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1. INTRODUCTION

The estimation of the parameters of a projective transfor-
mation that relates the coordinates of two image planes is a
standard problem that arises in image and video mosaick-
ing, virtual video, and problems in computer vision [1],
[2], [3], [4], [5], [6]. This problem is often posed as a
least squares minimization problem based on a finite set
of noisy point samples of the underlying transformation.
While in some special cases this problem can be solved
using a linear approximation, in general, it results in an
8-dimensional nonquadratic minimization problem that is
solved numerically using an ‘off-the-shelf’ procedure such
as the Levenberg-Marquardt algorithm [7].

We show that the general least squares problem for es-
timating a projective transformation can be analytically re-
duced to a2-dimensional nonquadratic minimization prob-
lem. Moreover, we provide both analytical and experimen-
tal evidence that the minimization of this function is com-
putationally attractive. We propose a particular algorithm
that is a combination of a projection and an approximate
Gauss-Newton scheme, and experimentally verify that this
algorithm efficiently solves the least squares problem.

2. PROBLEM STATEMENT

We wish to estimate the parametersA ∈ R2×2, b, c ∈ R2

of a projective transformationgM (w) = Aw+b
cw+1 . Here we

regardb as a2 × 1 matrix, andc as a1× 2 matrix, and
let M = (A, b, c). Our objective is to select the parame-
ters so thatgM best matches a given set of point mappings
{wj 7→ w′j ∈ R2, j = 1, . . . , N}. A special case arises
when the data consists of noisy samples of a fixed but un-
known projective transformationgM∗ : w′j = gM∗(wj)+ej ,
j = 1 . . . N . Hereej ∈ R2 is the error in the measurement
of gM∗(wj). In this case we seek an estimateM of M∗.

The singular line of the transformationAw+b/(cw+1)
is the set{w: cw = −1}. Along this line it is assumed that
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Aw + b 6= 0, i.e., the matrix

(
A b
c 1

)
∈ GL(3). We

denote this by writingM ∈ GL(3), whereM is now the
triple (A, b, c) or the above matrix, depending on context.
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Fig. 1. The admissible regionCo of the(c1, c2) plane gen-
erated by data points from actual images. Thin blue lines
represent singular lines; thick green lines are singular lines
which actively bound the admissible region.

An estimateM is, by definition,admissibleif the sin-
gular line ofgM does not intersect the convex hullW of 0
andwj , j = 1, . . . , N . Since0 ∈ W , M is admissible if
and only ifcw + 1 > 0 for all w ∈ W . This is equivalent
to the requirement thatcwj + 1 > 0, j = 1, . . . , N . This
defines an open convex setCo ⊂ R2 of allowed values for
c, andM is admissible if and only ifc ∈ Co. The set of
admissible estimates is the open setA = {(A, b, c):A ∈
R2×2, b ∈ R2, c ∈ Co}. Note that admissibility does not
requireM ∈ GL(3). Figure 1 illustrates the admissible
regionCo generated by data points from actual images.

3. THE LEAST SQUARES ESTIMATE

The least squares estimatêM = (Â, b̂, ĉ) consists of those
values ofA, b andc that globally minimize:

Q(M) = 1
2

∑N
j=1

(
w′j −

Awj+b
cwj+1

)T (
w′j −

Awj+b
cwj+1

)
(1)



over admissibleM = (A, b, c).
For a fixed data set, obtaining the least squares estimate

requires solving a nonlinear minimization problem over an
open subset of an8-dimensional Euclidean space. However,
as Theorem 1 below shows, the solution can be obtained
by solving a nonlinear minimization problem over an open
convex subset ofR2. First we need the following defini-
tions.

For c ∈ Co defineA(c) andb(c) as solutions to a linear
system:

[ A(c) b(c) ]W (c) = V (c) (2)

whereqj(c) = cwj + 1 and

W (c) =

 ∑N
j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)∑N

j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)

 (3)

V (c) =
[ ∑N

j=1

w′jw
T
j

qj(c)

∑N
j=1

w′j
qj(c)

]
(4)

We assume that the points{wj : j = 1, . . . , N} are not
colinear inR2. This ensures thatW (c) is positive definite
and hence thatA(c) andb(c) are defined for allc ∈ Co.

