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ABSTRACT

Human re-identification across non-overlapping fields of view
is one of the fundamental problems in video surveillance.
While most reported research for this problem is focused on
improving the matching rate between pairs of cropped rect-
angles around humans, the situation is quite different when
it comes to creating a re-identification algorithm that oper-
ates robustly in the real world. In this paper, we describe an
end-to-end system solution of the re-identification problem
installed in an airport environment, with a focus on the chal-
lenges brought by the real world scenario. We discuss the
high-level system design of the video surveillance applica-
tion, and the issues we encountered during our development
and testing. We also describe the algorithm framework for
our human re-identification software, and discuss considera-
tions of speed and matching performance. Finally, we report
the results of an experiment conducted to illustrate the out-
put of the developed software as well as its feasibility for the
airport surveillance task.
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1. INTRODUCTION

The academic computer vision research community has
expended substantial effort on the problem of human track-
ing in a camera network with non-overlapping fields of view
(e.g., [4, 7, 15]). The most challenging problem is the cor-
rect association between tracked people in different camera
views. Using appearance features to match images of peo-
ple in different views is also widely studied as the human
re-identification (re-id) problem. Researchers typically ap-
proach the re-id problem with an emphasis on feature selec-
tion [2, 6, 13] and metric learning [3, 10, 11, 17]. To evaluate
and compare the matching performance of the proposed al-
gorithms, results are usually reported on several standard
benchmarking datasets agreed upon by the research com-
munity.

The story is very different when it comes to re-id in a
real-world environment. In addition to addressing a well-
defined research problem, i.e., deciding whether two bound-
ing boxes representing humans correspond to the same per-
son, there are many other challenges to building a reliable
re-identification application for an actual surveillance sys-
tem. With respect to hardware, one may need to consider
camera installation locations constrained by security limi-
tations of the site, low-quality images from legacy analog
cameras equipped in the current network, data storage and
transferring strategies, device synchronization, and network
bandwidth. With respect to software, the system must op-
erate in near real time and deliver high-quality matching
results with few false alarms.

Real-world re-id also differs from academic research on
the problem in that most work in the latter case poses the
problem as: given a probe image of a person, find the single
image of the same person in a gallery of images taken from a
different viewpoint. The re-id performance is usually quan-
tified with a curve illustrating the rank n matching rate,
i.e., the percentage of probe images that matched correctly
with one of the top n images in the gallery set. In the real-
world case, each person has multiple images available from
being tracked. These can be used to build better descriptors
and generate more reliable similarity measurements. Users
are unlikely to scroll through pages of candidates, so perfor-
mance at low ranks (e.g., n < 5) is critical.

In this paper, we present the system design of a video
surveillance solution installed in a real-world airport envi-
ronment, as well as an algorithm framework for human re-



identification. Our goal is to help airport security officers
to detect tagged people of interest in real time. The project
involved numerous iterations of on-site tuning, testing and
evaluation, and we present the challenges we encountered
during its development. We also describe our experiences in
moving from academic computer vision algorithm develop-
ment to “messy” real-world implementation.

2. REAL-WORLD CHALLENGES

Our video surveillance project is centered at a medium-

sized airport (Cleveland-Hopkins International Airport, Cleve-

land, OH, USA). The project goal is to develop an on-
site real-time video analytic system to assist Transporta-
tion Security Administration (TSA) and airport security
staff to track specified people of interest throughout the air-
port surveillance camera network. We called this task “Tag
and Track”. This project succeeded a long-term effort at
the same site for detecting counterflow though security exit
lanes, which shares many of the same challenges discussed
here. In this section, we address limitations and challenges
we encountered in the real-world system design, installation,
running and testing.

2.1 Data Collection, Storage and Transfer

The high-level system design is shown in Figure 1. Un-
like traditional surveillance systems, in which camera videos
are directly fed into monitoring screens watched by security
staff, video data in the airport needs to be transmitted to
workstations through a secure high-bandwidth network, and
then processed by analytic software.
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Figure 1: High-level system design of an airport hu-
man re-identification solution.

