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1. INTRODUCTION

Aw + b # 0, i.e., the matrix(i1 € GL(3). We

1
The estimation of the parameters of a projective transfor- denote this by writingl/ € GL(3), where M is now the
mation that relates the coordinates of two image planes is afiple (4, b, c) or the above matrix, depending on context.
standard problem that arises in image and video mosaick-

ing, virtual video, and problems in computer vision [1], I
[2], [3], [4], [5], [6]. This problem is often posed as a
least squares minimization problem based on a finite set
of noisy point samples of the underlying transformation.
While in some special cases this problem can be solved
using a linear approximation, in general, it results in an o of
8-dimensional nonquadratic minimization problem that is
solved numerically using an ‘off-the-shelf’ procedure such
as the Levenberg-Marquardt algorithm [7].

We show that the general least squares problem for es-
timating a projective transformation can be analytically re- 2
duced to &-dimensional nonquadratic minimization prob-
lem. Moreover, we provide both analytical and experimen- o .
tal evidence that the minimization of this function is com- Fi9- 1. The admissible regio@’, of the (¢, ¢;) plane gen-
putationally attractive. We propose a particular algorithm €rated by data points from actual images. Thin blue lines
that is a combination of a projection and an approximate rep_resent_ singular lines; thlck_gr_een I|ne_s are singular lines
Gauss-Newton scheme, and experimentally verify that this Which actively bound the admissible region.
algorithm efficiently solves the least squares problem.

The admissible region C, of the (c,.c,) plane

An estimate)M is, by definition,admissiblef the sin-
gular line ofg,; does not intersect the convex hiill of 0
2. PROBLEM STATEMENT andw,;, 7 = 1,...,N. Since0 € W, M is admissible if
and only ifcw + 1 > 0 for all w € W. This is equivalent
We wish to estimate the parametetsc R**?, b, ¢ € R2 to the requirement thatw; +1 > 0,j = 1,...,N. This
of a projective transformatiopy, (w) = f;jf. Here we defines an open convex 8t ¢ R? of allowed values for
regardb as a2 x 1 matrix, andc as al x 2 matrix, and ¢, and M is admissible if and only it € C,. The set of
let M = (A,b,c). Our objective is to select the parame- admissible estimates is the open set= {(4,b,¢): A €
ters so thay,, best matches a given set of point mappings R**?,b € R% ¢ € C,}. Note that admissibility does not
{w; — w} € R%j = 1,...,N}. A special case arises requireM € GL(3). Figure 1 illustrates the admissible
when the data consists of noisy samples of a fixed but un-regionC, generated by data points from actual images.

known projective transformatiogn-: w’; = gar-(w;)+e;,

j=1...N. Heree; € R?is the error in the measurement 3. THE LEAST SQUARES ESTIMATE
of gar+ (wj). In this case we seek an estimateof /™.

The singular line of the transformatiotw+b/(cw+1) The least squares estimaté = (A, b, ¢) consists of those
is the se{w: cw = —1}. Along this line it is assumed that  values ofA, b andc that globally minimize:
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over admissiblé\/ = (A, b, ¢).

For a fixed data set, obtaining the least squares estimate

requires solving a nonlinear minimization problem over an
open subset of a®rdimensional Euclidean space. However,

as Theorem 1 below shows, the solution can be obtained

by solving a nonlinear minimization problem over an open
convex subset oR?. First we need the following defini-
tions.

Forc € C, defineA(c) andb(c) as solutions to a linear
system:

[ A(c) b(e) [W(e)=V(c) )
whereg;(c) = cw; + 1 and
N ijT N w,
W(C) _ Zj 1 (C) Zj:l Q?(C) (3)
=LA =LA
j=1 Q-(C) J=1 ¢3(c)
_ N wjul v
Vi = | Zined XYmoo “)
We assume that the poinfsy; : j = 1,..., N} are not

colinear inR2. This ensures thdt/(c) is positive definite
and hence thati(c) andb(c) are defined for alt € C,.
We can now state our first result.

Theorem 1 Assuming that the points;, j = 1,..., N
are noncolinear, the least squares estimafehas the form
(A(¢é),b(¢), ¢) and thus lies on the-dimensional subman-
ifold M 2 {(A,b,¢): A = A(c),b = b(c),c € C,} of the
eight dimensional spadg?*? x R? x C,.