We can now state our first result.

Theorem 1 Assuming that the pointswj , j = 1, . . . , N
are noncolinear, the least squares estimateM̂ has the form
(A(ĉ), b(ĉ), ĉ) and thus lies on the2-dimensional subman-

ifoldM ∆= {(A, b, c):A = A(c), b = b(c), c ∈ Co} of the
eight dimensional spaceR2×2 ×R2 × Co.

Proof: SinceM̂ minimizes (1), it follows that we must
haveDAQ(M̂) = 0, DbQ(M̂) = 0, andDcQ(M̂) = 0.
This yields:

Â
∑
j

wjw
T
j

(ĉwj+1)2 + b̂
∑
j

wTj
(ĉwj+1)2 −

∑
j

w′jw
T
j

ĉwj+1 = 0 (5)

Â
∑
j

wj
(ĉwj+1)2 + b̂

∑
j

1
(ĉwj+1)2 −

∑
j

w′j
ĉwj+1 = 0 (6)

∑
j

(
w′j −

(
Âwj+b̂
ĉwj+1

))T (
Âwj+b̂
ĉwj+1

)
wj

ĉwj+1 = 0 (7)

Rewriting the normal equations (5) and (6) yields (2). Thus
(Â, b̂, ĉ) = (A(ĉ), b(ĉ), ĉ) and the theorem follows.

In view of Theorem 1, defineJ : Co → R by

J(c) = 1
2

∑N
j=1

(
w′j −

A(c)wj+b(c)
cwj+1

)T (
w′j −

A(c)wj+b(c)
cwj+1

)
(8)

J(c) is simply the least squares cost function restricted to
the manifoldM. For anyMo = (A(co), b(co), co) ∈ M,
Q(Mo) = J(co). Hence the global minimizing solution
of J(c) within Co is ĉ. This reduces the determination of
the least squares estimatêM to the minimization ofJ over
Co. Figure 2 illustrates the cost functionJ graphed over
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Fig. 2. The cost functionJ(c1, c2) for data points from ac-
tual images. The dark blue lines are the singular lines which
actively boundCo.

the regionCo for data points from actual images. Within
Co, the cost function has a single minimum located at the
bottom of a deep bowl.

For c∗ on exactly one singular line, sayc∗w1 + 1 = 0,
the matricesW (c∗) andV (c∗) which would define(A(c∗),
b(c∗)) are infinite. However, we can show that the limiting
solution of (2) asc approachesc∗ is the solution to the well-
defined constrained least-squares problem

minA,b 1
2

∑N
j=2

(
w′j −

Awj+b
c∗wj+1

)T (
w′j −

Awj+b
c∗wj+1

)
(9)

s.t. Aw1 + b = 0 (10)

The limiting value ofA(c)w1+b(c)
cw1+1 asc approachesc∗ can

be shown to bew′1. Therefore, the cost functionJ(c1, c2) is
finite along the singular lines, which can be seen in Fig-
ure 2. However, along singular lines the resulting least-
squares projective transformation estimates are not mem-
bers ofGL(3).

For c∗ at the intersection of exactly two singular lines,
the limiting solution of (2) asc approachesc∗ is the solution
to a constrained least-squares problem similar to (9)-(10)
over the data set minus the two offending points. Intersec-
tions of three singular lines are rare and only occur when
three data points are colinear.

4. OBTAINING THE LEAST-SQUARES ESTIMATE

Typical algorithms for the minimization of (1) operate itera-
tively as follows. LetMk = (Ak, bk, ck), k ≥ 0, be the ap-
proximation ofM̂ after stepk and letdk = (Fk, gk, hk) de-
note the search direction used at stepk. Then(Ak+1, bk+1,
ck+1) = (Ak, bk, ck) + αk(Fk, gk, hk) where the step size



αk ≥ 0 is selected to ensure thatQ(Mk+1) ≤ Q(Mk). dk
is typically related to the gradient of the objective function
evaluated atMk.

