
ESTIMATION PROBLEMS

IN DIGITAL VIDEO

Richard J. Radke

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

ELECTRICAL ENGINEERING

June 2001

c© Copyright 2001 by Richard J. Radke.

All rights reserved.

Abstract

The swift evolution of technology over the past twenty years has brought digital video from the

province of graduate school computer labs to the home of the average consumer. Furthermore,

the wireless revolution will soon enable the display of realistic, interactive digital video on a new

generation of sophisticated portable devices. Advances in video processing research will be required

to meet the demands of new applications and exploit the characteristics of new communications

systems. In this thesis, we pose, analyze, and solve several estimation problems in digital video

that arise from images taken of the same scene by different cameras, and introduce some novel

applications.

We first study the problem of estimating a projective transformation from noisy measurements.

Though this common problem in computer vision is typically solved as an eight-parameter non-

quadratic minimization, we present analytical and experimental evidence that the same solution can

be more efficiently obtained by minimizing a related functional of two parameters.

We next turn to the estimation of correspondence in the general case. We fully characterize

the class of point correspondences which can arise from a physical imaging system, and use this

understanding to design an algorithm for estimating correspondence that is particularly suitable

for wide-baseline camera configurations, where the assumptions of most existing correspondence

algorithms are unsatisfied.

We demonstrate that dense correspondence between two images of the same scene is sufficient

to synthesize realistic virtual images of the scene from new viewpoints. Prior work on still images

is extended to the synthesis of compelling virtual video from two video sequences, by means of

a novel and efficient algorithm for the recursive propagation of correspondence estimates between

video frames.

Virtual video has applications not only in visualization and entertainment, but also in wireless

multimedia applications. We show how virtual images can be used to interpolate low frame-rate

video with minimal overhead and low computational complexity, by solving an estimation problem

to construct virtual images which accurately represent real video frames.

iii

Acknowledgements

My time at Princeton has been quite enjoyable, largely due to my excellent and supportive advisors,

Peter Ramadge and Sanjeev Kulkarni. Peter and Sanj have been advisors in every sense of the

word, and under their guidance I feel I’ve become a better researcher, writer, and teacher. Peter

meticulously read innumerable drafts of papers over the past five years. After several pens’ worth

of red marks I now know all too well that the house on the corner is white. I am also grateful for the

responsibility he granted me in running the Multimedia Lab and presenting our research at meetings.

Working with Sanj on ELE 201 for the past two years has been a great learning experience from an

excellent teacher, and he can be excused for his prediction that I could write this thesis “in about a

week, if you really put your mind to it.” Ha ha.

I have also benefited from excellent advice, academic and otherwise, given to me over the years

by Bede Liu, Vince Poor, and Stuart Schwartz. Thanks to Adam Finkelstein for being the third

reader of this thesis and providing insight from a computer graphics perspective.

This work was supported by generous grants from the IBM Tokyo Research Lab. Special thanks

to Tomio Echigo, Kazuo Iwano, Yoichi Takao, and Jung-kook Hong for making our collaboration

possible. Soccer images in this thesis and in the associated publications are printed with their kind

permission. I was also supported at Princeton by two generous fellowships: a Wu Fellowship spon-

sored by Princeton University and Sir Gordon Wu, and a National Defense Science and Engineering

Graduate Fellowship sponsored by the U.S. Department of Defense. Thanks also for funding from

the New Jersey Center for Multimedia Research.

Several pieces of my computer code started out as revisions to software written by Yap-Peng

Tan. Princeton Summer Interns Kevin Gold, Jung Kim, and Tim Cobb also wrote some useful

video processing routines in the summer of 2000 that shaped my thinking on the last chapter. Ingrid

Daubechies supplied the dragon wall pictures in Figure 4.2. Thanks to Scott Rickard for collab-

orating on the audio interpolation idea. Special thanks to Aaron Hertzmann for tossing hundreds

of interesting papers my way and introducing me to the Siggraph proceedings. Finally, thanks to

Steph Costantini, Tom Roddenberry, Karen Williams, and Jay Plett for administrative and computer

iv

support.

Many friends, old and new, have supported me throughout my years at Princeton. Grad school

might have been rough indeed without the following folks: Ted Bergman, Gilbert Collins, Julio

Concha, Aaron Hertzmann, Yoshiko Jo, Rob Joyce, Toshi Kida, Shalinee Kishore, Phoebe Lam,

Carl Nuzman, Shira Sand, Kama Sandilya, John Smee, Katerina Varsou, Catherine Witt, Audrey

Wright, Min Wu, and Vitali Zagorodnov.

The dedication page is fromSnake ’N’ Bacon’s Cartoon Cabaretby Michael Kupperman.

v

vi

“Ah, there’s nothing more exciting than science. You get all

the fun of sitting still, being quiet, writing down numbers,

paying attention . . . science has it all.”

– The Simpsons

vii

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Preliminaries 8

2.1 Cameras and Images . 8

2.2 Homogeneous Coordinates . 10

2.3 Two Cameras . 11

2.4 The Fundamental Matrix . 13

2.5 Epipolar Geometry . 15

2.6 Affine Transformations . 16

2.7 References . 18

3 Basic Estimation Problems 19

3.1 Estimating Affine Transformations . 20

3.1.1 The Linear Least-Squares Problem . 20

3.1.2 Estimating Translation . 22

3.1.3 Estimating Rotation and Scale . 24

3.2 Estimating the Fundamental Matrix . 25

3.3 Estimating Rectifying Projective Transformations 26

3.4 Estimating Point Correspondences . 31

viii

3.5 Review of 2-D Correspondence Algorithms . 33

3.5.1 Optical Flow . 33

3.5.2 Layered Motion . 35

3.5.3 Structure from Motion . 37

3.5.4 Adaptive Meshes . 37

3.5.5 Beier-Neely Morphing . 38

3.6 References . 38

4 Projective Transformations 42

4.1 Origins of Projective Transformations . 43

4.2 The Least Squares Estimate . 48

4.3 Data Normalization . 52

4.4 The Behavior ofJ on Singular Lines . 53

4.5 Line-Search Descent . 56

4.6 Second-Derivative Methods . 58

4.7 Experimental Results . 61

4.8 Conclusions . 72

4.9 References . 73

5 Correspondence 75

5.1 Review of Epipolar Correspondence Algorithms 77

5.1.1 Basic Dynamic Programming: Ohta and Kanade 78

5.1.2 Bayesian Approach: Belheumer . 79

5.1.3 Maximum Likelihood Approach: Cox et al. 80

5.1.4 Maximum-Flow Graph: Ishikawa and Geiger 80

5.1.5 Curve Matching: Tomasi and Manduchi 80

5.2 Non-Monotonicity . 81

5.3 The Correspondence Graph . 82

5.3.1 Constraints on Correspondence . 82

5.3.2 The Correspondence Graph . 86

ix

5.3.3 Examples of Correspondence Graphs . 88

5.4 Estimating Correspondence Graphs . 91

5.4.1 Step 1: Segmentation and Correspondence of Foreground Objects 92

5.4.2 Step 2: Estimating Initial Global Correspondence for Background Pixels . 94

5.4.3 Step 3: Generating the Basic Correspondence Graph 96

5.4.4 Step 4: Refining each Monotonic Piece 96

5.5 Experimental Results . 97

5.6 Conclusions . 104

5.7 References . 106

6 Virtual Video 109

6.1 Review of View Morphing . 111

6.1.1 View Interpolation . 111

6.1.2 View Morphing . 114

6.2 Experimental Results: Virtual Images from Wide-Baseline Stills 115

6.3 Virtual Video . 119

6.3.1 Notation . 119

6.3.2 Recursive Propagation . 121

6.3.3 Time Update . 122

6.3.4 Measurement Update . 123

6.3.5 Error Analysis . 125

6.4 Experimental Results: Virtual Video from Wide-Baseline Video 129

6.5 Conclusions . 141

6.6 References . 142

7 View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 144

7.1 Review of Video Compression Algorithms . 146

7.2 View Morphing as a Predictive Mechanism . 150

7.3 Correspondence Between Anchor Frames . 152

7.4 Aligning the Virtual and Actual Frames . 154

x

7.5 Experimental Results . 155

7.6 Conclusions . 163

7.7 References . 165

8 Conclusions 167

A Proof of Theorem 4.2 171

B Newton Methods 175

C The Hessian ofJ(c) 180

C.1 The Hessian Itself . 180

C.2 The Gauss-Newton Approximation . 184

D Audio Interpolation 188

xi

List of Tables

4.1 Information and nominal parameters for the 6 data sets. 63

8.1 Thesis contributions. 169

xii

List of Figures

2.1 Perspective projection. 9

2.2 Rigid motion of a camera. 12

2.3 Epipolar geometry. 15

2.4 Translation, rotation, scaling, and shear. 17

3.1 The effects of outliers. 21

3.2 Rectifying projective transformations. 27

3.3 Intersection of images with a plane. 29

3.4 Regions that are difficult to match correctly. 31

4.1 Perspective effects. 44

4.2 Images from a non-translating camera. 46

4.3 Images of a planar scene. 46

4.4 Singular lines. 47

4.5 The admissible region of the plane bounded by singular lines. 48

4.6 Two views of the cost functionJ(c1, c2) for data points from actual images. 51

4.7 Proposed algorithm for minimizingJ(c). 61

4.8 Floating point operation counts for the Firestone 1-2 data set, purely Gaussian noise. 65

4.9 Floating point operation counts for the Firestone 2-1 data set, purely Gaussian noise. 65

4.10 Floating point operation counts for the B320 0-1 data set, purely Gaussian noise. . 66

4.11 Floating point operation counts for the Track data set, purely Gaussian noise. . . . 66

4.12 Floating point operation counts for the Atrium 1-2 data set, purely Gaussian noise. 67

4.13 Floating point operation counts for the Atrium 2-3 data set, purely Gaussian noise. 67

4.14 ‖Ĥ −H‖/‖H‖ as a function of noise variance for̂N andGNJ methods. 68

xiii

4.15 Floating point operation counts for the Firestone 1-2 data set, Gaussian noise with

outliers. 68

4.16 Floating point operation counts for the Firestone 2-1 data set, Gaussian noise with

outliers. 69

4.17 Floating point operation counts for the B320 0-1 data set, Gaussian noise with outliers. 69

4.18 Floating point operation counts for the Track data set, Gaussian noise with outliers. 70

4.19 Floating point operation counts for the Atrium 1-2 data set, Gaussian noise with

outliers. 70

4.20 Floating point operation counts for the Atrium 2-3 data set, Gaussian noise with

outliers. 71

5.1 Matching graph for conjugate epipolar lines. 77

5.2 Ohta and Kanade interval-matching cost function. 78

5.3 The “double nail illusion”. 81

5.4 Violations of monotonicity. 82

5.5 Epipolar geometry. 83

5.6 Mapping from(x, y)-space to(i, j)-space. 84

5.7 The set of points in front of both cameras. 85

5.8 The Southeasting operation. 87

5.9 Correspondence graph for Example 1 (simple occlusion). 89

5.10 Correspondence graph for Example 2 (double-nail illusion). 90

5.11 An N-piece and 2-piece input can both result in a 3-piece Southeast output. 91

5.12 Matching a “two-legged” object with a “one-legged” object. 93

5.13 Using the planar surface to estimate initial correspondence. 95

5.14 Original image pair(I0, I1). 97

5.15 Image pair, with segmentation. 97

5.16 Image pair, with point correspondences used for estimation. 98

5.17 Image pair, with sample epipolar lines. 99

5.18 Rectified image pair, with sample epipolar lines. 100

5.19 Registration of planar surface in soccer images. 100

xiv

5.20 Correspondence graph (basic topology), line 71. 101

5.21 Correspondence graph (basic topology), line 105. 102

5.22 Correspondence graph (basic topology), line 120. 102

5.23 Correspondence graph (refined), line 71. 103

5.24 Correspondence graph (refined), line 105. 103

5.25 Correspondence graph (refined), line 120. 104

5.26 An unsatisfactory pair of rectified images. 105

6.1 View interpolation. 112

6.2 View morphing. 114

6.3 Original image pair(I0, I1). 115

6.4 Synthesized virtual imagêIs ats = 0.5, with and without filling of occluded regions.116

6.5 Interpolated virtual imageŝIs ats = 0.25 ands = 0.75. 118

6.6 Extrapolated virtual imageŝIs ats = −0.5 ands = 1.5. 118

6.7 Relationships between image planes. 120

6.8 The setDi of rectangular domains searched by the correspondence operatorCi

given basic correspondence graph topology for one epipolar line pair. 124

6.9 Measurement update by searching a local neighborhoodBi around the time-updated

estimate. 125

6.10 Proof thata ⊂M i(a)(ε). 127

6.11 Filling in occluded regions in the time update. 130

6.12 Correspondence graphs, line 71, frames 415 and 417. 132

6.13 Correspondence graphs, line 105, frames 415 and 417. 133

6.14 Correspondence graphs, line 120, frames 415 and 417. 134

6.15 Virtual images, frame 415. 135

6.16 Virtual images, frame 433. 136

6.17 Virtual images, frame 447. 137

6.18 Virtual images, frame 465. 138

6.19 Virtual images, frame 487. 139

6.20 Virtual images, frame 499. 140

xv

7.1 Schematic of block-based motion-compensation video compression algorithms. . . 147

7.2 Two frames of test video and their absolute luminance difference. 148

7.3 View morphing for interpolating video from a translating camera. 150

7.4 Correspondence for a scene composed of planar facets. 153

7.5 The two anchor frames. 156

7.6 Anchor frames, with feature points and control lines used to initialize correspondence.156

7.7 Anchor frames, with feature points used to specify the left and right walls. 157

7.8 Estimates of the camera locationst. 158

7.9 Original, interpolated, and error frames 30, 60, 90, 120, and 150 of the B320 sequence.160

7.10 Peak signal to noise ratio over the test video sequence. 161

7.11 Detail of original, interpolated, and MPEG-compressed versions of frame 90. . . . 162

D.1 Microphone configuration. 189

D.2 Loci of sources that can be obtained with two microphones. 191

xvi

Chapter 1

Introduction

Twenty years ago, the storage and manipulation of digital video required unwieldy frame-buffering

hardware and processing power not found outside of an advanced computer lab. Ten years later, a

consumer with a high-end personal computer and CD-ROM drive might see short clips of digital

video interspersed with video games. Today, the average college student interacts with digital video

daily in the form of streaming news and entertainment broadcasts on the internet and movies in DVD

format. The next ten years will bring video over wireless networks to laptop computers, personal

digital assistants, cell phones, and even household appliances.

Many trends in technology and society drive the applications of digital video we will see in

the coming years. Wireless devices are getting smaller, cheaper, and more popular among a wider

segment of the public. On the other end of the spectrum, desktop computers have more processing

power, bigger hard drives, and faster internet connections than ever before. Movies are slowly

shifting to an all-digital pipeline, from shooting to post-production to projection to DVD release,

enabling a new level of compelling digital special effects. At the convergence of these trends is a

new breed of consumer who will make use of digital video at the workplace, on the commute, and

in the home, and expects that this video will be realistic and interactive.

No matter how fast processors become, engineers will always be challenged with meeting the

expectations of ever-more-demanding users in the face of limited time, restricted power, or low

bandwidth constraints. To this end, we must continue to push the limits of our understanding of

the relationships between cameras, images, and video, and exploit these relationships to store and

manipulate digital video in efficient and flexible ways.

1

Chapter 1: Introduction 2

This thesis addresses some of the fundamental relationships between images taken of the same

scene by multiple cameras. On one hand, we will show how new images and video of the scene can

be robustly synthesized from the perspective of a camera not present in the original environment.

On the other hand, we will show how the same techniques lend themselves to the elimination of

redundant information in video so that it can be efficiently represented and transmitted. In a sense,

all the problems we address rely on estimating a dense correspondence between images. That is,

we want to estimate the image coordinates of every scene point that is visible in a pair of images.

Of course, this is a classical problem in computer vision and has been the topic of intense research

for over thirty years. However, much of the work in this area has been for stereoscopic or closely-

spaced images that do not look “too different”. Many applications of digital video in the future will

require algorithms to process images from perspectives that differ substantially.

Much of this thesis is related in spirit to recent techniques in image-based rendering from the

computer graphics community [1]-[12]. In contrast to the once prevalent school of thought that new

images of a scene should be created by projecting a model of the scene in 3-D space onto a 2-D im-

age plane, the central idea is that in certain circumstances, a new image of a scene can be created by

processing a set of images of the scene, always staying in the 2-D domain. Hence, in image-based

rendering, one of the most important quantities is image correspondence. Correspondence from

multicamera video also has many useful applications in video coding, image understanding, and

pattern recognition. While in some applications, an unstructured optical flow field may be an ade-

quate representation of correspondence between an image pair, there are many practical situations

in which a parametrized or structured correspondence is induced by the geometry of the cameras.

In addition to coupling the correspondence to a physical modeling assumption, parametrized corre-

spondence is generally more consistent, easier to manipulate, and contains more information about

the relationships between images. Each chapter of this thesis poses and solves a parametric corre-

spondence estimation problem for a different camera/scene configuration.

Chapter 2 introduces the notation and terminology that will be used throughout the text, as well

as basic background material. Chapter 3 reviews standard methods for solving various estimation

problems in digital video that we will use as building blocks in our algorithms.

