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Abstract

Understanding cell lineage relationships is fundamental to understanding development, and can shed light on

disease etiology and progression. We present a method for automated construction of lineages of proliferative,

migrating cells from a sequence of images. The method is applicable to image sequences gathered either in vitro

or in vivo. Currently, generating lineage trees from progenitor cells over time is a tedious, manual process, which

limits the number of cell measurements that can be practically analyzed. In contrast, the automated method is rapid

and easily applied, and produces a wealth of measurements including the precise position, shape, cell-cell contacts,

motility and ancestry of each cell in every frame, and accurate timings of critical events, e.g., mitosis and cell

death. Furthermore, it automatically produces graphical output that is immediately accessible. Application to clonal

development of mouse neural progenitor cells growing in cell culture reveals complex changes in cell cycle rates

during neuron and glia production. The method enables a level of quantitative analysis of cell behavior over time

that was previously infeasible.

INTRODUCTION

Cell tracking over time has been one of the most revealing types of study for understanding developmental

mechanisms. Normal progenitor cells undergo complex processes, including cell division, migration, changes in

morphology, and death that are critical for tissue formation. Moreover, pathologically changed cells, e.g., cancer

cells, exhibit specific changes in these processes that correlate with disease progression. In order to follow cell

behavior over time, researchers have found ways to record them in time-lapse images. However, analysis of these

images is an arduous process involving many hours of human inspection to extract even simple measurements.

Most of the information contained in the sequence cannot be extracted because it is impossible for an observer to

accurately follow many different events over the image sequence. Our aim in this study was to design an automated

method to track and quantify cell behavior in image sequences that would be widely applicable to cells either in

vivo or in vitro.

Classical studies of development of a simple animal,C. elegans, described the divisions and movements of

identified progenitor cells, revealed by direct observation through the transparent body wall. They showed that

individual progenitors undergo distinct division patterns correlated with changes in gene expression, morphology,

migration, spatial location and ultimately cell differentiation or death (Sulston 1976, Sulston 1977, Chalfie 1981,

Sulston 1981). Moreover, mutations were identified that altered progenitor cell behavior directly observed by

microscopy, providing fundamental information about genes critical for many aspects of normal development

(Chalfie 1981, Sulston 1981). These basic methods of watching cells have been applied to a variety of developing

systems, and form the framework for understanding how tissues form and how they are changed in disease.

While vertebrate embryos lack advantages ofC. elegansembryos such as simplicity and transparency, which allow

visual tracking of progenitors in vivo, their progenitor cells can be followed continually ex vivo. For example, the

behavior of germinal neural cells can be time-lapse recorded from slices (Haydar 1999, De Marchis 2001, Noctor et
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al. 2001, Nadarajah 2001, Miyata 2001) or from dissociated cultures (Rivas et al. 1995). We showed previously that

mouse neural progenitors growing as clones have surprisingly similar lineage trees to those ofC. elegans, implying

evolutionary conservation of mechanisms for generating neural cells (Qian 1998). Moreover, neural stem cells,

which can generate both neuronal and glial progeny, undergo a characteristic pattern of cell divisions over time, in

which early divisions are overtly asymmetric and produce neurons while later divisions are overtly symmetric and

produce glial progeny (Qian 2000). Thus isolated neural stem cells growing in tissue culture are able to recapitulate

the normal order of production of cells in vivo, where most neurons are made before glia. We suggest that the

divisions of vertebrate neural progenitor cells over time are, like their invertebrate counterparts, highly regulated,

and play a critical role in the production of diverse neural cell types.

These studies used manual lineage tree reconstruction. This is a slow and painstaking process in which individual

cells are tracked by an observer and followed as they migrate, divide, differentiate, die or move out of the field.

The arduousness of the process precludes analyzing a large number of cells, and hampers investigation of complex

aspects of clonal development, such as changes in cell cycle, cell-cell contacts, or motility. While these events

can be observed in the images, it is not possible to efficiently record and quantify them manually. Consequently,

we cannot easily assess the effects of environment or genetic factors on many aspects of clonal development, as

these experiments require high-throughput analysis to compare many different cells. To enable these studies, we

have now developed an automated lineage construction method to analyze recorded image sequences. We believe

that this paper represents the first description of a fully automatic system for accurately lineaging progenitor cells

through many divisions and thousands of frames. We note that (Braun et al. 2003) described a tool for analyzing and

visualizing existing lineages, but did not address automatic lineage construction from images. (Yasuda et al. 1999)

described a semi-automatic algorithm for lineagingC. eleganscells from the 2-cell to 7-cell stage, but this system

required a substantial amount of human intervention to deal with the large number of falsely detected and undetected

cells.

