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Abstract

This thesis describes a Matlab implementation of the Implicitly Restarted Arnoldi

Method for computing a few selected eigenvalues of large structured matrices. Shift-

and-invert methods allow the calculation of the eigenvalues nearest any point in the

complex plane, and polynomial acceleration techniques aid in computing eigenvalues

of operators which are de�ned by m-�les instead of Matlab matrices. These new

Matlab functions will be incorporated into the upcoming version 5 of Matlab and will

greatly extend Matlab's capability to deal with many real-world eigenvalue problems

that were intractable in version 4.

The thesis begins with a discussion of the Implicitly Restarted Arnoldi Method.

The bulk of the thesis is a user's manual for the Matlab functions which implement this

algorithm. The user's guide not only describes the functions' syntax and structure but

also discusses some of the di�culties that were overcome during their development.

The thesis concludes with several examples of the functions applied to realistic test

problems which illustrate the versatility and power of this new tool.
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Chapter 1

Introduction

1.1 Why do we need eigenvalues?

How well will a building withstand an earthquake? What is the long-term behavior

of an RLC circuit? How does heat 
ow through an irregularly shaped domain? The

theory of eigenvalues and eigenvectors, or spectral analysis, can help answer these

science and engineering questions, and many more.

Suppose a structural engineer must determine whether a certain building will

withstand an earthquake. A natural way to model the building is as a large system

of masses connected together by springs. The movement of each mass depends on the

forces exerted on it by neighboring masses; masses further away in the structure have

only an indirect impact. In some sense, all of the information about this mass-spring

system can be expressed as a huge matrix in which the (i; j)th entry corresponds to

the e�ect mass i has on mass j via a connecting spring.
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Figure 1.1: One-dimensional mass-spring system
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This example illustrates an important and fortunate characteristic of many ma-

trices which originate in real-world applications: they are very sparse. That is, the

number of nonzero elements in the matrix is very small compared to the total number

of matrix elements. In the above example, if the number of masses is a large num-

ber m, then the resulting matrix has at most 3m nonzero entries, a small number

compared to the total number of entries, m2.

Furthermore, this matrix is highly structured. That is, the nonzero entries are

not scattered randomly throughout the matrix, but occur at predictable locations.

Plotting the locations of the nonzero entries of the matrix produces:

0 5 10 15 20 25 30 35
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15

20

25

30

35

Nonzero entries of a sparse matrix

Figure 1.2: Nonzero entries of the mass-spring matrix

Many matrices which arise from engineering applications have some underlying

structure. This structure allows us to optimize operations involving the matrix, such

as multiplying the matrix by a vector. E�cient algorithms for matrix computations

become especially important as the order of the matrix grows.

In the mass-spring system, a standard problem is to determine the behavior of

the system given forces on each mass due to gravity, the springs, internal damping,

and external conditions. When there is no outside force on the masses, the resulting

behavior is termed damped free vibration. The masses will oscillate with a certain

period, and the amplitude of the oscillations will decrease according to the resistance

of the medium in which the system is placed. The situation becomes more interesting
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when there is an external force on each mass. If this force has the same period

as the oscillations which would occur in the damped free vibration case, dangerous

oscillations can occur whose amplitude increases without bound. A famous actual

example occurred when a column of soldiers marched in step across a suspension

bridge in England, causing the bridge to resonate and collapse. For this reason,

soldiers now break step when crossing bridges [19, p. 309].

Many structural engineering models take the form of systems of masses and

springs, and spectral analysis of these systems can provide important real-world infor-

mation. For example, civil engineers need to calculate the vibrational modes (which

correspond to eigenvalues) of models of skyscrapers, in order to determine if any of

these modes lie in the earthquake band. Designers of luxury cars seek to develop

car frames whose vibrational modes lie outside the frequencies induced by highway

driving, in order to create a quieter ride. The portable compact disc player a jogger

uses for running to music should be able to absorb the vibrations induced by run-

ning without a�ecting the quality of sound output. The mathematical formulation of

these problems is to �nd the eigenvalues of a matrix which are closest to a point or

region. In these examples, the frequencies corresponding to the earthquake band or

road noise can be mapped to a region in the complex plane. To solve the problem, we

need to model the building or car as a mass-spring system, construct the appropriate

matrix, and determine whether or not any eigenvalues of this matrix approach the

region of concern.

A di�erent structural engineering problem, buckling analysis, involves determining

the point at which a system will go from a stable state to an unstable one. For

example, if a rod is compressed at both ends with increasing force, after a certain

point it will bend or break. A certain mass placed at the top of a structure may

have a stabilizing e�ect, while a heavier mass may cause the structure to collapse

[19]. The structure seeks the state in which its internal energy is minimum. Finding

the \natural" state of a system therefore involves an optimization problem. In one

variable, we �nd candidates for minima of a function f(x) by solving for the critical

points where f 0(x) = 0. If x� is a critical point and f
00(x�) > 0, then the critical

point is a minimum. This strategy extends to the higher dimensional case; in this

setting, the second derivative test takes the guise of checking to see if all of the

eigenvalues of a certain matrix are positive (that is, if the matrix is positive de�nite).

The structure goes from a stable state to an unstable one when one eigenvalue of this

matrix becomes zero or negative. Therefore, the smallest eigenvalue is of the most
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interest; if this eigenvalue is negative, the structure will buckle. Spectral approaches

are also important for more complicated buckling problems in which the structure may

deform to one of several states. The calculations involved are known as bifurcation

analysis.

Spectral analysis arises more generally in the study of stability of dynamical sys-

tems in the form y
0 = F (y). In this situation, y is some vector-valued function of

time and F could be a partial di�erential operator and is usually a nonlinear function

of y. The standard technique, called linearization or �rst-order perturbation, is to

�nd equilibrium points by solving F (y) = 0, and then to determine the stability of

these points by considering the eigenvalues of a special matrix called the Jacobian of

F at the equilibria. An equilibrium is stable if all of the eigenvalues of the Jacobian

at that point have negative real part. The transition from stability to instability is

equivalent to an eigenvalue of the Jacobian crossing from the left half-plane to the

right half-plane. In this situation, we need only concern ourselves with the eigenval-

ues of largest real part. If any of the rightmost eigenvalues occurs in the right half

plane, the system is unstable. Only a few of the rightmost eigenvalues are needed, for

if a system is unstable to a small perturbation, the e�ects of larger perturbations are

irrelevant. In the stable case, we can approximate the long-term behavior of a system

by analyzing the eigenvectors associated with these rightmost eigenvalues. This type

of stability analysis arises in many �elds, including computational chemistry, 
uid

dynamics, and the study of electric power systems.

A �nal common application of spectral analysis occurs when a continuous operator

over a region of interest is discretized by imposing a �ne mesh over the region. More

accurate approximations to the in�nite number of eigenfunctions associated with the

operator and region can be obtained by further re�ning the mesh. The operator

which is discretized varies from �eld to �eld. In quantum chemistry, the properties

of electrons and other elementary particles are described by their wave functions

 , which are solutions to the Schr�odinger equation H = E . We shall see that

the wave functions  are exactly the eigenfunctions of the Hamiltonian operator,

with corresponding eigenvalues given by the energy E. To solve the problem on a

digital computer, the Hamiltonian H is discretized; the eigenvectors of this matrix

can be used to construct approximations to the eigenfunctions. These wave function

approximations give information about quantal transition probabilities and on a larger

scale, molecular motion.
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Very large matrices often arise from spatial discretization problems in high di-

mensions. In the n-dimensional case, a grid size of b bins per dimension produces a

matrix of order bn. To achieve engineering accuracy (three to four decimal places)

of the results in three dimensions, it may be necessary to discretize each dimension

with O(102) bins or more, giving rise to matrices with n = O(106). These matrices

can be stored entirely in main memory on most powerful computer systems, but they

cannot be factored.

The above examples introduce some of the many engineering contexts in which

eigenvalues and eigenvectors arise. In Chapter 7, we shall return to these problems

and demonstrate how to solve them.

1.2 The state of the art

Though we have simple algebraic expressions for the eigenvalues and eigenvectors

of a matrix, the practical problem of �nding eigenvalues is actually much harder

than it looks. Computing the characteristic polynomial or the nullspace of a matrix

is a process ill-suited to a digital computer. In fact, it turns out that it is not

possible to develop direct methods for solving the eigenvalue problem which involve

a �nite number of operations to arrive at precise eigenvalues. Instead, we must rely

on iterative methods which gradually re�ne the precision of approximations to the

eigenvalues until the results are acceptably good.

The process is further complicated by the fact that the methods which are com-

monly applied to solve small, dense eigenvalue problems are not appropriate for the

large, sparse, and structured problems that commonly arise from real-world engineer-

ing problems.

Numerical considerations, cases involving multiple or clustered eigenvalues, and

roundo� errors produced by 
oating-point operations make the possibility of a \black

box" algorithm for computing eigenvalues slim. In few situations does there exist an

algorithm which will perform excellently no matter what problem the user supplies.

Parameters may need to be set intelligently to get the best performance from an

algorithm for a speci�c problem. Furthermore, the algorithms we will discuss con-

verge much more quickly if the user is able to specify certain information about the

matrix and perhaps guesses about the nature of the eigenvalues and eigenvectors. If

the user has some intuition about what the results should be, this is a reasonable

request. Several software packages to compute eigenvalues and eigenvectors are cur-
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rently available for the user with a background in numerical linear algebra, notably

the collection of Fortran routines ARPACK. This software package allows the user to

allocate space for working vectors, adjust many algorithm parameters, and observe

intermediate results of the iterations as they proceed [14].

However, we cannot expect every user to have a �rm command of numerical

linear algebra, a great deal of intuition about the problem, and a knowledge of many

di�erent programming languages. Typically, an engineer would prefer a tool which

requires little thought and mathematical background to use and will deliver results

in a reasonable amount of time without prompting or fuss.

The mathematical software Matlab is arguably the industry standard numerical

analysis tool for both industrial and educational environments [15]. The software

attempts to address the needs of both the research scientist and the working engineer

by providing powerful, state-of-the-art algorithms whose details of implementation

are transparent.

Today's computers have more memory and faster processors than ever before. It

is becoming easier for users to construct problems which can be stored but cannot

be solved by existing means. For example, users can store huge matrices of order

500 or more in Matlab version 4. It is intuitive to believe that if the problem can

be posed within the existing Matlab framework, it can be solved. However, if a user

attemps to �nd the eigenvalues of such a huge matrix using Matlab's eig command,

the result will either be an Out of memory error message or a screen which stays

blank for hours as the algorithm converges. Neither of these outcomes is desirable for

or addressable by a working engineer.

The Implicitly Restarted Arnoldi Method is an algorithm well-suited to solving

the types of eigenvalue problems discussed in the previous section. It is not merely a

theoretical tool but the dominant method by which these real problems are solved.

The goal of my work over the previous year was to study the Implicitly Restarted

Arnoldi Method and implement this algorithm in the Matlab programming lan-

guage. The resulting Matlab functions are not a direct transcription of Fortran source

code, but rather a translation both in programming language and philosophy. The

Matlab implementation replaces the complex and lengthy function calls characteris-

tic of Fortran routines with clean, intuitive syntax and an informative user interface.

This new suite of functions greatly extends Matlab's capability to solve previously

intractable eigenvalue problems.



7

We now turn to developing the mathematical theory needed to understand eigen-

values and eigenvectors and the Implicitly Restarted Arnoldi Method which we will

use to compute them.
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Chapter 2

Foundations of the QR Method

2.1 Notation

We review some basic notational conventions. Capital and lower case letters denote

matrices and vectors, respectively. The identity matrix in Rn�n is denoted by In,

and the subscript is dropped when the dimension is clear. We use ej to denote the

j
th column of the identity matrix. The transpose of a vector x is denoted by xT and

x
H denotes the complex conjugate of xT . The nullspace of a matrix A is denoted

by N (A), and the determinant of the matrix is denoted det(A). The inverse of A is

denoted A�1. A(:; j) denotes the jth column of the matrix A; A(i; :) denotes the ith

row. A(i; j1 : j2) denotes the vector composed of the jst1 through jnd2 entries in row i

of A; this extends in the natural way to A(i1 : i2; j).

2.2 Eigenvalues and eigenvectors

Consider a matrix A 2 Cn�n. We wish to �nd nonzero vectors x 2 Cn such that

Ax = x�, where � 2 C. Given a pair (x; �) satisfying this relationship, we call

x an eigenvector of the matrix A and � the eigenvalue of A corresponding to x.

Algebraically, the eigenvalues are the roots of the nth-order characteristic polynomial

p(�) = det(�I�A), and any nonzero vector in the nullspaceN (�I�A) is an eigenvec-
tor corresponding to the eigenvalue �. Even if the matrix A has real valued entries,

the eigenvalues and eigenvectors are not necessarily real. Only when A is symmetric

(or more generally, Hermitian) are the eigenvalues assured to be real.

We should also note that the eigenvalue � corresponding to the eigenvector x can

be computed using the Rayleigh quotient:

� =
x
T
Ax

x
T
x

:
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2.3 Why use iterative methods?

Given a polynomial p(x) = a0 + a1x + � � � + an�1x
n�1 + x

n, a matrix P can be

constructed such that the roots of the polynomial p(x) are the eigenvalues of the

\companion" matrix P . A sample companion matrix is

P =

0
BBBBBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

�a0 �a1 �a2 � � � �an�1

1
CCCCCCCCCA

Galois theory tells us that the roots of a polynomial of degree greater than 4

cannot be expressed as combinations of radicals of rational functions of the polynomial

coe�cients [10].

Suppose we had a closed-form expression for the eigenvalues of a matrix that was a

combination of radicals of rational functions of the matrix entries. Then this formula

could be applied to the companion matrix of a polynomial to yield the roots of the

polynomial. However, this contradicts the result from Galois theory, and it follows

that there can exist no algorithm for �nding eigenvalues (and thus, eigenvectors)

of matrices of order greater than 4 that requires a �nite number of additions and

multiplications.

Therefore, procedures for calculating eigenvalues are all iterative in some aspect;

at each iteration, we would generally like the precision of the eigenvalue-eigenvector

approximations to increase. The user must specify how precise the approximation

needs to be for the application at hand. At some point in each iteration, a test is

applied to determine whether the precision of the current results is within the desired

tolerance. Once convergence has occurred, the procedure terminates and the eigenpair

approximations are returned.