Chapter 1: Introduction 3

We begin the main contributions of the thesis in Chapter 4 by discussing projective transforma-

tions. Projective transformations relate the coordinates of images that are taken by either a camera

that undergoes only rotation while imaging an arbitrary scene, or one that rotates and translates

while imaging a planar surface. Estimating the eight parameters of a projective transformation be-

tween a pair of image planes induces a global, dense correspondence between them. The estimated

correspondence can be used to synthesize new views of the scene from different perspectives, e.g.

by “rotating” the camera that took one of the original images, or by mosaicking many images into a

large panorama. These applications have been well-studied, and what we address here are efficient

algorithms for the initial step of estimating a projective transformation from noisy point correspon-

dences. The contributions of the thesis in this regard include:

• Reduction of dimensionality.The projective transformation estimation problem is typically

posed as the minimization of a nonlinear functional of eight parameters, and solved with an

“off-the-shelf” numerical algorithm. We show that in fact, this minimization can be analyti-

cally reduced to a nonlinear problem in only two parameters.

• Efficient algorithms. We show that any descent algorithm to solve the eight-dimensional

minimization can be modified to produce a more efficient algorithm for the two-dimensional

problem. We propose several algorithms based on the two-dimensional problem and present

results on data from real images to experimentally verify their superiority.

• Robust algorithms. We demonstrate that not only are the algorithms we propose efficient,

but they are also robust to the types of measurement noise that could be introduced by a poorly

calibrated sensor or outliers in the data sets.

We will use projective transformations extensively in our work with images and video, but

the class of projective transformations is too restrictive to relate all the images we wish to con-

sider. Unfortunately, in general, the correspondence between an image pair has no simple global

parametrization. The onlya priori restriction on the locations of corresponding points is the well-

known epipolar constraint. However, the set of correspondences that are physically realizable is

not entirely unconstrained and has a structure that we fully characterize in Chapter 5. The thesis

Chapter 1: Introduction 4

contributions here are:

• Correspondence graphs.We fully describe the class of sets of corresponding points that can

arise from a real imaging system. Previous work on correspondence almost always begins

with the monotonicity assumption, that the ordering of points along epipolar lines is an image

invariant. Instead, we consider the correspondence induced by arbitrarily complicated scenes,

and encapsulate this structure in the correspondence graph, the set of all points that are visible

in two conjugate epipolar lines. Using the formalism of correspondence graphs, we can ensure

that any estimated correspondence is consistent with a physical imaging system.

• Efficient algorithms. In addition to describing the topological structure of correspondence

graphs, we provide an algorithm by which they can be efficiently constructed for real images.

As a result, we can estimate dense, physically consistent correspondence between images

taken by widely separated cameras, useful for applications where geometric accuracy is cru-

cial.

The particular application of correspondence graphs that we address in Chapter 6 is the con-

struction of “virtual video”. This is physically consistent, synthetic video of a scene from the per-

spective of a moving camera not present in the original environment. This virtual video can contain

perspectives and motion that would have been impractical or impossible to obtain with a real mov-

ing camera. Applications include sports video replays, computer games, video conferencing, and

special effects. Our contributions here include:

• Virtual images from wide-baseline stills.Various techniques for synthesizing a virtual im-

age from two still images have been proposed in the computer graphics community, and gen-

erally rely on dense image correspondence. This correspondence is typically estimated using

algorithms that make the monotonicity assumption, thus limiting the class of input images

that can be processed. The correspondence graph framework discussed in Chapter 5 allows

us to create virtual images containing objects that violate the monotonicity assumption, yet

still appear in the correct positions. This creates a heightened degree of realism, without

resorting to 3-D modeling.

Chapter 1: Introduction 5

• True virtual video. To our knowledge, there were only two types of “virtual video” created

before our work. The first consisted of moving a virtual camera around a static scene synthe-

sized from still images. The second required expensive, specialized hardware, many cameras,

and highly accurate scene modeling. In contrast, here we describe how to create virtual video

from multicamera video, using geometric constraints and only two cameras. We create true

virtual video, in the sense that the synthetic video evolves dynamically along with the scene.

• Efficient estimation algorithms. The virtual video is produced with an efficient recursive

propagation algorithm that builds on the estimation algorithms derived in Chapters 3, 4, and 5,

and requires minimal user interaction. We can update the correspondence estimate required to

create each virtual frame in a fraction of the time it would take to estimate the correspondence

anew for every frame pair, and prove that this fast algorithm is stable in a well-defined sense.

Virtual video can be used to create compelling graphical effects for visualization or entertain-

ment. However, if the synthetic views are actually designed to be good approximations to real

video frames, we can realize gains in rendering low frame-rate compressed video. This is especially

applicable to the emerging domain of wireless multimedia. The wireless multimedia channel has

limited bandwidth, so video data needs to be reduced in both frame size and frame rate. In addition,

the multimedia client must reconstruct the video from the transmitted data at a small computational

cost due to low power requirements. Virtual frames synthesized with the techniques of Chapter 6

are ideally suited for such requirements, since the information required to render the virtual frames

is compact and the rendering algorithm is computationally inexpensive. We explore this idea in

Chapter 7. The contributions of the thesis here include:

• Virtual-view-based time-domain interpolation of video. We propose a virtual-view-based

scheme for video interpolation. We designate a small fraction of non-uniformly spaced frames

as anchor frames, and transmit these with good fidelity. The remainder of the frames are re-

constructed using a combination of virtual image synthesis and image registration techniques.

• Low-bit-rate algorithms. The anchor frames can be selected to be few and far between, and

the side information required to synthesize images between them is amortized over potentially

Chapter 1: Introduction 6

hundreds of intermediate frames. This allows us to achieve bit rates on the order of 45 kbps

or less, with better perceptual quality than MPEG-coded video at higher rates.

Taken together, the estimation algorithms introduced in this thesis provide a framework for

creating realistic and interactive synthetic video, using algorithms that are well-founded, efficient,

stable, and robust. Potential applications range from the high-bandwidth, wide-screen world of

enhanced DVD to the low-bandwidth, small-screen domain of PDAs and wireless phones. In either

case, the understanding of relationships between multicamera video enables us to create effects that

were unheard of just five years ago.

References

[1] S.E. Chen and L. Williams. View Interpolation for Image Synthesis.Computer Graphics

(SIGGRAPH ’93), pp. 279–288, July 1993.

[2] S.E. Chen. Quicktime VR - An Image-Based Approach to Virtual Environment Navigation.

Computer Graphics (SIGGRAPH ’95),pp. 29–38, August 1995.

[3] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering System.Com-

puter Graphics (SIGGRAPH ’95), pp. 39–46, August 1995.

[4] P. Debevec, C. Taylor, and J. Malik. Modeling and Rendering Architecture from Photographs.

Computer Graphics (SIGGRAPH ’96), pp. 11–20, August 1996.

[5] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen. The Lumigraph.Computer Graphics

(SIGGRAPH ’96), pp. 43–54, August 1996.

[6] M. Levoy and P. Hanrahan. Light Field Rendering.Computer Graphics (SIGGRAPH ’96), pp.

31–42, August 1996.

[7] S.M. Seitz and C.R. Dyer. View Morphing.Computer Graphics (SIGGRAPH ’96), pp. 21–30,

August 1996.

Chapter 1: Introduction 7

[8] J. Lengyel and J. Snyder. Rendering with Coherent Layers.Computer Graphics (SIGGRAPH

’97), pp. 233–242, August 1997.

[9] R. Szeliski and H. Shum. Creating Full View Panoramic Image Mosaics and Environment

Maps.Computer Graphics (SIGGRAPH ’97), pp. 251–258, August 1997.

[10] D.N. Wood, A. Finkelstein, J.F. Hughes, C.E. Thayer, D.H. Salesin. Multiperspective Panora-

mas for Cel Animation.Computer Graphics (SIGGRAPH ’97), pp. 243–250, August 1997.

[11] J. Shade, S. Gortler, L. Hey, and R. Szeliski. Layered Depth Images.Computer Graphics

(SIGGRAPH ’98), pp. 231–242, July 1998.

[12] H-Y. Shum and L-W. He. Rendering with Concentric Mosaics.Computer Graphics (SIG-

GRAPH ’99), pp. 299–306, August 1999.

Chapter 2

Preliminaries

In the following chapters, we will speak extensively about cameras, images, and correspondences

between them. Here we introduce the notation and terminology that will be used throughout the

text, as well as basic background material.

Section 2.1 gives the basic perspective image formation model we will use exclusively. While

other, simpler models have been proposed (e.g. orthographic projection), this model accurately

reflects the phenomena observed in images taken by real cameras. We introduce the notion of

correspondence in Section 2.3 and discuss the fundamental matrix and epipolar geometry that relate

image correspondences in the next two sections. Section 2.6 introduces affine transformations,

which are special cases of the projective transformations we will discuss in Chapter 4.

We will discuss techniques for estimating several of the quantities introduced here from real

data in Chapter 3.

2.1 Cameras and Images

In our analysis, we will consider idealized pinhole cameras. Such a cameraC is described by:

1. A center of projectionO ∈ R3

2. A focal lengthf ∈ R+

3. An orientation matrixR ∈ SO(3)

8

Chapter 2: Preliminaries 9

The camera’s center and orientation are described with respect to a world coordinate system on

R
3. A pointP expressed in the world coordinate system asP = (Xo, Yo, Zo) can be expressed in

the camera coordinate system ofC as

P =


XC

YC

ZC

 = R



Xo

Yo

Zo

−O


The purpose of a camera is to capture a two-dimensional image of a three-dimensional sceneS,

i.e. a collection of points inR3. This image is produced by perspective projection as follows.

Each cameraC has an associated image planeP, located in the camera coordinate system at

ZC = f . The image plane inherits a natural orientation and two-dimensional coordinate system

from the camera coordinate system’sXY -plane (see Figure 2.1). At this point we note that the

three-dimensional coordinate systems we consider are left-handed. This is a notational convenience,

allowing us to make the assumptions that the image plane lies between the center of projection and

the scene, and that scene points have positiveZC coordinates.

Camera Coordinates

Image
Coordinates

X

Y Z

P = (XC, YC, ZC)

w = (x, y)

f

x

y

Figure 2.1: Perspective projection.

A scene pointP = (XC , YC , ZC) is projected onto the image planeP at the pointw = (x, y) by

the perspective projection equations:

x = f
XC
ZC

y = f
YC
ZC

(2.1)

Chapter 2: Preliminaries 10

The imageI that is produced is a map fromP into a color spaceC. The color of a point is

typically a real-valued intensity or a triplet of RGB or YUV values. While the entire ray of scene

points{κ(x, y, f)|κ > 0} is projected to the image coordinate(x, y) by (2.1), the point on this ray

that gives(x, y) its color in the imageI is the one closest to the image plane (i.e. that point with

minimalκ). This point is said to be visible; any scene point further along on the same ray is said to

be occluded.

Technically, we should be careful about the relationship between the color of image points and

the color of scene points. To simplify matters, we assume that scene points have the same color

regardless of the viewing angle (this is called the Lambertian assumption), and that the color of an

image point is the same as the color of a single corresponding scene point. In practice, the colors of

corresponding image and scene points are different due to a host of factors in a real imaging system.

These include the point spread function, color space, and dynamic range of the camera, as well as

non-Lambertian or semi-transparent objects in the scene. For more detail on the issues involved in

image formation, see [1, 2].

2.2 Homogeneous Coordinates

In certain situations it is advantageous to describe the image coordinate(x, y) by the homogeneous

coordinateκ(x, y, 1), whereκ 6= 0. Clearly the image coordinate of a homogeneous coordinate

(x, y, z) can be recovered as(xz ,
y
z) when z 6= 0. Similarly, any scene point(X,Y, Z) can be

represented in homogeneous coordinates asκ(X,Y, Z, 1), whereκ 6= 0. We use the symbol≡ to

denote the equivalence between a homogeneous coordinate and a non-homogeneous one.

A cameraC with parameters(O, f,R) can be represented by a3×4 matrixΠC that multiplies a

scene point expressed as a homogeneous coordinate inR
4 to produce an image point expressed as a

homogeneous coordinate inR3. When the scene point is expressed in the world coordinate system,

the matrixΠ is given by

ΠC =


f 0 0

0 f 0

0 0 1

 [R, −RO]

Chapter 2: Preliminaries 11

Then

ΠC


X

Y

Z

1

 =


f 0 0

0 f 0

0 0 1

 [R, −RO]


X

Y

Z

1



=


f 0 0

0 f 0

0 0 1

R


X

Y

Z

−O


=


f 0 0

0 f 0

0 0 1



XC

YC

ZC



=


fXC

fYC

ZC


≡

 f XCZC

f XCZC


2.3 Two Cameras

Consider the situation in Figure 2.2, in which the same static scene is imaged by two camerasC0

andC1. These could be two physically separate cameras, or a single moving camera at different

points in time. In the latter setting it is natural to say the induced images are related due to camera

motion. Let the scene coordinates of a pointP in theC0 coordinate system be(X,Y, Z), and in

the C1 coordinate system be(X ′, Y ′, Z ′). We denote the corresponding image coordinates ofP

in P0 andP1 by w = (x, y) andw′ = (x′, y′), respectively. The pointsw andw′ are said to be

corresponding points, and the pair(w,w′) is called a point correspondence.

The scene pointP is projected onto the image pointsw andw′ via the perspective projection

equations (2.1):

Chapter 2: Preliminaries 12

Y0

P = (X, Y, Z) = (X', Y', Z')

X0

Z0

f0

w = (x, y)

Y1

-X1

Z1

f1

w' = (x', y')

Figure 2.2: Rigid motion of a camera.

x = f0
X

Z
y = f0

Y

Z

x′ = f1
X ′

Z ′
y′ = f1

Y ′

Z ′

Heref0 andf1 are the focal lengths ofC0 andC1, respectively. We assume that the two cameras

are related by a rigid motion, which means that theC1 coordinate system can be expressed as a

rotationR of theC0 coordinate system followed by a translation[tX tY tZ]T . That is,
X ′

Y ′

Z ′

 = R


X

Y

Z

+


tX

tY

tZ

 (2.2)

In terms of the parameters of the cameras,R = R1R
−1
0 andt = R1(O0 −O1). Alternately, we

can writeR as

R =


cosα cos γ + sinα sinβ sin γ cosβ sin γ − sinα cos γ + cosα sinβ sin γ

− cosα sin γ + sinα sinβ cos γ cosβ cos γ sinα sin γ + cosα sinβ cos γ

sinα cosβ − sinβ cosα cosβ


(2.3)

whereα, β andγ are rotation angles around theX, Y , andZ axes, respectively, of theC0 coordinate

system.

Chapter 2: Preliminaries 13

By substituting equation (2.2) into the perspective projection equations (2.1), we obtain a rela-

tionship between the two sets of image coordinates:

x′ = f1
X ′

Z ′

=
r11

f1

f0
x+ r12

f1

f0
y + r13f1 + tXf1

Z
r31
f0
x+ r32

f0
y + r33 + tZ

Z

(2.4)

y′ = f1
Y ′

Z ′

=
r21

f1

f0
x+ r22

f1

f0
y + r23f1 + tY f1

Z
r31
f0
x+ r32

f0
y + r33 + tZ

Z

(2.5)

Here therij are the elements of the rotation matrix given in (2.3). In Section 2.6 and Chapter 4 we

will consider some special cases of (2.4)-(2.5).

2.4 The Fundamental Matrix

The following theorem from [3] expresses an important fact about the correspondence between two

images of the same scene:

Theorem 2.1: For every pair of cameras(C0, C1) in which the camera centers are separated by a

non-zero translation, there exists a matrixF of rank two such that for all correspondences(w,w′) =

((x, y), (x′, y′)) ∈ P0 × P1, 
x′

y′

1


T

F


x

y

1

 = 0

Proof. Let the camerasC0 andC1 have parameters(O0, f0, R0) and(O1, f1, R1), respectively,

with O1 6= O0. Fix a correspondence(w,w′) ∈ P0 × P1, and letP be the associated scene

point. LetP be expressed in the coordinate systems ofC0 andC1 by (X,Y, Z) and(X ′, Y ′, Z ′),

respectively.

Chapter 2: Preliminaries 14

Let (R, t) relate the coordinate systems of(C0, C1) so that:
X ′

Y ′

Z ′

 = R



X

Y

Z

+ t

 (2.6)

HereR = R1R
−1
0 andt = R0(O0 − O1). From (2.6) it follows that the vectors(X ′, Y ′, Z ′)T ,

R(X,Y, Z)T , andRt are linearly dependent (i.e. coplanar). Therefore, we can write:
X ′

Y ′

Z ′

 ·R
t×


X

Y

Z


 = 0 (2.7)

We can rewrite (2.7) as 
X ′

Y ′

Z ′


T

RT


X

Y

Z

 = 0 (2.8)

where

T =


0 −tZ tY

tZ 0 −tX

−tY tX 0


Now, by perspective projection, the image coordinates are:

x = f0
X

Z
y = f0

Y

Z

x′ = f1
X ′

Z ′
y′ = f1

Y ′

Z ′

We can substitute into (2.8) to produce

(ZZ ′)


x′

y′

1


T 

1
f1

1
f1

1

RT


1
f0

1
f0

1



x

y

1

 = 0 (2.9)

Chapter 2: Preliminaries 15

Since neither of(Z,Z ′) is 0 by assumption, (2.9) implies
x′

y′

1


T 

1
f1

1
f1

1

RT


1
f0

1
f0

1



x

y

1

 = 0

This is the statement of the theorem, withF = A−T1 RTA−1
0 , andAi = diag(fi, fi, 1). The

matrixF is of rank two sinceA0, A1, andR are always nonsingular, andT is rank 2 for any non-

zerot ∈ R3. SinceF depends only on the rigid motion relating the cameras, and not on the choice

of correspondence, the theorem is proved.

Any matrixF satisfying Theorem 2.1 for a camera pair(C0, C1) is called a fundamental matrix

for (C0, C1). The matrixE = RT is called the essential matrix for(C0, C1).