For all such schemes we can make several observations.
Let Mo = (Ao, bo, co) with Ao ∈ R2×2, and bo, co ∈
R2. Define the projection ofMo ontoM to beP (Mo)

∆=
(A(co), b(co), co).

Theorem 2 Let d = (F, g, h) with F ∈ R2×2, andg, h ∈
R2. Then

1. For anyMo, J(co) = Q(P (Mo)) ≤ Q(Mo).

2. ForMo onM, define

M(α) = Mo + αd (11)

c(β) = co + βh (12)

α∗ = argminα≥0 Q(M(α)) (13)

β∗ = argminβ≥0 J(c(β)) (14)

Mβ∗ = (A(c(β∗)), b(c(β∗)), c(β∗)) (15)

ThenQ(Mβ∗) = J(c(β∗)), and
Q(Mβ∗) ≤ Q(P (M(α∗))) ≤ Q(M(α∗)) ≤ Q(Mo).

3. ForMo onM, if d = (F, g, h) is a descent direction
for Q atMo, thenh is a descent direction forJ at co.

Proof:
1. Consider minimizingQ(M) with M constrained so that
c = co. The normal equations for this problem are linear
and have the unique solutionA(co) andb(co). Hence on the
constraint setc = co, Q(M) has a unique global minimum
at the point(A(co), b(co), co) = P (Mo). SinceMo lies in
this set,Q(P (Mo)) ≤ Q(Mo).

2. Forβ ≥ 0,Mβ = (A(c(β)), b(c(β)), c(β)) is a curve on
M passing throughMo (β = 0) andP (M(α∗)) (β = α∗).
Along this curveQ(Mβ) = J(c(β)). Hence the minimum
of Q along the curve occurs atβ = β∗. ThusJ(c(β∗)) =
Q(Mβ∗) ≤ Q(P (M(α∗))). The other inequalities follow
from part (1).

3. Since(F, g, h) is a descent direction forQ atMo, there
existsαo > 0 such thatQ(Mo + αd) ≤ Q(Mo) for all
α ∈ [0, αo]. For α ≥ 0 let Mα = (A(co + αh), b(co +
αh), co + αh). Then for allα ∈ [0, αo], J(co + αh) =
Q(Mα) ≤ Q(Mo + αd) ≤ Q(Mo) = J(co). The first
inequality follows from part (1); the second follows from
the fact thatd is a descent direction forQ atMo.

Theorem 2 indicates that each step of an iterative min-
imization ofQ(M) can be improved by exploiting the for-
mulasA(c) andb(c) to project the next approximation onto

the manifoldM. Moreover, part (2) indicates that mini-
mizing J(c) in the directionhk from ck yields a greater
decrease in the least squares objective than either minimiz-
ing Q(M) in the directiondk from Mk and then project-
ing, or simply minimizingQ(M) in the directiondk from
Mk. Other issues aside, this suggests that obtaining the least
squares estimate by iteratively minimizingJ(c) is more ef-
ficient than a similar scheme applied toQ(M). The third
part of the theorem shows that at any point on the manifold
M, every descent direction forQ yields a corresponding
descent direction forJ . If we combine this with part (2)
we see that minimization ofJ along this direction will yield
a smaller value of the least squares objective function than
minimizingQ in the given descent direction.

Of course,J is a more complex function thanQ and
hence it is conceivable that the necessary computations in
minimizing J are also more complex. However, as far as
the gradient is concerned this is not the case. To see this, let
M(c) = (A(c), b(c), c). Then for eachh ∈ R2,

DJ(c)h = DAQ(M(c)) ·DcA(c)h (16)

+DbQ(M(c))Dcb(c)h+DcQ(M(c))h

SinceM(c) lies onM,DAQ(M(c)) = DbQ(M(c)) =
0. Then from (7),

∇J(c) = DcQ(M(c)) (17)

=
∑
j

(
w′j −

A(c)wj+b(c)
cwj+1

)T
A(c)wj+b(c)

cwj+1
wj

cwj+1

The computation ofA(c) andb(c) is equivalent to the
computation of∇AQ and∇bQ, and can be efficiently ac-
complished by solving the linear system (2). The computa-
tion of∇J givenA(c) andb(c) is equivalent to the compu-
tation of∇cQ. Thus the computation of the gradient ofJ is
no more complex than computing the gradient ofQ.