We will begin with a simple iterative method used to �nd the eigenpair of a matrix

corresponding to the eigenvalue of largest magnitude and extend this method to more

powerful algorithms.
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2.4 The power method

Suppose we have a matrixA which is simple; that is, it has n eigenvectors which form a

basis for Cn. We write the eigenvalues as f�1; �2; : : : ; �ng, with associated eigenvectors
fx1; x2; : : : ; xng. We suppose without loss of generality that j�1j � j�2j � � � � � j�nj.

Since the eigenvectors of A form a basis for Cn, we can write any vector v0 2 Cn
as a linear combination of the eigenvectors:

v0 = c1x1 + c2x2 + � � �+ cnxn:

If we multiply this vector by the matrix A, we obtain:

Av0 = c1Ax1 + c2Ax2 + � � �+ cnAxn

= c1�1x1 + c2�2x2 + � � � + cn�nxn:

Similarly, if we multiply v0 by A many times, we obtain:

A
k
v0 = c1A

k
x1 + c2A

k
x2 + � � �+ cnA

k
xn

= c1�
k

1x1 + c2�
k

2x2 + � � �+ cn�
k

nxn

= �
k

1(c1x1 + c2

 
�2

�1

!k

x2 + � � �+ cn

 
�n

�1

!k

xn):

Suppose that A has a dominant eigenvalue; that is, j�1j > j�2j. Then as k !1,

the fraction ( �i
�1
)k ! 0 for i > 1. Therefore, we have

lim
k!1

A
k
v0

�
k
1

= c1x1:

This suggests the following algorithm for computing the dominant eigenvalue and

corresponding eigenvector of A:
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Algorithm 1: Power method

Input: A simple matrix A with a dominant eigenvalue

A random starting vector v0 2 Cn
A tolerance �

Output: An approximation v to the dominant eigenvector x1 of A.

1. for i = 1; 2; 3; ::: until kAvi � vi�ik < � j�ij
1.1. Set vi  (Ai

v0)=�
i
1;

1.2. Set �i =
vT
i
Avi

vT
i
vi
;

2. end;

As written, this requires a priori knowledge of �1; however, since any scalar multi-

ple of x1 is still an eigenvector of A, we can choose any scaling of vi which is convenient.

One commonly used scaling is to divide vi by its element of largest magnitude, so that

its largest component is 1. The power method will then converge to the dominant

eigenvector with largest element scaled to 1. We can also form vi by applying A to

vi�1. Thus a more intelligent implementation of the power method is:

Algorithm 2: Smarter power method

Input: A simple matrix A with a dominant eigenvalue

A random starting vector v0 2 Cn
A tolerance �

Output: An approximation v to the dominant eigenvector x1 of A.

1. for i = 1; 2; 3; ::: until kAvi � vi�ik < � j�ij
1.1. Set vi  Avi�1.

1.2. Normalize vi so that the component of largest absolute value is 1.

1.3. Set �i =
vT
i
Avi

vT
i
vi
;

2. end;

This algorithm will converge to the dominant eigenvector of A as long as the

starting vector v0 has some component c1 in the x1 direction. In practice, even if c1

is extremely small, the algorithm will converge; on a �nite precision computer, c1 on

the order of roundo� error is often enough to guarantee convergence!

It should be noted that the criterion used for convergence is independent of the

scaling of A, and that this stopping rule can actually be implemented without forming

the matrix-vector product Avi.
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If there exists no dominant eigenvalue (for example, if �1 is half of a complex

conjugate pair) the power method will not converge. Furthermore, if the dominant

eigenvalue �1 is unique but
j�2j
j�1j

is close to 1, then convergence of the power method

will be very slow. Therefore it is desirable that the eigenvalues be well-separated

instead of clustered in the spectrum.

It is important to note that the only time the matrix A is used in the iteration is

to form matrix-vector products. This is an operation which exploits the sparsity of

A, for multiplying a vector by a matrix requires about 2 � nnz operations, where nnz
is the number of non-zero entries in A.

Though the power method may seem useful only to �nd an eigenvector corre-

sponding to a well-separated dominant eigenvalue, we can extend and generalize this

functionality to an algorithm which �nds several eigenvalues of a matrix located any-

where in the spectrum.

2.5 Finding several eigenvalues

The power method as written here will only converge to a single eigenvalue of the

matrix A. There are several approaches to modifying the power method to �nd the k

dominant eigenvalues of A. One technique, de
ation, is reasonably straightforward:

once the eigenpair (x1; �1) is computed, a transformation is applied to the matrix A

to move �1 to the interior of the spectrum, so that the second largest eigenvalue �2

becomes the dominant eigenvalue of the transformed matrix. This process is repeated

until the k dominant eigenvalues have been found.

Of course, we can improve on this simple de
ation scheme; �nding one eigenpair

at a time is not very e�cient. We extend the power method by applying A to a set of

k starting vectors at each iteration. When treated independently, the iterates will all

converge to the dominant eigenvector. However, if we orthonormalize the k vectors

at each step, this set will converge to a basis for an invariant subspace of the matrix

A corresponding to the k eigenvectors of largest magnitude. This method is called

subspace iteration.

The Arnoldi Method is a powerful extension of subspace iteration and is the tool

we will use to �nd k eigenpairs of a matrix simultaneously. We will discuss it in

Chapter 3.
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2.6 Inverse iteration

One technique for �nding the eigenvalue of smallest magnitude of A is relatively

straightforward. We consider a matrixAwith eigenpairs f(x1; �1); (x2; �2); : : : ; (xn; �n)g.
Then if A�1 exists (equivalently, if no �i = 0),

A
�1(Axi) = A

�1(�ixi) ) A
�1
xi =

1

�i

xi:

That is, the eigenpairs of A�1 are f(x1; 1
�1
); (x2;

1
�2
); : : : ; (xn;

1
�n
)g.

Therefore, we can �nd the eigenpair corresponding to the eigenvalue of smallest

magnitude of A by applying the power method to A�1. The result is the eigenpair

(x; �), from which we can recover the smallest eigenvalue by taking � = 1
�
.

2.7 Shift-and-invert

We can extend this idea further. If we consider the matrix A� �I, we can see that

(A� �I)xi = Axi � �xi
= �ixi � �xi
= (�i � �)xi

which shows that the eigenpairs of A��I are f(x1; �1��); (x2; �2��); : : : ; (xn; �n�
�)g.

Putting this argument and inverse iteration together, we �nd that the eigenpairs

of (A� �I)�1 are f(x1; 1
�1��

); (x2;
1

�2��
); : : : ; (xn;

1
�n��

)g.

The eigenvalue of the original matrix A that is closest to � corresponds to the

eigenvalue of largest magnitude of the shifted and inverted matrix (A� �I)�1. Thus,
a standard technique for �nding the eigenpair of A corresponding to the eigenvalue

closest to a shift � is to apply the power method to the shifted problem (A� �I)�1 to
obtain the eigenpair (x; �). Then we recover the eigenvalue � of the original problem

by the easily computable transformation � = 1
�
+ �. This method is called shift-and-

invert.

In practice the matrix (A� �I)�1 is never formed; to calculate the product y =

(A� �I)�1x we simply solve the system of linear equations (A� �I)y = x.



14

We can develop other transformations of A which allow us to compute eigenval-

ues located near certain regions of the spectrum; however, it is important to seek

transformations which exploit the sparsity of A. We will discuss a class of these

transformations, polynomial acceleration techniques, in Chapter 4.

2.8 The QR Method

We now discuss the classical QR method which provides the basis for the algorithms

used to compute eigenvalues and eigenvectors of dense problems, and proceed to

develop the Arnoldi method which is well-suited to computing eigenpairs of large

sparse or structured problems. We shall see that both algorithms are closely related

to the power method and its variants discussed above.

We are interested in the eigenvectors and eigenvalues of a matrix A. Basically,

we will derive a series of similarity transformations Ai+1 = Q
T
AiQ so that at each

step, the subdiagonal elements of the Ai are made smaller until they are negligible;

at this point, the matrix is e�ectively triangular and we can read the eigenvalues o�

the diagonal.

In general, computing similarity transformations is quite expensive, so it is ad-

vantageous to �rst reduce the matrix A to a form which makes these transformations

easy to compute. It is most common to reduce A to Hessenberg form, in which all

elements below the �rst subdiagonal are zero. Therefore, in our exposition, we will

suppose we can obtain the reduction to Hessenberg form AV = V H by means of

Householder or Givens rotations [26, pp. 328-337].

We present the following algorithm, known as the QR method:

Algorithm 3: QR method

Input: (A;V;H) with AV = V H; V
H
V = I.

Output: (V;H) such that AV = V H; V
H
V = I and H is upper triangular.

1. for i = 1; 2; 3; ::: until \convergence"

1.1. Factor Hi = QiRi;

1.2. Hi+1  RiQi ; Vi+1  ViQi;

2. end;

The QR method is a variant of subspace iteration. As the QR method progresses,

the eigenvalues of the matrixA are approximated by the diagonal entries of H. As the
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subdiagonal entries of H decrease in magnitude, the diagonal entries of H become

better approximations to the eigenvalues of A. The eigenvectors can be recovered

later if the product of the orthogonal matrices Qi is accumulated and stored at each

step.

Of greater use is the explicitly shifted QR method, in which a shift �i is introduced

at each iteration:

Algorithm 4: Explicitly Shifted QR method

Input: (A;V;H) with AV = V H; V
H
V = I.

A tolerance � .

Output: (V;H) such that AV = V H; V
H
V = I and H is upper triangular.

1. for i = 1; 2; 3; : : : until each subdiagonal element of H < � .

1.1. Select a shift �i;

1.2. Factor Hi � �iI = QiRi;

1.3. Hi+1  RiQi + �iI; Vi+1  ViQ
H
i ;

2. end;

Note that

Hi+1 = Q
H

i (Hi � �i)Qi + �iI

= Q
H

i HiQi:

Therefore, each step is a similarity transformation of the original matrix H, which

itself is similar to A. It can be shown that the QR method e�ectively performs the

power method on the �rst column of V and inverse iteration on the last column of

V ; this leads to the rapid convergence of the algorithm.

The algorithm can be implemented without explicitly adding and subtracting the

shift �i from the diagonal; this variant is known as the implicitly shifted QR method.

Its main advantage is the ability to apply a pair of complex conjugate shifts while

staying in real arithmetic, but there are gains in numerical stability as well.

If �i = � is a good estimate of an eigenvalue, then the (n; n � 1) entry of Hi

will converge to zero very quickly, and the (n; n) entry of Hi will converge to the

eigenvalue closest to �. Once this convergence has occured, the problem can be
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de
ated to a smaller problem of order n � 1. In practice, the QR shift �i can be

taken as the rightmost diagonal element of Hi, once the corresponding subdiagonal

element is somewhat small. There are several other ways to choose the QR shifts to

accelerate convergence and to de
ate the problem, but they are beyond the scope of

this thesis. See [26] and [28] for more details.

The eig command in Matlab calls an e�cient version of the QR method to �nd

eigenvalues and eigenvectors of a real matrix. For a complex matrix or a generalized

eigenvalue problem (see section 3.5), a more complicated algorithm called the QZ

method is used.
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Chapter 3

The Implicitly Restarted Arnoldi Method

3.1 Motivation

The QR method can be used to compute the eigenvalues and eigenvectors of a matrix,

but there are several drawbacks [20, p. 82]:

1. In general, the transformations of the QR method destroy the sparsity and

structure of the matrix.

2. The QR method is ill-suited to calculating some, but not all, of the eigenvalues.

3. If eigenvector information is also desired, either the original matrix or the QR-

transformations have to be preserved.

Therefore, the QR method is not appropriate for �nding k selected eigenpairs of a

large sparse matrix.

In some sense, the power method \throws away" potentially useful spectral informa-

tion during the course of the iteration. At the kth iteration, we overwrite the vector

A
k�1

v0 with A
k
v0, where v0 is the starting vector for the algorithm. However, it

turns out to be useful to keep the previous vector instead of overwriting it, and by

extension to keep the entire set of previous vectors fv0; Av0; A2
v0; � � � ; Ak�1

v0g. We

call the subspace

Kk(A; v0) = Spanfv0; Av0; A2
v0; � � � ; Ak�1

v0g

the kth Krylov subspace corresponding to A and v0. Methods which use linear com-

binations of vectors in this space to extract spectral information are called Krylov

subspace or projection methods.
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The basic idea is to construct approximate eigenvectors in the Krylov subspace

Kk(A; v0). We de�ne a Ritz pair as any pair (xi; �i) that satis�es the Galerkin condi-

tion

v
T (Axi � �ixi) = 0 8v 2 Kk(A; v0):

That is, the Ritz pair satis�es the eigenvector-eigenvalue relationship in the pro-

jection onto a smaller space. We only hope that the component orthogonal to the

space is su�ciently small to make the Ritz pair a good approximation to an eigenpair

of A.

3.2 Arnoldi factorizations

We de�ne a k-step Arnoldi factorization of A 2 Cn�n as a relationship of the form

AV = V H + fek
T

where V 2 Cn�k has orthonormal columns, V H
f = 0, and H 2 Ck�k is upper

Hessenberg with a non-negative subdiagonal. If the matrix A is Hermitian, then

the relationship is called a k-step Lanczos factorization, and the upper Hessenberg

matrix H is actually real, symmetric, and tridiagonal.

Note that if (y; �) is an eigenpair of H, then x = V y satis�es the relation

kAx� x�k = kAV y � V y�k
= k(AV � V H)yk
= kfekTyk
= �jekTyj

where � = kfk. Since V T
f = 0, it easily follows that � is a Ritz value and x a

corresponding Ritz vector. The central idea behind the Arnoldi factorization is to

construct eigenpairs of the large matrix A from the eigenpairs of the small matrix H.

We assume that k � n so that the eigenpairs of H can be computed by conventional

(dense) means. The goal is to drive jeTk yj ! 0 , so that the Ritz pair (x; �) well-

approximates an eigenpair of A. The term �jekTyj is called the Ritz estimate of the

pair (x; �), and describes the goodness of the eigenpair approximation. Of course,
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when f = 0, V is an invariant subspace of A and the Ritz values and vectors are

precisely eigenvalues and eigenvectors of A.