There are two general approaches to automated tracking of cells in time-series images. The first approach involves

segmenting cells in each image frame independently based on properties such as intensity, texture and gradient (Wu

1995, Wahlby 2004), followed by an association of cells between consecutive image frames (Kirubarajan 2000).

This approach is simple and efficient, but cell segmentation errors (e.g., multiple touching cells that are mistakenly

segmented as one, or cells that are undetected) can seriously affect tracking results. In addition, performing the

association in a manner that accounts for cell division can be problematic (Kirubarajan 2000).

The second approach involves segmenting the cells in the first frame, and then tracking these cells (e.g., updating

their locations and orientations) throughout the rest of the sequence. Approaches based on active contours (Blake

2000) are often used for this purpose (Dormann 2002, Ray 2002, Zimmer 2002). In cases where obtaining the exact

cell boundary is not critical, the mean-shift algorithm (Collins 2003) gives a fast solution for tracking cells. The

key difficulty with this class of methods is that they do not naturally handle cell division, and additional heuristics
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are required to initialize a new contour when a split occurs (Debeir 2005). Level set methods (Sethian 1999, Dufour

2005) are able to handle topology changes due to cell division; however, deciding which cell is the parent of each

child would still be an issue with such methods. Generally speaking, tracking many single cells independently

would produce poor results in many situations, both in vivo and in vitro, in which there are many cells in a small

area that split quickly and sometimes ambiguously.

We designed our cell-tracking algorithm based on the first approach. Every image in the time series is preprocessed

to remove non-uniform illumination effects, and then thresholded adaptively (Otsu 1979) to segment the cells. We

used a seeded watershed algorithm (Vincent 1991) to overcome segmentation errors caused by touching cells. We

also designed a multiple-object matching method that can handle cell divisions, dead cells, and cell segmentation

errors. Given a time-lapse image sequence, regions corresponding to cells are automatically segmented in each

image of the sequence, and then matched over time as cells deform, move, divide, and die. Along the way, our

algorithm measures a number of cell attributes such as size, shape and aspects of morphology, location, motility

and migration, and relations between multiple cells, such as cell-cell contacts. We developed this approach using

recordings of mouse neural progenitor cell divisions. However, it is widely applicable to image sequences obtained

of different cell types in many different contexts, in vivo or ex vivo, e.g., in slices or in dissociated cultures. In

fact, the technique could be applied to any image sequence of objects that migrate and/or divide, including whole

organisms or sub-cellular organelles.

MATERIALS AND METHODS

Isolation of single cortical progenitor cells.Cerebral cortices were dissected from embryos of timed-pregnant

Swiss Webster mouse (Taconic Farms) at embryonic day E10-E12 (plug date is designated day 0) and papain

dissociated, as described previously (Qian 1998). Briefly, the tissue was rocked for 30 minutes in DMEM with

L-glutamine, sodium pyruvate and N-acetyl-cysteine (NAC, Sigma) plus papain and DNAse (Sigma) at room

temperature, then spun at 300 g for 10 min and rinsed with DMEM. The tissue was triturated, the cell suspension

was settled for 15 minutes and the top fraction which contains> 95% single cells was collected for plating.

Cell culture. The single cell suspension was plated into poly-L-lysine coated Terasaki plate microwells in serum-

free culture medium: DMEM with L-gutamine, sodium pyruvate, B-27, N-2 (all from Gibco), NAC and supplemented

with 10 ng/ml bFGF (Gibco). Cultures were maintained in a humidified tissue culture incubator at35◦C with 6%

CO2.

Time-lapse video microscopy and manual rescontruction of lineage trees.Plated cells were placed under an

Olympus inverted microscope in a humidified chamber at35◦C with 6% CO2. Phase images were captured by a

CCD camera (Panasonic BL600) and recorded with a time-lapse video cassette recorder (Panasonic). Cultures were

monitored for 37 days, then fixed and stained for cell fate markers:β-tubulin III for neurons, O4 for oligodendrocytes

and GFAP for astrocytes. For manual lineage tree reconstruction, the video taped recordings were replayed and the
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movements and divisions of individual cells were followed. Progeny of a single cell were tracked to generate the

lineage tree and their final fates were identified using the corresponding immunostaining data.