The fundamental matrix is unique up to scale provided that there exists no quadric surfaceQ

containing the lineO0O1 and every point inS [4].

2.5 Epipolar Geometry

Given the fundamental matrixF for a camera pair(C0, C1), a constraint on the possible locations of

correspondences between the associated image pair(I0, I1) can be obtained.

Φ

O0

O1

P

w
w'

e0
e1

P 0

P 1

Figure 2.3: Epipolar geometry.

Chapter 2: Preliminaries 16

Definition. The epipolar line of a pointw ∈ P0 is the set of points:

`w =

w′ = (x′, y′)T ∈ P1

∣∣∣∣∣∣∣
 w′

1

T F
 w

1

 = 0


If w is the image of scene pointP in P0, the image ofP in P1 is constrained to lie on the

epipolar line`w. Epipolar lines for points inP1 can be defined accordingly. Hence, epipolar lines

exist in conjugate pairs(`0, `1), such that the match to a pointw ∈ `0 must lie oǹ 1, and vice versa.

Conjugate epipolar lines are generated by intersecting any planeΦ containing the baselineO0O1

with the pair of image planes(P0,P1) (see Figure 2.3). For a thorough review of epipolar geometry,

see [5].

The epipolese0 ∈ P0 ande1 ∈ P1 are the projections of the camera centersO1 andO0 onto

P0 andP1, respectively. It can be seen from Figure 2.3 that the epipolar lines in each image all

intersect at the epipole. In fact, the homogeneous coordinates of the epipolese0 ande1 are the right

and left eigenvectors ofF , respectively, corresponding to the eigenvalue 0.

2.6 Affine Transformations

One of the fundamental relationships in image processing is the affine transformation. An affine

transformation maps a pointw ∈ R2 tow′ ∈ R2 by:

w′ = Aw + b

whereA ∈ GL(2) andb ∈ R2. Some important special cases are:

• Translation: A = I

• Rotation: A =

 cos θ sin θ

− sin θ cos θ

 , b = 0

• Scaling:A =

 α 0

0 β

 , b = 0, α, β 6= 0

• Shear:A =

 1 κ

0 1

 , b = 0

Chapter 2: Preliminaries 17

(a) (b)

(c) (d)

Figure 2.4: Special affine transformations. (a) Translation, (b) rotation, (c) scaling, (d)
shear.

The effects of these operations on a rectangle centered at the origin are illustrated in Figure

2.4. In fact, any affine transformation can be expressed as a composition of these four special

operations. Any nonsingular matrixA can be factored asA = QR, whereQ is orthogonal (i.e. a

rotation matrix) andR is upper triangular [6]. Then we can writeR as a composition of a scaling

and a shear:

R =

 a b

0 c

 =

 a 0

0 c

 1 b
a

0 1


The relationship between the coordinates of two images of the same scene is often modeled as

an affine transformation to be estimated. We pause to determine when this modeling assumption is

well-founded. Reconsider equations (2.4) and (2.5) that relate the image coordinates of a point seen

by two camerasC0 andC1:

x′ =
r11

f1

f0
x+ r12

f1

f0
y + r13f1 + tXf1

Z
r31
f0
x+ r32

f0
y + r33 + tZ

Z

y′ =
r21

f1

f0
x+ r22

f1

f0
y + r23f1 + tY f1

Z
r31
f0
x+ r32

f0
y + r33 + tZ

Z

Chapter 2: Preliminaries 18

For this to be an affine transformation that relates every image correspondence, we require:

• r31 = 0

• r32 = 0

• tX
Z ,

tY
Z ,

tZ
Z constant for all scene points

From the form of the rotation matrix (2.3), the first two conditions imply that the rotation angles

α andβ are 0, i.e. the image planes are both parallel to theXY -plane. The third condition implies

that either the translation vectort is identically 0, or thatZ is constant for all points in the scene,

i.e. the scene is a planar surface parallel to the image planesP0 andP1.

Therefore, an affine transformation is induced by the motion of a perspective camera only under

somewhat restrictive conditions. However, the affine assumption is often made when the scene is

far from the camera (Z is large) and the rotation anglesα andβ are very small. This assumption has

the advantage that the affine parameters can be efficiently estimated. We discuss such estimation

techniques in Section 3.1.

2.7 References

[1] B.K.P. Horn.Robot Vision.MIT Press, 1986.

[2] V.S. Nalwa.A Guided Tour of Computer Vision.Addison-Wesley, 1993.

[3] H.C. Longuet-Higgins. A Computer Algorithm for Reconstructing a Scene from Two Projec-

tions. Nature, Vol. 293, pp. 133–135, September 10, 1981.

[4] S.J. Maybank. The Angular Velocity Associated with the Optical Flowfield Arising from

Motion Through a Rigid Environment.Proc. Royal Soc. London A, vol. 401, pp. 317–326,

1985.

[5] Z. Zhang. Determining the Epipolar Geometry and its Uncertainty: A Review.International

Journal of Computer Vision, vol. 27, no. 2, pp. 161–195, 1998.

[6] G. Strang.Linear Algebra and its Applications.Harcourt Brace Jovanovich, 1988.

Chapter 3

Basic Estimation Problems

In this section, we briefly review standard methods for solving various estimation problems in digital

video that we will encounter in the text.

We begin in Section 3.1 with the problem of estimating an affine transformation. We present the

classical linear least-squares solution from point matches; we will see in Chapter 4 how it is related

to the more difficult nonlinear least-squares problem of estimating a projective transformation. In

the case when point matches are not available, we briefly review correlation and Fourier-based

methods for estimating translation, rotation, and scale parameters. A wide variety of techniques for

the estimation of affine transformations is reviewed in [1].

As we saw in Chapter 2, the conjugate epipolar lines in an image pair are determined by the

fundamental matrix. Since we make use of the epipolar geometry to analyze correspondence in

Chapter 5, we discuss algorithms for estimating the fundamental matrix in Section 3.2. In Section

3.3 we discuss the related issue of estimating a pair of rectifying transformations, which facilitate

working with epipolar lines in computer programs.

In Section 3.4 we turn to the issue of automatically obtaining a set of point matches between an

image pair, a preliminary step for several of the estimation problems we will discuss. In Chapter

2 we defined a correspondence as a pair of points(w,w′) that are the projections of some scene

point P onto a pair of image planes(P0,P1). Ideally, we would like each point match to be a

correspondence, but in practice the point matches are correspondences corrupted by noise. We

conclude in Section 3.5 with a discussion of algorithms for estimating dense correspondence over

an image pair. These algorithms attempt to provide a match inP1 for every point inP0.

19

Chapter 3: Basic Estimation Problems 20

3.1 Estimating Affine Transformations

3.1.1 The Linear Least-Squares Problem

Suppose we possess a set of point matches{(wj , w′j) ∈ R2 × R2, j = 1, . . . , N}. We assume that

these are noisy samples of a fixed but unknown affine transformationM∗ = (A, b), so that

w′j = Awj + b+ ej j = 1, . . . , N

where theej are small errors. When the errors are modeled as zero-mean iid Gaussian random

variables, the maximum likelihood estimate of the parameters(A, b) is the minimizer(Â, b̂) of the

least-squares functional

Q(A, b) =
1
2

N∑
j=1

(
w′j −Awj − b

)T (
w′j −Awj − b

)
(3.1)

This estimate is also the minimum-variance unbiased estimate of(A, b). The minimizer of the

linear least squares functional (3.1) is well known and can be expressed as:

[Â b̂] = VW−1 (3.2)

whereW ∈ R3×3, V ∈ R2×3 are given by

W =


∑N

j=1wjw
T
j

∑N
j=1wj

∑N
j=1w

T
j N


V =

[∑N
j=1w

′
jw

T
j

∑N
j=1w

′
j

]
If the contribution of thejth data pair is to be weighted byλj ,1 the corresponding least-squares

functional is

Q(A, b) =
1
2

N∑
j=1

λj
(
w′j −Awj − b

)T (
w′j −Awj − b

)
1For example, if the errorsej are zero-mean independent Gaussian variables, with variancesσ2

j , then settingλj = σ−2
j

yields the maximum likelihood estimate of(A, b).

Chapter 3: Basic Estimation Problems 21

and the solution is given by (3.2) withW andV replaced by

W =


∑N

j=1 λjwjw
T
j

∑N
j=1 λjwj

∑N
j=1 λjw

T
j N

∑N
j=1 λj


V =

[∑N
j=1 λjw

′
jw

T
j

∑N
j=1 λjw

′
j

]
This is a natural approach to estimation even when the errors are not Gaussian. However, a

data point with a very largeej can dominate the estimation and pull the minimizer away from the

underlying set of parameters (see Figure 3.1a).

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

Principal component analysis fit to noisy data

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8
Residuals from estimated fit

Residual of outlier

(a) (b)

Figure 3.1: Effects of outliers. (a) Data points and least-squares estimate, (b) Residuals
êj

Unfortunately, the residual errorêj = w′j−(Âwj+b̂) of an outlying point can be quite small (see

Figure 3.1b). Various techniques have been proposed for identifying and rejecting outliers [2, 3, 4].

In practice, we use the least-median-of-squares (or “X84”) algorithm proposed by Rousseeuw and

Levoy [5]. Specifically, ifm is the median of{êj , j = 1, . . . , N}, we compute the median absolute

deviation

medianj |êj −m|

Chapter 3: Basic Estimation Problems 22

or the mean absolute deviation
1
N

N∑
j=1

|êj −m|

and reject points whose residual lies more than some number of deviations from the median. The

advantage of this technique is its robustness to outliers in bothx andy directions. Up to half of the

data points can be outliers and still be correctly rejected.

The least-median-square estimator is one of a more general class of robust estimators called

M-estimators [6].

3.1.2 Estimating Translation

Estimating the translation between a pair of images is a classical problem in computer vision. When

we possess a set of noisy feature correspondences{(wj , w′j) ∈ R2 × R2, j = 1, . . . , N}, the

maximum likelihood estimate of the translation is simply the mean differenceb̂ = 1
N

∑N
j=1(w′j −

wj). Zagorodnov [7] discussed how to stabilize the variance of translation estimates between a

sequence of images using multiple pairwise estimates.

In the absence of a set of matched feature correspondences, the problem may be posed as a

least-squares problem over the entire image pair:

min
(b1,b2)∈N

1
MN

M∑
x=1

N∑
y=1

(I1(x, y)− I0(x+ b1, y + b2))2 (3.3)

This expression assumes that the images always overlap inMN pixels, and that the search for the

best translation vector(b1, b2) is conducted over a neighborhoodN of R2.

When the search neighborhoodN is large compared to the dimensions of the images, solving

(3.3) by a brute-force correlation search is generally quite time-consuming. A standard approach is

to subsample the imagesI0 andI1 to an extent such that a search over all the translation vectors in

N is practical, and then propagate the translation estimates from each coarsely subsampled image

pair to a more finely subsampled image pair. At the higher level, the search neighborhood is confined

to lie near the previous translation estimate. This process continues until a translation estimate is

obtained for the full-resolution images.

Chapter 3: Basic Estimation Problems 23

The following pseudocode illustrates a coarse-to-fine algorithm for estimating the translation

between twoN ×N images with̀ levels of subsampling.

Algorithm 3.1: Estimating translation between an image pair.

1. Subsample the images(I0, I1) by a factor of2`.

2. Initialize the search neighborhoodN = [−N
2`
, N

2`
]2.

3. For level=1 to`:

(a) InitializeC∗ =∞.

(b) For (b1, b2) ∈ N :

i. xmin = max(1,−b1), xmax = min(N,N − b1),

ymin = max(1,−b2), ymax = min(N,N − b2).

ii. C = 1
(xmax−xmin)(ymax−ymin)

∑xmax
x=xmin

∑ymax
y=ymin

(I1(x, y)− I0(x+ b1, y + b2))2.

iii. If C < C∗,

A. C∗ ← C

B. (b∗1, b
∗
2)← (b1, b2)

(c) Upsample(I0, I1) by a factor of 2.

(d) N ← [2b∗1 − 1, 2b∗1 + 1]× [2b∗2 − 1, 2b∗2 + 1]

This algorithm requires a factor of approximately24` less arithmetic operations than a brute-

force solution of (3.3). Since only a fraction of the translation vectors are tested, there is no guar-

antee that(b∗1, b
∗
2) will be the true minimizer. However, in practice, if the images are sufficiently

smooth and the most coarsely subsampled images still resemble the originals, the estimate is good,

and can be computed with fewer operations than it would take to detect and match features.

Another popular method for estimating the translation between an image pair operates in the

frequency domain, using phase correlation [8]. Given two imagesI0(x, y) andI1(x, y), denote

their Fourier transforms by

J0(ξ, η) = F(I0(x, y))

J1(ξ, η) = F(I1(x, y))

Chapter 3: Basic Estimation Problems 24

Then writing the Fourier transforms in the magnitude-phase form

J0(ξ, η) = M0(ξ, η)ejφ0(ξ,η)

J1(ξ, η) = M1(ξ, η)ejφ1(ξ,η)

we can define the phase correlation functiond(x, y) by

d(x, y) = F−1(ej(φ0(ξ,η)−φ1(ξ,η))) (3.4)

By the Fourier shift theorem, ifI1(x, y) = I0(x + x0, y + y0) for some shift(x0, y0), then

the corresponding phase correlation functiond(x, y) is an impulse centered at(x0, y0). Hence, the

translation between an image pair can be estimated by forming the phase correlation function (3.4)

and searching for a global maximizer. One advantage of this technique is its efficient implemen-

tation via the Fast Fourier Transform. It is also robust to illumination scale or shift in the original

image pair, or noise concentrated in a narrow band of the frequency domain.

3.1.3 Estimating Rotation and Scale

Translation estimation techniques can be extended to further estimate the rotation and scale differ-

ence between an image pair. Consider two images whose coordinates are related by rotation and an

isotropic scaling:

I1(x, y) = I0(a(x cos γ + y sin γ),−a(x sin γ − y cos γ)) (3.5)

Then by a change to so-called log-polar coordinatesρ = log
√
x2 + y2, θ = tan−1 y

x , (3.5)

becomes

I1(ρ, θ) = I0(ρ+ log a, θ − γ)

The rotation angle and scaling factor can then be recovered by a translation estimation algo-

rithm. Reddy and Chatterji [9] suggested using phase correlation, operating in the frequency domain

and using properties of the Fourier transform. Wolberg and Zokai [10] proposed a coarse-to-fine

multiresolution algorithm that operates in the spatial domain and simultaneously estimates the trans-

lation between the image pair.

Chapter 3: Basic Estimation Problems 25

3.2 Estimating the Fundamental Matrix

As in the projective transformation estimation problem, our objective is to select the matrixF ∈

R
3×3 that best matches a given set of point mappings:

{wj 7→ w′j ∈ R2, j = 1, . . . , N}

A special case arises when the data consists of noisy samples of a fixed but unknown fundamen-

tal matrixF :  w′j

1

T F
 wj

1

 = ej , j = 1 . . . N

Therefore, it is natural to try to minimize a least-squares cost functional such as

J(F) =
N∑
j=1

 w′j

1

T F
 wj

1

 (3.6)

over the class of admissible fundamental matrices. We recall thatF must have rank two (see Section

2.4). Furthermore, the fundamental matrix is unique up to scale, so we must fix some scaling (say,

‖F‖ = 1 for some appropriate norm) to ensure thatJ cannot become arbitrarily small. Hence, the

class of admissible estimates has only seven degrees of freedom. Constrained minimizations of this

type are problematic due to the difficulty in parameterizing the class of admissibleF . Faugeras and

Luong [11, 12, 13] proposed some solutions in this regard and analyzed various cost functionals for

the estimation problem.

The approach we take in practice to estimating the fundamental matrix is due to Hartley [14].

Ignoring the rank-two constraint for the moment, we minimize (3.6) over the class ofF with Frobe-

nius norm 1.

Each correspondence(wj , w′j) produces a linear equation in the elements ofF :

xjx
′
jf11 + xjy

′
jf21 + xjf31 + yjx

′
jf21 + yjy

′
jf22 + yjf23 + x′jf31 + y′jf32 + f33 = 0

The equations in all the data points can be collected into a linear systemAf = 0, whereA is an

N × 9 matrix involving the data, andf = (f11, f21, f31, f12, f22, f32, f13, f23, f33)T is the vector

Chapter 3: Basic Estimation Problems 26

of unknowns. The least-squares minimization problem is then

min ‖Af‖2

s.t. fT f = 1

The solution to this is well known and the minimizer is the eigenvectorf ∈ R9 of ATA corre-

sponding to the minimal eigenvalue. This can be computed via the SVD. This eigenvector is then

reassembled into a3× 3 matrix F̂ .

To account for the rank-two constraint, we replace the full-rank estimateF̂ by F̂ ∗, the minimizer

of

min ‖F̂ − F̂ ∗‖F (3.7)

s.t. rank(F̂ ∗) = 2

Given the singular value decomposition̂F = UDV T , whereD = diag(r, s, t) with r > s > t,

the solution to (3.7) is

F̂ ∗ = UD̂V T

whereD̂ = diag(r, s, 0).

Furthermore, the data is normalized by translation to the origin and isotropic scaling before the

estimation to maintain numerical stability. IfT andT ′ are the3 × 3 normalizing transformations

applied to the homogeneous coordinates of thewj andw′j , then the estimate of the fundamental

matrix in the original coordinates is given by

F = T ′T F̂ ∗T

3.3 Estimating Rectifying Projective Transformations

Since epipolar lines are generally not aligned with one of the coordinate axes of an image, or even

parallel, the computer implementation of algorithms that work with epipolar lines can be compli-

cated. To this end, it is common in computer vision algorithms to apply a technique called rectifica-

tion to an image pair before processing, so that the epipolar lines are made parallel and horizontal.