While most academic researchers likely use digital cam-
eras in the lab, many legacy surveillance cameras in long-
term installations like airports are still analog. Much of
the existing airport surveillance system at CLE is equipped
with 4CIF (704x 576) resolution analog cameras, so it was
necessary to install video encoders that convert the feeds
into digital video data and embed video metadata. We used
Bosch video encoders (VideoJet X20/X40 XF E) to convert
the video to the H.264 standard. All of the data is then
transmitted to a Network Video Recorder (NVR) on a data
processing server, which stores the encoded videos and their
metadata. Since there is large amount of video data sent
to the NVR, it can only store a limited amount of multi-
camera data (i.e., about a week of 4CIF 29.97fps video from
four cameras).

The developed video analytic software is installed on sev-

eral separate workstations connected to the data server. These

acquire video feeds directly from the encoders and perform
tracking and re-identification tasks in real time. All of the
data transmissions are via a secure high-bandwidth network,
and the whole system is maintained in a local Ethernet (i.e.,

no access to the outside Internet). Since the accessibility of
the surveillance data from the airport is highly restricted,
only the workstations connected in the local Ethernet are
allowed to query video data from the NVR via proprietary
video database tools. Consequently, we had to conduct a
large amount of software testing on-site, following a process
of developing video analytic algorithms in the lab, testing
them on small amounts of recorded data cleared by the air-
port for our use, and deployed on-site after validation.

To validate the algorithm’s on-site performance, we needed
to develop a logging program running on the application
server to record events. At a certain time every night, the
program processes the log files generated by the video ana-
lytic program containing the time stamps of the target per-
son and re-id candidates, as well as their locations in each
frame. Then it translates the logs into NVR video requests
that are sent to the data server. Upon receipt of the re-
quests, a communication channel is set up and the video clip
transfer is started. When the transfer is done, the logging
program labels the file with the time stamps of the corre-
sponding event. Event logging is a crucial component of the
system since it enables the accurate evaluation of the system
performance and relieves the storage pressure on the data
server. However, it also adds a considerable amount of data
transfer load to the network, and must be carefully timed to
avoid interfering with actual events, or querying the NVR at
the same time by different processes. The recorded events
are reviewed by security officers, and brought back to the
lab for analysis roughly every month.

2.2 Time Stamp Synchronization

To evaluate the system performance, security officers re-
view the extracted video clips of re-identification events. To
ensure accurate video extraction from the NVR, it is critical
that the time stamps for all cameras, encoders and servers
are well-synchronized. However, during software testing we
found that the video encoders send out metadata, following
the Real-time Transport Protocol (RTP), containing time
stamps with a small drift compared to the time stamps in
the cameras, data server and application server. Since the
NVR maps this time stamp to the server’s system time and
uses it to create a list of videos to be retrieved, this drift led
to accumulated time differences, so that the time intervals in
the extracted video clips did not correspond to the requested
intervals. This is actually not uncommon for video encoders
and IP cameras, and is difficult to fix from the customer
side.

However, since we observed that the drift of the video en-
coders was stable and repeatable (i.e., a constant drift each
day), but disappeared after resetting the encoder, we found
it was easier to program the logging software to calculate an
estimated drift according to the dates of the latest reset of
the encoders, and compensate by adjusting the time inter-
vals of the requested video clips from the NVR. While this
was an easy fix, it required resetting all encoders after a cer-
tain amount of time to remove accumulated uncompensated
drift. As a longer-term fix, a protocol was added to the NVR,
to actively initiate time syncing with all the encoders every
hour, effectively resetting the encoders constantly.

2.3 Image Quality

We observed that several of the legacy analog cameras
in the system contain serious noise and may not maintain



focus over time. Figure 2 illustrates several sample images.
It can also be observed that illumination conditions vary
from camera to camera. Even for the same camera, the
illumination can change throughout the day or with respect
to weather conditions. The reflective decorative tile floor
also makes foreground detection more difficult. Finally, the
videos also contain periodic temporal jitter that seriously
affects tracking algorithms. We discussed our solution to
this problem in Wu et al. [16].

The heavy traffic environment in the airport makes it even
harder to detect and track people. The worst situation oc-
curs when many passengers get off a plane, causing a very
crowded scene in which people can be passed or occluded by
others. In such cases, it is extremely difficult to maintain
accurate trajectories for each person. We will discuss our
tracking and re-id strategy in Section 3.

Figure 2:
videos.