Immunostaining of embryonic cortical neural cells.After recording clonal development, the clones were fixed

and stained to identify cell progeny. For identifying oligodendrocyte- lineage cells, live cultures were incubated

with O4 antibody (ATCC hybridoma) for 20 minutes at35◦C, then washed with calcium-magnesium-containing

PBS (CMPBS) and fixed with 4% paraformaldehyde (PFA) for 30 minutes. Fixed cultures were blocked with 10%

normal goat serum in PBS for 15 minutes at room temperature, then incubated with goat-anti-mouse IgM at 1:100

in PBS for 45 minutes at room temperature. For identifying neurons, fixed cells were permeablized with methanol at

−20◦C for 5 min before addingβ-tubulin III antibody (1:100, Sigma) overnight at4◦C. After rinsing and blocking,

fluroescein (FITC)- or rhodamine-conjugated goat-anti-mouse IgG was added to revealβ-tubulin III staining.

Automated reconstruction of lineage trees.All the image analysis was implemented with Matlab 7.0 (Math-

Works Inc.), and was run on a PC computer with an AMD Opteron 2.2 GHz processor, 4 GB of memory, and the

Gentoo Linux operating system (Gentoo Foundation, Inc.).

RESULTS

Development of automated lineage construction for neural progenitor cells.Nineteen individual murine

embryonic cerebral cortical progenitor cells that had been followed over several days using time-lapse microscopy

formed the basis of this study. The clone development, described as a basic lineage tree, had been previously man-

ually reconstructed from time-lapse video recordings by two independent observers with agreement, and provided

basic ground truth for comparison with subsequent automated tracking. In one typical field, designated Sequence

A, four cells were tracked over three days (Supplementary Movie 1). The images were then processed using our

automated lineage construction algorithm.

The videotaped images were digitized with a frame grabber (Fig. 1A) to yield a sequence of images. In the

description that follows, we use “imaget” to indicate one frame from this sequence. The subsequent frame is

referenced as “image(t+1)”. The video recordings contained a time-stamp that is potentially confusing to automated

analysis systems. This was outlined manually in the first frame and removed automatically in the rest of the sequence.

A homomorphic filter (Phong 1975) was used to correct the nonuniform illumination present in the images (Fig.

1B). The progenitor cells were labeled manually in the first frame with one mouse-click per cell (this too can be

automated in principle). This labeling is the only manual intervention required in the lineaging process, aside from

a semi-automatic training phase described below that can be applied to a large number of image sequences from

similar studies.

Each image is thresholded with an intensity value estimated adaptively (Otsu 1979) to produce a binary image

of segmented cells as illustrated in Figure 1C. Segmented objects with size less than ten pixels were considered as

noise and rejected. Each segmented cell was approximated with an ellipse for subsequent matching computations.
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Fig. 1. Cell segmentation and hypothesis generation.(A) One video image frame of the neural progenitor cell culture from SequenceA,

shown fully in Supplementary Movie 1. (B) The result of pre-processing to remove the time stamp by linearly interpolating intensities from

local pixels. The illumination variation was also removed using homomorphic filtering, and the result was inverted for display. (C) The result

of adaptive thresholding for the processed image in panel B. (D, E) A pair of consecutive images in which one cell (cell 2) undergoes mitosis.

(F) Several matches between cells in (D) and (E) detected as feasible, with their likelihoods. Correct matches are highlighted in bold, showing

that their likelihoods are high. (G) Several rows of the matrixA used for integer programming.
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Cells that are either close to each other, or are actually touching, are often segmented as one blob using this method.

Such large blobs were split into component cells using the seeded watershed algorithm (Vincent 1991). We further

constrain the centers of the parts to occur at the centers of overlapping cells in the previous image, which mitigates

most problems with oversegmentation. We note that at this stage of the algorithm, other more sophisticated cell

segmentation algorithms could be substituted if warranted. However, we demonstrate below that this straightforward

segmentation scheme produced high-accuracy results for the murine cells of interest in this study.

