measuring the recall rate and precision. Recall rate is de-
fined as the percentage of ground truth trajectories detected, i.e., TP/(TP
+ FN). Precision is defined as the percentage of algorithm trajectories cor-
responding to some ground truth trajectory, i.e., TP/(TP + FP).

Figure 10 shows the precision vs. recall of the automated detection pro-
cess averaged over the 12 test sequences as the coverage fraction defining TP,
FN, and FP was varied from 30% to 90%. Note that this is not a standard
precision-recall curve in the sense of measuring performance as a function of
an independent operating parameter. Instead, it measures precision and re-
call in terms of the coverage threshold; both measurements naturally decrease
as the criterion for being a hit becomes more stringent.

The recall rate is satisfactorily high- above 89% in our experiments, falling
gradually as the coverage fraction exceeds 70%. This means that almost
all of the ground truth trajectories are covered by at least 70% of their
apparent length in the kymograph, and that there are few misses at this
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level (around 6% of ground truth). The precision of the algorithm drops
as the coverage fraction is raised, and the value is between 70% and 80%
for high coverage fractions, indicating false positives rates of 20% to 30%.
However, the situation is better than it appears.

Table 2: Performance of the algorithm averaged over the twelve video sequences for a
coverage fraction of 70%. Recall and precision are reported with respect to trajectory
duration and physical length.

Overall Recall 94.79%
Overall Precision 82.82%
Recall w.r.t. duration 97.61%
Precision w.r.t. duration 89.04%
Recall w.r.t. length 96.93%
Precision w.r.t. length 91.65%

In Table 2, we fix the coverage fraction to 70%, which corresponds to
good overall levels of precision and recall, and analyze the results in more
detail. When the duration (i.e., x axis extent in the kymograph) and physical
length (i.e., y axis extent in the kymograph) of the trajectories in each cate-
gory are taken into account, we see that most of the false positives are due to
trajectories of short duration and physical length. Table 2 shows that while
the average recall and precision at a coverage fraction of 70% are 95% and
83% respectively, these statistics improve to 98% and 89% when measured
with respect to duration only. Similarly, the statistics improve to 97% and
92% when measured with respect to physical length only. Thus, we can con-
clude that the algorithm misses very few trajectories (high recall) and false
positives mostly occur as short trajectories that has small extent in length
and time. This implies that most of the long and prominent trajectories were
successfully detected by the algorithm. This also implies that the algorithm’s
false positives and misses would have less influence on aggregate profiling of
parameters that quantify the granule velocities within the axon, as described
in the next section.

6.2. Ouzxidative stress experiment

Next, we describe a set of experiments used to quantify the effects of
reactive oxygen species on secretory granule transport. In this experiment,
axonal transport of granules was imaged before, and at varying times after
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adding peroxynitrite to the culture medium. The kymographs correspond-
ing to the videos collected at 10, 25, 35 and 45 minutes intervals after the
treatment are shown in Figure 11(a-d). Each kymograph spans about 78
seconds from the start of the image acquisition. The kymographs show that
this reactive oxygen species causes a profound inhibition of granule transport
and that anterograde transport is more susceptible to this treatment than
retrograde transport. We applied our automatic algorithm to quantify these
observations, which we term as trajectory profiling.

We first describe a few parameters that are used for validation and anal-
ysis of granule motion. First, we compute the instantaneous velocity of gran-
ules at each frame, as long as these granule also appear in the previous and
subsequent video frames. The instantaneous velocities are computed using
the central difference method from the neighboring video frames. In addition,
several features are computed for each trajectory including the total duration
of the trajectory, net displacement, and median velocity. The duration of the
trajectory and net displacement are computed by measuring the horizontal
and vertical extent of the trajectory in the kymograph. The median velocity
for a trajectory is computed from the instantaneous velocities of the points
comprising it. By convention, we denote anterograde velocity as positive and
retrograde velocity as negative.