We can extend a k-step Arnoldi factorization to a (k+1)-step Arnoldi factorization

using the following algorithm:

Algorithm 5: One step extension of k-step Arnoldi factorization

Input: (Vk;Hk; fk) such that AVk = VkHk + fke
T
k

Output: (Vk+1;Hk+1; fk+1) such that AVk+1 = Vk+1Hk+1 + fk+1e
T
k+1

1. �k = kfkk; v fk=�k;

2. Vk+1  (Vk; v); Hk+1  
�

Hk

�ke
T

k

�
;

3. z  Avk+1;

4. hk+1  V
T
k+1z; fk+1  z � Vk+1hk+1;

5. Hk+1  (Hk+1; hk+1);

6. end;

The above scheme can be extended naturally to extend a k-step Arnoldi factor-

ization to a (k + p)-step Arnoldi factorization:

Algorithm 6: p-step extension of k-step Arnoldi factorization

Input: (Vk;Hk; fk) such that AVk = VkHk + fke
T
k

Output: (Vk+p;Hk+p; fk+p) such that AVk+p = Vk+pHk+p + fk+pe
T
k+p

1. for i = k; k + 1; : : : ; k + p� 1

1.1. �i = kfik; v fi=�i;

1.2. Vi+1  (Vi; v); Hi+1  
�

Hi

�ie
T

i

�
;

1.3. z  Avi+1;

1.4. hi+1  V
T
i+1z; fi+1  z � Vi+1hi+1;

1.5. Hi+1  (Hi+1; hi+1);

2. end;

In exact arithmetic, the columns of V will form an orthonormal basis for the

Krylov subspace; however, in �nite precision arithmetic, explicit reorthogonalization

of the columns of V is necessary. This can be accomplished by the Gram-Schmidt

process with t steps of iterative re�nement [5]. This addition to the algorithm is

accomplished by deleting step 1.5. in the above algorithm and adding the steps:
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1.5. for j = 1; 2; : : : t

1.5.1. s = V
T
i+1fi+1

1.5.2. fi+1 = fi+1 � Vi+1s

1.5.3. hi+1 = hi+1 + s

1.6. Hi+1  (Hi+1; hi+1)

In practice, one step of iterative re�nement is usually su�cient to ensure orthogonality

to machine precision.

It should be clear that an Arnoldi factorization is entirely dependent on the choice

of starting vector v0. In fact, it turns out that the factorization is uniquely determined

by the choice of v0, up to the point when a subdiagonal element of H is zero. At this

point an invariant subspace has been computed and the factorization continues with

a new choice of starting vector.

3.3 Implicit restarting

For the large structured eigenvalue problems which arise in engineering contexts, the

desired eigenvalues generally have special properties. For example, the user may re-

quire the k eigenvalues of largest real part for a stability analysis, or the k eigenvalues

nearest a point in the complex plane for a vibrational analysis. In general, we would

like the starting vector v0 used to begin the Arnoldi factorization to be rich in the

subspace spanned by the desired eigenvectors with very small components in the di-

rection of the other eigenvectors. In some sense, as we get a better idea of what the

desired eigenvectors are, we would like to adaptively re�ne v0 to be a linear com-

bination of the approximate eigenvectors and restart the Arnoldi factorization with

this new vector instead. A convenient and stable way to do this without explicitly

computing a new Arnoldi factorization is given by the implicitly restarted Arnoldi

method, based on the implicitly shifted QR factorization. The implicitly restarted

Arnoldi method is fully developed in [22].

Consider an m-step Arnoldi factorization of the form:

AV = V H + fem
T

to which we want to apply the (possibly complex) shift �. Since H 2 Cm�m is small,

we can factor H � �I = QR. We have the following equivalent statements:
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1. AV = V H + fe
T
m

2. (A� �I)V � V (H � �I) = fe
T
m

3. (A� �I)V � V QR = fe
T
m

4. (A� �I)VQ� V QRQ = fe
T
mQ

5. A(V Q)� (V Q)(RQ+ �I) = fe
T
mQ

6. AV+ = V+H+ + fe
T
mQ

V+ has orthonormal columns since it is the product of V and an orthogonal matrix

Q. It also turns out H+ is upper Hessenberg [26, pp. 355-361]. Therefore, shifting

by � does not disturb the structure of the Arnoldi factorization. The result of these

operations is that the �rst column of V+ is (A � �I)v1, where v1 is the �rst column

of V .

The idea of the method is to extend a k-step Arnoldi factorization

AVk = VkHk + fke
T

k

to a (k + p)-step Arnoldi factorization

AVk+p = Vk+pHk+p + fk+pe
T

k+p:

Then p implicit shifts are applied to the factorization, resulting in the new factoriza-

tion

AV+ = V+H+ + fk+pe
T

k+pQ

where V+ = Vk+pQ, H+ = Q
H
Hk+pQ, and Q = Q1Q2 � � �Qp, where Qi is associated

with factoring (H � �iI) = QiRi. It turns out that the �rst k � 1 entries of ek+pQ

are zero, so that a new k-step Arnoldi factorization can be obtained by equating the

�rst k columns on each side:

AV
+
k = V

+
k H

+
k + f

+
k e

T

k

We can iterate the process of extending this new k-step factorization to a (k+ p)-

step factorization, applying shifts, and condensing. The payo� is that every iteration
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implicitly applies a pth degree polynomial in A to the initial vector v0. The roots of

the polynomial are the p shifts that were applied to the factorization. Therefore, if

we choose as the shifts �i eigenvalues that are \unwanted", we can e�ectively �lter

the starting vector v0 so that it is rich in the direction of the \wanted" eigenvectors.

There are several strategies for selecting the shifts �i. A useful method known as

the Exact Shift Strategy takes the shifts as the p eigenvalues of Hk+p that are furthest

away from the wanted eigenvalues. For example, if the desired eigenvalues are the

k eigenvalues of largest magnitude, the eigenvalues of Hk+p are sorted with respect

to magnitude and the p eigenvalues of smallest magnitude are used as shifts. Or, if

the desired eigenvalues are the k eigenvalues closest to 5, the p eigenvalues of Hk+p

furthest away from 5 are used as shifts.

We are now ready to present the full implicitly restarted Arnoldi method:
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Algorithm 7: Implicitly restarted Arnoldi method

Input: The matrix A whose eigenpairs are to be computed

k, the number of eigenpairs to be computed

p, the number of implicit shifts to apply to the

factorization at each iteration

S, a sort criterion which determines which are the \wanted" eigenvalues

A starting vector v0

A tolerance �

Output: f(x1; �1); (x2; �2); : : : ; (xk; �k)g,
approximations to the k wanted eigenvalues of A.

1. Using v0 as a starting vector, generate a k-step Arnoldi factorization

AV = V H + fe
T
k .

2. for i = 1; 2; : : : until kAxi � �ixik < � 8i = 1 : : : k

2.1. Extend the k-step Arnoldi factorization to a k + p step Arnoldi

factorization

AV = V H + fe
T
k+p.

2.2. Let q = ek+p.

2.3. Sort the eigenvalues of H from best to worst according to

the sort criterion S and take f�1; : : : ; �pg to be the p worst eigenvalues.
2.4. for j = 1; 2; : : : p

2.4.1. Factor H � �jI = QR.

2.4.2. H  Q
H
HQ.

2.4.3. V  V Q.

2.4.4. q  q
H
Q.

2.5. f  V (:; k + 1) �H(k + 1; k) + f � q(k).
2.6. Take the �rst k columns on each side of the factorization to get

V = V (:; 1 : k), H = H(1 : k; 1 : k).

2.7. Take as eigenpair approximations (xi; �i) the Ritz pairs of the problem.

3. end;

We should remark that step 2.4.2 is accomplished by what is called a bulge chase [23],

and that the convergence criterion is evaluated using the Ritz estimates instead of

actually forming the Ritz pairs and computing matrix-vector products.
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3.4 Shift-and-invert

The Arnoldi method as written converges to the k eigenvalues of the largest magni-

tude. Therefore, if we are trying to �nd eigenvalues closest to a shift in the interior

of the spectrum, convergence may be quite slow. The eigenvectors corresponding to

the eigenvalues of largest magnitude will continue to resurface despite our attempts

(via implicit restarting) to eliminate them from the Arnoldi basis. In fact, the ac-

cumulated roundo� error during one iteration in the direction of the eigenvector of

largest magnitude is enough to cause this eigenvector to resurface in the next itera-

tion! Therefore, we use the same shift-and-invert techniques discussed in Section 2.7

in our implementation of the implicitly restarted Arnoldi method. That is, if we wish

to compute the k eigenvalues closest to a shift �, we instead compute the k eigen-

values f�1; �2; : : : ; �kg of largest magnitude of (A � �I)�1 and recover the desired

eigenvalues using the transformation �i =
1
�i
+ �.

3.5 The generalized eigenvalue problem

The Arnoldi method can also be used to solve the generalized eigenvalue problem

Ax = �Bx. Structural engineering design problems are often posed in this form; in

this context, A is called the sti�ness matrix and B is called the mass matrix. The

pair (A;B) is often referred to as a matrix pencil.

3.5.1 Complexities

The generalized eigenvalue problem is substantially more complex than the standard

eigenvalue problem. Consider the following examples:

� A =

0
@ �1 0

0 1

1
A
; B =

0
@ 0 1

1 0

1
A
:

Here, the generalized eigenpairs are f(
 

1

i

!
; i); (

 
1

�i

!
;�i)g

Thus we see that even if A and B are symmetric (or Hermitian) , the generalized

eigenvalues of the pencil may not be real [19, p. 284].
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� A =

0
@ �1 1

0 0

1
A
; B =

0
@ 0 0

�1 1

1
A
:

In this case, A and B share a common null vector x =

 
1

1

!
. Therefore

Ax = Bx = 0 and any scalar � is a generalized eigenvalue corresponding to

x. Note that this case occurs if and only if A and B are both singular with

N (A) \N (B) 6= ;.

� A =

0
@ 1 0

0 1

1
A
; B =

0
@ 1 0

0 0

1
A
:

While x =

 
1

0

!
is an eigenvector of the pencil with eigenvalue 1, the second

eigenvector corresponds to what is sometimes called an \in�nite eigenvalue".

This terminology is used since we require the pencil to have n eigenvalues,

counting multiplicity, when the pencil is of order n. This case can arise when

A or B is singular.

3.5.2 Reductions to standard form

However, the situation is not always so bad. For the remainder of the exposition, we

suppose B is a symmetric matrix. We can easily transform the generalized eigenvalue

problem into a standard eigenvalue problem if B is nonsingular; in this case, we have:

Ax = �Bx ) B
�1
Ax = �x:

We can then apply the Arnoldi method to B�1
A. In practice, this matrix is never

formed since typically symmetry, structure, and sparsity are lost [18, p. 309]. Instead,

to compute y = B
�1
Ax, we follow the steps:

1. Compute u = Ax

2. Solve By = u

If B is positive de�nite, we can compute the Cholesky factorization B = LL
T ,

where L is a lower triangular matrix. We can then transform the problem into the

standard eigenvalue problem L
�1
AL

�T
y = �y, where y = L

T
x.

It should be noted that in the generalized eigenvalue problem, the eigenvectors

are no longer orthogonal. However, they are orthogonal with respect to the B inner
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product (x; y)B = y
H
Bx; that is, if x and y are eigenvectors of the matrix pencil

(A;B), then yHBx = 0. This is true because the matrix B�1
A (whose eigenpairs are

the eigenpairs of the pencil) is self-adjoint with respect to the B inner product [18,

p. 316].

3.5.3 Shift-and-invert techniques

Suppose we wish to �nd the generalized eigenvalues of a pencil closest to a shift �.

Then we have:

Ax = �Bx

(A� �B)x = Ax� �Bx = (�� �)Bx

B
�1(A� �B)x = (� � �)x

(A� �B)�1Bx = 1

(� � �)x

Thus a standard method of �nding the k generalized eigenvalues of the pencil

closest to � is to compute the k eigenvalues of largest magnitude of the matrix C =

(A � �B)�1B using the Arnoldi method, and recover the eigenvalues of the original

problem using the standard transformation. Again, the matrix C is never explicitly

formed; instead we use the following procedure to compute the matrix-vector product

y = Cx:

1. Factor (A� �B) = LU

2. Compute u = Bx

3. Solve Ld = u

4. Solve Uy = d

Since L and U are logically triangular, steps 3 and 4 can be done quickly by

backwards substitution. The LU factorization in step 1 only needs to be done once

and can be stored for use in successive iterations. Furthermore, we can compute the

LU factorization in a way that takes advantage of the sparsity of A and B.



27

Chapter 4

Polynomial acceleration

In Section 2.7, we proved that if the matrix A has eigenvalues f�1; �2; : : : ; �ng and
corresponding eigenvectors fx1; x2; : : : ; xng, then the eigenvalues of (A � �I) are

f�1 � �; �2 � �; : : : ; �n � �g, and the eigenvectors are the same as the eigenvec-

tors of A. It is also important to note that the eigenvalues of Ak are f�k1; �k2; : : : ; �kng
and the eigenvectors are the same as the eigenvectors of A; the result follows by a

straightforward induction on k.

Now we prove a more powerful result. Consider the following matrix polynomial

in A:

P = p(A) = anA
n + an�1A

n�1 + � � �+ a1A+ a0I:

If we apply P to an eigenvector of A, we �nd:

Pxi = p(A)xi

= anA
n
xi + an�1A

n�1
xi + � � �+ a1Axi + a0xi

= an�
n

i xi + an�1�
n�1
i xi + � � �+ a1�ixi + a0xi

= p(�i)xi

That is, the eigenvalues of p(A) are fp(�1); p(�2); : : : ; p(�n)g, and the eigenvectors

are the original fx1; x2; : : : ; xng.

Worthwhile gains in eigenvalue computation can be made by applying the Arnoldi

method to polynomials in the input matrixA. These techniques are collectively known

as polynomial acceleration methods. For the moment, we will con�ne our attention

to a symmetric matrix A, whose eigenvalues are real. Suppose the eigenvalues of

interest are contained within some set S 2 R. We let p be a polynomial whose value

is large over the set S but small over the rest of the spectrum of A. Then if we let

P = p(A) and search for the eigenvalues of largest magnitude of P , we will recover
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the eigenvectors of A corresponding to eigenvalues in S �rst, and the \unwanted"

eigenvalues outside of S will be damped out of the space spanned by the Arnoldi

vectors. The normalized eigenvectors of P will be eigenvectors of A, and we can

recover the eigenvalues by using Rayleigh quotients.

4.1 Chebyshev polynomials

Chebyshev polynomials are a class of functions known in numerical analysis for solving

the optimization problem

min
p2Pm;p(1)=1

max
t2[�1;1]

jp(t)j

where Pm is the set of all polynomials of degree m [19, p. 143].

The mth Chebyshev polynomial has the form Cm(x) = cos(m cos�1(x)). Although

it may not be obvious that this cosine formula produces a polynomial in x, it can be

shown that the Chebyshev polynomials obey the three-term recursion:

C0(x) = 1

C1(x) = x

Cm+1(x) = 2xCm(x)�Cm�1(x):

In this form, the polynomial character of Cm(x) is clear.