Proof: SingeM minimize§ (1), it follows thatAwe must
have DAQ(M) = 0, D,Q(M) = 0, andD.Q(M) = 0.
This yields:
wT wiw?
AZ] (('u) +1)2 +bZJ ((.wj+1)2 - Z] éuij—‘:l =0 (5)
i w4 1 wp,
AY G Y02 G ~ 2 amri =0 (6)
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Rewriting the normal equations (5) and (6) yields (2). Thus
(A,b,¢) = (A(¢), b(é), ¢) and the theorem follows. [ |

In view of Theorem 1, defind : C, — R by
T
A(c)w;+b(c)
cw;+1 ) (w; -

A(c)w; c
Je) =3 55 (wf ~ )

cw;+1

(8)

J(c) is simply the least squares cost function restricted to

the manifold M. For anyM, = (A(c,),b(co),c0) € M,
Q(M,) = J(c,). Hence the global minimizing solution
of J(c) within C, is ¢. This reduces the determination of
the least squares estimalté to the minimization of/ over
C,. Figure 2 illustrates the cost functiah graphed over

Projective transformation estimation cost function J(cl,cz)
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Fig. 2. The cost functior/ (¢, ¢2) for data points from ac-
tual images. The dark blue lines are the singular lines which
actively bound”,,.

the regionC, for data points from actual images. Within
C,, the cost function has a single minimum located at the
bottom of a deep bowil.

For ¢* on exactly one singular line, sa§w; + 1 = 0,
the matricedV (c¢*) andV (¢*) which would defind A(c*),
b(c*)) are infinite. However, we can show that the limiting
solution of (2) as approaches* is the solution to the well-
defined constrained least-squares problem
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(10)

The limiting value ofwﬂb(c) asc approaches* can

be shown to bev]. Therefore, the cost functiof(cy, c2) is
finite along the singular lines, which can be seen in Fig-
ure 2. However, along singular lines the resulting least-
squares projective transformation estimates are not mem-
bers of GL(3).

For ¢* at the intersection of exactly two singular lines,
the limiting solution of (2) ags approaches* is the solution
to a constrained least-squares problem similar to (9)-(10)
over the data set minus the two offending points. Intersec-
tions of three singular lines are rare and only occur when
three data points are colinear.

4. OBTAINING THE LEAST-SQUARES ESTIMATE

Typical algorithms for the minimization of (1) operate itera-
tively as follows. LetM}, = (A, bk, ck), k > 0, be the ap-
proximation of M after stept and letdy, = (F, gk, hy) de-
note the search direction used at ste@hen(Ax1, bk+1,
ck+1) = (A, bg, ck) + ax(Fk, gk, hi) where the step size



ap > 0is selected to ensure th@{( My 1) < Q(Mg). dg

the manifold M. Moreover, part (2) indicates that mini-

is typically related to the gradient of the objective function mizing J(c) in the directionh; from ¢, yields a greater

evaluated af\/.

decrease in the least squares objective than either minimiz-

For all such schemes we can make several observationsing Q(M) in the directiond;, from M, and then project-

Let M, = (Ao, b,,co) With A, € R?*2, andb,,c, €
R?2. Define the projection of\/, onto M to be P(M,) E
(A(CO)a b(co), CO)-

Theorem 2 Letd = (F, g, h) with F' € R?>*2, andg, h €
R2. Then

1. ForanyM,, J(c,) = Q(P(M,)) < Q(M,).
2. For M, on M, define

M () M, + ad (11)
c(B) = cot+pBh (12)
o — argmin,, (M()) (13)

pr = argminﬁzo J(c(8)) (14)
Mg = (A(c(87)),b(c(87)),c(87)) (15)

ThenQ(Mgs-) = J(c(8*)), and
Q(Mp-) < Q(P(M(a¥))) < Q(M(a")) < Q(M,).

3. ForM, on M, if d = (F, g, h) is a descent direction
for Q at M, thenh is a descent direction fof at c,.

Proof:

1. Consider minimizing (M) with M constrained so that
¢ = ¢,. The normal equations for this problem are linear

and have the unique solutiofic,) andb(c, ). Hence on the

constraint set = ¢,, Q(M) has a unique global minimum

at the point(A(c,), b(co), ¢co) = P(M,). Sincel, lies in
this set,Q(P(M,)) < Q(M,).

2. For3 >0, Mz = (A(c(B)),b(c(B)), c(B)) is a curve on
M passing through/, (8 = 0) andP(M (a*)) (B = a*).
Along this curveQ(Mgz) = J(c(f8)). Hence the minimum
of @ along the curve occurs @& = *. ThusJ(c¢(8*)) =
Q(Ms+) < Q(P(M(a*))). The other inequalities follow
from part (1).

3. Since(F, g, h) is a descent direction fap at M,, there
existsa, > 0 such thatQ (M, + ad) < Q(M,) for all
a € [0,a,]. Fora > 0let M, = (A(c, + ah),b(c, +
ah),c, + ah). Then for alla € [0, ], J(co + ah) =
Q(M,) < Q(M, + ad) < Q(M,) = J(c,). The first

ing, or simply minimizingQ (M) in the directiond;, from

M;.. Other issues aside, this suggests that obtaining the least
squares estimate by iteratively minimizidgc) is more ef-
ficient than a similar scheme applied@{17). The third

part of the theorem shows that at any point on the manifold
M, every descent direction fap yields a corresponding
descent direction fod. If we combine this with part (2)

we see that minimization of along this direction will yield

a smaller value of the least squares objective function than
minimizing @ in the given descent direction.