Chapter 3: Basic Estimation Problems 27

Definition. An associated image plane pair(P0,P1) is said to be rectified when the fundamental

matrix for (P0,P1) is the skew-symmetric matrix

F∗ =


0 0 0

0 0 1

0 −1 0

 (3.8)

In homogeneous coordinates, the epipoles corresponding toF∗ aree0 = e1 = [1 0 0]T , which

means the epipolar lines are horizontal and parallel. Furthermore, expanding the fundamental matrix

equation for a correspondence((x, y)T , (x′, y′)T) ∈ P0 × P1,
x′

y′

1


T

F∗


x

y

1

 = 0

which is equivalent toy′ − y = 0. This implies that not only are the epipolar lines horizontal, they

are aligned, so that the linesy = λ in P0 andy′ = λ in P1 are conjugate epipolar lines.

F
G He0

P 0 P 1P 0 P 1
^ ^

e1

Figure 3.2: Rectifying projective transformations.

Definition. Two projective transformations(G,H) are called rectifying projective transformations

for an associated image plane pair(P0,P1) with fundamental matrixF if

H−TFG−1 = F∗ (3.9)

By the above definition, if the projective transformationsG andH are applied toP0 andP1 to

produce warped image planesP̂0 andP̂1, respectively, then(P̂0, P̂1) is a rectified pair (Figure 3.2).

Efficient techniques for image warping are discussed by Wolberg [15].

Chapter 3: Basic Estimation Problems 28

Equation (3.9) may be rewritten and expanded to reflect its dependence on the entries ofG andH:

F = HTF∗G

=


ā11 ā12 b̄1

ā21 ā22 b̄2

c̄1 c̄2 1


T 

0 0 0

0 0 1

0 −1 0



a11 a12 b1

a21 a22 b2

c1 c2 1



=


ā21c1 − c̄1a21 ā21c2 − c̄1a22 ā21 − c̄1b2

ā22c1 − c̄2a21 ā22c2 − c̄2a22 ā22 − c̄2b2

b̄2c1 − a21 b̄2c2 − a22 b̄2 − b2

 (3.10)

From (3.10) it is clear that the rectifying condition (3.9) may be expressed as 9 equations in

the 16 unknowns of the two projective transformationsG andH. Specifically, the parameters

(a11, a12, b1, ā11, ā12, b̄1) are entirely unconstrained aside from the requirement that their choice

not make|G| = 0 or |H| = 0. Hence, there are 7 degrees of freedom in the choice of a rectifying

pair (G,H).

The importance of rectification has been known for many years in the field of photogrammetry

[16]. However, older methods for obtaining rectifying projective transformations for an image plane

pair generally relied on knowledge of camera parameters.

Seitz [17] and Hartley [18] described methods for deriving rectifying projective transformations

from an estimate of the fundamental matrix relating an image pair. Isgrò and Trucco [19] observed

that the rectifying transformations may be estimated without explicitly estimating the fundamental

matrix as an intermediate step.

In practice, we use Seitz’s method for obtaining a rectified image pair, though it has its draw-

backs (see Section 5.6). First, an arbitrary planeE parallel to the baselineO0O1 is selected that

intersectsP0 andP1 in two linesd0 andd1, respectively (Figure 3.3). The two image planes may

be made parallel by rotating image planePi through a certain angleθi about the linedi (or any line

parallel todi).

The epipolese0 = (e0x, e0y) ande1 = (e1x, e1y) represent the projections of the camera centers

O1 andO0 onto the image planesP0 andP1, respectively. Therefore, an image plane parallel to the

baseline has its epipole at infinity (i.e. has third homogeneous coordinate equal to 0). The rotation

Chapter 3: Basic Estimation Problems 29

O0

O1

d0

d1

E

P 0

P 1

Figure 3.3: Intersection of images with a plane (from [17]).

Rdiθi of image planePi about the linedi = (dix, diy, diz) so that the new epipolēei has homogeneous

coordinates(ēix, ēiy, 0) is given by

Rdiθi =


dix

2(1− cos θi) + cos θi dixdiy(1− cos θi) diy sin θi

dixdiy(1− cos θi) diy
2(1− cos θi) + cos θi −dix sin θi

−diy sin θi dix sin θi cos θi


where

θi = tan−1

(
1

diyeix − dixeiy

)
Seitz suggests choosingE implicitly by specifyingd0 = (e0y,−e0x, 0); this choice ofd0 min-

imizes|θ0|. Then if (x, y, z)T = F (d0x, d0y, 0)T , it can be shown thatd1x = αy andd1y = −αx,

whereα =
√
x2 + y2

−1
.

An additional affine warp is required to align the conjugate epipolar lines. A rotationRφi is first

applied to each image to make the epipolar lines horizontal, i.e.

Rφi =


cosφi − sinφi 0

sinφi cosφi 0

0 0 1


where

φi = − tan−1 ēiy
ēix

Chapter 3: Basic Estimation Problems 30

Here,ēi are the epipoles in the parallel images(Rd0
θ0
P0, R

d1
θ1
P1). After theφ rotations, the funda-

mental matrix of the transformed image plane pair(Rφ0R
d0
θ0
P0, Rφ1R

d1
θ1
P1) has the form, up to a

scale factor,

F̄ = Rφ1R
d1
θ1
FRd0
−θ0R−φ0 =


0 0 0

0 0 a

0 1 b


To bring the epipolar lines into alignment with those of the first image, i.e. to bringF̄ to the

form (3.8), the second image is vertically scaled and translated by a matrixT , given by

T =


1 0 0

0 −a −b

0 0 1


A pair of rectifying projective transformations that reduceF to the form in (3.8) are therefore

given by:

G = Rφ0R
d0
θ0

H = TRφ1R
d1
θ1

It is desirable that the projective transformations computed by this method have positive diag-

onal elements, so that no reflections are involved in the transformations. The following algorithm

can be applied:

1. NormalizeG(3, 3) = H(3, 3) = 1 and check to see whethera22ā22 < 0. If so, φ1 should be

incremented byπ andH recomputed. Thena22ā22 > 0.

2. At this point, the first and/or second rows ofG andH can be multiplied by -1 if necessary to

make the diagonal entries positive, without changing the relationship in (3.9).

Note that this method is an algorithm for selecting one pair of rectifying projective transforma-

tions from the entire family of rectifying projective transformation pairs, which has 7 degrees of

freedom. There is no guarantee that the projective transformation pair that is estimated is optimal

in any sense, and it can possibly distort the images in an undesirable way. However, a satisfac-

tory method for selecting an optimal rectifying pair of projective transformations has not yet been

proposed.

Chapter 3: Basic Estimation Problems 31

3.4 Estimating Point Correspondences

Many algorithms for image parameter estimation problems require a set of image correspondences

as input. A common approach to obtaining such correspondences is to select a set of pixel regions

(usually rectangular blocks) inI0 and to find matching regions inI1. The best match for a region

of pixelsR0 ∈ I0 can be defined as the regionR1 ∈ I1 of the same size and shape asR0 that

minimizes the sum of squared intensity differences between pixels in the same position. In a sense,

this is a very specific type of translation estimation problem.

Figure 3.4: Regions that are difficult to match correctly.

However, some regions are worse than others for matching, in the sense that many minima to the

matching problem may exist. Figure 3.4 illustrates blocks of pixels that lie in a constant intensity

region, a region whose intensity along a linear profile is constant, and a regularly textured region.

Each of the blocks in the left images can be matched with zero error by several blocks in the right

images. Perturbations in intensity to these idealized image pairs create situations in which the global

minimizer to an intensity-difference-minimizing functional is found in the bottom of a very shallow

basin (i.e. the second derivative of the functional is very small at the minimizer).

To obtain robust results for estimation problems, it is important to obtain high-quality features

in I0 that may be unambiguously matched inI1. Many indicators of pixel regions that constitute

“good” features have been proposed, including line contours, corners, and junctions.

Often the definition of a “good” feature is made without reference to the estimation problem for

which it is to be used. However, Tan et al. [20] presented an approach to finding good features for

the feature correspondence problem by formulating it in a parameter estimation framework. After

deriving the Craḿer-Rao lower bound of an unbiased estimator for the parameter estimation prob-

lem, they were able to determine the types of features that minimized the variance of the estimator

for various motion models (e.g. translation, scaling, rotation). They concluded that using features

Chapter 3: Basic Estimation Problems 32

with large intensity variations in both horizontal and vertical directions led to a low-variance es-

timator for the translation model. This is essentially the conclusion of one of a seminal series of

papers by Tomasi and Kanade [21] on extracting scene shape and camera motion using feature

correspondences in an image sequence.

When we refer to automatic feature detection and matching between two images(I0, I1) in

the text, we will use the following algorithm, proposed by Tan [22] and based on the Cramér-Rao

lower-bound on the estimation of the translation of a block of pixels.

Algorithm 3.2: Feature detection and matching.

1. Compute the gradientsSx(x, y) andSy(x, y) for I0. That is,

Sx(x, y) = I0(x, y)− I0(x− 1, y)

Sy(x, y) = I0(x, y)− I0(x, y − 1)

2. For everyM ×N block of pixelsΓ,

(a) Compute the covariance matrix

IΓ =

 ∑
(x,y)∈Γ S

2
x(x, y)

∑
(x,y)∈Γ SxSy(x, y)∑

(x,y)∈Γ SxSy(x, y)
∑

(x,y)∈Γ S
2
y(x, y)


(b) Compute the feature quality measure

qΓ =
(
I−1
)

11
+
(
I−1
)

22

(c) If qΓ is less than some thresholdτ , addΓ to the list of features.

3. Estimate the translationt betweenI0 andI1 (e.g. using one of the algorithms in Section 3.1.2).

4. For every block of pixelsΓ in the list of features, find theM ×N block of pixels inI1 that has

the highest correlation. To save time, the search can be performed in a local neighborhood of

the location ofΓ in I0 translated byt.

To counter problems with the deformation of features, Weng and Ahuja [23] analyzed feature

attributes that are invariant to planar rigid motion. For their experiments, they used intensity and

Chapter 3: Basic Estimation Problems 33

definitions of “edgeness” and “cornerness” as descriptors for feature matching. Their algorithm was

implemented using a coarse-to-fine methodology.

Block-matching correspondence approaches begin to fail when the motion of the camera or

of scene objects induces too much of a change in the images. In this case, the assumption that a

rectangular block of pixels in one image roughly matches a block of the same shape and size in the

other breaks down. In the wide-baseline setting, where the neighborhood of a scene point can look

very different from different points of view, this assumption may never be valid. We shall consider

approaches to correspondence in this more difficult case in Chapter 5.

3.5 Review of 2-D Correspondence Algorithms

Here we review several classical approaches to the problem of establishing dense correspondence

between an image pair. We call the algorithms in this section “2-D” because they make no use of

the epipolar constraint. Hence, it is unlikely that the result of applying such an algorithm will be

consistent with correspondence that could be obtained by a real imaging system. However, for many

applications (e.g. video coding, computer graphics) this constraint is unimportant.

We first discuss the general problem of optical flow, a class of featureless methods that estimate a

field of motion vectors for every pixel in an image pair. Next, we review layered motion algorithms,

which can be viewed as an extension of parametrized motion models to regions of an image pair.

Finally, we mention three algorithms from the computer graphics community based on interpolating

a sparse set of feature correspondences. See [24, 25] for broad reviews of general correspondence

techniques.

3.5.1 Optical Flow

A comprehensive discussion of optical flow computation is beyond the scope of this thesis; we

only present a brief review here. Barron et al. [26] reviewed and compared the performance of

many popular optical flow techniques, roughly categorized by differential techniques, region-based

matching techniques, energy-based methods, and phase-based techniques. An older and broader

reference is a survey by Aggarwal and Nandhakumar [27] of methods to compute motion from an

Chapter 3: Basic Estimation Problems 34

image sequence. The original reference for optical flow is Horn [28].

The motion field (or velocity field)M of P0 is a two-dimensional vector field. Let(x, y) ∈ P0

and(x′, y′) ∈ P1 be a visible correspondence. Then the motion vector(u, v) = M(x, y) is defined

as:

(u, v) = (x′ − x, y′ − y)

Due to occlusion, some points in the scene that are visible with respect toC0 are not visible with

respect toC1. The motion field is not defined at such points ofP0.

Optical flow is a somewhat poorly-defined term for a two-dimensional vector field onP0, gen-

erally described as the apparent or measurable motion of the intensity pattern from the imageI0 to

the imageI1. One would like the optical flow field and the motion field to be identical, but even in

ideal circumstances this is not the case. For example, any two images of an ideal Lambertian sphere

that rotates under constant illumination are identical, implying zero optical flow, yet the motion field

is non-zero. On the other hand, two images from the same camera of an ideal Lambertian sphere

illuminated by a moving light source look different, implying non-zero optical flow, although the

motion field is identically zero.

Optical flow methods are derived by assuming that the imagesI0 andI1 are slices of a function

g(x, y, t) for two nearby values oft. It is assumed that the intensity is conserved; that is,

g(x+ δx, y + δy, t+ δt) = g(x, y, t)

for some smallδx, δy, andδt. Expandingg(x, y, t) in a Taylor series about(x0, y0, t0) gives

g(x0 + δx, y0 + δy, t0 + δt) = g(x0, y0, t0) + δx
∂g

∂x
+ δy

∂g

∂y
+ δt

∂g

∂t
+ h. o. t . (3.11)

Ignoring the higher order terms in (3.11), dividing through byδt and lettingδt→ 0, we obtain

the optical flow constraint

u
∂g

∂x
+ v

∂g

∂y
+
∂g

∂t
= 0 (3.12)

where

u =
dx

dt
v =

dy

dt

are the components of the velocity associated with the point(x0, y0) in thex andy directions. The

set of velocity vectors(u, v) evaluated at every point inP0 comprises the optical flow field. Optical

Chapter 3: Basic Estimation Problems 35

flow and correspondence are obviously related in that(x, y) ∈ P0 and(x + u, y + v) ∈ P1 are

a corresponding pair. The partial derivatives ofg(x, y, t) are estimated from local derivatives of

image intensity at each pixel.

The optical flow constraint (3.12) is one equation in two unknowns; hence, additional assump-

tions or constraints are required to uniquely specify the velocitiesu andv. Various typical assump-

tions include:

• Optical flow is smooth, and nearby pixels have similar velocities

• Optical flow is piecewise-constant

• Optical flow arises from a local or global motion model (e.g. translational, affine, or projective

motion).

Optical flow techniques generally have difficulty resolving motions near depth discontinuities

and occlusions, especially when smoothness constraints are imposed on the flow. The layered mo-

tion techniques addressed in the next section attempt to compensate for these problems. Also, many

optical flow techniques make the implicit assumption that the motion between images is small (e.g.

not more than a few pixels), which is generally not true for images taken by widely separated cam-

eras, or even for video sequences generated by a briskly moving camera.

3.5.2 Layered Motion

The basic idea of layered motion is to posit the existence ofL layers in the image, the motion of

each of which is described by a parametric model. Then the formation ofI1 is modeled by:

I1(w, θk) = I0(w −mk(w, θk)) for w ∈ Γk

whereθk parameterizes the motion modelmk andΓk is the support set for thekth model. It is

generally assumed that{Γk, k = 1, . . . , L} is a nonoverlapping partition of the image, though

sometimes this assumption is relaxed to allow for transparency. The parameters of theL models, as

well as the number of modelsL, are to be estimated.

When almost all the pixels in the images move consistently with a single motion model (for

example, in the case when only a few objects in the scene move independently of the camera),

Chapter 3: Basic Estimation Problems 36

this dominant motion can be estimated first, and subsequent layers and motion models estimated

recursively. Sequential estimation is generally suboptimal, because a pixel may be irrevocably

assigned to an incorrect layer in a preliminary stage. Sequential estimation methods also perform

poorly when there is no dominant motion, or several strong motions.

Wang and Adelson [29] implemented a motion segmentation algorithm based on affine motion

models for each layer:

m(w, θ1, . . . , θ6) =

 θ1 + θ2x+ θ3y

θ4 + θ5x+ θ6y


The algorithm alternates between two stages: hypothesis testing to assign pixels to one of a

fixed set of motion layers, and ak-means clustering method to estimate the number of layers and the

motion parameters for each layer. The algorithm terminates when only a few pixels are reassigned

after each iteration. The output from a standard optical flow technique and a fixed set of non-

overlapping layers are used to initialize the algorithm.

Hsu, Anandan, and Peleg [30] suggested applying optical flow methods to each parametrized

motion layer to capture deviations in the modeled fit. The motion of the pixels is thus described by

the parameters of a set of models, their regions of support, and a residual optical flow field.

Ayer and Sawhney [31] generalized the layered motion formulation to allow pixels to belong to

different layers with some non-binary probability. The change of intensity of a pixel was modeled

as an additive mixture of Gaussian densities. They used an expectation-maximization algorithm to

obtain a maximum-likelihood estimate of the parameters of multiple models, their layers of support,

and ownership probabilities, and a minimum-description-length principle to iteratively determine

the appropriate number of models based on the space required to encode the model parameter values

and motion residuals.

We note that an optical flow estimate is generally required by layered motion algorithms at a

preliminary stage, and thus layered motion algorithms are difficult to apply in many of the same

cases.

Chapter 3: Basic Estimation Problems 37

3.5.3 Structure from Motion

The correspondence problem is related to another classical computer vision problem of estimating

structure from motion. Given a set of corresponding points and a pair of calibrated cameras, the 3-D

locations of the points can be obtained simply by intersecting a pair of rays from the two cameras.