The normalized Chebyshev polynomial of degree m oscillates m�1 times between

-1 and 1 in the interval [-1,1], and then increases without bound outside of [-1,1]. The

rate of increase of the Chebyshev polynomial outside the interval is quite large [11,

p. 285].
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Figure 4.1: a. Equiripple behavior of the Chebyshev polynomial in [-1,1]

b. Rapid increase of the Chebyshev polynomial outside of [-1,1]
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4.1.1 Computing eigenvalues of largest real part

Because of their rapid increase outside of [-1,1] and equiripple behavior within [-1,1],

the Chebyshev polynomials are natural candidates for polynomial accelerants when

we seek the eigenvalues of largest real part of a symmetric matrix A. The goal is

to map the unwanted left side of the spectrum of A into the equiripple region of a

Chebyshev polynomial. Then the wanted eigenvalues on the right side of the spectrum

will be mapped into the region of high increase outside the equiripple region. This

process not only separates the wanted eigenvalues from the unwanted eigenvalues,

but also well-separates the eigenvalues within the wanted region.

The complete procedure is:

Algorithm 8: Chebyshev polynomial acceleration

Input: A matrix A for which to compute the k eigenvalues of largest real part

and corresponding eigenvectors

An estimate [lbd; ubd] of an interval containing the spectrum of A

A parameter � which is the fraction of the spectrum

to map into the interval [-1,1]

The degree m for the polynomial accelerant

Cm, the normalized Chebyshev polynomial of degree m

Output: f(x1; �1); (x2; �2); : : : ; (xk; �k)g,
approximations to the k wanted eigenvalues of A.

1. Determine the linear mapping M which takes lbd! �1, lbd+ �(ubd� lbd)! 1.

Speci�cally, the mapping is M(x) = ax+ b,

where a = 2
(1��)(ubd�lbd) and b = �1� a(lbd).

2. De�ne P = Cm(M(A)).

3. Compute the k largest eigenvalues and corresponding eigenvectors of P ,

f(x1; �1); (x2; �2); : : : ; (xk; �k)g.
4. Let �i =

xT
i
Axi

xT
i
xi

for i = 1; : : : ; k.

5. end;

The matter of computing and applying the Chebyshev polynomial to the matrix

M(A) is accomplished by means of the three-term recurrence mentioned above.
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4.1.2 Computing eigenvalues of smallest real part

We can use the left-hand side of an even-order Chebyshev polynomial to acclerate

the computation of the eigenvalues of a symmetric matrix of smallest real part. The

procedure outlined in Algorithm 8 is unchanged except for one step:

1. Determine the linear mappingM which takes ubd��(ubd�lbd)! �1, ubd! 1.

Speci�cally, the mapping isM(x) = ax+b, where a = 2
(1�p)(ubd�lbd) and b = 1�a(ubd).

4.2 Applications of FIR �lter design to polynomial acceler-

ation

The use of polynomial acceleration is not limited to calculating the leftmost or right-

most eigenvalues of a matrix. By choosing the correct polynomial, one can also en-

hance the eigenvalues around a shift in the middle of the spectrum. It is instructuve

to pose this problem in the context of FIR �lter design. Here we use the standard

engineering notation j =
p
�1.

4.2.1 Overview of FIR �lters

A digital �lter is a system that takes a discrete input vector x(n); n = 1; 2; : : :, some-

times called the signal, and returns a discrete output vector y(n); n = 1; 2; : : :.

Digital Filter y(n)x(n)

Figure 4.2: Discrete-time digital �lter

Suppose the results of applying the system to the inputs x1(n) and x2(n) are the

outputs y1(n) and y2(n) respectively. We call the system linear when the result of

applying the system to the input c1x1(n) + c2x2(n) is the output c1y1(n) + c2y2(n).

Linearity will allow us to express any input as a combination of simpler components

whose responses to the system are known. The response of the system to the new

input can then be constructed as a combination (or superposition) of the simpler

components' responses.

A system is called time-invariant if when the input is shifted by a time step M ,

the output is shifted by the same time step M . That is, the response of the system
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to x(n �M) is y(n �M). Time-invariance is important because it guarantees that

a system will respond the same way to a speci�c input no matter when the input is

applied.

We de�ne the digital impulse function

�(n) =

8<
: 1 if n = 0

0 elsewhere.

The impulse response h(n) is simply de�ned as the result of applying the system

to �(n).

It is then a straightforward matter to de�ne the response of a linear, time-invariant

system to any signal x(n) in terms of the impulse response h(n) by the following

procedure:

1. Express the signal as a sum of weighted and shifted impulses:

x(n) =
P

m x(m)�(n�m)

2. By linearity and time invariance, the �ltered signal is simply the same sum of

weighted and shifted impulse responses:

y(n) =
P

m x(m)h(n�m) =
P

m h(m)x(n�m).

The digital �lter is called a �nite-duration impulse response or FIR �lter if h(n)

is identically zero outside of a �nite set of values 0 < n < N � 1. Then the output

y(n) is a linear combination of the input x(n) and a �nite number of previous input

values:

y(n) =
N�1X
m=0

h(m)x(n�m):

We can de�ne further properties of an FIR �lter by considering its response to a

complex exponential signal x(n) = e
j!n:

y(n) =
N�1X
m=0

h(m)ej!(n�m) =

"
N�1X
m=0

h(m)e�j!m
#
e
j!n = H(!)x(n):

We call H(!) the frequency response of the system; it is fundamentally a polyno-

mial in the complex exponential e�j!.

The above introduction to the theory of digital �lters is adapted from and devel-

oped further in [17].
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4.2.2 The �lter design problem

The general FIR �lter design problem is to approximate a desired frequency response

over the region ! 2 [��; �] by the frequency response of a length N FIR �lter. The

�lter designer needs to specify the measure of goodness by which an approximation

should be judged; typical measures of error are the least-squared (`2) error or the

Chebyshev (`1) error. Depending on the error measure, an algorithm is chosen or

designed to �nd the optimal �lter coe�cients h(n).

Here we consider the speci�c problem of designing a bandpass �lter; that is, a �lter

whose frequency response approximates the ideal frequency response given by:

H(!) =

8<
: 1 if ! 2 [!p1; !p2]

0 otherwise

The interval [!p1; !p2] in which the ideal frequency response is 1 is called the

passband; the part of the frequency band in which the ideal response is 0 is called the

stopband.

We will use the Chebyshev error criterion, which minimizes the maximum devia-

tion from the ideal frequency response over a speci�c set of frequencies.

We state without proof the important Alternation Theorem, [17, pp. 87-88]:

If A(f) is a linear combination of r cosine functions

A(f) =
r�1X
k=0

ck cos(2�kf)

then the following statements are equivalent:

1. A(f) is the unique optimal Chebyshev approximation to a given continuous

function D(f) for f 2 a given set of frequencies F

2. The error function E(f) = D(f)�A(f) has at least r + 1 extremal frequencies

f1 < f2 < � � � < fr+1 2 F such that E(fm) = �E(fm+1) for m = 1; 2; : : : ; r and

jE(fi)j = maxf2F E(f).

An important feature of the alternation theorem is that it guarantees the optimal

Chebyshev approximation to a desired function to have an equiripple character. In

the context of �lter design, D(f) is the desired frequency response, and A(f) is the

frequency response of a length N FIR �lter. A(f) can be expressed as a sum of
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cosines when the �lter coe�cients are symmetric; that is, when h(m) = h(N �m).

In �lter design, we apply a tool called the Remez exchange algorithm to iteratively

compute an optimal set of extremal frequencies; from this we obtain the unique

optimal Chebyshev approximation to D(f).

A simple transformation allows us to convert an optimal Chebyshev bandpass FIR

�lter into a polynomial in x over the interval [-1,1] which is equiripple outside of a

peak at a speci�c ordinate x = �. We can then use this polynomial to accelerate the

computation of the eigenvalues of a symmetric matrix A nearest this shift � (after A

has been suitably scaled so its spectrum lies in [-1,1]).

The complete procedure is:

Algorithm 9: FIR �lter polynomial acceleration

Input: A matrix A for which to compute the k eigenvalues nearest a shift �

An estimate [lbd; ubd] of an interval containing the spectrum of A

The degree N of the polynomial accelerant

Output: f(x1; �1); (x2; �2); : : : ; (xk; �k)g,
approximations to the k wanted eigenvalues of A.

1. Determine the linear mapping M which takes lbd! �1, ubd! 1.

Speci�cally, the mapping is M(x) = ax+ b,

where a = 2
(ubd�lbd) and b =

�(lbd+ubd)
(ubd�lbd) .

2. Compute � =M(�).

3. Design Fm, an order m linear phase bandpass FIR �lter with

� a monotonically decreasing passband,

� a single peak in the frequency response at cos�1(�), and

� an equiripple stopband.

4. Let Hm be the polynomial in x obtained by transforming x = cos(!)

in the frequency response generated by Fm.

5. De�ne P = Hm(M(A)).

6. Compute the k largest eigenvalues and corresponding eigenvectors of P ,

f(x1; �1); (x2; �2); : : : ; (xk; �k)g.
7. Let �i =

xT
i
Axi

xT
i
xi

for i = 1; : : : ; k.

8. end;

The �lter design can be accomplished using an iterative method based on the

Remez exchange algorithm.
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The Zolotarev polynomials are a class of functions similar to the Chebyshev poly-

nomials which have a similar character to the polynomials which result from the �lter

design scheme discussed above. These polynomials involve elliptic functions in the

same way that Chebyshev polynomials involve cosine functions. Sadly, there is no

closed form expression for Zolotarev polynomials of degree greater than 3, though

these polynomials can be computed iteratively. A reference on the application of

Zolotarev polynomials to FIR �lter design is given in [2].

4.2.3 Further issues to consider

The peak of the �lter polynomial generally will not be exactly symmetric about the

shift �. Therefore, eigenvalues that are an equal distance away from � may not

get mapped to the same value by the polynomial. The worst case result is that the

eigenvalues the algorithm returns as the k eigenvalues \closest to �" may not actually

be the k closest eigenvalues. Since the peak of the �lter polynomial is approximately

symmetric about the shift, this problem should rarely arise, especially if the user

understands the nature of the polynomial accelerant and knows roughly how the

spectrum is distributed.

The problem could be avoided entirely by using an accelerant polynomial that is

symmetric about �; perhaps a polynomial interpolant to a sharply peaked Gaussian

function would be appropriate. Then the spectrum could simply be shifted into the

domain of the peak.

However, polynomial interpolants to smooth functions are dangerous to use as

accelerants because of problems with monotonicity over the region of interest. An

m
th order polynomial must oscillate m� 1 times; controlling where these oscillations

occur is central to designing an interpolant whose largest eigenvalues correctly match

the desired eigenvalues of the problem. It could be the case that the size and location

of the oscillations badly damage the monotonicity of the polynomial, and thus the

accuracy of the eigenvalue approximations.

In the above examples, the regions of oscillation of the Chebyshev and �lter poly-

nomials are known and mapped to regions in which the oscillation is harmless. In the

general interpolation problem, there is no control over the location and magnitude of

oscillations.

In the special case of interpolation of a Gaussian function using a polynomial

of high degree we encounter the Runge phenomenon. Essentially the agreement be-
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tween the interpolant and the Gaussian function is fairly good in the center of the

interpolation interval but is terrible near the ends of the interval [4].

4.3 Extensions to the non-symmetric case

To this point we have only applied polynomial acceleration to symmetric matrices,

whose eigenvalues are real. It is possible to generalize the method to the case when

eigenvalues lie o� of the real axis. Saad [19] outlines in some detail the scheme for

designing a Chebyshev polynomial variant that takes on small values within an ellipse

containing the unwanted eigenvalues.

Unfortunately, we cannot construct a polynomial accelerant in the spirit of FIR

�lter design which can be used to accelerate the computation of the eigenvalues of a

nonsymmetric matrix about any shift in the complex plane. The maximum modulus

theorem from complex analysis tells us that any analytic function de�ned on a closed

and bounded region must take its maximum and minimum value on the region's

boundary. Since polynomials are analytic, the construction of a polynomial in two

variables which peaks in the center of a disk is therefore impossible.

4.4 When should polynomial acceleration be used?

Suppose acceleration using a polynomial p is applied to a symmetric matrix A whose

eigenvalues are f�1; �2; : : : ; �ng. Then the transformed eigenvalues are given by

fp(�1); p(�2); : : : ; p(�n)g.
Suppose �1 is the largest eigenvalue, and p has been selected so that p(�1) >

p(�i); i = 2 : : : n. De�ne �i = jp(�i)=p(�1)j; i = 2 : : : n. Then by our previous dis-

cussion of the convergence of the power method, we know that convergence to �1 is

proportional to maxi=2:::n �i.

Thus, polynomial acceleration is only worthwhile when this convergence ratio is

quite small. It may happen that a shift-and-invert technique centered around a shift

� may have a higher convergence ratio than a polynomial acceleration technique

based on Algorithm 9 centered around �. However, without a priori knowledge of the

eigenvalues, there is no way to determine which method will converge more quickly.

Since solution of linear systems is a fast operation in Matlab, shift-and-invert

techniques generally converge more quickly than polynomial acceleration techniques

when the operator is stored as a matrix.
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The primary use of polynomial acceleration is when shift-and-invert techniques are

not an option; for example, when the operator of interest is not explicitly stored as a

matrix, but instead de�ned by its action on a vector (see Section 5.7). In this situation,

there may be no other way to compute eigenvalues in the interior of the spectrum. If

the order of the accelerant polynomial is m, then it will take only m times as much

work to �nd the eigenvalues of this polynomial applied to the operator. A nested

multiplication form based on Horner's rule will allow us to apply a polynomial in the

operator to a vector without requiring anything more than matrix-vector products.
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Chapter 5

User's guide for speig

Matlab is a technical computing environment for high-performance numeric compu-

tation and visualization. It is used extensively both in academia and in industry and

is becoming the standard language which applied mathematicians are expected to

speak. In the following sections, a working knowledge of Matlab syntax and notation

is assumed. For more information, see [15].

5.1 What is speig?

In Matlab version 4, the eig command could be used to �nd all the eigenvectors

and eigenvalues of a matrix. However, the algorithms in eig were designed with full

matrices in mind and are not well-suited to calculating a few selected eigenvalues of

large structured or sparse matrices.