Of course,J is a more complex function thafy and
hence it is conceivable that the necessary computations in
minimizing J are also more complex. However, as far as
the gradient is concerned this is not the case. To see this, let
M(c) = (A(c),b(c), c). Then for eachh € R?,

DJ(e)h = DaQ(M(c)) - DeA(c)h (16)

+DyQ(M (c))D.b(e)h + D.Q(M(c))h

SinceM (c) liesonM, DAQ(M(c)) = DpyQ(M(c)) =
0. Then from (7),

VI(e) = DcQ(M(c)) a7)
T

— A(c)w;+b(c) A(wj+b(c)  wy

N Zj (wéi cw;+1 ) cw;+1  cw;+1

The computation ofd(c) andb(c) is equivalent to the
computation ofV 4@ andV,@, and can be efficiently ac-
complished by solving the linear system (2). The computa-
tion of V.J given A(c) andb(c) is equivalent to the compu-
tation of V.Q. Thus the computation of the gradient.bfs
no more complex than computing the gradien€of

It is well known that minimization methods based on
the second derivative of the object function have superior
rates of convergence. These methods are based on various
modifications of the Newton-Raphson and Gauss-Newton
schemes. Applied t@), these operate by setting,; =
My, — H(My,)~'VQ(M) whereH (M) is either the Hes-
sian ofQ) at M, or a suitable approximation. The Levenberg-
Marquardt algorithm is a common modification of the basic
Gauss-Newton scheme. Write

QM) =53, (w) — g;(M))" (w) — g;(M))  (18)

inequality follows from part (1); the second follows from whereg; (M) = (Aw; + b)/(cw; + 1). Then

the fact thatl is a descent direction fap at M,,. [ |

Theorem 2 indicates that each step of an iterative min-
imization of Q(M) can be improved by exploiting the for-
mulasA(c) andb(c) to project the next approximation onto

DQ(M) =
D*Q(M) =

— ¥, (w] = gi(M))" Dgi(M) (19)
>2; Dgi(M)" Dg;(M) (20)

=%, (W} — gi(M))" D?g;(M)



D?Q(M) is the Hessian of) at M and the first term is ,5 x10°
the Gauss-Newton approximation of the Hessian.

It is straightforward to derive expressions for the Gauss-
Newton approximation to the Hessian@fand for the Hes- 2t
sian of J and its Gauss-Newton approximation. The Hes-

sian forJ is quite cumbersome sincedepends om both I
directly and through the dependence Afc) and b(c) on §1-57 -GN o 8
c. Limited space precludes the inclusion of these equations §
here. We note, however, that the complexity of the expres- 8

sions raises the issue of obtaining efficiently computable ap-~ 1 proposed Algorithm
proximations to the Hessian dt In this regard we propose mm Approx. N-R on J

the following algorithm.
0.5

Proposed algorithm for minimizing J:

Compute the gradient of exactly using (17) and ap-
proximate the Hessian of by assuming thatt andb do not 0 1 > 3 2
depend orc. Then use these guantities to update the value Example Number
of ¢ using an (approximate) Newton-Raphson step. Finally, . . ) )
use the new value afto update the values of andb using F(ljg. 3. Floating-point operation counts for the three meth-

the formulas forA(c) andb(c). 0ds.
Experimental results on the performance of this pro-
posed algorithm are reported in the next section. 6. CONCLUSIONS

Obtaining the least squares estimate of the parameters of a
projective transformation using the algorithm proposed in

We coded three algorithms in MATLAB: standard Gauss- section 4 to minimiz_e] offers a wort_hw_hile emdency ad-
Newton applied ta), standard Gauss-Newton appliedio vantage. The experlmental results mdmate that, in general,
and the algorithm proposed above. In each case we ensurefl!"iMizing J using the proposed algorithm does not incur a
that the algorithms employed the same computational pro_S|gn|f|cant computational penalty over using a standard al-

cedures and tests. The algorithms were compared on 6 Setgonthm such as Levenberg-Marquardt to minimizeand

of point correspondences, each obtained from pairs of natyJn certain cases it can offer a distinct efficiency advantage.
ral images related by projective transformations. The num-
ber of point correspondences and the resultant estimated pa-
rameters for each example are shown in the table below, and[1] R.Y. Tsaiand T.S. Huang, “Estimating the three-dimensional motion
the computational requirements of the algorithms for each ~ Parameters of a rigid planar patch,” IEEE Trans. ASSP, 25(6), Dec.
. . 1981, 1147-1152.

of the 6 examples are shown in the figure below. In each ex- | 5. M 4 RW. Picard. "Vid bits of th o

. P . Mann and R.W. Picard, “Video orbits of the projective group:
ample, all th_ree alg_omhms Converged tothe same projective a simple approach to featureless estimation of parameters,” |IEEE
transformation estimate. Averaged over the 6 examples, the  Trans. IP, 6(9), 1281-1295.

proposed algorithm was 2.7 times more efficient per sample [3]
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