Normalized histograms of instantaneous velocity of trajectories are shown
in Figure 12 at each treatment interval for the automatic algorithm on the
left and the human expert on the right. The minimum resolution in velocity
that determines the bin interval in the velocity histogram is given by the pixel
dimension in the kymograph. The resolution in the horizontal direction is
determined by the frame rate of the video, while in the vertical direction it is
determined by the spatial sampling of the central axis (1 pixel in our case).

From Figure 12, it can be seen that for the video at 10 minutes of treat-
ment, the number and velocity distribution of granules moving in the an-
terograde direction is almost identical to the number of granules moving the
retrograde direction. However, for videos at 25 minutes, 35 minutes and 45
minutes after treatment, the percentage of movements in the anterograde
direction clearly decreases. The histograms generated by the algorithm com-
pare favorably with the results generated by the human expert. Except for a
few errors due to histogram binning and pixel quantization, the overall trend
in the velocity distribution is captured correctly by the proposed automated
method. However, the automated algorithm is immensely faster, computing
each histogram in only a few minutes.
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Figure 13 reports several parameters including the total length of trajec-
tories, the number of motion events and the anterograde-retrograde bias in
the time lapse sequences in the form of histograms. The total length of each
trajectory was computed by summing the net displacement of all granules
in the movie. Similarly, the number of motion events gives a count of the
number of granule movements during the movie. The first two parameters
provide an indication of the overall amount of transport that is occurring in
the axon. From the histograms, it can be seen that maximum transport is
observed at 10 minutes, and the amount of transport gradually declined in
the videos at 25, 35 and 45 minutes, which was corroborated by the expert’s
analysis. The algorithm also accurately detected the change in anterograde
- retrograde bias, defined as the ratio of the amount of transport in the an-
terograde direction versus transport in the retrograde direction in the axon.

7. Conclusions

This study demonstrates the practicality of automated detection and
analysis of BDNF granules moving along axons. The approach can be gener-
ally applied to any situation involving particles moving along 1D paths, such
as, transport of mitochondria in axons, objects traveling along the blood
stream inside blood vessels, or even road-traffic monitoring systems. The use
of kymographs mirrors the practice in manual analysis of biological images,
and provides important advantages for automated analysis as well as a conve-
nient static approach for visualization. We believe our work is an important
first step towards applying advances in image processing algorithm designs
to kymograph analysis in axonal transport, a process that is extremely time
consuming for human analysis.

The reconnection strategy adopted in our paper is simple compared to
other reconnection schemes proposed in the literature (e.g.,[7]). In our ground-
truth observations, BDNF granules rarely merged and split, so a simple
trajectory-joining scheme was sufficient. Furthermore, since were interested
in analyzing the aggregate velocity patterns of granule transport within the
axon (e.g., Section 6.2), any sparse errors due to splits and merges were tol-
erable. Incorporating a full algorithm for dealing with splits and merges in
more complex datasets would improve our algorithm’s robustness.

The more ambitious task of extracting all trajectories is possible with
our method, but with a lower level of automation. The automated algorithm
described here produced very few missed trajectories, but there are several
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false positives due to noise and imaging artifacts. We noted that the intensity
of stationary granules was always higher than that of the moving granules due
to the blur caused by motion. Although this difficulty was partly addressed
using the temporal sharpening step, it still remains challenging to detect
all the granules in the data. Moreover, some of the slower granules moved
erratically, and lacked regularity in velocity during motion. These granules
were difficult to track and were at times detected as fragments of trajectories.

If the user desires a full extraction of all trajectories, the automated
analysis results requires a moderate amount of editing, for which we have de-
veloped a graphical tool. In other words, our method is semi automated for
this more ambitious task. In the future, we expect more complete automa-
tion to become possible, by combining advances in imaging instrumentation
and protocols, and further improved algorithms that build upon the work
presented here. Finally, we note that the axon extraction step can also be
automated, e.g., by using an automated neuron tracer [30], creating kymo-
graphs and velocity profiles for each axon, and presenting the results to the
user for further study.
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Figure 1: (a-c) Frames from a video (18um x 18um region at 1.8 fps) along mouse cortical
neurons showing transport of BDNF granules. (a) Intersecting granule trajectories (b)
changing morphology and (c) passing a bright stationary granule. (d) Section of the
eGFP labeled axonal image selected for analysis. The spatial resolution of the image is