The functionality of the eig command is unchanged in Matlab version 5 for ma-

trices in the full storage class. However, when eig in Matlab version 5 is called with a

sparse matrix or a string in the �rst argument, the input arguments are passed to the

m-�le speig.m contained in the sparfun directory. The speig function (for sparse

eigenvalue) incorporates the implicitly restarted Arnoldi method for eigenvalue com-

putation discussed in Chapter 3, and not the QR or QZ algorithms normally used by

eig to solve dense eigenvalue problems. When control is passed from eig to speig a

warning appears to inform the user of the change and remind him or her that speig

can and should be called directly for large sparse problems.

5.2 When to use speig

Using speig instead of eig is most appropriate when:

1. The order of the input matrix is large;

2. Computing factorizations (for example, LU or QR) of the input matrix is ex-

pensive;
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3. Computing the product of the input matrix and a vector is inexpensive (for

example, O(n), where n is the order of the matrix);

4. Only a small fraction of the eigenpairs are desired;

5. The eigenvalues of interest are either concentrated in the spectrum extremally

(i.e. the 5 eigenvalues of largest magnitude or smallest real part) or centered

around a point in the complex plane (i.e. the 5 eigenvalues closest to 2 + 2i.)

speig can be used to calculate eigenpairs of any matrix, full or sparse. However,

it is best suited to problems for which the above conditions are sati�ed. Usually, ma-

trices with these characteristics are highly structured and could pro�tably be stored

as sparse. speig is also viable for problems which are large enough to �t into memory

but for which eig does not converge. If only a few eigenpairs of these dense problems

are desired, speig is a useful tool.

5.3 Sparsity

When deciding between eig and speig, it is important to know the matrix class and

structure of the input argument. Matrices that are structurally dense but are stored

as sparse may be created as the result of operations involving sparse matrices. For

example, the command

>> rand(5).*spones(5)

produces a fully dense matrix with random entries that is classed as sparse. The whos

command displays the size and density (if sparse) of all matrices in the workspace.

The matrix A is sparse if

>> A

produces a list of ordered entries

A =

(1,1) 0.5717

(2,2) 0.8024

(3,3) 0.0331

(4,4) 0.5344

(5,5) 0.4985
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instead of a rectangular array

A =

0.5717 0 0 0 0

0 0.8024 0 0 0

0 0 0.0331 0 0

0 0 0 0.5344 0

0 0 0 0 0.4985

To convert a full matrix A to sparse storage mode, use

>> A = sparse(A);

To convert a sparse matrix B to full storage mode, use

>> B = full(B);

If the input matrix is stored as sparse but any of the conditions in the previous

section are not met (for example, the order of the matrix is low, the matrix is actually

dense, or all of the eigenvalues are desired) then it may be more appropriate to use

>> [V,D] = eig(full(A))

instead of

>> [V,D] = speig(A).

Be aware that invoking

>> full(A)

when A is a sparse matrix whose order is very large (in the hundreds, for example)

will consume a large amount of memory and may result in an Out of memory error.

Sparsity should be exploited whenever possible by converting matrices into the sparse

storage mode.

speig will issue a warning if the input matrix is classed as sparse but has a \low"

order. When the input matrix order is less than c, eig is faster than speig. The

number c which determines the crossover point will vary according to the amount of

memory, clock speed, and architecture of the host machine, as well as the type of

eigenvalue problem being solved. On a 40MHz 486DX PC with 8MB of RAM, c is

about 150. On a Sparc-20 workstation with 32MB of RAM, c may be higher than

400. It is very important to choose the eigenvalue code that best suits the problem

at hand.
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5.4 Syntax of eig in Matlab version 4

In Matlab version 4, the eig command is used to obtain a column vector of the

eigenvalues of a matrix simply by typing

>> d = eig(A);

When the eigenvectors of the matrix are also desired,

>> [V,D] = eig(A);

produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are

the corresponding eigenvectors so that AV = V D.

eig works similarly for generalized eigenvalues and eigenvectors, so that

>> d = eig(A,B)

returns a vector containing the generalized eigenvalues of square matrices A and B,

and

>> [V,D] = eig(A,B)

produces a diagonal matrix D of generalized eigenvalues and a full matrix V whose

columns are the corresponding eigenvectors so that AV = BV D.

5.5 Basic syntax of speig

The syntax of speig is more complicated than that of eig because it is not possible

(or at least unwise) to compute all of the eigenvalues of a large structured matrix at

once using the implicitly restarted Arnoldi method. In many practical applications

in which large matrices arise, only a small fraction of the spectral information is of

interest. Therefore, the user needs to be able to specify how many eigenpairs of the

matrix are desired and in what part of the spectrum the eigenvalues reside.

speig was designed to be as consistent with eig as possible. The output argu-

ments of speig are the same as the output arguments of eig; that is, providing one

output argument as in

>> d = speig(A,...);

returns a vector d of eigenvalues of A, while providing two output arguments as in

>> [V,D] = speig(A,...);

produces a diagonal matrix D of eigenvalues and a full matrix V of corresponding

eigenvectors so that AV = V D. The eigenvectors are scaled so that the norm of each

is 1.0. Even if the input matrix is sparse, the output from speig is always full.
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The general calling sequence of speig is

>> [V,D] = speig(A,k,sigma);

This computes the k eigenvalues closest to sigma in the following sense:

sigma \�nd the k eigenvalues..."

A real or complex scalar closest to sigma in the sense of absolute value


LM
 of Largest Magnitude


SM
 of Smallest Magnitude


LR
 of Largest Real Part


SR
 of Smallest Real Part


BE
 on Both Ends

Using sigma =
SM
 is equivalent to using sigma = 0 in most situations.

sigma =
BE
 computes k=2 eigenvalues from each end of the spectrum with respect

to real part; that is, the k=2 eigenvalues of smallest real part and the k=2 eigenvalues

of largest real part. One additional eigenvalue is computed from the high end if k is

odd. The 
BE
 feature is useful in getting a rough idea of the spectrum of a symmetric

matrix.


BE
 is the default sigma used when the input matrix A is symmetric, and 
LM


is the default sigma used when A is nonsymmetric. The default k is 5. Thus, by

default,

>> d = speig(A);

returns a vector containing the 5 eigenvalues of the largest magnitude of a nonsym-

metric input matrix A, and

>> d = speig(A,k);

returns the k eigenvalues of largest magnitude. However, for readable m-�les and

code, it is best to call speig with k and sigma explicitly de�ned instead of relying

on the default values.

While the user can supply a value for k without supplying a value for sigma, the

reverse is not true. If the user supplies a sigma, a k must also be given. Of course,

as in most Matlab commands, the order of the input arguments is important, and

errors will result from badly phrased commands such as
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>> [V,D] = speig(A,
LM
,5);

The generalized eigenvalue problem Ax = �Bx can be solved using speig only when

B is a positive semide�nite matrix the same size as A. The syntax described above

extends in the natural way to the command structure

>> [V,D] = speig(A,B,k,sigma);

as well as the structures

>> [V,D] = speig(A,B);

>> [V,D] = speig(A,B,k);

which rely on the default values of k and sigma.

5.6 The speig options structure

5.6.1 Motivation

The implictly restarted Arnoldi method is somewhat complicated. While the speig

interface is easy to use, the user may obtain better performance by changing some of

the parameters used during the Arnoldi iteration from their defaults. Allowing the

user to alter these parameters without cluttering the calling sequence was an inter-

esting design problem. A parameter-setting mechanism with the following attributes

was desired:

1. An experienced user might want to change the parameters to speig fairly often.

The mechanism should be easy to use and not rely on remembering the order

of arguments to a function.

2. The user should be able to store a set of parameter settings as some type of

variable, for easy use and reuse.

3. The parameter-setting mechanism should not create variables in the global

workspace.

4. The parameter-setting mechanism should be 
exible enough to accomodate the

addition of more tunable parameters.

Several structures for the parameter-setting mechanism were considered:
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1. Add an additional function similar to the existing Matlab function spparms to

set speig algorithm parameters. spparms is a relatively obscure function which

allows the user to tune Matlab internal parameters which a�ect the sparse

matrix ordering algorithms and linear equation solvers. The parameters are set

internally and do not reside as local or global variables in the workspace.

2. Create a set of optional input arguments to speig. These arguments would

either have to be ordered correctly on input, or would be sorted by a parser

inside the function. For example, the �rst line of speig.m might look like:

function [v,d] = speig(A,B,k,sigma,p,tol,maxit,other options...)

3. Create a pair of parameter-setting functions similar to the set and get functions

used to tune parameters of Matlab's Handle Graphics.

Adding an spparms-like command was attractive, but precluded holding di�erent

sets of parameters in memory simultaneously. Every parameter change would require

that an eigparms command be issued. Furthermore, it was preferable to keep all of

the speig commands at the m-�le level instead of mixing m-�les and Matlab-internal

C code.

Providing speig with several additional input arguments seemed to be a bad idea,

since the user might have to supply in full all the parameters to be changed every time

the function was called. The user would either have to supply the input arguments

in the correct order, which might give rise to messy commands such as

>> speig(A,k,sigma,,,,,,,50)

or add the input arguments in a manner such as

>> speig(A,k,sigma,
tol
,1e-6,
maxit
,300)

The second option would require even more input argument parsing inside the

main function. The current version of speig already includes several hundred lines of

code to determine which input argument should be assigned to A, which to k, which

to sigma, and so on. This is a consequence of the 
exibility of the calling sequence.

Analogs to set and get were the most attractive and tenable option, provided

some method of storing the parameter structure as a Matlab variable. Ultimately the
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commands speigset and speigget were implemented in this way. These commands

were modeled after the odeset and odeget commands from the Matlab Ordinary

Di�erential Equations Suite.

5.6.2 Syntax of speigset and speigget

The command

>> opt = speigset(
name1
, 
value1
, 
name2
, 
value2
, ...)

creates a variable opt, called an options structure, in which the value of the parameter

name1 is set to value1, name2 to value2, etc. The current valid parameter names,

descriptions, and default values appear in the following subsection. When speigset

is called with no arguments, it prints all parameter names and permissible data types:

>> speigset

n: [positive integer]

p: [positive integer]

tol: [positive scalar]

maxit: [positive integer]

issym: [non-negative scalar]

dopoly: [non-negative scalar]

gui: [scalar]

The speigget command extracts parameter values from an options structure

created with speigset.

>> v = speigget(opt, 
name
)

extracts the value of the parameter speci�ed by name from the options structure opt,

returning 0 if the parameter value is not speci�ed in opt.

>> speigget(opt)

displays all the parameter names and their current values for the options structure

opt. 0 is displayed for parameter values not speci�ed in opt.

Here is a typical example of the usage of speigset and speigget:
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>> opt1 = speigset(
tol
,1e-6,
maxit
,200,
gui
,-1);

>> speigget(opt1);

n : 0

p : 0

tol : 1e-06

maxit : 200

issym : 0

dopoly : 0

gui : -1

>> p1 = speigget(opt1,
gui
)

p1 =

-1

>> p2 = speigget(opt1,
tolerance
)

??? Error using ==> speigget

Unknown parameter name tolerance.

>> p2 = speigget(opt1,
tol
)

p2 =

1.0000e-06

The complete parameter name need not be supplied to enter or extract a parameter

from an options structure; the �rst few characters which uniquely identify a parameter

will su�ce. Currently, the parameters all begin with di�erent letters, so simply

specifying the �rst letter of the parameter to set will work. For example:
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>> opt1 = speigset(
t
,1e-6,
m
,200,
g
,-1);

>> speigget(opt1);

n : 0

p : 0

tol : 1e-06

maxit : 200

issym : 0

dopoly : 0

gui : -1

>> p = speigget(opt1,
g
)

p =

-1

Of course, for clarity and for readable code, it is always best to use the complete

parameter name.

Once an options structure opt has been created, it can be passed as the last input

argument to speig, giving rise to the constructions

>> [V,D] = speig(A,opt);

>> [V,D] = speig(A,k,opt);

>> [V,D] = speig(A,k,sigma,opt);

>> [V,D] = speig(A,B,opt);

>> [V,D] = speig(A,B,k,opt);

>> [V,D] = speig(A,B,k,sigma,opt);

The nonzero parameters in opt are then used in speig instead of the defaults.

Since options structures are stored just like normal variables, it is easy to create

several parameter settings and compare which gives the best results for a certain

problem. For example,
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>> tol8 = speigset(
tol
,1e-8);

>> tol12gui = speigset(
tol
,1e-12,
gui
,1);

>> d1 = speig(A,5,
SM
,tol8);

>> d2 = speig(A,5,
SM
,tol12gui);

With correct access, the user can change the default parameter settings within

the �le speig.m itself.

5.6.3 Description of parameters and defaults

The following parameters for the implicitly restarted Arnoldi method implemented

in speig can be set using an options structure created by speigset:
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Name Description Default Value

n Dimension of the problem: the order of the square

input matrix A

none

p Dimension of the Arnoldi basis: the number of

Arnoldi vectors generated at each iteration

2k

tol Tolerance for convergence of kAV�V Dk
kAk 10�10 (symmetric A,B)

10�6 (nonsymmetric A,B)

maxit Maximum number of Arnoldi iterations 300

issym Positive if A is symmetric, 0 otherwise 0

dopoly Positive if

� A speci�es a matrix-vector product

� sigma is 
LR
, 
SR
 or numeric, and

� Polynomial interpolation is to be used to ac-

celerate convergence.

0

gui

8>><
>>:

positive if the Progress Report window is to be shown

negative if the Stop Button window is to be shown

0 otherwise

0

v0 Starting vector (in version 5 implementation only) rand(n,1) - 0.5

5.6.4 Matlab version 4 implementation

In Matlab version 4, options structures are simply stored as row vectors, with zero

entries to denote default values:

>> opt1=speigset(
tol
,1e-6,
maxit
,200,
gui
,-1)
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opt1 =

0 0 0.0000 200.0000 0 0 -1.0000

The parameters are stored in opt in the order:

Position in opt Parameter

1 n

2 p

3 tol

4 maxit

5 issym

6 dopoly

7 gui

The above list is stored as a variable names in both speigset.m and speigget.m . If

new parameters are added, names must be updated in both places. In addition, the

m-�le validopt.m, which is used to determine if a Matlab variable is a valid options

structure, must be updated.

Parsing within speigset ensures that the parameters are stored in the correct

slots, regardless of the order in which they are supplied in the calling sequence. Input

arguments are compared against names to ensure that valid parameters are being

set.

Input arguments to speigget are compared against names in order to determine

the parameter that is being queried and the corresponding value. If there is no match

between the �rst characters of the input argument and the �rst characters of any

entry in names, an error message is printed.

5.6.5 Matlab version 5 implementation

Though their syntax remains the same, speigset and speigget are much more

e�cient in Matlab version 5 with the introduction of structures as Matlab data types.