For each segmented cell, we calculate several simple features that suffice to characterize it for the purposes

of associating cells between images. Specifically, for celli in image t, we compute its centroid(xt
i, y

t
i), area

at
i, eccentricityet

i, major axis lengthlti , and orientationθt
i . These six numbers are collected into a vectorf t

i =

(xt
i, y

t
i , a

t
i, e

t
i, l

t
i , θ

t
i) that we call the feature vector for celli at time t. We consider three possible events per cell

that can take place between timet and timet + 1. The cell can either: (1) deform and move; (2) divide into two

new cells; or (3) die. To decide among these hypotheses, we need to match cells in imaget with cells in image

t + 1.

We model the likelihood that the cell labeled asi in frame t (with feature vectorf t
i ) deforms and moves to

become the cell labeled asj in frame t + 1 (with feature vectorf t+1
j ) as:

pmove(f t
i , f

t+1
j ) =

1√
(2π)N |Σ|

exp
{
−1

2
(dt

ij − µ)T Σ−1(dt
ij − µ)

}
, (1)

whereN = 6 and dt
ij is the absolute difference between the feature vectors,dtij = |f t

i − f t+1
j | (i.e., the vector

of absolute differences between corresponding cell characteristics). The parametersµ and Σ are prior estimates

of the mean and covariance of the difference vectordt
ij for correctly matching cells. These parameters can be

semi-automatically estimated by computing the sample mean and covariance of a correctly labeled training set of

corresponding cells. For example, in the experiments described in this paper, we used a training sequence of 270

images, with an average of six cells per image. This sequence was chosen based on a few minutes of visual inspection

to make sure cells exhibited characteristic motions. These cells were automatically segmented and tracked with a

simple nearest-neighbor algorithm (with the user making a few edits to the tracking results when matching errors

occurred). The feature vectors of each cell were computed and used to generate the sample mean and covariance

(µ,Σ). The same(µ, Σ) values were subsequently used to process the thousands of frames in multiple image

sequences described in this paper. As long as the imaging setup and the cell behaviors are similar to the training

sequence, there is no need to adjust these parameters.

The likelihood of the hypothesis thatf t
i divided into two cellsf t+1

j andf t+1
k is estimated in a similar manner:

f t+1
j and f t+1

k are first merged intof t+1
jk by fitting an ellipse to the union of the two corresponding segmented

cells, and the absolute difference betweenf t
i andf t+1

jk is used in a likelihood computation as in equation (1):

pdivide(f t
i , f

t+1
jk ) =

1√
(2π)N |Σ|

exp
{
−1

2
(dt

ijk − µ)T Σ−1(dt
ijk − µ)

}
, (2)

7



whereN = 6 and dt
ijk = |f t

i − f t+1
jk |. Hence, we can generate the likelihood for any possible hypothesis, be it

(cell to cell) or (one cell to two cells); some examples are shown in Fig. 1DG. From this figure, one can see that

the correct behaviors (e.g.,1 → a and2 → (b, f)) generally have high likelihoods, while incorrect behaviors (e.g.,

1 → b) do not. Matches we know to be correct based on manual ground truth are shown in bold. Our goal is to

determine the optimal (i.e., highest total likelihood) set of correspondences between cells in imaget and image

t + 1, subject to the constraints that (1) each cell in imaget has at most two daughter cells in imaget + 1, and

(2) no cell in imaget + 1 has more than one parent cell in imaget. We do not enforce the constraint that every

cell in both images has to be accounted for, since the segmentation results may contain false detections that do

not represent actual cells, or miss valid cells. These segmentation errors are handled after solving the matching

problem, as described below.

We also addressed the cell death hypothesis in the problem formulation. When a cell dies, it usually stops

moving and begins to disintegrate, leaving an observable ghost. Eventually the ghost can disappear entirely, but this

usually takes many days in clonal density cultures where macrophage activity is negligible. In the image sequences

processed to date, dead cells slowly disintegrated into smaller objects, each of which is eventually below the size

threshold for segmentation. Thus, at some point, the cell is segmented in one image and not in the next. We discuss

in more detail below how to distinguish cell death from an image segmentation error.

We formulated the matching problem as follows. GivenM cells at imaget, and N cells at imaget + 1, we

construct a matrixA of size L × (M + N), where each of theL rows corresponds to a feasible move or divide

hypothesis. A subset of this matrix is illustrated in Fig. 1G; the firstM columns correspond to the cells at time

t, and the remainingN columns correspond to cells at timet + 1. For a row that represents a correspondence

between cell feature vectorsf t
i andf t+1

j (e.g., the first row in Fig. 1G), the likelihood in (1) is evenly split between

columnsi andM + j of this row, and the remaining columns are set to zero. For a row that represents the division

of cell f t
i into f t+1

j andf t+1
k (e.g., the last row in Fig. 1G), the likelihood in (2) is evenly split between columns

i, M + j, andM + k of this row, while the remaining columns are set to zero.