Modeling assumptions can be used to construct a 3-D scene from the sparse set of 3-D features,

which induces dense correspondence between the original image planes. This is a difficult problem;

general reviews are given by Huang and Netravali [32] and Dhond and Aggarwal [33].

The canonical reference, using an orthographic camera, is Tomasi and Kanade [34], which was

later extended to a para-perspective camera model [35]. Weng et al. [36] tested various nonlinear

optimization algorithms for structure from motion using a perspective model, some of which in-

cluded the epipolar constraint. We will go into more detail on epipolar-line-based methods in the

next section.

3.5.4 Adaptive Meshes

Suppose we possess a set of point correspondences{wj 7→ w′j ∈ R2, j = 1, . . . , N} that we wish

to interpolate, without regard to parametric motion models. The feature points in each image can be

connected to form the vertices of a set of triangles using an algorithm called Delaunay triangulation

[37]. Points in the triangles’ interiors are associated using trilinear interpolation. That is, if point

w ∈ P0 lies within the triangle formed bywj1 , wj2 , wj3 , thenw may be uniquely written:

w = α1wj1 + α2wj2 + α3wj3 where
3∑
i=1

αi = 1

This is known as writingw in barycentric coordinates. The correspondencew′ in P1 of w is

estimated to be

w = α1w
′
j1 + α2w

′
j2 + α3w

′
j3

Generally this technique produces useful results only when the triangle mesh is very fine, and

the triangles are chosen to coincide with roughly planar facets of the scene. One approach towards

adaptively selecting a good mesh is described in [38].

Chapter 3: Basic Estimation Problems 38

3.5.5 Beier-Neely Morphing

Beier-Neely morphing [39] is a standard technique used in computer graphics to create special

effects in which an object appears to continuously metamorphose from one shape and position to

another. An intermediate step in the morphing process is the construction of a continuous, nonlinear

mapping from the coordinate system ofP0 to the coordinate system ofP1.

In this method, the fixed correspondence data are directed line segments. The mapping from

a pixelw ∈ P0 to w′ ∈ P1 is computed by means of a parametrized weighted average of the

distances fromw to the control line segments inP0. Constructing a good morph is rarely automatic

and typically requires some back-and-forth human interaction.

Since the weighting scheme depends on a choice of parameters and is relatively ad-hoc, it is

very unlikely that any given choice of control lines and parameters will give rise to a physically

valid correspondence. Morphing is more frequently used to generate a fine level of correspondence

between different but similar objects (e.g. faces) than to estimate correspondence between views of

the same scene. Seitz [40] combined morphing with the view interpolation technique described in

Section 6.1 to create the effect of simultaneously and continuously interpolating between the shape

and pose of two different objects.

3.6 References

[1] L. Brown. A Survey of Image Registration Techniques.ACM Computing Surveys, vol. 24, no.

4, pp. 325–376, 1992.

[2] V. Barnett and T. Lewis.Outliers in Statistical Data.John Wiley and Sons, 1984.

[3] R.D. Cook and S. Weisberg.Residuals and Influence in Regression.Chapman and Hall, 1982.

[4] D.M. Hawkins. Identification of Outliers.Chapman and Hall, 1980.

[5] P.J. Rousseeuw and A.M. Leroy.Robust Regression and Outlier Detection.John Wiley and

Sons, 1987.

[6] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel.Robust Statistics: The Ap-

proach Based on Influence Functions.John Wiley and Sons, 1986.

Chapter 3: Basic Estimation Problems 39

[7] V. Zagorodnov and P. Ramadge. Error Stabilization in Successive Estimation of Registration

Parameters. InProc. ICIP 2000, Vancouver, Canada, September 2000.

[8] C.D. Kuglin and D.C. Hines. The Phase Correlation Image Alignment Method.Proc. Int.

Conf. on Cybernetics and Society, pp. 163–165, 1975.

[9] B.S. Reddy and B.N. Chatterji. An FFT-Based Technique for Translation, Rotation, and Scale-

Invariant Image Registration.IEEE Transactions on Image Processing, vol. 5, no. 8, pp. 1266–

1271, August 1996.

[10] G. Wolberg.Digital Image Warping.IEEE Computer Society Press, 1990.

[11] O.D. Faugeras.Three-Dimensional Computer Vision: A Geometric Viewpoint.MIT Press,

1993.

[12] O.D. Faugeras, Q-T. Luong, and T. Papadopoulo.The Geometry of Multiple Images: The Laws

That Govern the Formation of Multiple Images of a Scene and Some of Their Applications.

MIT Press, 2001.

[13] Q.-T. Luong and O.D. Faugeras. The Fundamental Matrix: Theory, Algorithms, and Stability

Analysis. International Journal of Computer Vision, Vol. 17, No. 1, pp. 43—76, 1996.

[14] R. Hartley. In Defence of the 8-Point Algorithm.Proc. ICCV ’95, pp. 1064–1070, June 1995.

[15] G. Wolberg.Digital Image Warping.IEEE Computer Society Press, 1990.

[16] C.C. Slama, editor.Manual of Photogrammetry, 4th ed. American Society of Photogrammetry,

Falls Church, VA, 1980.

[17] S.M. Seitz.Image-Based Transformation of Viewpoint and Scene Appearance.Ph.D. Thesis,

Department of Computer Science, University of Wisconsin at Madison, 1997.

[18] R.I. Hartley. Theory and Practice of Projective Rectification.International Journal of Com-

puter Vision, Vol. 35, No. 2, pp. 115–127, November 1999.

[19] F. Isgr̀o and E. Trucco. Projective Rectification without Epipolar Geometry. InProc. CVPR

’99, June 1999.

[20] Y.P. Tan, S. Kulkarni, and P. Ramadge. Extracting Good Features for Motion Estimation.Proc.

ICIP 1996, vol. 1, pp. 117–120, 1996.

[21] C. Tomasi and T. Kanade. Detection and Tracking of Point Features (Shape and Motion from

Chapter 3: Basic Estimation Problems 40

Image Streams: a Factorization Method – Part 3). Carnegie Mellon University Department of

Computer Science Technical Report CMU-CS-91-132, April 1991.

[22] Y.P. Tan. Digital Video Analysis and Manipulation.Ph.D. Thesis, Department of Electrical

Engineering, Princeton University, November 1997.

[23] J. Weng, N. Ahuja, and T.S. Huang. Matching Two Perspective Views.IEEE PAMI, Vol. 14,

No. 8, pp. 806–825, 1992.

[24] A. Redert, E. Hendriks, and J. Biemond. Correspondence Estimation in Image Pairs.IEEE

Signal Processing, vol. 16, no. 3, pp. 29–46, May 1999.

[25] A.M. Tekalp. Digital Video Processing.Prentice Hall, 1995.

[26] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of Optical Flow Techniques.In-

ternational Journal of Computer Vision, Vol. 12, No. 1, pp. 43–77, 1994.

[27] J.K. Aggarwal and N. Nandhakumar. On the Computation of Motion from Sequences of

Images- A Review.Proceedings of the IEEE, Vol. 76, No. 8, pp. 917–935, August 1988.

[28] B.K.P. Horn.Robot Vision.MIT Press, 1986.

[29] J.Y.A. Wang and E.H. Adelson. Representing Moving Objects with Layers.IEEE Transactions

on Image Processing Special Issue: Image Sequence Compression, Vol. 3, No. 5, pp. 625–638,

September 1994.

[30] S. Hsu, P. Anandan, and S. Peleg. Accurate Computation of Optical Flow by Using Layered

Motion Representations.Proc. ICPR ’94, pp. 743–746, October 1994.

[31] S. Ayer and H.S. Sawhney. Layered Representation of Motion Video using Robust Maximum-

Likelihood Estimation of Mixture Models and MDL Encoding. InProc. ICCV ’95, June 1995.

[32] T.S. Huang and A.N. Netravali. Motion and Structure from Feature Correspondences: A

Review.Proceedings of the IEEE, Vol. 82, No. 2, pp. 251–268, February 1994.

[33] U.R. Dhond and J.K. Aggarwal. Structure from Stereo - A Review.IEEE Trans. on Systems,

Man, and Cybernetics., Vol. 19, No. 6, pp. 1489–1510, November 1989.

[34] C. Tomasi and T. Kanade. Shape and Motion from Image Streams under Orthography: a

Factorization Method.International Journal of Computer Vision, vol. 9, no. 2, pp. 137–154,

1992.

Chapter 3: Basic Estimation Problems 41

[35] C. Poelman and T. Kanade. A Paraperspective Factorization Method for Shape and Motion

Recovery.Proc. ECCV ’94, Stockholm, vol. 2, pages 97–108, 1994.

[36] J. Weng, N. Ahuja, and T.S. Huang. Optimal Motion and Structure Estimation.IEEE PAMI,

Vol. 15, No. 9, pp. 864–884, 1993.

[37] D.T. Lee and B.J. Schachter. Two Algorithms for Constructing a Delaunay Triangulation.Int.

J. Comput. Inform. Sci., Vol. 9, pp. 219–242, 1980.

[38] Y. Wang and O. Lee. Active Mesh—A Feature Seeking and Tracking Image Sequence Repre-

sentation Scheme.IEEE Trans. Image Processing, vol. 3, pp. 610–624, Sept. 1994.

[39] T. Beier and S. Neely. Feature-Based Image Metamorphosis.Computer Graphics (SIGGRAPH

’92), pp. 35–42, July 1992.

[40] S.M. Seitz and C.R. Dyer. View Morphing.Computer Graphics (SIGGRAPH ’96), pp. 21–30,

August 1996.

Chapter 4

Projective Transformations

The estimation of the parameters of a two-dimensional projective transformation is a standard prob-

lem that arises in image and video processing. A projective transformation maps a pointw ∈ R2 to

w′ ∈ R2 by:

w′ =
Aw + b

cTw + d
(4.1)

whereA ∈ R2×2, b, c ∈ R2, andd ∈ R. An affine transformation is a special case of a projective

transformation.

One typical application is the recovery of a global motion model for points in images of a

stationary scene taken by a rotating and zooming camera [1]. The motion model can be used to

synthesize panoramic image mosaics [2, 3, 4, 5, 6]. A second application is the registration of

images of a planar surface taken by multiple separated cameras [7, 8]. These effects are illustrated

in Section 4.1.

As in Section 3.1.1, we can pose the projective transformation estimation problem as a least

squares minimization based on a finite set of noisy point samples of the underlying transformation.

However, in contrast to the affine case, this generally results in an eight-dimensional nonquadratic

minimization problem. Such a problem is typically solved numerically using an ‘off-the-shelf’

procedure such as the Gauss-Newton or Levenberg-Marquardt algorithm [9].

Within this context, we show in Section 4.2 that the general least squares problem for esti-

mating a projective transformation can be analytically reduced to a two-dimensional nonquadratic

minimization problem. Some properties of the two-dimensional cost function are discussed in Sec-

tion 4.4. In Sections 4.5 and 4.6 we discuss issues involved with the practical minimization of the

42

Chapter 4: Projective Transformations 43

cost function by analyzing its gradient and Hessian, and show that any descent algorithm for the

eight-dimensional problem can be modified to produce a more effective descent algorithm for the

two-dimensional problem. Of course, we are also concerned with real implementations of the min-

imizations on a computer, and we provide experimental results in Section 4.7 to show that Newton

methods based on the two-dimensional problem outperform analogous methods applied to the eight-

dimensional problem. Furthermore, we propose an approximate second-derivative method that is

quite robust to measurement noise. A brief summary of some of our results originally appeared in

[10].

Though here we concentrate exclusively on the minimization of the nonlinear least-squares cost

functional introduced in Section 4.2, other methods for approaching the projective transformation

estimation problem exist. Tan [11] introduced an approximation to make the least-squares problem

linear, which is valid when thec parameters are very close to 0. Kanatani [1] proposed a tensor-

based approximation that reduces the estimation problem to an eigendecomposition. However, the

mapping (4.1) is very sensitive to changes in thec parameters, and as these parameters deviate from

0, the above approximations quickly diverge from the solution to the nonlinear problem.

Instead of using a set of point correspondences as a basis for estimating a projective trans-

formation, Mann and Picard [2] proposed an iterative technique for simultaneously estimating the

transformation parameters and optical flow over an entire image pair. However, they used bilinear

approximations to the projective transformations in each step in order to simplify the estimation.

4.1 Origins of Projective Transformations

ForM ∈ R3×3 with det(M) 6= 0, i.e.,M ∈ GL(3), write

M =

 A b

cT d


with A ∈ R2×2, b andc ∈ R2×1, andd ∈ R. Then the transformationgM of the plane defined by

gM (w) =
Aw + b

cTw + d
(4.2)

Chapter 4: Projective Transformations 44

is called a projective transformation1 with homogeneous coordinatesM .

We state without proof the following well-known properties of projective transformations.

Proposition 4.1: The family of projective transformations of the plane has the following properties:

1. The composition ofgM · gN is the projective transformationgMN .

2. The identity transformation of the plane is the projective transformationgI , whereI is the

identity matrix inR3.

3. gM has the inverse projective transformation(gM)−1 = gM−1 .

4. The homogeneous coordinates ofgM are unique to within a scalar multiple.

We see from the above that the set of projective transformations of the plane forms a groupG

under function composition. In the remainder of the development, we will normalized = 1, so

that a projective transformation is uniquely characterized by eight parametersM = (A, b, c). This

excludes the set of transformations withd = 0. However, this subset of transformations is not

usually of interest. We note that the set of affine transformationsA is a subgroup ofG. The two

“projective” parameters ofc account for the keystoning effects of perspective projection (see Figure

4.1).

(a) (b)

Figure 4.1: Perspective effects. (a) Effect of varying c1, (b) Effect of varying c2.

Again, we pause to determine when the assumption that two images are related by a projective

transformation is well-founded. Reconsider equations (2.4) and (2.5) from Chapter 2 that relate the
1A projective transformation is sometimes also known as a collineation or a homography.

Chapter 4: Projective Transformations 45

image coordinates of a point seen by two camerasC0 andC1:

x′ =
r11

f1

f0
x+ r12

f1

f0
y + r13f1 + tXf1

Z
r31
f0
x+ r32

f0
y + r33 + tZ

Z

(4.3)

y′ =
r21

f1

f0
x+ r22

f1

f0
y + r23f1 + tY f1

Z
r31
f0
x+ r32

f0
y + r33 + tZ

Z

(4.4)

For this to be a projective transformation that globally relates the image coordinates, for every

scene point(X,Y, Z) we require:

tX
Z

= α1x+ β1y + γ1

tY
Z

= α2x+ β2y + γ2

tZ
Z

= α3x+ β3y + γ3

for some constant scalarsαi, βi, γi. These conditions are satisfied when either:

1. tX = tY = tZ = 0 or

2. k1X + k2Y + k3Z = 1

In the first case, corresponding to a camera whose optical center undergoes no translation, we

obtain

x′ =
r11

f1

f0
x+ r12

f1

f0
y + r13f1

r31
f0
x+ r32

f0
y + r33

y′ =
r21

f1

f0
x+ r22

f1

f0
y + r23f1

r31
f0
x+ r32

f0
y + r33

An example of three such images composed into the same frame of reference with appropriate

projective transformations is illustrated in Figure 4.2. Note the nonlinear warping of the images.

In the second case, corresponding to a planar scene, (4.3)-(4.4) become:

x′ =
(r11

f1

f0
+ tXf1k1)x+ (r12

f1

f0
+ tXf1k2)y + (r13f1 + tXf1k3)

(r31
f0

+ tZk1)x+ (r32
f0

+ tZk2)y + (r33 + tZk3)

y′ =
(r21

f1

f0
+ tY f1k1)x+ (r22

f1

f0
+ tY f1k2)y + (r23f1 + tY f1k3)

(r31
f0

+ tZk1)x+ (r32
f0

+ tZk2)y + (r33 + tZk3)

Chapter 4: Projective Transformations 46

Figure 4.2: Images from a non-translating camera.

Figure 4.3: Images of a planar scene.

Chapter 4: Projective Transformations 47

An example of a pair of images of a planar surface, registered by an appropriate projective

transformation, is illustrated in Figure 4.3.

Note thatgM in (4.2) is defined at all points ofR2 except those on the linecTw+ 1 = 0, which

is called the singular line of the transformationgM . Along this lineAw + b 6= 0, since the matrix

M ∈ GL(3).

In the two cases above, singular lines have a geometric interpretation. The singular line is simply

the intersection of the image planeP0 with the planeZ ′ = 0 corresponding to the parallel transport

of the image planeP1 to the center of projectionO1. This is illustrated in Figure 4.4. In practical

situations (e.g. when the image planes are of finite extent, and one camera is not in the field of view

of the other) all the points inP0 lie to one side of the singular line.

singular line

O1

O0

P0

P1

O singular line

(a) (b)

P0

P1

Figure 4.4: (a) Singular line in fixed-center case, (b) Singular line in translated case.

For a fixed projective transformation, hence for a fixedc, there is a line ofw in P0 that lie on

the corresponding singular line. Conversely, for a fixedw ∈ P0, there is a singular line ofc in R2.

Chapter 4: Projective Transformations 48

2 1.5 1 0.5 0 0.5 1 1.5 2

2

1.5

1

0.5

0

0.5

1

1.5

2

c
1

c 2

The admissible region C of the (c
1
,c

2
) planeo

Figure 4.5: The admissible region Co of the (c1, c2) plane generated by data points from
actual images. Thin lines represent singular lines; thick lines are singular lines that
actively bound the admissible region.