A structure naturally accomodates the name/value pairs that make up an options

structure and makes error checking and parsing much easier. Furthermore, parameters

that are non-scalar (for example, the starting vector v0) can be incorporated into the

options structure, a feature not implemented in the Matlab version 4 code.
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5.7 Finding the eigenvalues of an operator

5.7.1 Motivation

The implicitly restarted Arnoldi method for eigenpair computation, without using

shift-and-invert methods, only requires the matrix A in order to form matrix-vector

products Ax. Therefore, it su�ces to know the action of A on a vector in order to

compute the eigenpairs of A. This presents the possibility of calculating the eigen-

values of an operator that is not actually stored as a Matlab variable. All that is

required is a Matlab function mvprod such that

>> w = mvprod(v)

returns the same answer as w = Av.

5.7.2 A simple example

Consider the n� n one-dimensional discrete Laplacian matrix:

0
BBBBBBBBBBBBB@

�2 1 0 0 � � � 0

1 �2 1 0 � � � 0

0 1 �2 1
. . . 0

0 0 1 �2 . . .
...

...
...

. . .
. . .

. . . 1

0 0 0 � � � 1 �2

1
CCCCCCCCCCCCCA

This operator could be created as a Matlab sparse matrix:

>> e = ones(n,1);

>> A = spdiags([e -2*e e], -1:1, n, n);

Now consider this Matlab m-�le, lap.m:

function w = lap(v);

n = size(v,1);

w(2:(n-1),:) = -2*v(2:(n-1),:) + v(1:(n-2),:) + v(3:n,:);

w([1,n],:) = -2*v([1,n],:) + v([2,n-1],:);
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It is easy to verify that

>> w = lap(v);

gives the same result as

>> w = A*v .

The m-�le implementation requires substantially fewer 
oating point operations

to perform the matrix-vector product. Furthermore, the m-�le is independent of the

problem size, n.

There are many real-world applications in which all that is known about the

operator A is its action on a vector, and not its structure as a matrix. These situations

arise in several �elds including control systems and the discretization of large partial

di�erential equations.

5.7.3 Warning: mvprod must accept a matrix as input

When creating a function mvprod that speci�es a matrix-vector product for the pur-

pose of using speig, it is extremely important that mvprod be able to return a matrix

of column vectors corresponding to the results of mvprod applied to each column of

the input matrix. In the above example, lap takes advantage of Matlab vectorization

to generate all of the matrix-vector products at once. An improper implementation

of lap would be:

function w = lapbad(v);

n = size(v);

w(2:(n-1)) = -2*v(2:(n-1)) + v(1:(n-2)) + v(3:n);

w([1,n]) = -2*v([1,n]) + v([2,n-1]);

While lapbad would act correctly on a single vector,

>> lapbad(rand(10))

results in an error since no provision is made for a matrix as input.

Loops should be avoided in matrix-vector product m-�les. Often, thoughtful cod-

ing and use of vectorization can improve the speed of the function signi�cantly. In

addition, it is better to make use of global variables to de�ne constants and matrices

used in the function than to explicitly de�ne these in the m-�le itself. Execution will

be very slow if large matrices are de�ned each time the m-�le is called.
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5.7.4 Syntax

To use speig to �nd the eigenpairs of an operator de�ned by a matrix-vector product

in the m-�le mvprod.m, use the syntax

>> [V,D] = speig(
mvprod
,n);

Here, n is the order of the operator A; that is, the dimension of the domain of A.

For matrices, this is simply the number of columns, or size(A,2).

The operator dimension n must be supplied in the last argument of the call to

speig. Otherwise, there is no way to determine the dimension of the problem. There

are two ways to supply n:

1. If no options structure is to be supplied, then give n as the last input argument

to speig. For example,

>> [V,D] = speig(
lap
,5,
LR
, 40|{z}
n

);

2. If parameters are to be set via an options structure, then include n in the options

structure along with the other parameters and use the normal syntax, such as:

>> opt1 = speigset(
tol
,1e-6,
n
,40);

>> [V,D] = speig(
lap
,5,
LR
,opt1);

Again, it is very important that n be supplied as the last argument in the call; if

it is supplied elsewhere, it may be misinterpreted as k or sigma.

Either the �rst or second method above must be used; a mixture of the two as in

>> opt1 = speigset(
tol
,1e-6);

>> [V,D] = speig(
lap
,5,
LR
,opt1,40);

will result in an error.

5.8 Polynomial acceleration

When A is a string, and sigma is 
SR
,
LR
, or a numeric shift, polynomial accelera-

tion can be activated by passing speig an options structure with the parameter dopoly

set to 1 (or a positive number). Polynomial acceleration often speeds up convergence

by an appreciable factor. The mathematics of polynomial acceleration was discussed

in Chapter 4. The acceleration scheme as implemented in speig is discussed in the

following subsections.
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5.8.1 sigma = 
LR


We consider the Matlab commands:

>> opt = speigset(
n
,625,
issym
,1,
dopoly
,1,
gui
,1);

>> [V,D] = speig(
lap
,5,
LR
,opt);

When the dopoly parameter is parsed, speig converts sigma = 
LR
 into an

internal setting sigma = 
LO
. The interpretation of 
LO
 is to compute the k � 1

eigenvalues of largest real part and 1 eigenvalue of smallest real part. This allows

speig to get a good start on computing the wanted eigenvectors while also getting

rough bounds on the spectrum. When the Ritz estimates of the smallest and largest

Ritz values are less than 0.1, the global variables lbd and ubd are assigned to be these

Ritz values, respectively. The Arnoldi basis is then explicitly restarted with the Ritz

vector corresponding to the largest eigenvalue. The name of the m-�le specifying the

matrix-vector product, in this case 
lap
, held in the input argument A, is assigned

to the global variable op. The global variable sig holds the value of the original

sigma requested, in this case 
LR
. The argument A is then reassigned to the m-�le


accpoly
, the polynomial acceleration subfunction. The argument sigma is assigned

to the value 
LR
, since we will be searching for the largest eigenvalues of the matrix

polynomial in op.

The part of the function accpoly that applies to this case is:

function w = accpoly(v)

global op lbd ubd sig

m = 10;

p = .25;

slope = 2/(ubd-p*(ubd-lbd)-lbd);

intercept = -1 - (lbd*slope);

w0 = v;

w1 = slope*feval(op,v)+intercept*v;

for jj = 2:m
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w = 2*(slope*feval(op,w1)+intercept*w1)-w0;

w0 = w1;

w1 = w;

end

w=accpoly(v) has the following e�ect:

1. Maps the left hand side of the spectrum of op into [-1,1] by the transforma-

tion op2 = slope*op + intercept. The parameter p in accpoly controls the

fraction of the spectrum that is mapped into the equiripple region of the poly-

nomial.

2. Applies the Chebyshev polynomial of degree 10 in the scaled operator op2 to

the input argument v.

Then speig sets the iteration count to 1 and restarts the entire main loop as if

the command

>> [v,d] = speig(
accpoly
,k,
LR
);

was originally issued. If 
gui
 is enabled, the normal graphics display will switch over

to a graph of the accelerant polynomial plotted over the Ritz values of the original

problem.

Figure 5.1: Polynomial accelerant for sigma = 
LR


It is important to note that the Ritz values which are now displayed in the com-

mand window are no longer estimates of the eigenvalues of the original operator op,

but rather estimates of the eigenvalues of the polynomial accelerant operator accpoly.

After convergence, eigenvalue estimates for the original operator op are recovered by

forming the Rayleigh quotient D = V'*feval(op,V), where V is the matrix of Ritz

vectors obtained from applying speig to accpoly.
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5.8.2 sigma = 
SR


If sigma = 
SR
 instead of 
LR
 in the above example, the only change in the algo-

rithm is to map the right hand side of the spectrum of op into [-1,1] instead by using

the di�erent values for slope and intercept discussed in section 4.1.2.

5.8.3 sigma = a numeric shift

When sigma is a numeric shift, the polynomial that is used to accelerate convergence

is obtained by the FIR �lter design methods discussed in section 4.2. The program


ow is still shunted to the subfunction accpoly as discussed above; however, the code

which is executed in this case is:

function w = accpoly(v)

global op lbd ubd sig filtpoly iter

m = 10;

slope = 2/(ubd-lbd);

intercept = 1 - (ubd*slope);

if iter == 1

wp = acos(slope*sig+intercept);

m = 10;

N = 2*m+1;

L = 4;

del = 0.01;

h = bp_fer(N,L,wp,del,-del,2^7);

filtpoly = h2x(h);

iter = 2;

end

w = filtpoly(1)*v;

for i=2:(m+1)



56

w = (slope*feval(op,w)+intercept*w) + filtpoly(i)*v;

end

The accelerant polynomial filtpoly is calculated using the FIR �lter design m-�le

bp fer and subfunctions written by Ivan Selesnick of the Electrical and Computer

Engineering Department, Rice University [21]. The polynomial is only computed

once, at the �rst polynomial iteration; it remains in global memory for the remaining

iterations and need not be recalculated.

Figure 5.2: Polynomial accelerant for sigma = a numeric shift

The polynomial in the scaled operator is applied to the input argument v by

nested multiplication.

It should be noted that if the eigenvalues are irregularly distributed in the spec-

trum, the user may not exactly receive the k eigenvalues closest to the shift sigma

due to asymmetries in the accelerant polynomial about sigma. In spite of this short-

coming, this method still allows us to compute interior eigenvalues and eigenvectors

which were not easily computed by previous means.

5.9 The graphical user interface

One limitation of Fortran eigenvalue codes is their text-only interface. I felt it was

important to create a graphical display for speig so that the user could monitor the

eigenvalue approximations as they progressed, and stop the process at an intermediate

stage if desired.
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5.9.1 Stop Button

Inside Matlab, the escape sequence CNTL-C halts execution of code and returns

to the workspace prompt. All intermediate results from the interrupted process are

lost. In an application such as speig, valuable information about the eigenpairs can

be gained from intermediate variables. Since each successive iteration improves the

eigenpair approximations, intermediate results from speigwill give \looser" estimates

of the eigenpairs. If the algorithm is converging too slowly, or the user does not want

to wait for the Ritz pairs to converge to full tolerance, there should be some way

to interrupt the algorithm and extract these looser estimates. I envisioned a \stop

button" that the user could press to halt the algorithm and return the current results.

Unfortunately, Matlab has no capacity to tell whether a key is pressed while a

command is executing unless

1. The key is an escape sequence (CNTL-C), in which case intermediate infor-

mation is lost, or

2. A keypress is solicited within the m-�le (for example, using the input function).

However, input will stop the program 
ow and wait inde�nitely for a keypress,

an undesirable attribute.

The ideal Matlab function for this purpose would be some type of keyscan function

that would return True if the user pressed a key on the keyboard. Then at selected

points in the algorithm, the keyboard would be scanned for the stop character, and

the algorithm would terminate at the current iteration. However, no such Matlab

function exists in version 4.

Therefore, I had to implement the \stop button" using Matlab's graphical user

interface tools. When the user passes speig an options structure with gui set to a

negative number, the following Matlab window appears.
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Figure 5.3: SPEIG Stop Button

The window displays the current iteration number and a residual which indicates

the goodness of approximation of the current Ritz pairs. The residual is an approxi-

mation to kAV�V Dk
kAk , where D is a k � k diagonal matrix containing the current Ritz

values , and V is an n�k matrix containing the corresponding Ritz vectors. However,

until the very end of the algorithm, these matrices are not actually formed. The dis-

played residual is really the norm of the vector of Ritz estimates corresponding to

the approximate eigenpairs, because it is inexpensive to calculate the Ritz estimates

during the iteration. However, as the algorithm converges, the Ritz estimates become

poor estimates of the actual error in each Ritz pair (See the convergence history

in Figure 7.2). When the Ritz estimates become too small, the matrix of errors
kAV�V Dk

kAk is actually formed. This is expensive computationally but ensures that the

user receives the desired eigenpairs to the requested tolerance.

The large Stop Button can be pressed at any time during the execution of speig;

however, the program 
ow is interrupted only at certain points to check whether the

button has been pushed. The command which de�nes the stop button is:

b1 = uicontrol(
style
,
pushbutton
,


units
,
normalized
,


string
,
Stop!
,


callback
,
set(gcf,

userdata

,1);
,


position
,[.1 .1 .8 .5]);

The callback portion of this command is the important feature; when the button is

pushed, the userdata attribute of the Stop Button window is set from its default value

0 to 1. Figure window attributes are handy places to store variables that are visible

to all functions but are not declared as global. At certain points in the iteration, the

conditional if(get(gcf,
userdata
) == 1) is evaluated to determine whether the
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stop button was pushed. If the conditional evaluates True, then the algorithm �nishes

the current iteration, calculates the �nal Ritz pairs, and terminates. Care is taken to

make sure the algorithm does not exit in the middle of an iteration, corrupting the

information.

In Matlab for Windows, it is necessary to select \Enable Background Process"

from the Options menu in order to make the Stop Button work.

5.9.2 The Progress Report window

The Stop Button window is intended mostly as a convenience for the user who may

want to halt the speig algorithm before it naturally terminates. The extra com-

mands used to run the stop button interface are minimal and do not appreciably slow

execution time.

The Progress Report window gives a more complete picture of the algorithm as it

proceeds. The display includes

� The stop button

� Values of the parameters k, n, p, maxit

� The current iteration number

� The elapsed time since the function call

� The current task within the iteration

� The tolerance

� The residual norm as described in the previous section (when the residual norm

drops below the tolerance, the algorithm terminates)

� A large graph with the current eigenvalue estimates plotted as dots in the

complex plane. The title of the graph indicates which eigenvalues were requested

(i.e. \The 5 eigenvalues of largest magnitude"). The dots change position

and color as the algorithm proceeds. The color of the dot corresponds to the

value log(Av � v�), where (�; v) is the Ritz pair represented by the dot. The

initial color of the dots is green (corresponding to an error greater than 1) and

progresses through yellow and orange to red (corresponding to a tolerance of

machine precision). In this way, the user can tell exactly which eigenvalues are
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converging more quickly or slowly and how good the estimate of a speci�c value

is.

Figure 5.4: SPEIG Progress Report Window

Continually updating the progress report window may take an appreciable amount

of time during each iteration. The progress report window is provided mainly for the

user who wishes to monitor more closely the evolution of the eigenpair estimates. The

progress report window also serves as a good educational tool for understanding how

the Arnoldi method proceeds.