Sample images from airport camera

2.4 Camera Position

Like most public surveillance systems, the camera net-
work in the airport cannot cover the whole area of interest.
In fact, the fields of view are mostly non-overlapping with
large “blind” regions. On the other hand, the movements of
humans in an airport are more unpredictable compared with
other surveillance scenarios, such as traffic flow monitoring.
For example, in most views there are no pre-defined routes
or directions for people; after walking out of one view, people
can walk back into the same view, while the algorithm may
expect to detect the person in a different camera. There are
many entrances and exits that are not covered by cameras,
so that people can appear or disappear from the monitoring
area with high uncertainty; people may stay for long peri-
ods or even change clothes out of the view of any camera,
which can cause the estimation of their motion based on a
fixed appearance or a transit-time model to fail. This issue
is especially problematic around security screening check-
points, which have restrictions on camera placement due to
privacy and law enforcement regulations. Re-identification
in this scenario is extremely challenging. Finally, unlike the
standard datasets used to evaluate re-id algorithms, which
contain images taken from cameras whose optical axes have
a small angle with the ground plane, in the airport envi-
ronments, the angle between the camera optical axis and
the floor is usually large (~45°), causing serious perspective

effects (see Figure 2).

3. ALGORITHM FRAMEWORK

In this section, we describe our algorithm framework for
the airport surveillance re-identification problem, emphasiz-
ing feasibility considerations for the real-world environment.
The goal is to provide reliable re-id candidates corresponding
to a tagged target person in real time. Figure 3 illustrates
the major computer vision steps in the process.

MOG Foreground Connected

—_—
Detection Component Analysis

Tracking Based on

h <«—————  Human Detection
KLT Optical Flow

Tracking

Figure 3: Our human re-identification algorithm
framework.

3.1 Detection and Tracking

We begin with foreground detection using the mixture of
Gaussians (MoG) method [14], followed by connected com-
ponent analysis to group foreground pixels into blobs. The
bounding box of each blob is considered as the region of
interest (ROI). The ROI is then fed into a real-time pedes-
trian detection algorithm; we adopted the aggregated chan-
nel features framework of Dolldr et al. [5]. Specifically, a
boosted decision tree classifier is used in conjunction with a
sliding window approach. The classifier is trained using 3000
ground truth pedestrian images (forming the positive sample
set) and randomly sampled background images (forming the
negative sample set) from the airport videos. For the pur-
poses of training, we formed multi-scale feature pyramids by
aggregating six quantized gradient orientations, L, U, and V
color channels, and normalized gradient magnitudes into a
ten-channel feature vector, computed over each scale. The
result is a set of candidate detections of different sizes inside
each ROI blob. Once the order is received to find a tagged
person, human detection starts to run in all frames of each
camera, since new humans may enter the scene at any time.

At the same time, the bounding boxes of tracked people
from the previous frame are propagated to the current frame
and their estimated locations updated. We detect low-level
FAST corners [12] inside each tracked bounding box and
track them with the KLT tracker [9]. The estimated posi-
tion of each bounding box in the current frame is produced
by pushing the bounding box in the previous frame forward
by the average of the motion vectors of the detected fea-
tures. To obtain a more reliable motion vector, we remove
the scene feature points using the background scene classifier
described in [16].

Finally, the two sets of candidate bounding boxes in the
current frame are merged. We compute the intersection of
each new human detection with the bounding boxes propa-
gated from the previous frame, and find the maximum ratio
r between this area of intersection and the area of the smaller
bounding box. If this ratio is above a suitable threshold



(we used 0.8 in our experiments), the new human detection
is associated with the corresponding human in the previous
frame. Otherwise, a new track is initialized with the new de-
tected bounding box. Propagated bounding boxes matching
no human detection in the current frame are also retained if
their aspect ratio and location in the frame are reasonable.
Figure 4 illustrates the idea.
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Figure 4: (a) Bounding boxes from previous frame.
(b) Dashed bounding boxes (red) are propagated
from previous frame using feature detection and op-
tical flow; solid boxes (green) are new candidates
generated by the human detector. (c¢) Final bound-
ing boxes in current frame created by merging the
two detections.

3.2 Re-identification

The re-identification process has two key steps. First,
we must extract a feature descriptor from each candidate
detection. Second, given a pair of descriptors Xiargetr and
X, (one from the tagged target and the other from the gth
candidate detection), we must find an appropriate similarity
score

sj = f(Xarget, X;) (1)
Then, by ranking the similarity scores {s;,j = 1,...,n}
in each frame, we generate an ordered list of “preferred”
candidates that are shown to the user.