4.2 The Least Squares Estimate

Our objective is to select the parametersM = (A, b, c) so thatgM best fits a given set of point

matches:

{wj 7→ w′j ∈ R2, j = 1, . . . , N}

A case of special interest arises when the data consists of noisy samples of a fixed but unknown

projective transformationgM∗ :

w′j = gM∗(wj) + ej , j = 1 . . . N

Hereej ∈ R2 is the error in the measurement ofgM∗(wj). In this case we seek an estimateM of

M∗. As discussed in Section 3.4, in practice, the noisy point samples originate from automatically

generated or manually selected feature correspondences in an image pair such as similar blocks of

pixels, intersections of lines, or corners.

An estimateM is, by definition,admissibleif the singular line ofgM does not intersect the

convex hullW of 0 andwj , j = 1, . . . , N . Since0 ∈W ,M is admissible if and only ifcTw+1 > 0

for all w ∈W . This is equivalent to the requirement thatcTwj + 1 > 0, j = 1, . . . , N . This defines

Chapter 4: Projective Transformations 49

an open convex setCo ⊂ R2 of allowed values forc, andM is admissible if and only ifc ∈ Co.

The set of admissible estimates is the open set{(A, b, c):A ∈ R2×2, b ∈ R2, c ∈ Co}. Note

that admissibility does not requireM ∈ GL(3). Figure 4.5 illustrates the admissible regionCo

generated by data points from an actual image pair.

The least squares estimatêM = (Â, b̂, ĉ) consists of those values ofA, b andc that globally

minimize:

Q(M) =
1
2

N∑
j=1

(
w′j −

Awj + b

cTwj + 1

)T (
w′j −

Awj + b

cTwj + 1

)
(4.5)

over all admissibleM = (A, b, c). In general this estimate need not be an element ofGL(3) and

hence need not itself be a projective transformation. However, for a wide range of reasonable models

for the noise termsej , j = 1, . . . N , M̂ will generically be an element of the open setGL(3). We

defer the proof thatQ has a global minimum within the set of admissible estimates to the end of

Section 4.5.

For a fixed data set, obtaining the least squares estimate requires solving a nonlinear minimiza-

tion problem over an open subset of an8-dimensional Euclidean space. However, as Theorem 4.1

below shows, the solution can be obtained by solving a nonlinear minimization problem over an

open convex subset ofR2.

Theorem 4.1: Assuming that the pointswj , j = 1, . . . , N are not colinear, the least squares esti-

mateM̂ has the form(A(ĉ), b(ĉ), ĉ) and thus lies on the2-dimensional submanifold

M ∆= {(A, b, c):A = A(c), b = b(c), c ∈ Co} of the eight dimensional spaceR2×2 × R2 × Co.

Proof: SinceM̂ minimizes (4.5), it follows that we must haveDAQ(M̂) = 0,DbQ(M̂) = 0, and

DcQ(M̂) = 0. This yields the normal equations:

Â
∑
j

wjw
T
j

(ĉTwj + 1)2
+ b̂

∑
j

wTj
(ĉTwj + 1)2

−
∑
j

w′jw
T
j

ĉTwj + 1
= 0 (4.6)

Â
∑
j

wj
(ĉTwj + 1)2

+ b̂
∑
j

1
(ĉTwj + 1)2

−
∑
j

w′j
ĉTwj + 1

= 0 (4.7)

∑
j

(
w′j −

(
Âwj + b̂

ĉTwj + 1

))T (
Âwj + b̂

ĉTwj + 1

)
wj

ĉTwj + 1
= 0 (4.8)

Chapter 4: Projective Transformations 50

We can rewrite (4.6) and (4.7) as a linear system:

[Â b̂]W (ĉ) = V (ĉ) (4.9)

whereW (c) ∈ R3×3, V (c) ∈ R2×3 are functions ofc ∈ R2 and the data points, given by:

W (c) =


∑N

j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)

∑N
j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)

 (4.10)

(4.11)

V (c) =
[∑N

j=1

w′jw
T
j

qj(c)

∑N
j=1

w′j
qj(c)

]
(4.12)

Hereqj(c) = cTwj + 1. Therefore, defining

[A(c) b(c)] = V (c)W−1(c) (4.13)

we have(Â, b̂, ĉ) = (A(ĉ), b(ĉ), ĉ) and the theorem follows.

We make a standing assumption that the points{wj : j = 1, . . . , N} are not colinear inR2.

This ensures thatW (c) is positive definite and hence thatA(c) andb(c) are defined for allc ∈ Co.

In view of Theorem 4.1, we can define a two-dimensional cost functionalJ : Co → R by

J(c) =
1
2

N∑
j=1

(
w′j −

A(c)wj + b(c)
cTwj + 1

)T (
w′j −

A(c)wj + b(c)
cTwj + 1

)
(4.14)

J(c) is simply the least squares cost function restricted to the manifoldM. By construction, for

anyMo = (A(co), b(co), co) ∈M,Q(Mo) = J(co). Hence the global minimizing solution ofJ(c)

within Co is ĉ. This reduces the determination of the least squares estimateM̂ to the minimization

of J overCo.

From the proof of the theorem, we can see that the 8-dimensional minimization ofQ(M) de-

couples into a nonlinear 2-dimensional minimization ofc and a solution of a linear system for the

“affine” parameters(A, b). This agrees nicely with the affine solution (3.2) of Section 3.1.1, which

is in fact (4.13) withc = 0. The problem considered in this chapter can be viewed as a specific case

of a general mixed least-squares problem that separates into linear and nonlinear variables. Golub

Chapter 4: Projective Transformations 51

−1

0

1

−1.5−1−0.500.511.5
0

5

10

15

20

c
1

Projective transformation estimation cost function J(c
1
,c

2
)

c
2

J

(a)

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

10

20

c
2

Projective transformation estimation cost function J(c
1
,c

2
)

c
1

J

(b)

Figure 4.6: Two views of the cost function J(c1, c2) for data points from actual images.
The dark lines are the singular lines that actively bound Co.

Chapter 4: Projective Transformations 52

and Pereyra [12] studied such problems and discussed their minimization. We go into considerably

more detail here, exploring the structure of our specific problem.

Casting the problem in a two-dimensional setting allows us to visualize the cost function and

the steps that a minimization algorithm takes. We shall show in Section 4.5 that in addition to being

of reduced dimensionality, the cost functionJ(c) can be numerically minimized more efficiently

than the cost functionQ(M).

Figure 4.6 illustrates two views of the cost functionJ graphed over the regionCo for data points

from a pair of natural images. For this example, the cost functionJ has a single minimum within

Co, located at the bottom of a deep bowl.

4.3 Data Normalization

To avoid numerical instabilities introduced by data measurements that vary by orders of magnitude,

it is generally wise to normalize the data before processing it. Hence, we need to understand how

the solution to the least-squares problem using the normalized data is related to the solution of the

problem in the original coordinates. To this end, we present the following lemma, which is easily

proven.

Lemma 4.1: Consider the data sets given by

zj = Qwj + t

z′j = Rw′j + t′

for t, t′ ∈ R2,Q,R ∈ GL(2), andj = 1, . . . , N . If M̂ = (Â, b̂, ĉ) is the minimizer of

Q(M) =
1
2

N∑
j=1

(
w′j −

Awj + b

cTwj + 1

)T (
w′j −

Awj + b

cTwj + 1

)

then the minimizerM̃ = (Ã, b̃, c̃) of

Q̃(M) =
1
2

N∑
j=1

(
z′j −

Azj + b

cT zj + 1

)T (
z′j −

Azj + b

cT zj + 1

)

Chapter 4: Projective Transformations 53

is given by

(Ã, b̃, c̃) =

(
RÂQ−1 + t′ĉTQ−1

1− ĉTQ−1t
,
Rb̂−RÂQ−1t

1− ĉTQ−1t
,

Q−T c

1− ĉTQ−1t

)
In other words,

(Â, b̂, ĉ) =

(
R−1(Ã− t′c̃T)Q

1 + c̃T t
,
R−1(b̃+ Ãt)

1 + c̃T t
−R−1t′,

QT c̃

1 + c̃T t

)
(4.15)

In practice, we normalize the data so that the measurements are zero mean with range approxi-

mately[−1, 1]. This corresponds to a choice of

t = −µ
α t′ = −µ′

α′

Q = 1
αI R = 1

α′ I

where

µ = 1
N

∑N
j=1wj µ′ = 1

N

∑N
j=1w

′
j

α = 1
2 (maxj |xj − µx|+ maxj |yj − µy|) α′ = 1

2

(
maxj |x′j − µ′x|+ maxj |y′j − µ′y|

)
For this choice of(t, t′, Q,R), we can rewrite (4.15) as

Â =
1
α

(
α′Ã+ µ′c̃

)
1− µ

α c̃

b̂ =
α′(b̃− Ãµ

α)
1− µ

α c̃
+ µ′

ĉ =
c̃

α− µc̃

4.4 The Behavior ofJ on Singular Lines

For c∗ on one or more singular lines, the matricesW (c∗) andV (c∗) that define(A(c∗), b(c∗))

in (4.13) are not defined. However, below we provide two results concerning the finiteness and

continuity of the functionsA(c) andb(c) asc approaches a singular line. In the first theorem, we

consider the behavior as we approach a point that lies on exactly one singular line.

Theorem 4.2: Fix c∗ such thatc∗Tw1+1 = 0, andc∗Twj+1 6= 0 for j 6= 1. Definec(α) = c∗+αh,

whereh is an approach vector inR2. Thenq1(c(α)) = αhTw1 6= 0 whenα 6= 0 andhTw1 6= 0

Chapter 4: Projective Transformations 54

(i.e. the approach direction is not along the singular line). We henceforth assume thathTw1 is

normalized to 1, so that2 q1(c(α)) = α. By solving (4.13) withc(α), we naturally defineA(α) and

b(α).

1. The limiting values

[Ao bo] = lim
α→0

[A(α) b(α)]

are well-defined and finite.

2. (Ao, bo) is the solution to the well-defined constrained least-squares problem

min
A,b

1
2

N∑
j=2

(
w′j −

Awj + b

c∗Twj + 1

)T (
w′j −

Awj + b

c∗Twj + 1

)
s.t. Aw1 + b = 0

3. The limiting value ofA(c)w1+b(c)
cTw1+1

asc approachesc∗ isw′1.

Proof: The proof can be found in Appendix A.

This result shows that, unlike the cost functionQ(M), the cost functionJ(c) is finite and con-

tinuous along the singular lines. However, along singular lines the resulting least-squares projective

transformation estimates are not members ofGL(3). The second and third parts of the theorem give

some additional intuition as to howAo andbo are converging. Not only are they selected to keep

the cost function finite, but they act to zero out the offending data point’s contribution to the cost

function.

It is also important to consider the limiting behavior of(A(c), b(c)) asc approaches an intersec-

tion of two singular lines. To this end, we state the following theorem without proof; the omitted

proof is straightforward but tedious, and follows the same pattern as the proof of Theorem 4.2.

Theorem 4.3: Supposec∗Tw1 + 1 = 0 andc∗Tw2 + 1 = 0, with c∗Twj + 1 6= 0 for j > 2. Define

c(α) = c∗T + αh, whereh is an approach vector inR2; this definesA(α) andb(α) through (4.13).

Abbreviatep = [wT1 1]T andq = [wT2 1]T . We assume these points are distinct.
2hTw1 = 1 is just a line parallel to the singular line. As we decreaseα, we approach the singular pointc∗ along

lines parallel toc∗Tw1 + 1 = 0.

Chapter 4: Projective Transformations 55

1. The limiting values asc approaches the intersection of singular lines is well-defined and finite:

[Ao bo] = lim
α→0

[A(α) b(α)]

= V3W
−1
3

[
I − [(qTW−1

3 q)p− (qTW−1
3 p)q]pTW−1

3

(pTW−1
3 p)(qTW−1

3 q)− (qTW−1
3 p)2

+
[(pTW−1

3 p)q − (pTW−1
3 q)p]qTW−1

3

(pTW−1
3 p)(qTW−1

3 q)− (qTW−1
3 p)2

]
where

W3 =

 ∑N
j=3

wjw
T
j

q2
j (c∗)

∑N
j=3

wj
q2
j (c∗)∑N

j=3

wTj
q2
j (c∗)

∑N
j=3

1
q2
j (c∗)


V3 =

[∑N
j=3

w′jw
T
j

qj(c∗)

∑N
j=3

w′j
qj(c∗)

]
2. The expression above is equivalent to the solution of the constrained minimization problem over

N − 2 data points:

min
A,b

1
2

N∑
j=3

(
w′j −

Awj + b

c∗Twj + 1

)T (
w′j −

Awj + b

c∗Twj + 1

)
s.t. Aw1 + b = 0 (4.16)

Aw2 + b = 0 (4.17)

The corresponding Lagrange multipliers for (4.16) and (4.17) respectively are:

λ = V3W
−1
3

(qTW−1
3 q)p− (qTW−1

3 p)q
(pTW−1

3 p)(qTW−1
3 q)− (qTW−1

3 p)2

µ = V3W
−1
3

(pTW−1
3 p)q − (pTW−1

3 q)p
(pTW−1

3 p)(qTW−1
3 q)− (qTW−1

3 p)2

3. The limiting values satisfy

lim
α→0

A(α)w1 + b(α)
(c∗ + αh)Tw1 + 1

= w′1

lim
α→0

A(α)w2 + b(α)
(c∗ + αh)Tw2 + 1

= w′2

The intersection of three singular lines requires that three data points be colinear, which is

generally not the case. However, in such an event one can prove a corresponding result on the

finiteness and continuity ofA(c) andb(c), and so on.

Chapter 4: Projective Transformations 56

4.5 Line-Search Descent

Typical algorithms for the minimization of a nonlinear function such as (4.5) operate in an iterative

fashion as follows. Given a current approximationMk of M̂ select a directiondk and search along

the line fromMk in the directiondk for the minimum of the objective function. The next approxi-

mationMk+1 is the value ofM at this minimum. Typically the directiondk is related to the gradient

of the objective function evaluated atMk.

Specifically, we consider a line-descent-based approach for minimizingQ(M). Let Mk =

(Ak, bk, ck), k ≥ 0, be the approximation of̂M after stepk and letdk = (Fk, gk, hk) denote the

search direction used at stepk. Then

(Ak+1, bk+1, ck+1) = (Ak, bk, ck) + αk(Fk, gk, hk)

where the step sizeαk ≥ 0 is selected to ensure thatQ(Mk+1) ≤ Q(Mk).

For all such schemes we can make several observations. LetMo = (Ao, bo, co) withAo ∈ R2×2,

andbo, co ∈ R2. Define the projection ofMo ontoM to beP (Mo)
∆= (A(co), b(co), co).

Theorem 4.4: Letd = (F, g, h) with F ∈ R2×2, andg, h ∈ R2. Then

1. For anyMo, J(co) = Q(P (Mo)) ≤ Q(Mo).

2. ForMo onM, define

M(α) = Mo + αd

c(β) = co + βh

α∗ = argminα≥0 Q(M(α))

β∗ = argminβ≥0 J(c(β))

Mβ∗ = (A(c(β∗)), b(c(β∗)), c(β∗))

ThenQ(Mβ∗) = J(c(β∗)), andQ(Mβ∗) ≤ Q(P (M(α∗))) ≤ Q(M(α∗)) ≤ Q(Mo).

3. ForMo onM, if d = (F, g, h) is a descent direction forQ atMo, thenh is a descent direction

for J at co.

Chapter 4: Projective Transformations 57

Proof:

1. Consider minimizingQ(M) with M constrained so thatc = co. The normal equations for this

problem are linear and have the unique solutionA(co) andb(co). Hence on the constraint setc = co,

Q(M) has a unique global minimum at the point(A(co), b(co), co) = P (Mo). SinceMo lies in this

set,Q(P (Mo)) ≤ Q(Mo).

2. Forβ ≥ 0, Mβ = (A(c(β)), b(c(β)), c(β)) is a curve onM passing throughMo (β = 0) and

P (M(α∗)) (β = α∗). Along this curveQ(Mβ) = J(c(β)). Hence the minimum ofQ along the

curve occurs atβ = β∗. ThusJ(c(β∗)) = Q(Mβ∗) ≤ Q(P (M(α∗))). The other inequalities

follow from part (1) and the definition ofα∗.

3. Since(F, g, h) is a descent direction forQ atMo, there existsαo > 0 such thatQ(Mo + αd) ≤

Q(Mo) for all α ∈ [0, αo]. Forα ≥ 0 letMα = (A(co + αh), b(co + αh), co + αh). Then for all

α ∈ [0, αo], J(co+αh) = Q(Mα) ≤ Q(Mo+αd) ≤ Q(Mo) = J(co). The first inequality follows

from part (1); the second follows from the fact thatd is a descent direction forQ atMo.

Theorem 4.4 indicates that each step of an iterative minimization ofQ(M) can be improved

by exploiting the formulasA(c) andb(c) to project the next approximation onto the manifoldM.

Moreover, part (2) indicates that minimizingJ(c) in the directionhk from ck yields a greater de-

crease in the least squares objective than either minimizingQ(M) in the directiondk fromMk and

then projecting, or simply minimizingQ(M) in the directiondk fromMk. Other issues aside, this

suggests that obtaining the least squares estimate by iteratively minimizingJ(c) is more efficient

than a similar scheme applied toQ(M). The third part of the theorem shows that at any point on

the manifoldM, every descent direction forQ yields a corresponding descent direction forJ . If

we combine this with part (2) we see that minimization ofJ along this direction will yield a smaller

value of the least squares objective function than minimizingQ in the given descent direction. Note

that parts (2) and (3) of the theorem do not generally hold forMo off the manifoldM.