5.10 speig and its subfunctions

5.10.1 Directory listing

Once the directory containing speig and its subfunctions has been added to Matlab's

search path, typing

>> help spdir

where spdir is the name of this directory will produce the following Table of Contents

�le:

% Sparse eigenvalue functions.

%

% Primary sparse eigenvalue functions



61

% speig - Sparse matrix generalized eigenvalues and eigenvectors.

% speigset - Create a SPEIG options structure.

% speigget - View a SPEIG options structure.

% ssvd - Sparse singular value decomposition.

%

% Secondary sparse eigenvalue functions (called from SPEIG)

% apshft1 - Apply shifts to update an Arnoldi factorization.

% apshft2 - Apply shifts to update an Arnoldi factorization.

% arnold - Compute or extend an Arnoldi factorization.

% arnold2 - ARNOLD for factored matrices.

% accpoly - Applies an accelerant polynomial to a set of vectors.

% accpoly1 - Applies an accelerant polynomial to a set of scalars.

% isscalar - True for scalar.

% shftit - Calculate shifts to update an Arnoldi factorization.

% strmatch - Find possible matches for a string.

% strvcat - Concatenation of strings into a matrix.

% validopt - True for a valid SPEIG options structure.

%

% Accelerant polynomial functions (called from ACCPOLY)

% These files were all authored by Ivan Selesnick, ECE Dept, Rice U

%

% add_poly - Add two polynomials

% bp_fer - Design linear-phase bandpass FIR Chebyshev filter

% chebpoly - Chebshev polynomial

% cos2x - Converts a polynomial in cos x to a polynomial in x

% h2cos - Converts filter coefficients to cosine polynomial

% h2x - Converts filter coeffiecients to polynomial in x

% localmax - Finds location of local maxima of a vector

% rlz - Removes leading zeros of a polynomial

speig requires all of the functions in the �rst two sections in order to execute. The

accelerant polynomial functions in the third section are used only when polynomial

acceleration is required for an operator whose desired eigenvalues lie close to a shift in

the complex plane. Ivan Selesnick of the Electrical and Computer Engineering depart-
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ment at Rice University wrote these functions for a separate �lter design application

discussed in [21].

In the Matlab version 5 implementation of speig, all of the subfunctions will be

incorporated into the single m-�le speig.m. The subfunctions are really not designed

to be called separately from speig, although documentation is provided in the headers

of these �les. The user need only deal with the speig function to compute the

eigenvalues and eigenvectors of a matrix.

5.10.2 Program 
ow

The following 
owchart illustrates how speig and its subfunctions interact during

the iterative Arnoldi method.

speig.m:
Argument parsing,
parameter setting,
initialization.

arnold.m or arnold2.m:
Generate a k−step
Arnoldi factorization.

arnold.m or arnold2.m:
Extend the k−step
Arnoldi factorization
to a k+p step Arnoldi
factorization.

shftit.m:
Determine the p shifts
to apply to the Arnoldi
factorization.

apshft1.m or apshft2.m:
Apply the p implicit
shifts to the Arnoldi
factorization

speig.m:
Recover the eigenvalues/
eigenvectors of the
original problem; exit.

Input Output

Iterate until convergence

Figure 5.5: Flowchart of speig and subfunctions

If polynomial acceleration is activated, the changes in the input arguments de-

scribed in section 5.8 are made and the entire process is restarted at the top of the

diagram.
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Chapter 6

Sparse singular value decomposition (ssvd)

6.1 The singular value decomposition

The singular value decomposition (SVD) is one of the most powerful tools of linear

algebra. Any m by n matrix A can be factored into

A = U�V T

where U 2 Rm�m and V 2 Rn�n are orthogonal matrices and � 2 Rm�n is diagonal.

The columns of U and V are called left and right singular vectors respectively. The

diagonal entries of � are called singular values.

The singular values and vectors of A are closely related to the eigenvalues and

eigenvectors of AAT and AT
A. Note:

AA
T = (U�V T )(V �T

U
T ) = U��T

U
T

A
T
A = (V �T

U
T )(U�V T ) = V �T�V T

From this is should be clear that the columns of U are the eigenvectors of AAT ,

and the columns of V are the eigenvectors of AT
A. Furthermore, the r nonzero

singular values on the diagonal of � are the square roots of the nonzero eigenvalues

of both AAT and AT
A.

When the singular values of A are ranked from largest to smallest magnitude, it

is a well-known result that the matrix

Ak = Uk�kV
T

k

is the best rank-k approximation to A, where �k = diag(�21; �
2
2; � � � ; �2k), and the

columns of Uk and Vk are the corresponding left and right singular vectors. This

truncation of the SVD is useful in contexts such as image processing, in which a picture

containing most of the \information" from an original picture can be constructed from

the largest singular values and corresponding singular vectors.
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6.2 Relationship to speig

The connection between the singular value decomposition of A and the eigenvalues

and eigenvectors of AAT and AT
A suggests several methods of using speig to compute

the size-k truncated singular value decomposition of large structured matrices.

Method 1

Form B =

0
@ 0 A

A
T 0

1
A, and calculate

>> [Q,D] = speig(B,k,
LR
);

Then if dii is a positive eigenvalue of B, and Q(:; i) is a corresponding eigenvector

of norm
p
2, dii is a singular value of A and u = Q(1 : m; i), v = Q(m+ (1 : n); i) are

the corresponding left and right singular vectors.

Proof:

0
@ 0 A

A
T 0

1
A
0
@ u

v

1
A =

0
@ �u

�v

1
A, Av = �u

A
T
u = �v

, A( 1
�
A
T
u) = �u

A
T ( 1

�
Av) = �v

, AA
T
u = �

2
u

A
T
Av = �

2
v

The last equivalence is simply the relationship of the singular values and vectors

to eigenvalues and eigenvectors of AAT and AT
A discussed in the previous section.

If B has t zero eigenvalues and a complete set of corresponding orthogonal eigen-

vectors f
 

uj

vj

!
g, then 0 is a singular value of A with corresponding left and right

singular vectors obtained by orthogonalizing the uj and vj, respectively.

Method 2

Compute

>> [Q,D] = speig(A'*A,k,
LR
).

Then if dii is positive,
p
dii is a singular value of A with corresponding right

singular vector v = Q(:; i) and corresponding left singular vector u = Avp
dii
.

Proof:

If v is a unit-length eigenvector of AT
A with associated eigenvalue �, then Av is an

eigenvector of AAT associated with the same eigenvalue:
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AA
T (Av) = A(AT

A)v = A(�v) = �(Av):

The normalization factor follows from the fact:

kAvk2 =
p
v
T
A
T
Av =

p
v
T
�v =

p
�:

Method 3

Compute

>> [Q,D] = speig(A*A',k,
LR
).

Then if dii is positive,
p
dii is a singular value of A with corresponding left singular

vector ui = Q(:; i), and corresponding right singular vector vi =
ATuip
dii
.

The proof follows the same outline as above.

Method 4

Form B =

0
@ gI A

A
T

gI

1
A, where g = kAk1. Compute

>> [Q,D] = speig(B,k,
LR
).

This is a shifted version of method 1 which assures the positive de�niteness of

B. The singular values are recovered by subtracting the shift g from the computed

eigenvalues of B. The proof follows from the proof of method 1 and the result about

the eigenpairs of A� �I proved in section 2.7.

6.3 Syntax of ssvd

The sparse singular value decomposition function ssvd calculates the truncated sin-

gular value decomposition of a matrix A.

>> [U,S,V] = ssvd(A);

produces orthogonal matrices U and V and a diagonal matrix S containing the 5

largest singular values of A, so that B = USV
T is the best rank-5 approximation to

A.

>> [U,S,V] = ssvd(A,k)
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produces orthogonal matrices U and V and a diagonal matrix S containing the k

largest singular values of A, so that B = USV
T is the best rank-k approximation to

A.

>> [U,S,V] = ssvd(A,k,m)

computes the singular value decomposition according to method m, as described in

the above section. The default method is method 1.

>> [U,S,V] = ssvd(A,k,method,gui)

displays the speig graphical user interface as the singular values are computed.

gui > 0 displays the large \Progress Report" window; gui < 0 displays the small

\Stop Button" window. Note that depending on the method selected, the converging

numbers in the display window may not be the actual singular values.

>> d = ssvd(A,...)

returns a vector containing diag(S).

6.4 Which method should be chosen?

The choice of whether to use Method 2 or Method 3 should be made based on the

dimensions of A 2 Rm�n. Method 2 applies the matrix AT
A 2 Rn�n, while Method

3 applies the matrix AAT 2 Rm�m. Therefore, it is reasonable to work with the

method that uses the smaller matrix, since intermediate operations will require less

storage and fewer 
oating-point operations.

However, information about the singular values can be lost through this \squar-

ing". Suppose � is the roundo� error on a certain machine, and the matrix A has

singular values �1 = 1; �2 = O(
p
�). Even though the elements of AT

A and AAT will

have the same order of accuracy as the elements of A, their eigenvalues will be �1 = 1

and �2 = O(�). Therefore, the eigenvalue �2 will not be computed accurately, and

consequently, neither will the singular value �2 [28, p. 398].

However, since in many applications of the SVD, it is the largest singular values

which are of interest, this squaring of the eigenvalues may not be a problem. The

largest singular values can be determined safely and accurately. Alternate methods

should be considered if the smaller singular values are required.
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Another serious problem with methods 2 and 3 is the amount of �ll-in that could

occur in the formation of AAT and A
T
A. Consider the case below, sketched using

Matlab's spy command:
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nz = 112

Structure of a sparse matrix A; density = 0.0933
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nz = 386

Structure of A’*A (method #2); density = 0.2412
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30

nz = 292

Structure of A*A’ (method #3); density = 0.3244

Figure 6.1: a. Structure of a sparse matrix A,

b. Structure of AT
A, c. Structure of AAT

The �ll-in would cause matrix-vector products in the iteration to take more time,

and may slow the computations appreciably. Consequently, methods 2 and 3 are

implemented in ssvd using helper functions which do not explicitly form the matrices

A
T
A and AAT . Instead, A and AT are successively applied to the input vector in the

appropriate order.

Methods 1 and 4 have the advantage that the eigenvalues computed by speig

are actually the singular values of A. Furthermore, the matrix B is proportionally

sparser than A, and matrix-vector products are only twice as di�cult. Although the

matrix B which is formed is of order m+ n, this should not be a problem since the

sparse storage class is used to form B. Therefore, method 1 is used as the default,

with methods 2, 3, and 4 provided for comparison and choice.

The possibility of using polynomial acceleration to speed convergence of the largest

singular values is being considered.
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Chapter 7

Test cases

We now present the results of speig applied to several test cases which arise from

real-world applications.

7.1 Modes of vibration of an L-shaped membrane

The L-shaped membrane is a familiar sight to any Matlab user; it is the MathWorks'

company logo and appears on the cover of the Matlab user's manuals. This membrane

is actually the �rst eigenfunction of the two-dimensional Laplacian operator with

Dirichlet boundary conditions on an L-shaped domain. That is, it is the \�rst"

solution of the partial di�erential equation:

�u = �u on L

u = 0 on @L

where L = f[�1; 1]� [�1; 1]g � f[�1; 0]� [0; 1]g

The problem has a rich classical history and the eigenfunctions can be obtained

using Bessel functions [7, 15].

There are an in�nite number of eigenfunctions for this problem; however, we can

discretize the Laplacian over the L-shaped domain and approximate its eigenfunctions

by computing the eigenpairs corresponding to the eigenvalues of smallest real part.

Moler derived the 12 eigenvalues of smallest real part for the continuous operator [7];

they are given by:
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2
666666666666666666666666664
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We will attempt to obtain this result and the MathWorks' logo using speig.

First we generate the L-shaped domain using a suitably large grid size, 64 points

on a side.

>> n = 64;

>> h = 2/(n-1);

>> G = numgrid('L',64);

The numgrid command generates the domain and numbers the grid points in an

\intuitive" way.

Now we form the two-dimensional discrete Laplacian using the delsq command:

>> A = delsq(G);

The matrix A is of order 2883, but is very sparse, with at most �ve entries per

column. The density of A is .0017.
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Structure of the sparse matrix A

Figure 7.1: Structure of the discretized two-dimensional Laplacian

over the L-shaped membrane

Each column corresponds to a grid point; we have reordered the grid as a single

long vector instead of a two-dimensional array. Once we compute eigenvectors of A,

we can use the numbering scheme in G to recover a two-dimensional eigenfunction

approximation over the L-shaped domain.

Now we compute the 12 eigenpairs of A of smallest real part using speig:

>> [v,d]=speig(A,12,
SR
);

We recover the eigenvalues of the Laplacian over the L-shaped domain using the

following scaling:

>> e = diag(d)/(h^2);
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>> e

e =

9.3914

14.9531

19.5196

29.3112

31.3711

40.5923

43.9461

48.7238

48.7257

55.6510

64.6118

70.2767

We can see that the computed eigenvalues are quite close to Moler's analytic

eigenvalues. Of course, since the matrix is a discretization of a continuous operator,

re�ning the mesh will increase the accuracy of the eigenvalues. However, the eigenval-

ues in e are within default tolerance to the actual eigenvalues of A. The convergence

history of the eigenvalues is illustrated by the graph below:
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Figure 7.2: Convergence history for the L-shaped membrane

The x-axis corresponds to the cumulative number of 
oating-point iterations. A

vertical dotted line indicates the beginning of a new iteration. Notice that later

iterations require fewer 
oating point operations. This phenonmenon is due to the

\moving boundary" incorporated into speig; when the residual for an eigenvalue is

suitably low, we subtract one from k, the number of eigenvalues to calculate, and add

1 to p, the number of shifts to apply. Therefore the algorithm actually speeds up as

eigenvalues converge.

The y-axis corresponds to the residual of each Ritz pair. The solid lines are the

actual residuals kAx � x�k, where (x; �) is the Ritz pair. The dotted lines are the

Ritz estimates for these Ritz pairs. We can see that the Ritz estimates are good

approximations to the actual residuals for several iterations, but eventually become

inaccurate due to machine roundo�.

This convergence history is characteristic of what is observed during a typical

application of speig. The dominant Ritz value (represented by the lowest line) con-

verges quickly, while the others take several more iterations to catch up. The series

of peaks around 6 � 108 
ops corresponds to the discovery of the double eigenvalue at
5�2. Once the double eigenvalue has been found, the residuals quickly decrease. In

general, one must be careful not to set the tolerance for convergence too low; other-
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wise the results may be inaccurate. For example, if we had set the tolerance to 10�1

in this problem, we never would have detected the double eigenvalue.