Feature detection for re-id in real-world scenarios is chal-
lenging, especially given the relatively small and low-quality
target and candidate images. Common descriptors like SIFT
[8] and SURF [1] are unsuitable for the task. Instead, we
found low-level features such as color and texture histograms
to be more effective and efficient. In particular, we adopted
the method described by Gray and Tao [6]. The image is
divided into 6 horizontal strips. Inside each strip, 16-bin
histograms are computed over 8 color channels (RGB, HSV,
and CbCr) and 19 texture channels (including the response
of 13 Schmid filters and 6 Gabor filters). By concatenating
all the histograms we get a 2592-dimensional feature vector
for each candidate. We found it was important to rectify
the candidate sub-images based on simple camera calibra-
tion information to remove perspective distortion prior to
feature extraction. In the future, we also plan to incorpo-
rate radiometric and color calibration across the cameras.

The next step is find a metric to accurately quantify simi-
larity. Many metric learning techniques have been proposed

for re-id [3, 10, 11, 17]. In our algorithm, we applied the
rankSVM method [11] to maximize the norm of a weight
vector W subject to the constraints that if

dsame = |X; - XL|

is the absolute difference of descriptors for two images of the
same person %, and

daisr = |x] — xi|

is the absolute difference of descriptors for images of two
different people ¢ and [, then

WTdsame < WTddiff

for all possible pairs from same and different people. We
trained the weight vector using manually annotated ground
truth data extracted from the airport videos, which includes
images from around 150 people. The re-id distance function
between two descriptors is thus computed as

F(Kiarger, X;5) = W [Xiarger — X

Most current human re-id algorithms [3, 6, 10, 17] are fo-
cused on the “single-shot” problem; that is, it is assumed that
each person only has one image available to compute the
similarity score. This assumption is mainly motivated by the
limited data contained in public re-id benchmark datasets.
However, in the real-world scenario, there is a sequence of
images available for each tracked person, which is the “multi-
shot” case. Let {X}, X5, .-, X%} be feature descriptors col-
lected for the target person, and {Xf, X35, -, X7, } be the
feature descriptors collected for a candidate person. We then
calculate an accumulated similarity score s, for the candi-
date as

S0 = 30D XX @

i=1 j=1

We expect this accumulated similarity score to give a more
accurate measure of similarity than the single-shot version.
The target person is tagged manually by a security officer,
so we assume that the n shots of the target are clear and reli-
able. However, the automatically generated bounding boxes
for the tracked candidate might not be highly accurate; e.g.,
there could be occlusions or drifted tracks. We observed
that the bounding boxes generated by the human detection
algorithm are more likely to correspond to clear, well-posed
human images, and are usually maintained for a small win-
dow of consecutive frames. Thus, we modified (2) to choose
the k consecutive frames of the candidate with the highest
total similarity score, such that at least one bounding box
comes from the human detection algorithm:

itk—1 n
1 c
sa:%m?x Z Zf(xmxj) (3)
i j=1
In our experiment, we used k = 5. We also note that multi-

shot information can be used to train a discriminative model
of the target person on-line, improving re-id performance.

3.3 Algorithm Discussion

When developing the algorithm, we had to consider re-
quirements for both speed and performance. The algorithm
needs to be fast enough to process multiple cameras in real
time, and at the same time, find the person of interest with
high confidence.



Human detection is the most time-consuming step; our
implementation is close to real time (around 15 fps on our
videos). By filtering out ROIs with small sizes or impossible
locations, and only analyzing viable ones, we highly reduced
the computational cost to around 100 fps. While the process
of training the re-id weighting vector is time-consuming, this
is done offline. The on-line re-id process is extremely fast
since it only involves a vector inner product. There is enough
spare computational power in our system to consider online
re-id learning algorithms, such as updating representative
feature vectors after the same person is confirmed in another
view, or discriminative model training.