Of course,J is a more complex function thanQ and hence it is conceivable that the necessary

computations in minimizingJ are also more complex. However, as far as the gradient is concerned

Chapter 4: Projective Transformations 58

this is not the case. To see this, letM(c) = (A(c), b(c), c). Then for eachh ∈ R2,

DJ(c)h = DAQ(M(c)) ·DcA(c)h+DbQ(M(c))Dcb(c)h+DcQ(M(c))h

SinceM(c) lies onM,DAQ(M(c)) = DbQ(M(c)) = 0. Then from (4.8),

∇J(c) = DcQ(M(c)) (4.18)

=
N∑
j=1

(
w′j −

A(c)wj + b(c)
cTwj + 1

)T A(c)wj + b(c)
cTwj + 1

wj
cTwj + 1

The computation ofA(c) andb(c) is equivalent to the computation of∇AQ and∇bQ, and can

be efficiently accomplished by solving the linear system (4.9). The computation of∇J givenA(c)

andb(c) is equivalent to the computation of∇cQ. Thus the computation of the gradient ofJ is no

more complex than computing the gradient ofQ.

We note that at this point, we can prove the following:

Theorem 4.5: If the set of admissible estimatesCo is compact, thenJ has a global minimum inCo

andQ has a global minimum inR2×2 × R2 × Co.

Proof. From Theorems 4.2 and 4.3, we have thatJ is continuous over the compact setCo, so

it must have a global minimizer̂c in Co. For anyM = (A, b, c) with c ∈ Co, we have from the

first part of Theorem 4.4 thatQ(M) ≥ Q(P (M)) = J(c), so the global minimizer ofQ must be

(A(ĉ), b(ĉ), ĉ).

4.6 Second-Derivative Methods

It is well known that minimization methods based on the second derivative of the objective func-

tion have superior rates of convergence. These methods are based on various modifications of the

Newton-Raphson and Gauss-Newton schemes (see Appendix B). Applied toQ, these operate by

setting

Mk+1 = Mk −H(Mk)−1∇Q(Mk)

whereH(Mk) is either the Hessian ofQ atMk or a suitable approximation.

Chapter 4: Projective Transformations 59

If we defineŵj = A(c)wj+b(c)

cTwj+1
, then we can write

Q(M) =
1
2

N∑
j=1

(w′j − ŵj)T (w′j − ŵj)

Then

DQ(M) = −
N∑
j=1

(
w′j − ŵj

)T
Dŵj

D2Q(M) =
N∑
j=1

DŵTj Dŵj −
N∑
j=1

(
w′j − ŵj

)T
D2ŵj

D2Q(M) is the Hessian ofQ atM and the first term is the Gauss-Newton approximation of the

Hessian.

It is straightforward to derive expressions for the Hessians ofQ andJ and their Gauss-Newton

approximations. The Hessian forJ is quite cumbersome sinceJ depends onc both directly and

through the dependence ofA(c) andb(c) on c. The result is:

H =
N∑
j=1

1
q2
j (c)

[
(ŵj − 2εj)T ŵjwjwTj −NT

j (ŵj − εj)wTj
]

(4.19)

where

εj =
(
w′j − ŵj

)
Nj =

[
∂A

∂c1
wj +

∂b

∂c1

∂A

∂c2
wj +

∂b

∂c2

]
The Gauss-Newton approximation to the Hessian is:

HGN =
N∑
j=1

1
q2
j (c)

(Nj − ŵjwTj)T (Nj − ŵjwTj)

The details of these derivations, as well as an explanation of how to compute the partial deriva-

tives ofA andb with respect toc, are contained in Appendix C.

The complexity of these expressions raises the issue of obtaining efficiently computable approx-

imations to the Hessian ofJ . For example, one natural approximation is to assume thatA andb are

independent ofc so thatNj becomes 0. This results in the approximation to the Hessian

Ĥ =
N∑
j=1

1
q2
j (c)

[
(ŵj − 2εj)T ŵjwjwTj

]
(4.20)

Chapter 4: Projective Transformations 60

In fact, this matrix is the same as the2 × 2 block of partials∂
2Q
∂c2

. We will see how algorithms

based on this approximation and the Gauss-Newton approximation fare in the presence of different

types of noise in Section 4.7.

In general, we will use the following framework for our second-derivative methods to minimize

J(c). The only difference is the approximation to the Hessian used in step 3. Figure 4.7 illustrates

the process.

Algorithm 4.1: Newton scheme for minimizingJ .

1. Initializec = 0.

2. Compute the gradient ofJ exactly using (4.18). That is:

∇J(c) =
N∑
j=1

1
qj(c)

εTj ŵjwj

3. Approximate the Hessian∂
2J
∂c2

by some positive semidefinite matrixĤ.

4. Use these quantities to update the value ofc using an approximate Newton-Raphson step. That

is:

c← c+ αĤ−1∇J(c)

5. Use the new value ofc to update the values ofA and b using the formulas forA(c) and b(c).

That is, solve:

[A(c) b(c)]W (c) = V (c)

whereqj(c) = cTwj + 1 and

W (c) =


∑N

j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)

∑N
j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)


V (c) =

[∑N
j=1

w′jw
T
j

qj(c)

∑N
j=1

w′j
qj(c)

]
6. Test for convergence. Exit or return to step 2.

Chapter 4: Projective Transformations 61

∇ J

Compute

A, bc

D2J

Initialize =c 0

Converged?No Yes

Approx.
Newton-
Raphson

step

Done

A(c), b(c)

c

Figure 4.7: Proposed algorithm for minimizing J(c).

The initialization ofc = 0 in step 1 is justified in practice, since the values ofc for projective

transformations arising from real image processing problems often havec = O(10−4) (see Table

4.1). This provides an additional advantage over the numerical minimization ofQ(M), which

requires accurate initial estimates of the parametersA andb. Since these parameters relate to the

zooming, rotation, and translation between an image pair, additional pre-processing is generally

required to obtain even coarse initial estimates. Algorithms to find a value ofα in step 4 that brings

about a sufficient decrease in the cost function are generally based on a backtracking and cubic

interpolation strategy [9]. Experimental results on the performance of this proposed algorithm are

reported in Section 4.7.

4.7 Experimental Results

We implemented five minimization algorithms:

1. GNQ: Standard Gauss-Newton applied toQ.

2. GNJ : Standard Gauss-Newton applied toJ .

3. N̂ : Approximate Newton applied toJ , usingĤ from (4.20).

Chapter 4: Projective Transformations 62

4. QdirJ : Approximate Newton applied toJ , using the projections of search directions fromQ

onto the manifold, as suggested by Theorem 4.4.

5. NJ : Full Newton applied toJ , using the actual Hessian (4.19).

The algorithms were compared on six sets of point correspondences, each obtained from pairs

of natural images related by projective transformations. Three of the image pairs were created by

a rotating camera; point correspondences for these images were obtained automatically using the

feature detection and matching algorithm described in Section 3.4. The other three image pairs are

different views of planar scenes; in these cases the point correspondences were obtained manually.

For all six images there is very little noise in the correspondences. However, in our experiments, we

added noise of two different types to each of the measurements to test the algorithms’ robustness.

This noise was added prior to the normalization described in Section 4.3. The two types of noise

were:

1. Gaussian noise of increasing variance. That is, random noise was added to each nominal corre-

spondence(x, y) 7→ (x′, y′) to obtain(x̃, ỹ) 7→ (x̃′, ỹ′), where

x̃ = x+ n1 ỹ = y + n2

x̃′ = x′ + n3 ỹ′ = y′ + n4

andni, i = 1, 2, 3, 4 are independent zero-mean Gaussian random variables with varianceσ2.

2. As above, exceptni, i = 1, 2, 3, 4 is drawn from a zero-mean Gaussian distribution of variance

5 with probability1− p, and from a uniform distribution over[−50, 50] with probabilityp.

The first type of noise simulates increasingly inaccurate feature correspondences. Inaccura-

cies in real applications could come from poor sensors, suboptimal correspondence algorithms, or

coarsely subsampled data. For example, if the images were subsampled by a factor of16 in each

direction before estimating correspondence, we could expect errors in the range±8 pixels in the

original coordinates.

Chapter 4: Projective Transformations 63

Example First Second Number â11 â12 b̂1 ĉ1
Number Image Image of wj â21 â22 b̂2 ĉ2

1 Firestone1 Firestone2 70 1.1781 -0.0640 -173.88 0.0006
0.1316 1.1045 0.01 -0.0001

2 Firestone2 Firestone1 69 0.8486 0.0636 146.44 -0.0005
-0.0976 0.9728 -17.47 0.0001

3 B320fr0 B320fr1 90 0.8532 -0.0223 8.51 -0.0004
-0.0166 0.9639 -1.68 0.0002

4 Track1 Track2 30 0.9703 -1.5266 83.10 -0.0004
-0.0404 0.9630 -5.85 -0.0007

5 Atrium1 Atrium2 35 1.1146 0.6413 -95.36 0.0005
-0.0790 0.6171 2.50 -0.0008

6 Atrium2 Atrium3 33 0.7564 -0.6599 160.15 -0.0004
0.0010 0.8996 13.44 0.0009

Table 4.1: Information and nominal parameters for the 6 data sets.

The second type of noise simulates a generally good correspondence algorithm with increasing

probability of obtaining a non-Gaussian outlier. Such outliers can occur, for example, when a block-

matching algorithm “finds” a matching block with a lower mean-squared-error than the correct

block induced by camera and object motion.

The information about the test images and the nominal (zero-noise) estimated projective trans-

formation parameters for each example are given in Table 4.1. For all examples, the five differ-

ent minimization algorithms all converged to the same projective transformation estimate. The

2-dimensional methods were initialized withc = 0. The 8-dimensional methods were initialized

with A = I, b = 0, c = 0. In each case we ensured that the algorithms employed the same compu-

tational procedures and tests for convergence in the appropriately-dimensioned space. Namely, the

algorithm terminates when either of the following conditions are fulfilled:

1. The relative change in the gradient is small enough:

max
1≤i≤d

∣∣∣∣∇f(x)i max{|xi|, ti}
|f(x)|

∣∣∣∣ ≤ 10−6

2. The relative change in successive values of the parameters is small enough:

|∆x|
max{|xi|, ti}

≤ 10−6

Chapter 4: Projective Transformations 64

wherex = (a11, a12, a21, a22, b1, b2, c1, c2), d = 8 in the eight-dimensional case andx = (c1, c2),

d = 2 in the two-dimensional case, andf is the appropriately-dimensioned least-squares functional

Q or J . Additionally, ti is a “typical” value of parameteri to avoid problems with defining relative

change when the parameters are small. In our tests we usedt = (1, 1, 1, 1, 100, 10, .0001, .0001).

This choice is justified given the underlying parameters for our data set (see Table 4.1).

The number of floating point operations required for the three algorithms to converge with the

purely Gaussian noise model is illustrated in Figures 4.8-4.13. Figures 4.8-4.10 pertain to the images

taken by rotating cameras, and Figures 4.11-4.13 pertain to the images of planar scenes. Thex axis

in each figure is the varianceσ2 of the noise added to the correspondences. The number of floating

point operations in each line graph is the mean of 100 trials at the same noise variance with different

realizations of the random variables.

We can see that using theQ search directions onJ is uniformly better than doing standard

Gauss-Newton onQ, and that Gauss-Newton onJ is uniformly better than both. The full Newton

method onJ does better than the Gauss-newton method onJ at higher noise variances, though

worse at lower noise variances. This is consistent with the observations in Dennis [9, p. 226].

Interestingly, the approximate Newton method using the Hessian approximation in (4.20) is only

superior to other methods at high variances. This would indicate that whileĤ can be computed

efficiently, it is a poor approximation to the true HessianH, i.e. the partial derivatives ofA andb

with respect toc are significant. This is confirmed by plotting the indicator‖Ĥ − H‖/‖H‖ as a

function of the noise variance for the first data set, illustrated in Figure 4.14. For comparison, we

also show the indicator‖HGN − H‖/‖H‖ for the Gauss-Newton method. We can see that in the

presence of no noise, roughly 85% of the Hessian is “unapproximated” byĤ, compared to only

0.1% for the Gauss-Newton case. Though theN̂ iteration requires fewer floating point operations,

18 iterations were required compared to only 3 for Gauss-Newton. However, the Gauss-Newton

approximation contains none of the terms in the full Hessian involvingεj , the errors in the fitted

data. Hence, as the noise variance increases,HGN becomes an increasingly poor approximation. On

the other hand,̂H contains one of theεj terms from the full Hessian and incrementally improves

with increasingεj . Of course, the substantial partial derivative terms that make up most of the

Hessian are still ignored.

Chapter 4: Projective Transformations 65

0 5 10 15 20 25 30
0.5

1

1.5

2
x 10

5

Noise variance

F
lo

ps

Floating point operations vs. noise in correspondence (Firestone 1−2)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.8: Floating point operation counts for the Firestone 1-2 data set, purely Gaus-
sian noise.

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5
x 10

5

Noise variance

F
lo

ps

Floating point operations vs. noise in correspondence (Firestone 2−1)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.9: Floating point operation counts for the Firestone 2-1 data set, purely Gaus-
sian noise.

Chapter 4: Projective Transformations 66

0 5 10 15 20 25 30
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Noise variance

F
lo

ps

Floating point operations vs. noise in correspondence (B320 frames 0−1)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.10: Floating point operation counts for the B320 0-1 data set, purely Gaussian
noise.

0 5 10 15 20 25 30
3

4

5

6

7

8

9

10

11
x 10

4

Noise variance

F
lo

ps

Floating point operations vs. noise in correspondence (Track)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.11: Floating point operation counts for the Track data set, purely Gaussian
noise.

Chapter 4: Projective Transformations 67

0 5 10 15 20 25 30
3

4

5

6

7

8

9

10
x 10

4

Noise variance

F
lo

ps

Floating point operations vs. noise in correspondence (Atrium 1−2)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.12: Floating point operation counts for the Atrium 1-2 data set, purely Gaus-
sian noise.

0 5 10 15 20 25 30
3

4

5

6

7

8

9

10
x 10

4

Noise variance

F
lo

ps

Floating point operations vs. noise in correspondence (Atrium 2−3)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.13: Floating point operation counts for the Atrium 2-3 data set, purely Gaus-
sian noise.

Chapter 4: Projective Transformations 68

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Noise variance

P
er

ce
nt

 o
f H

 u
na

pp
ro

xi
m

at
ed

Approximation error in H vs. noise in correspondence (Firestone 12)

Nhat on J
GN on J

Figure 4.14: ‖Ĥ −H‖/‖H‖ as a function of noise variance for N̂ and GNJ methods.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
5

6

7

8

9

10

11

12
x 10

4

Outlier probability

F
lo

ps

Floating point operations vs. outlier probability (nominal variance 5) (Firestone 1−2)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.15: Floating point operation counts for the Firestone 1-2 data set, Gaussian
noise with outliers.

Chapter 4: Projective Transformations 69

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

5

Outlier probability

F
lo

ps

Floating point operations vs. outlier probability (nominal variance 5) (Firestone 2−1)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.16: Floating point operation counts for the Firestone 2-1 data set, Gaussian
noise with outliers.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 10

5

Outlier probability

F
lo

ps

Floating point operations vs. outlier probability (nominal variance 5) (B320 frames 0−1)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.17: Floating point operation counts for the B320 0-1 data set, Gaussian noise
with outliers.

Chapter 4: Projective Transformations 70

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

Outlier probability

F
lo

ps

Floating point operations vs. outlier probability (nominal variance 5) (Track)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.18: Floating point operation counts for the Track data set, Gaussian noise with
outliers.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
4

4.5

5

5.5

6

6.5

7
x 10

4

Outlier probability

F
lo

ps

Floating point operations vs. outlier probability (nominal variance 5) (Atrium 1−2)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.19: Floating point operation counts for the Atrium 1-2 data set, Gaussian noise
with outliers.

Chapter 4: Projective Transformations 71

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

4

Outlier probability

F
lo

ps

Floating point operations vs. outlier probability (nominal variance 5) (Atrium 2−3)

Nhat on J
N on J
GN on Q
Qdir on J
GN on J

Figure 4.20: Floating point operation counts for the Atrium 2-3 data set, Gaussian noise
with outliers.

The number of floating point operations required for the three algorithms to converge with

the outlier noise model is illustrated in Figures 4.15-4.20. Again, Figures 4.15-4.17 pertain to the

images taken by rotating cameras, and Figures 4.18-4.20 pertain to the images of planar scenes. The

x axis in each figure is the probabilityp that a coordinate is an outlier. The number of floating point

operations in each line graph is the mean of 100 trials at the same outlier probability with different

realizations of the random variables.

The results here again indicate the superiority of the two-dimensional algorithms. The main

difference is the lower rate of decrease of theN̂ curves, which indicates that the Gauss-Newton

method onJ is a better choice overall when the correspondence contains outliers. Of course, a

good estimation scheme will iteratively reject outliers until the noise can be well-modeled by a

Gaussian distribution, and re-estimate, in which case theN̂ method may be more efficient.

Chapter 4: Projective Transformations 72

4.8 Conclusions

The experimental results indicate that obtaining the least squares estimate of the parameters of a

projective transformation using the algorithms proposed in Section 4.6 to minimizeJ(c) offers a

distinct efficiency advantage over using a standard algorithm such as Gauss-Newton to minimize

Q(M).

Future research in this area includes a deeper investigation of how the relationship between the

positions of the data points, the noise in their measurement, and the underlying projective transfor-

mation parameters affect the convergence of the algorithm. For example, our simulations indicate

that theN̂ algorithm presented is quite robust to high-variance noise. Its computational cost seems

to decrease with noise variance while the costs of the other algorithms increase. However, we lack

a rigorous analysis of why this is so.