Now we will recover the L-shaped membrane itself. We scale the eigenvectors so

that the largest component of each is 1:

>> v = v*diag(1./max(abs(v)));

It takes some tricky Matlab indexing to transform the �rst eigenvector into an

eigenfunction approximation over the L-shaped domain:

>> w = v(:,1);

>> m = zeros(size(G));

>> m(G>0) = w(G(G>0));

>> mesh(m)
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The first eigenfunction of the L−shaped membrane

Figure 7.3: The MathWorks' logo.

We can see that we indeed recover the famous MathWorks logo (with minor dif-

ferences because of the boundary conditions). The other eigenfunctions have similar

patterns of peaks distributed symmetrically over the L-shaped domain.
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7.2 A Tolosa matrix

The Tolosa matrices take their name from the city of Toulouse, where the Aerospatiale

Aircraft Division and CERFACS are located [9]. This family of matrices arises in the

stability analysis of a model of an airplane in 
ight. [25]. Tolosa matrices are very

sparse and have a 5 � 5 block structure; their order n is always at least 90 and

divisible by 5. For more information about the structure of Tolosa matrices, see the

brief sketch included with the Harwell-Boeing collection [9] and the references cited

therein.

We will consider a Tolosa matrix of order 340, whose structure is illustrated below:

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 2196

Structure of the 340 x 340 Tolosa matrix

Figure 7.4: Structure of the 340 � 340 Tolosa matrix.

We generate this matrix using Matlab functions provided by Chao Yang of the

CAAM department, Rice University:

>> tolosax;

>> A = atolosa(xs,340/5);

Since this is a relatively small problem, we can compute all the eigenvalues using

normal full eig:

>> [V,D] = eig(full(A));
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The spectrum looks like:
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Eigenvalues of the 340 x 340 Tolosa matrix

Figure 7.5: Spectrum of the Tolosa matrix

We are interested in the eigenvalues of largest imaginary part. While it would be

easy to implement a sigma = 
LI
 feature in speig, we choose instead to �nd the

eigenvalues closest to a suitable shift in the complex plane. In this example we will

use � = �150 + 410j, and �nd 30 eigenvalues. The call to speig looks like:

>> [v,d]=speig(A,30,-150+410*j));

residnorm =

2.770144723987897e-07

The eigenvalues converge impressively quickly, in only 2 iterations.

We try a more ambitious task of �nding the eigenvalues of largest imaginary part

when the shift we give is far away from the eigenvalues; for example, we will use

� = �100 + 9000j. Furthermore, we will use an options structure to specify we want

the tolerance to be 10�10.

>> [v,d]=speig(A,30,-100+9000*j,speigset('tol',1e-10));
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Despite the inaccurate shift, the algorithm still converges after only 6 iterations.
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Figure 7.6: Convergence history of the Tolosa matrix

We recover the correct eigenvalues:
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Figure 7.7: Eigenvalues of the Tolosa matrix
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7.3 The Brusselator matrix: �nding the eigenvalues of an

operator

We consider a well-knownmodel of the Belousov-Zhabotinski chemical reaction known

as the Brusselator model [8, p. 312]. The concentrations of two chemical components

are modeled by a pair of coupled partial di�erential equations. We seek to determine

the stability of the reaction at a certain equilibrium; therefore, we need to consider the

eigenvalues of the Jacobian at this equilibrium. We call the Jacobian the Brusselator

matrix. This matrix can be built from the identity matrix and the one-dimensional

Laplacian T :

B =

0
@ �1T + �I �I


I �2T + �I

1
A

As in the L-shaped membrane problem, we will approximate some of the in�nite

number of eigenvalues of the Brusselator matrix by computing eigenvalues of its dis-

crete counterpart. This matrix is relatively easy to construct; we use the following

m-�le:

function Br = bruss(n)

% Brusselator matrix, p. 52 Saad

% The Brusselator matrix is a 2 x 2 block matrix involving T and I.

e = ones(n,1);

T = spdiags([e -2*e e], -1:1, n, n); % 1-D Laplacian

I = speye(n); % Identity matrix

Dx = 0.008; % Parameters from Saad

Dy = 0.004;

A = 2;

B = 5.45;

L = 0.51302; % Bifurcation occurs here

h = 1/(n+1);

t1 = Dx/(h*L)^2;
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t2 = Dy/(h*L)^2;

x = A; % The equilibrium

y = B/A;

Br = [t1*T + (2*x*y-(B+1))*I, x^2*I ; (B-2*x*y)*I , t2*T - x^2*I];

Here is an illustration of the Brusselator matrix's structure:
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Structure of the Brusselator matrix

Figure 7.8: Structure of the 200 x 200 Brusselator matrix

Because of the underlying structure of the Brusselator matrix, it is possible to

compute a closed form expression for its eigenvalues; this formula entails solving

quadratic equations whose coe�cients involve the parameters and the known eigen-

values of the one-dimensional discrete Laplacian T . (These eigenvalues can be found

in [13, p. 99].) However, we will again use speig to perform the numerical compu-

tation. The eigenvalues of largest real part are of interest, since they determine the

stability of the equilibrium.

Here is a graph of the right side of the spectrum of the Brusselator matrix. The

left side continues along the imaginary axis to the left.
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Figure 7.9: Rightmost eigenvalues of the Brusselator matrix

The Brusselator matrix is highly structured. Therefore it is reasonable to believe

some gains could be both in speed and accuracy by creating an m-�le which encapsu-

lates the action of the Brusselator operator. If we wish to compute w = Bv, we can

write v in the block form v =

0
@ x

y

1
A so that

w = Bv

= B

0
@ x

y

1
A

=

0
@ �1T + �I �I


I �2T + �I

1
A
0
@ x

y

1
A

=

0
@ �1Tx+ �x+ �y

�2Ty + 
x+ �y

1
A

Recall that in Section 5.6.2, we created an m-�le lap.m which produces the action

of T on a set of input vectors:

function w = lap(v);

n = size(v,1);

w(2:(n-1),:) = -2*v(2:(n-1),:) + v(1:(n-2),:) + v(3:n,:);

w([1,n],:) = -2*v([1,n],:) + v([2,n-1],:);
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Therefore, we can write a Brusselator m-�le as follows:

function w = bruss2(v)

global tau1 tau2 alpha beta gamma delta n

x = v(1:n,:);

y = v(n+1:2*n,:);

w = [ tau1 * lap(x) + alpha * x + beta * y ; ...

tau2 * lap(y) + gamma * x + delta * y ];

The global variables are calculated only once in the base workspace to avoid un-

necessary computation. It turns out that the operations w = B*v and w = bruss2(v)

require roughly the same number of 
oating point operations so the gain in speed will

probably be negligible.

Now we use speig to attack the problem. We let n = 200 and suppose we are

interested in the 10 eigenvalues of largest real part. We use the syntax:

>> [v,d]=speig(
bruss2
,10,
LR
,speigset(
n
,200));

It takes several iterations for the algorithm to converge, but eventually we reach

a stage where the Ritz values are good approximations of the rightmost eigenvalues.
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Figure 7.10: An intermediate stage

We �nally obtain the 10 rightmost eigenvalues:

>> diag(d)

ans =

1.8200e-05 - 2.1395e+00i

1.8200e-05 + 2.1395e+00i

-6.7471e-01 - 2.5286e+00i

-6.7471e-01 + 2.5286e+00i

-1.7985e+00 - 3.0322e+00i

-1.7985e+00 + 3.0322e+00i

-3.3704e+00 - 3.5553e+00i

-3.3704e+00 + 3.5553e+00i

-5.3887e+00 - 4.0323e+00i

-5.3887e+00 + 4.0323e+00i

We can see that since there are eigenvalues in the right half plane, the equilibrium

will be unstable. This example was chosen for its closeness to the bifurcation between

stability and instability. Here is the convergence history:
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Figure 7.11: Convergence history for the Brusselator problem

7.4 The 1-D Laplacian with polynomial acceleration

We now compute 6 leftmost eigenvalues of the one-dimensional discrete Laplacian T

of order 625 in two di�erent ways.

First, we explicitly create the matrix in Matlab:

>> n = 625;

>> e = ones(n,1);

>> T = spdiags([e -2*e e], -1:1, n, n);

Now we use speig to compute the eigenvalues:

>> o = speigset(
tol
,1000*eps);

>> [V,D] = speig(T,6,
SR
,o);
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The following eigenvalues were obtained:

-3.999974814523785e+00

-3.999899258729349e+00

-3.999773334519658e+00

-3.999597045066184e+00

-3.999370394808843e+00

-3.999093389455986e+00

We see that the residual kTV � V Dk is within the requested tolerance:

residnorm =

4.596505711663322e-14

Furthermore, the computed eigenvectors are orthogonal to machine precision:

>> norm(v'*v - eye(size(d)))

ans =

8.810505531885305e-15

The total elapsed time for the process was 803 seconds, and 88 Arnoldi iterations

were taken. The total process required around 6:5 �108 
oating point operations. The
convergence history is shown below:



84

0 1 2 3 4 5 6 7

x 10
8

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Flops

R
es

id
ua

l

Convergence history for the 1−D Laplacian (method 1)

Figure 7.12: Convergence history, method 1.

The algorithm requires many iterations since the eigenvalues of interest are poorly

separated. The process takes several minutes since the matrix T is very large and

matrix-vector products are time-consuming.

To demonstrate the advantage of using polynomial acceleration, we now use the

m-�le lap.m to represent the matrix A and use a di�erent calling sequence:

>> o = speigset(
n
,625,
tol
,1000*eps,
dopoly
,1, 
issym
,1);

>> [V,D] = speig(
lap
,6,
SR
,o);

The following eigenvalues were obtained:

-3.999974814523766e+00

-3.999899258729350e+00

-3.999773334519678e+00

-3.999597045066205e+00

-3.999370394808856e+00

-3.999093389455942e+00

These eigenvalues agree to 13 decimal places with the eigenvalues obtained by the

�rst method.
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The residual kTV � V Dk is again within the requested tolerance:

residnorm =

8.640398339932052e-14

The computed eigenvectors are also orthogonal to machine precision:

>> norm(v'*v - eye(size(d)))

ans =

5.077352722636109e-15

The total elapsed time for the second method was only 214 seconds, and only

29 iterations were taken. The total process required around 1:6 � 108 
oating point

operations. The convergence history is shown below:
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Convergence history for the 1−D Laplacian (method 2)

Figure 7.13: Convergence history, method 2.

Polynomial acceleration begins at the second iteration; the residuals are high at

�rst but dampen quickly. It should be noted that the residuals in this convergence
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history are the residuals of the transformed problem and thus are not strictly com-

parable to the residuals in the previous graph.

We now demonstrate an example of the use of polynomial acceleration when sigma

is a numeric shift. We will �nd the 6 eigenvalues of the order 625 discrete Laplacian

closest to -2.5.

The calling sequence is:

>> opt = speigset('n',625,'issym',1,'dopoly',1);

>> [v,d] = speig('lap',6,-2.5,opt);

We obtain the results:

>> diag(d)

ans =

-2.496601997844897e+00

-2.506318410062859e+00

-2.486873078469110e+00

-2.516022070410546e+00

-2.477131896962976e+00

-2.525712734496627e+00

residnorm =

5.556372395256302e-11

The process took 39 iterations and required around 2:1 � 108 
oating point opera-
tions. The convergence history is shown below:
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Convergence history for sigma = −2.5

Figure 7.14: Convergence history, sigma = -2.5

In these examples, polynomial acceleration allows us to make substantial gains

in both speed and number of iterations. Expressing the operator as an m-�le may

take some thought, but allows us to enjoy the bene�ts of the powerful polynomial

acceleration method.

7.5 A generalized example

We now consider a generalized eigenvalue problem taken from the Harwell-Boeing

collection of sparse matrices. The problem is found in the library BCSSTRUC1,

which includes matrices representing dynamic analyses in structural engineering [6].

Speci�cally, the problem is pair number 5 in this library and arises from a model

of a transmission tower. The order of the problem is 153. The mass matrix M is

diagonal with positive entries, and the symmetric sti�ness matrixK has the structure

illustrated below:
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Figure 7.15: Structure of the sti�ness matrix K.

The spectrum for the problem is spread between 2:5 � 103 to 3:0 � 107, so that

the condition number of the problem is 1:3 � 104. We expect this spread to hinder

convergence of the eigenpair estimates. We will attempt to compute the 10 eigenvalues

of smallest real part using the following command syntax:

>> [v,d]=speig(k5,m5,10,
SR
);

The process takes 79 iterations to converge; the convergence history is shown

below:
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Figure 7.16: Convergence history for BCSSTRUC 05

The residual norm in this case is only 5:5 � 10�5 although the default tolerance for

a symmetric problem is 10�10; however, recall that the tolerance is actually de�ned

as kAV�V Dk
kAk , and in this case, kM�1

Kk = 3:1 � 107. This accounts for the seeming

discrepancy. It should be noted that even relatively small generalized eigenvalue

problems give rise to problems with high condition numbers and norms, which makes

the solution of these problems di�cult.
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Chapter 8

Conclusions

We can use the Implictly Restarted Arnoldi Method to obtain approximate solutions

to many eigenvalue problems that are posed in engineering contexts. This thesis does

not discuss several re�nements to the method which avoid the pitfalls to which a

straightforward implementation such as speig may fall prey. Improvements such as

locking and purging to protect already converged Ritz pairs [12, 22, 13], the use of

Meerbergen shifts for the generalized problem, and more sophisticated de
ation tech-

niques to speed convergence [12] are not included in the speig code. The ARPACK

collection of Fortran functions [14] is a more powerful tool than speig which incor-

porates these re�nements. However, we conclude by noting that speig has several

advantages over other implementations of the implicitly restarted Arnoldi method

that are available today:

� Since speig is written in Matlab, the code is portable and it is highly read-

able. The power of the BLAS and LAPACK are already part of Matlab and

the machine dependent details of their implementation are transparent to the

user. The speig collection is written in high-level vectorizedMatlab code which

should be understandable to a user with moderate familiarity with Matlab.

� The speig code is extremely easy to use. The basic syntax is uncomplicated

but highly 
exible. The options structure allows lower-level parameters to be

tuned without cluttering the main calling sequence. The input and output from

speig can be immediately used by other Matlab functions.

� Polynomial accleration centered around a numeric shift works very well and,

to the knowledge of the author, had not been previously implemented in any

publicly available eigenvalue code.

� Distribution as part of Matlab version 5 makes speig immediately accessible

to a wide range of users from students to design engineers. The graphical user

interface provides both novice and experienced users with intuition about the
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mechanics of the process, making speig a powerful tool for both engineering

and educational environments.
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