Finding the optimal set of matches between cells in imaget and cells in imaget + 1 corresponds to finding a

subset of rows inA such that the sum of the entries in these rows is maximized, under the constraint that no two

rows share common nonzero entries. Mathematically, this is posed as the following integer programming problem:

max
x

(Av)T x s.t. BT x ≤ v, (3)

wherex is a binaryL×1 vector (1 if the row is in the solution, 0 if not),v is a vector of ones of size(M +N)×1,

and B is a binary matrix of the same size asA, with B(i, j) = 1 if A(i, j) > 0 and B(i, j) = 0 otherwise.

The solutionx is found using integer programming (Wolsey 1998). Specifically, we used a linear programming

(LP)-based branch-and-bound algorithm that searches for an optimal solution by solving a series of LP-relaxation

problems, in which the binary integer requirement on the variables is replaced by the weaker constraint0 < x < 1.

Finally, we post-process the result to account for various segmentation errors:

8



1) We allow the number of cells detected in imaget + 1 to increase compared to imaget due to cell division

only; we do not allow new cells to spontaneously appear. Hence, cells detected in imaget + 1 that are not

matched to cells in image t are considered false positives, and rejected. This implies that cells that enter the

field of view of the microscope will be rejected as well, which is not a problem since we are only interested

in tracking descendants of cells that were present in the first image in the sequence.

2) Similarly, should a cell leave the field of view of the microscope, it is removed from the lineage analysis,

since there is no reliable way to reason about multiple cells that move off the field, possibly divide, and then

move back in. In the more than five thousand images processed in our experiments, only 3% of the tracked

cells moved off the field of view.

3) If a cell in imaget is not matched with any cell in imaget + 1, there are two possibilities. Either the cell is

actually present but was undetected in imaget + 1 due to a segmentation error, or the cell is dead and there

actually is no match in imaget + 1. We distinguish between these two possibilities by copying the position

and shape of the cell in imaget to imaget+1, but labeling this cell as “missed at timet”. If the missed cell

is matched by the integer program in subsequent frames, we know the earlier miss was due to a momentary

segmentation error. However, if the missed cell continues to be propagated forward with no match for many

frames (in our example, we used 40 minutes from the miss at timet as a threshold), we mark the cell as

dead, note the time of death as timet, and stop searching for it in subsequent frames.

4) In addition to missed cells and false positives, a single cell in imaget + 1 can be detected as two due to

segmentation errors. We must ensure that we can reliably distinguish cell division from oversegmentation.

We observed that when a murine neural progenitor cell divides, the two daughter cells have similar sizes.

Thus, whenever cell division is detected, a significance test is applied to the difference between the areas of

the two daughter cells. That is, we assume that the division is correct if

1√
2πσ2

exp
{
− 1

2σ2
(at+1

j − at+1
k )2

}
> τ, (4)

whereat+1
j andat+1

k are the areas of the two daughter cells. Otherwise, we detect an oversegmentation and

merge the two pieces into a single cell. The varianceσ2 is estimated from divisions in the training sequence;

in our experiments, we used a significance level of 0.2, corresponding toτ = 0.8.

The computation time required to solve the matching problem is proportional to the number of competing

hypotheses. To reduce computation time, we do not consider hypotheses that are highly unlikely (e.g.,1 → d in

Fig. 1). A likelihood threshold of 0.1 was used for the results in this paper. Consequently, the number of hypotheses

is usually only slightly larger than the number of cells in imaget + 1.

Figure 2 illustrates the result of automatic lineaging for SequenceA with 2100 frames. Four progenitor cells are

present in the first frame, which have divided into 43 cells by the last frame 71 hours later. The total computation

time was 37 minutes for cell segmentation and 46 minutes for cell matching, i.e., less than 3 seconds per frame. The
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Fig. 2. Raw and automatically annotated frames from SequenceA. (A-B). Video frames of Sequence A at times 0 (A) and 71 hours (B) are

shown. (C-D). The corresponding automatically annotated frames of (A, B). At the first frame (C), each cell was assigned a number and color.