0.18um//pixel. (e) A space-time map (kymograph) of the video showing the same granule
motion. (This figure is best viewed in color)
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Figure 2: Flowchart showing steps in the proposed algorithm for velocity profiling of Brain
Derived Neurotrophic Factor (BDNF) granules.
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Figure 3: (a) A section of the eGFP labeled axon that is selected for BDNF granule
transport analysis. The proximal and distal points on the axon are chosen by the user.
The estimated central axis is shown as a blue curve. The spatial resolution of the image
is 0.18um/pizel. (b) The kymograph generated from this section. The horizontal axis of
the kymograph indicates time, such that the left boundary indicates start time while the
right boundary indicates end time. The vertical axis of the kymograph indicates space,

where the top and bottom correspond to the distal and the proximal points of the axonal
section, respectively.
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Figure 4: (a) The kymograph is generated by parameterizing the central axis of the axonal-
tube by s;. The region X (s;) is illustrated over three consecutive time frames. Two repre-
sentative granules are shown in red: one of them is moving and the other is stationary. The
dilation width 7 for generating the kymograph are specified by the user. (b) Kymograph
generated before temporal sharpening. (¢) Kymograph after temporal sharpening.
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Figure 5: Illustrating the orientation distribution function and the voting process. (a)
The ODF kernel showing the directions of line integration. (b) The neighborhood decay
functions at several selected orientations, using the parameters m = —0.1 and ¢ = 15deg.
(c) A space-time pixel u is shown with two neighbors v and w. The relative positions of
v and w with respect to u are indicated by the vector d,,,, and d, . The voting process
compares the ODFs at u with those of its neighbors, weighted by the decay function to
generate votes.
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Figure 6: Illustrating the voting process. (a) A spatio-temporal region in a kymograph
with 3 sample points indicated by A, B and C. (b) The result of the voting operation
(normalized for visualization) (c¢) The response of refining operation. (d-f) The ODF
kernel responses on a polar graph at points A, B and C respectively before voting (g-i)
ODFs at the same locations after voting.
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Figure 7: (a) The function ¢; for implementing the smoothness constraint. (b) The
function pp that relates the cost to the value of K¢ fined, (¢,d) The functions ¢’2w“d and
#5% for implementing the feasibility constraint for curve heads and tails.
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Figure 8: (a) The search window for each head (blue) and tail (yellow). (b) All possible
connections that can be made between the tips and other trajectories. Connections shown
in red are not possible due to the feasibility constraint. The final joining selects a subset
of these connections to determine the final trajectories.
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Figure 9: (a) A section of the axon shown in Figure 3 selected for analysis; (b) The
automatically generated kymograph between the proximal and distal points shown in Panel

(a); (c¢) Automatically detected trajectories detected on the kymograph. Each trajectory
is assigned a random color for visualization.
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Figure 10: Precision vs. recall of the automated algorithm, averaged over the twelve video
sequences. Each point represents a value of the coverage fraction.
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Figure 11: Kymographs and results corresponding to the videos used in experimental
evaluation and analysis of the algorithm. (a) Kymographs computed from videos acquired
at 10 minutes, 25 minutes, 35 minutes and 45 minutes after the treatment. (b) The
trajectories after recovery - green lines show the trajectories that were correctly picked by
the automated algorithm, red shows the misses while blue lines indicate false positives.
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Figure 12: Histograms of instantaneous trajectories at acquisition times of 10 minutes, 25
minutes, 35 minutes and 45 minutes after the treatment respectively. The horizontal axis
of each histogram shows the velocity of instantaneous trajectory, while the vertical axis
gives the count of number of trajectory with a given velocity. Positive velocity denotes
anterograde motion, whereas negative velocity denotes retrograde motion. The left column
shows results for automated analysis, while the right column shows results of analysis by
an expert.
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Figure 13: Trajectory profiling parameters. (Top row) Total length of trajectories in

microns as found by the automated algorithm (left) and by the expert (right). (Middle
row) Total number of motion events and (Bottom row) Anterograde-Retrograde bias.
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