We found it was important to consider the “big picture” of
how good the results of each sub-process needed to be in or-
der to result in a confident re-id judgement, instead of trying
to squeeze the best performance out of every algorithm at
the possible cost of speed. For example, we know the MoG
foreground detection is likely to fail when the surrounding
illumination changes, but this can be mitigated later in the
pipeline by the human detection step. In fact, we need a rela-
tively sensitive foreground detection algorithm to make sure
we won’t miss any people in the detection stage (resulting in
many false alarms that are rejected later). Similarly, there is
no state-of-the-art tracking algorithm that can process mul-
tiple streams of airport-quality videos with high accuracy in
real time. The tracking algorithm we applied may fail when
a candidate person is occluded, several trackers become fo-
cused on the same person, or the bounding box drifts onto
a different person. However, all we care about is generating
a sufficient number of reliable candidates for the multi-shot
algorithm; occluded or poor-quality rectangles will simply
never rise to the top of the rank-ordered candidate list.

4. EXPERIMENTAL RESULTS

Here, we report the results of one experiment using real-
world airport videos to demonstrate the overall re-id perfor-
mance of our system. We chose three cameras located in the
area between the parking garage and the airport terminal.
Sample images of the camera views are shown in Figures
5a-c. People coming from the parking garage will be seen
first in camera A. They then proceed to camera B (at which
point there are stairs and elevators enabling them to enter
or exit the environment). If they continue to move forward,
they will appear in camera C and move into the terminal.

In each experiment, we tagged a person in camera A and
then tracked him or her until they disappeared from the field
of view. The target’s feature vectors are extracted from the
tracking frames. After the target leaves camera A, we begin
to detect and track all the candidates in camera B and C for
a 5-minute period, as shown in Figures 5b-c. We can see that
the tracking task is very challenging in camera B, because of
the distorted view angle and the crowded scene. However, as
discussed in Section 3.3, as long as the person is successfully
detected and tracked for a short distance, the program can
still make a reliable judgment. One example re-id result is
shown in Figure 5d. We only display the top 5 candidates
to the user in ascending order of similarity score. In this
example, the target person is ranked second in camera B
and third in camera C. Although detection and tracking in
camera B is more challenging, the viewpoint (the person’s
back), is more similar to the tagged viewpoint, so the re-id
results are better in camera B than in camera C.

We repeated the experiment for 40 targets in camera A

over 12 hours of video, selecting candidates who appeared
in all three views. The results are presented in Table 1,
which reports the percentage of target images that matched
correctly with one of the top n images in the detected can-
didates. We found that 70% of the targets were found in
camera B and 656% of the candidates were found in camera
C within the top 5 automatically generated results. We use
rank 5 as a rule of thumb for assessing performance, since at
this point a human should be able to easily decide whether
or not the candidate is a correct match.

Rank 1 | Rank 5 | Rank 10 | Rank 20
Camera B | 37.5% 70% 92.5% 100%
Camera C 30% 65% 87.5% 100%

Table 1: Re-identification results for the experi-
ment.

S. CONCLUSIONS

We discussed several practical challenges in implementing
a real-time re-identification solution in a mid-sized airport,
which might not be typically considered by academic re-
searchers, and presented initial results from our algorithm
framework tailored to this setting. However, there is still
much work to be done, both in our specific environment,
and more generally to make academic re-id research more
closely match real-world scenarios.

With respect to our specific environment, we are only at
the beginning of our implementation and testing of the on-
site re-id system, following a successful deployment of a sys-
tem for real-time detection of counterflow through exit lanes
described elsewhere [16]. From a computer vision point of
view, we plan to incorporate more robust algorithms for in-
corporating the estimated poses of the target and candi-
date into the descriptor comparison, refining the multi-shot
re-id strategy, and learning subject-discriminative features
on-line. We also plan to incorporate spatio-temporal prior
knowledge about the camera arrangement to cull unlikely
re-id candidates among widely distributed cameras. The
most pressing practical problems include designing a robust,
crash-resistant software architecture that can run for days
at a time, and creating an intuitive user interface that allows
the user to easily retain possible matches and reject others.
We also had the unique opportunity to design a new re-id
testbed at the airport, containing higher-quality digital cam-
eras, positioned as carefully as possible within security and
power constraints to capture a complex branching re-id sce-
nario (i.e., a passenger exiting the security checkpoint can
enter one of three concourses, after spending an unknown
time in a shopping area). We expect this new testbed to
generate further challenges from both the research and prac-
tical perspectives.
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Figure 5: Sample results from the airport human re-identification system. (a) Tagging the person of interest
in camera A, (b) Tracking in camera B, (c¢) Tracking in camera C, (d) Re-identification results (green boxes
indicate correct candidates).
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