The daughter cells inherit the display color of their ancestor and are numbered automatically according to their birth order. In the final frame

(D), cells with the same color are derived from a single cell. Supplementary Movie 2 illustrates the entire annotated result.

top row of images shows the first and last frames of the sequence, while the bottom row shows the automatically

segmented and lineaged cells. In panel (D), the color of a cell corresponds to that of its ancestor in the first frame.

Cells are also numbered to indicate the order in which they appeared. Figure 3 shows automatically constructed

lineage diagrams for each progenitor in SequenceA. The red number at each branch point indicates the time of

division in hours. The blue number on each vertical line indicates the cell cycle time in hours (and the length of

the line is proportional to this number). Dashed lines indicate cells that continued to divide, but were not analyzed.

The lineages were verified to be correct by comparing with manual ground truth (which was not accessed while

developing the computer algorithms). Supplementary Movie 2 shows the lineage relationships shown as colored,

numbered dots overlaid on the video image sequence. The process was repeated for a second sequence of time-lapse

images of 5 progenitor cells (Fig. 4, Supplementary Movies 3 and 4). In this case, three cell deaths were identified

(Fig. 4E). Again, the error rate was negligible, and the resulting trees are similar to those already published (Qian

1998, Qian 2000). For example, neuroblasts (progenitors restricted to making neurons) had either short, overtly

symmetric lineages (Fig. 4G-I) or longer asymmetric lineages (Fig. 3C, cell 4; Supplementary Fig. 2F). In contrast,

glioblasts (progenitors restricted to making glia) were more proliferative and generated overtly symmetric lineage
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Fig. 3. Automatically generated lineage trees for SequenceA. The red number at each branch point indicates the time of division in hours.

The blue number on each vertical line indicates the cell cycle time in hours (the length of the line is proportional to this number; see scale

bar in hours). Dashed lines indicate cells that continued to divide after the automated tracking was stopped. The color of each numbered cell

corresponds to the color in Figure 2, and Supplementary Movie 2. (A) Cell 3 gave rise to a proliferative, overtly symmetrical lineage tree

reflecting a typical glial cell lineage. (B, C) Cell 1 and Cell 4 generated typical asymmetric neuronal lineage trees.
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trees (Fig. 3A). Stem cells or multipotent progenitors first undergo asymmetric divisions to produce neurons and

then more proliferative divisions to produce glial progeny (Fig. 4F).

Neural progenitor cells exhibit different cell cycle rates. Our automated lineage construction algorithm allows

detailed measurement of cell cycle rates as the clone develops. While we had recorded changes in division

mode during clonal development (Qian 1998, Qian 2000), we had not previously investigated whether this was

accompanied by changes in cell cycle dynamics.

Population studies of the neural germinal zones in vivo have shown that the cell cycle of the neural progenitor

population lengthens considerably during embryonic development. Most neocortical neurons are formed between

embryonic days 11-17 in the mouse. Birth of cells is accompanied by an increase in cell cycle to approximately

8-18 hours (Caviness 2003). In addition, neuroblasts have a longer cell cycle rate than nonneuronal progenitor cells

(Calegari 2005). However, it has not yet been possible to study changes in cell cycle over time within an individual

clone. Nor is it known if the varieties of neuronal or glial restricted progenitors or stem cells have different cell

cycle rates. By gathering the information from a number of different lineage trees, we found that cell cycle was

more heterogeneous than previously recognized, that different types of progenitors had characteristic cell cycle

dynamics, and that there are changes in cell cycle rates correlated with neuron and glia production.

Figure 5 illustrates automatically generated statistics of cell cycle times computed from the embryonic murine

cortical progenitor cell lineages in Figure 3 for SequenceA. Figures 5B-D illustrate the time of divisions starting

from each progenitor cell, while Figure 5A illustrates the combined division times for all three active progenitors.

Figure 6 shows the same results presented in a graph where the horizontal axis is real time, allowing us to see when

specific cells, e.g. siblings, divided. We disregarded the time period for each initial plated cell to divide, as this did

not comprise a complete cell cycle. In Supplementary Figures 1 and 2, we illustrate the same type of automated

analysis for two additional image sequences (Supplementary Movies 3, 4 and 5, 6).