It is well known that minimization methods based on
the second derivative of the object function have superior
rates of convergence. These methods are based on various
modifications of the Newton-Raphson and Gauss-Newton
schemes. Applied toQ, these operate by settingMk+1 =
Mk −H(Mk)−1∇Q(Mk) whereH(Mk) is either the Hes-
sian ofQ atMk or a suitable approximation. The Levenberg-
Marquardt algorithm is a common modification of the basic
Gauss-Newton scheme. Write

Q(M) = 1
2

∑
j

(
w′j − gj(M)

)T (
w′j − gj(M)

)
(18)

wheregj(M) = (Awj + b)/(cwj + 1). Then

DQ(M) = −
∑
j (w′i − gi(M))T Dgi(M) (19)

D2Q(M) =
∑
j Dgi(M)TDgi(M) (20)

−
∑
j (w′i − gi(M))T D2gi(M)



D2Q(M) is the Hessian ofQ atM and the first term is
the Gauss-Newton approximation of the Hessian.

It is straightforward to derive expressions for the Gauss-
Newton approximation to the Hessian ofQ and for the Hes-
sian ofJ and its Gauss-Newton approximation. The Hes-
sian forJ is quite cumbersome sinceJ depends onc both
directly and through the dependence ofA(c) and b(c) on
c. Limited space precludes the inclusion of these equations
here. We note, however, that the complexity of the expres-
sions raises the issue of obtaining efficiently computable ap-
proximations to the Hessian ofJ . In this regard we propose
the following algorithm.

Proposed algorithm for minimizing J :
Compute the gradient ofJ exactly using (17) and ap-

proximate the Hessian ofJ by assuming thatA andb do not
depend onc. Then use these quantities to update the value
of c using an (approximate) Newton-Raphson step. Finally,
use the new value ofc to update the values ofA andb using
the formulas forA(c) andb(c).

Experimental results on the performance of this pro-
posed algorithm are reported in the next section.

5. EXPERIMENTAL RESULTS

We coded three algorithms in MATLAB: standard Gauss-
Newton applied toQ, standard Gauss-Newton applied toJ ,
and the algorithm proposed above. In each case we ensured
that the algorithms employed the same computational pro-
cedures and tests. The algorithms were compared on 6 sets
of point correspondences, each obtained from pairs of natu-
ral images related by projective transformations. The num-
ber of point correspondences and the resultant estimated pa-
rameters for each example are shown in the table below, and
the computational requirements of the algorithms for each
of the 6 examples are shown in the figure below. In each ex-
ample, all three algorithms converged to the same projective
transformation estimate. Averaged over the 6 examples, the
proposed algorithm was 2.7 times more efficient per sample
point than the standard Gauss-Newton method applied toQ.

Ex. # â11 â12 b̂1 ĉ1
# wj â21 â22 b̂2 ĉ2
1 47 1.0855 0.0444 64.063 0.000169

-0.0013 0.741 -34 -0.000163
2 47 1.073 0.386 -32.33 0.00069

-0.0089 0.6583 -30.63 -0.00112
3 47 0.87 -0.205 78.51 -0.00058

0.014 1.103 4.7 0.00202
4 26 0.065 1.001 -65.218 -0.00157

-0.21 0.15 95.23 -0.0013
5 32 1.028 -4.164 426.76 -0.000096

0.0337 2.255 27.377 0.00817
6 18 0.111 0.98 -89.22 -0.001586

-0.23 0.125 111.1 -0.000862
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Fig. 3. Floating-point operation counts for the three meth-
ods.

6. CONCLUSIONS

Obtaining the least squares estimate of the parameters of a
projective transformation using the algorithm proposed in
section 4 to minimizeJ offers a worthwhile efficiency ad-
vantage. The experimental results indicate that, in general,
minimizingJ using the proposed algorithm does not incur a
significant computational penalty over using a standard al-
gorithm such as Levenberg-Marquardt to minimizeQ and
in certain cases it can offer a distinct efficiency advantage.
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