For these early cortical progenitor cells, we found that in many cases, cell cycle lengthens as the division number

increases. This is especially obvious for neuroblasts (Fig. 5B and D; Supplementary Fig. 2F). Hence this process,

detected at the population level in vivo, is recapitulated in vitro within individual clones. Most (for example 78% of

sequencesA andB) of the cell cycles we recorded were within the 8–18 hours seen in vivo. However, there were

some clones (e.g., Supplementary Fig. 2) that had significantly longer cell cycle times; this particular neuroblast

had one progeny that divided after almost four days. This is consistent with the observation that cells specified to

be neuronal progenitors have longer cell cycle times (Calegari 2005, Takahashi 1995), although such long cycles

have not been described previously. It is possible that some cells with significantly longer division rates exist in

germinal zones in vivo, because the behavior of small sub-populations of cells can be missed in population labeling

studies. Moreover, we know that progenitor cells in adult germinal zones adopt very long cell cycle rates (Kippin

2005).

Glioblasts showed less obvious slowing of cell cycle during the recording period. In fact, we observed in some a
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Fig. 5. Automatically measured cell cycle times for SequenceA as a function of division number. Divisions are numbered in ascending order

of culture time. The number atop each bar indicates the cell number in Figure 2, and in Supplementary Movie 2. (A) All cells aggregated.

Different colors correspond to different clones. (B-D) Each cell was separately plotted. (B) cell 1, (C) cell 3. (D) cell 4. Note that in (B) and

(D), which are typical neuroblast lineages, the cell cycle lengthens over division numbers. In contrast, (C), a typical glioblast, shows a varied

pattern with less obvious cell cycle lengthening and some points where cell cycle speeds up, e.g. after the first division.

speeding up of the cell cycle, especially after the first one or two divisions in vitro. Whether this reflects a response

to exogenous growth factors applied in vitro is not clear. However, the contrast in behavior with neuroblasts is

marked, and suggests substantially different cell cycle regulatory mechanisms in these two classes of progenitor

cells.

The cell cycle is more complex for multipotent progenitor cells. As observed previously, neurons arose from

asymmetric divisions occuring early in the lineage tree, and then the cell switched over to glial cell production. We

noted that the cell cycle can transiently increase around the time when the stem cell switches from making neurons

to making glia, similar to the speeding up observed in glioblasts (Fig. 4E, cell 1).

Despite the heterogeneity of cell cycle lengths exhibited by different neural progenitors, we found that siblings

often divided within a short time of each other, as illustrated in Figure 6, which reveals rather close synchronicity

in mitoses of lineally related cells. This is supported by Figure 7, which shows via linear regression that siblings
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cell 4. Cells are identified by numbers atop bars. Siblings have consecutive numbers. We note a high degree of synchronicity between siblings,

with related cells clearly dividing at similar time-points across the sequence.

have similar cell cycle lengths (the linear regressionR2 = 0.91). These data indicate that lineage relationship plays

a role in determining division rate. Clearly, cell cycle rate is a highly dynamic and regulated aspect of cell behavior

during clonal development, likely reflecting different states of progenitor cell commitment.

DISCUSSION

This study shows that it is possible to accurately automate cell lineage construction, and to derive from this novel

information regarding proliferative cell behavior over time. Since the computer vision algorithms are very fast (i.e.,

only 23 seconds per frame in our experiments), the automatic lineaging process can be considered to be real time

with respect to the image acquisition speed- that is, the lineaging results can be made immediately available while

the cells are dividing. Multiple lineages can be constructed simultaneously, allowing on-time analysis of a field or
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Fig. 7. Linear regression indicates sibling cell cycle times are similar. Sibling cell cycle length was plotted with the shorter cell cycle time of

the pair as the X-axis and the longer cell cycle time of the pair as the Y-axis. Linear regression on the cell cycle times for siblings in Sequence

A reveals a definite trend, with anR2 value of 0.91. This indicates sibling cells have highly related cell cycle times, indicating a heritable

aspect to cell cycle control.

array of cells. While in this study we focused on changes in cell cycle rate, other distinct aspects of the clone

behavior can be extracted, e.g., cell motility or cell-cell contacts.

As discussed above, a small amount of training data representative of the sequences to be analyzed is required

to set the parameters of the algorithm (e.g.,(µ,Σ) in (1) and (2),(σ, τ) in (4)), and some manual intervention may

be required in this phase. This intervention, which amounts to a few simple mouse clicks to correct cell matching

errors, is not burdensome, especially compared to the tedious task of manually lineaging numerous image sequences.

In the future, we plan to design intuitive user interfaces to further simplify the training process.

Improved technology for microscopy and digital image acquisition will make the automatic lineaging even more

robust. For example, the murine image sequences were digitized from archived, 9-year old videotape. This was

a good starting point because the lineage trees had already been manually constructed for these cells, but image

quality was not optimal. We are currently acquiring high-resolution digital images, which are highly preferable to

the videotaped images in that they (1) have much better contrast (i.e., the cells stand out more strongly from the

background), (2) have fewer image acquisition artifacts (e.g., time stamps, VCR captions, image noise), (3) are

higher-resolution and inherently digital, and (4) were acquired with the intention of processing them with computer

vision algorithms. We further expect our general approach to be applicable to more advanced imaging modalities

(e.g., fluorescence, confocal, or two-photon microscopy), as well as 4D image stacks.

We note that different types of cells may require modifications of the move and divide hypotheses discussed
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above. For example,Drosophilaor C. elegansprogenitor cells can divide into cells of different sizes, which would

require us to adjust the assumption we made about murine cells. The automatic lineaging algorithm can also benefit

from additional mathematical models describing cell shapes or division patterns when they are available. We also

acknowledge that there are some cell behaviors that will always be nearly impossible to cope with, with either

a manual or automatic approach. For example, in some cases, multiple cells merge into a single, undifferentiated

blob for many frames and eventually split apart- there is no natural way to track individual cells once they enter

the blob, so accurate lineaging would be very difficult. In such cases, there is little recourse but to terminate the

lineage analysis. We have found that some cell types and culture conditions exacerbate blob formation, and expect

that improved culture conditions will mitigate this problem.

In conclusion, automation of lineage construction allows high-throughput analysis of clonal development, enabling

studies of how environmental and genetic factors impact cell development over time. It also enables in-depth studies

of dynamic cell populations, providing the means to gather and quantitate complex cell behaviors and cell-cell

interactions observable over a sequence of images. Most importantly, the automated method makes possible studies

that were previously infeasible due to the number of cells that need to be processed, the precision of morphometric

or timing measurements that are required, or the multi-frame spatial relationships that need to be analyzed. Finally,

the general applicablility of this method allows quantification of any image sequence of objects that split and/or

migrate. We are currently applying the framework to time-lapse sequences ofC. elegansprogenitor cell lineages in

vivo, and toC. eleganswhole organisms, to analyze and quantify animal behavior. As techniques to image live cells

in vivo in vertebrates are developed, this automated method can be applied to analyze the behavior of endogenous

or transplanted cells in tissues.
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Fig. 8. Automatically measured cell cycle times for SequenceB. Divisions are ordered in ascending order of division time. (A) All cells

aggregated. (B) cell 1, (C) cell 4, (D) cell 5, (E) cell 8, (F) cell 9. The number atop each bar indicates the cell number in Figure 4, and in

Supplementary Movie 4.
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Fig. 9. Automated analysis of Sequence C. Frames of Sequence C at times 0 and 140 hours are shown in the upper panels (A-B). The

corresponding automatically generated lineage results for cell 2 are shown on the lower panels (C-F). The triangle in the lineage tree indicates

a neuron. Note the unusually long cycle time for cell 10. Supplementary Movie 6 illustrates the entire annotated result.
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SUPPLEMENTARY MOVIES

All movies can be downloaded from theCell Cyclewebsite athttp://www.landesbioscience.com/

journals/cc/supplement/alkofahi.zip .

The original sequence is provided, followed by a second movie in which the cells are automatically overlaid

with colored dots that indicate the ancestry of the cell. The number of each dot indicates the order of division for

that sequence. Please note that while detailed morphometry is extracted by the algorithm for each cell, it is not

illustrated here for clarity.

Supplementary Movie 1.

Original captured images, SequenceA. This sequence has a total of 2100 frames. Four progenitor cells

are present in the first frame, which have divided into 43 cells by the last frame 71 hours later.

Supplementary Movie 2.

Automatically lineaged images, SequenceA.

Supplementary Movie 3.

Original captured images, SequenceB. This sequence has a total of 700 frames. Twelve progenitor cells

are present in the first frame, which have divided into 42 cells by the last frame 65 hours later.

Supplementary Movie 4.

Automatically lineaged images, SequenceB.

Supplementary Movie 5.

Original captured images, SequenceC. This sequence has a total of 2100 frames. Four progenitor cells

are present in the first frame, which have divided into 13 cells by the last frame 140 hours later.

Supplementary Movie 6.

Automatically lineaged images, SequenceC.
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