Additionally, we hope to use the two-dimensional cost functionJ(c) to analyze the existence

and behavior of local minima. We have been able to construct data sets that induce a cost function

J(c) with multiple local minima over the regionCo, and have experimentally obtained bifurcation

diagrams for the minima as the configuration of the data points is continuously varied. However,

in our experience with projective transformations arising from real data, we have never observed

multiple local minima in the least-squares cost functional. We would like to prove or disprove the

hypothesis that in the general case (e.g. a large number of noisy measurements obtained from real

images), the cost function is convex overCo and hence has a unique global minima in this domain.

We only address the estimation of a single projective transformation here, but there are natural

extensions to the joint estimation of the projective transformations relating several images, e.g.

frames of a video sequence. The composition of multiple pairwise estimates is suboptimal for the

joint problem, and can lead to unstable error growth. Additional issues arise when the images are

constrained to form a seamless360◦ panorama, as in Szeliski [3].

Chapter 4: Projective Transformations 73

4.9 References

[1] K. Kanatani.Geometric Computation for Machine Vision.Clarendon Press, 1993.

[2] S. Mann and R.W. Picard. Video Orbits of the Projective Group: A Simple Approach to

Featureless Estimation of Parameters.IEEE Transactions on Image Processing, vol. 6, no. 9,

pp. 1281-1295, 1997.

[3] R. Szeliski and H. Shum. Creating Full View Panoramic Image Mosaics and Environment

Maps.Computer Graphics (SIGGRAPH ’97), pp. 251–258, August 1997.

[4] Y.P. Tan, S.R. Kulkarni and P.J. Ramadge. A New Method for Camera Motion Parameter

Estimation.Proc. ICIP 1995, pp. 406–409, 1995.

[5] H.S. Sawhney, A. Ayer and M. Gorkani. Model Based 2D and 3D Dominant Motion Estima-

tion for Mosaicing and Video Representation.Proc. ICCV 1995, pp. 583–590, 1995.

[6] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. Efficient Representations of Video

Sequences and Their Applications.Signal Processing: Image Communication, special issue

on Image and Video Semantics: Processing, Analysis, and Application, Vol. 8, No. 4, pp.

327–351, May 1996.

[7] R.Y. Tsai and T.S. Huang. Estimating the Three-Dimensional Motion Parameters of a Rigid

Planar Patch.IEEE Trans. ASSP, vol. 25, no. 6, pp. 1147–1152, December 1981.

[8] R. Radke, P. Ramadge, S. Kulkarni, T. Echigo, S. Iisaku. Recursive Propagation of Correspon-

dences with Applications to the Creation of Virtual Video. InProc. ICIP 2000, September

2000.

[9] J.E. Dennis, Jr. and R.B. Schnabel.Numerical Methods for Unconstrianed Optimization and

Nonlinear Equations, SIAM, Philadelphia, 1996.

[10] R. Radke, P. Ramadge, T. Echigo, and S. Iisaku. Efficiently Estimating Projective Transfor-

mations. InProc. ICIP 2000, September 2000.

Chapter 4: Projective Transformations 74

[11] Y.P. Tan. Digital Video Analysis and Manipulation.Ph.D Thesis, Department of Electrical

Engineering, Princeton University, November 1997.

[12] G.H. Golub and V. Pereyra. The Differentiation of Pseudo-Inverse and Non-Linear Least

Squares Problems Whose Variables Separate.SIAM J. Numer. Anal., vol. 10, pp. 413–432,

1973.

Chapter 5

Correspondence

Many image and video processing problems hinge on possessing a dense (subpixel-level) estimate of

correspondence between a set of still images. Applications of correspondence are diverse, including

motion compensation in video coding, construction of a 3-D model of a scene from images, and the

association of points on similar objects for computer graphics effects.

Of course, the more that is knowna priori about the position and motion of cameras and scene

objects, the easier the correspondence problem becomes. However, in this chapter, we assume no

prior knowledge about the content of the scene or the cameras that produced the images, since this

information is often unavailable, e.g. for archival video.

Moreover, we distinguish between photometric techniques, which match points based entirely

on the local variation of intensity between images, and geometric techniques, which attempt to find

correspondence consistent with a physical scene. Photometric correspondence is useful in domains

such as video coding, but less useful for applications where geometry is crucial, such as the virtual

view synthesis algorithms we will discuss in the next chapter.

The classical correspondence problem is a fundamental and difficult problem in computer vi-

sion, as evidenced by more than 30 years of research. In Section 3.5, we reviewed several lines of

investigation. Many notable approaches derive from optical flow and other techniques in stereo.1

1The word “stereo” is generally used in the context of cameras whose centers of projection are closely separated with
respect to their distance to the scene, so that the effects of occlusions are minor. The situation in which the centers of
projection of the cameras are widely separated with respect to their distance to the scene is sometimes referred to as the
wide-baseline case.

75

Chapter 5: Correspondence 76

While in photometric applications, an unstructured optical flow field may be an adequate repre-

sentation of correspondence between an image pair, there are many practical situations in which a

parametrized or structured correspondence is induced by the geometry of the cameras. For exam-

ple, when a camera undergoes rotation only, the projective transformations discussed in Chapter 4

provide one example of correspondence over entire image planes parametrized by only eight real

numbers. Layered-motion techniques also fall into this category.

However, for an arbitrary image pair of the same scene, the correspondence between the images

has no simple global parametrization. The onlya priori constraint on correspondence is the well-

known epipolar constraint [1]. In theory, this reduces the correspondence problem to a series of

1-D matching problems. We review several approaches to solving the correspondence problem in

the context of conjugate epipolar lines in Section 5.1. While these techniques are unstable in the

small-baseline case2, our interest here and in the following chapters is in the wide-baseline setting.

Virtually every epipolar-line-based correspondence algorithm makes the assumption that scene

points are projected onto conjugate epipolar lines in the same order. This is called the monotonicity

assumption. Typically, it is made so that dynamic programming or polynomial-time algorithms can

be used to efficiently obtain solutions. However, as we illustrate in Section 5.2, the monotonicity

assumption is generally invalid in the wide-baseline case.

Our goal in Section 5.3 is to fully describe the class of sets of corresponding points that can

arise from a real imaging system. Instead of making the monotonicity assumption, we consider

the correspondence induced by arbitrarily complicated scenes, and encapsulate this structure in the

correspondence graph, the set of all points that are visible in two conjugate epipolar lines. Using the

formalism of correspondence graphs, we can ensure that any estimated correspondence is consistent

with a physical imaging system, which is especially important for geometric applications.

The second main contribution of the chapter is Section 5.4, in which we present an algorithm for

estimating correspondence graphs from real images. As a result, we can generate dense, physically

consistent correspondence between images taken by widely separated cameras, useful for applica-

tions where geometric accuracy is crucial. Each step of the estimation algorithm is illustrated in

Section 5.5 with an example from natural, outdoor video.
2The fundamental matrix is undefined when the camera centers are coincident.

Chapter 5: Correspondence 77

The correspondence graph was introduced in [2], and is used in the virtual video applications

we discuss in Chapters 6 and 7.

5.1 Review of Epipolar Correspondence Algorithms

As reviewed in Section 2.5, epipolar lines exist in conjugate pairs(`0, `1), such that the match

to a pointw ∈ `0 must lie on`1, and vice versa. This means that the correspondence problem is

fundamentally a one-dimensional problem, not a two-dimensional one. If an estimate of the epipolar

geometry is available, many correspondence algorithms exist to exploit this constraint.

epipolar line in I 0

ep
ip

ol
ar

 li
ne

 in
I

 1

m
at

ch
ing

 p
at

h

starting
node

ending
node

Figure 5.1: Matching graph for conjugate epipolar lines.

Each approach we review below makes the monotonicity assumption that correspondences ap-

pear along conjugate epipolar lines in the same order. This allows the use of dynamic programming

[3] techniques to efficiently solve the various estimation problems. The result of the estimation for

a conjugate epipolar line pair(`0, `1) can then be expressed as a monotonic path through`0 × `1,

Chapter 5: Correspondence 78

as illustrated in Figure 5.1. However, we will show in the remainder of the chapter that corre-

spondence from real images can be considerably more complex, and discuss how to estimate 1-D

correspondence in full generality.

Some algorithms build in constraints that ensure similar correspondence is estimated across

adjacent epipolar lines. This is especially important in light of the observation in [4] that multiple

global minima may exist for problems solved at each conjugate epipolar line pair.

5.1.1 Basic Dynamic Programming: Ohta and Kanade

Ohta and Kanade [5] described a dynamic programming approach in which the nodes of the program

correspond to edges detected in each epipolar line. The entities that are matched between conjugate

epipolar lines are intervals of nearly constant-intensity pixels. Points in a pair of matched intervals

are put into correspondence by linearly interpolating between the endpoints.

Interval from epipolar line in image 0 Interval from epipolar line in image 1

Mean Mean

Mean

k l

2

0
σ

Mean

2σ 2

1
σ

Figure 5.2: Ohta and Kanade interval-matching cost function.

The function used to measure the cost of matching an intervali0 ∈ `0 = {a1, . . . , ak} and

i1 ∈ `1 = {b1, . . . , bl} is based on the varianceσ2 of the intensities in the two intervals from a

sample meanm, calculated as:

m =
1
2

1
k

k∑
i=1

ai +
1
l

l∑
j=1

bj



Chapter 5: Correspondence 79

σ2 =
1
2

1
k

k∑
i=1

(ai −m)2 +
1
l

l∑
j=1

(bj −m)2


The cost function is illustrated schematically in Figure 5.2. Both intervals contribute equally to

the mean and variance. The cost of the segment that matches these intervals is then computed as

C = σ2
√
k2 + l2

The cost function is motivated by the assumption that pixels in matching intervals arise from

a homogeneous-intensity surface in the scene and therefore have similar image intensities, so that

the variance between correctly matched intervals should be small. A slightly different, somewhat

ad-hoc cost was defined for an occluded path.

The authors also described a higher-dimensional matching problem over the entire image pair in

which the nodes in the dynamic program are edges that cross many epipolar lines. This formulation

explicitly enforces consistency between nearby epipolar lines.

Once the cost function and the nodes of the problem are fixed, it is straightforward to apply

dynamic programming to find the least-cost path through the epipolar-line matching graph.

5.1.2 Bayesian Approach: Belheumer

Belheumer [6] discussed a series of explicit prior models for the structure of a scene, and developed a

Bayesian approach to solving the correspondence problem for each model. The goal is to obtain the

maximuma posteriori(MAP) estimate of the disparities (i.e. motion vectors between corresponding

points) between the epipolar line pair. This was accomplished by defining a prior distribution on the

disparity function as a stochastic process comprised of Brownian motion and Poisson processes. In

the most complicated model, the scene is composed of multiple objects, the surfaces of which may

be steeply sloping or have creases.

Dynamic programming is applied in the case where conjugate epipolar line pairs are treated

independently, and a heuristic variant dubbed “iterated stochastic dynamic programming” is used

to enforce consistency constraints. In addition, this approach is notable in its exploration of the

relationship between foreground objects and “half-occluded” (i.e. visible in one image but not

Chapter 5: Correspondence 80

both) background regions. We discuss the full structure and implications of this relationship in the

next section.

5.1.3 Maximum Likelihood Approach: Cox et al.

While Belheumer placed a prior density on the structure of the scene and computed the Bayesian

MAP estimate, Cox et al. [4] derived a maximum likelihood (ML) estimate for the stereo cor-

respondence problem that requires no prior distributions. Their maximum likelihood algorithm

assumes that the intensities of corresponding pixels are normally distributed about a true common

value, which leads to a matching cost based on the weighted squared error between the intensities

of candidate corresponding points. The authors were able to obtain good results without further

assumptions about local smoothness of correspondences.

A system of cohesiveness constraints is also introduced to minimize the number of horizontal

discontinuities in each epipolar line and the number of vertical discontinuities across epipolar lines.

Occlusions are modeled, though the cost of occlusion is the same regardless of local image detail.

5.1.4 Maximum-Flow Graph: Ishikawa and Geiger

Ishikawa and Geiger [7] described an approach to compute the disparity map by solving a global

optimization problem that modeled occlusions, discontinuities, and epipolar line interactions. The

optimization problem is mapped to a maximum-flow problem on a directed graph, which can be

solved in polynomial time. In their model, a disparity discontinuity in one image is constrained to

match an occluded region in the other image. Edges and junctions are used as matching primitives.

The capacities of edges in the graph are adjusted to enforce the monotonicity constraint, require

consistency between epipolar lines and smoothness in disparity, and penalize discontinuities and

occlusions. However, their algorithm appears to be very slow.

5.1.5 Curve Matching: Tomasi and Manduchi

Tomasi and Manduchi [8] proposed a novel approach for matching epipolar lines, based on rep-

resenting each epipolar line as a curve in a higher dimensional space whose coordinate axes are

Chapter 5: Correspondence 81

intensity, derivative of intensity, and so on. Then the correspondence problem can be cast as finding

the matching of points on a pair of curves inRN that minimizes a radial distance function. Occluded

regions are represented in this context by unmatched loops of the curves.

5.2 Non-Monotonicity

Here we illustrate that the order of corresponding points along conjugate epipolar lines is not in-

variant from image to image, even though this is the basis of the commonly invoked monotonicity

assumption. Consider the scene in Figure 5.3, in which a thin post stands before a wall. The left

camera sees pointA to the left of pointB, while the right camera sees pointA to the right of point

B.

A
B

A
B A

B

Figure 5.3: The “double nail illusion”.

This phenomenon is sometimes called the “double-nail illusion”, and is dismissed as relatively

uncommon in stereo. However, it occurs frequently in images from wide-baseline video, which

comprise most of the examples in this thesis.

Figure 5.4 illustrates regions of two real images of the same scene, rectified so that epipolar lines

are horizontal. The numbered objects appear in different orders along conjugate epipolar lines due

to the large perspective difference between the images. Each inconsistency in ordering generates a

Chapter 5: Correspondence 82

1

2

4

5

3

1

2 4

5

3

Figure 5.4: Violations of monotonicity.

local violation of the monotonicity assumption in the affected conjugate epipolar lines. A monotonic

path through a matching graph such as the one illustrated in Figure 5.1 cannot represent the correct

matching.

Unfortunately, relaxing the monotonicity assumption to allow arbitrary matching of points be-

tween conjugate epipolar lines results in a problem of high combinatorial complexity, not suitable

for dynamic programming [10]. However, the set of correspondences that are physically realizable

is not entirely unconstrained, and has a specific structure that we derive in the next section.

5.3 The Correspondence Graph

5.3.1 Constraints on Correspondence

In the following, we fix a pair of cameras(C0, C1) whose centers of projection areO0 andO1,

respectively. These cameras have associated image planesP0 andP1, that lie between the cameras’

respective centers of projection and the sceneS, a collection of points inR3. Select a planeΦ

containing the baseline, and view the intersection ofΦ with the camera centers, the image planes,

and the scene points as an imaging system with a 2-D sceneS = S ∩ Φ and 1-D image planes (the

pair of conjugate epipolar lines(`0, `1)). This is illustrated in Figure 5.5.

We fix a coordinate system(x, y) on Φ by lettingO0 = (0, 0) and placingO1 at (1, 0).3 The
3Scene points are assumed to have positivey coordinates.

Chapter 5: Correspondence 83

Φ

I0

I1

O0

O1

P

w0

w1

e0 e1

Figure 5.5: Epipolar geometry.

epipolar lines̀ 0 and`1 inherit natural one-dimensional coordinate systems (denotedi andj respec-

tively), oriented so that increasingi andj correspond to increasingx. In this setting, a correspon-

dence is the realization of a point(x, y) in the scene as a pair(i, j) ∈ `0 × `1. We will denote asS′

the representation of the sceneS in (i, j)-space.

Explicitly, the bijective transformation from(x, y)-space to(i, j)-space is given by:

i(x, y) = f0
x sin γ0 − y cos γ0

x cos γ0 + y sin γ0
(5.1)

j(x, y) = f1
(x− 1) sin γ1 − y cos γ1

(x− 1) cos γ1 + y sin γ1
(5.2)

whereγi is the angle the optical axis ofCi makes with the positivex-axis. We implicitly define two

new coordinate systems,(r0, θ0), (r1, θ1) in terms of the(x, y) coordinate system by:

(x, y) = (r0 cos θ0, r0 sin θ0)

(x, y) = (r1 cos θ1 + 1, r1 sin θ1)

These are just the polar coordinates of(x, y) with respect toO0 andO1, respectively. It is clear

that the mappings between the four sets of coordinates are bijective, and hence the coordinate trans-

forms (i, j) = J0(r0, θ0) and(i, j) = J1(r1, θ1) are well-defined. An important property of these

Chapter 5: Correspondence 84

j1

j2

i

p1

p2

O0 O1

Figure 5.6: Mapping from (x, y)-space to (i, j)-space.

mappings is:

Proposition 5.1: For any fixedθ0, θ1 ∈ (0, π),

∂i
∂r0

= 0 ∂j
∂r0

> 0

∂i
∂r1

< 0 ∂j
∂r1

= 0

Proof. The partials of(i, j) with respect to(x, y) are ∂i
∂x

∂i
∂y

 =
f0

(x cos γ0 + y sin γ0)2

 y

−x


 ∂j

∂x

∂j
∂y

 =
f1

((x− 1) cos γ0 + y sin γ0)2

 y

−(x− 1)


Then by the chain rule, we obtain ∂i

∂r0

∂i
∂r1

 =

 0
−f0 sin θ1

(x cos γ0+y sin γ0)2


 ∂j

∂r0

∂j
∂r1

 =

 f1 sin θ0
((x−1) cos γ1+y sin γ1)2

0



Chapter 5: Correspondence 85

Sinceθ0, θ1 ∈ (0, π), sin θ0 andsin θ1 are positive, and the property is proven.

The proof can also be seen from the diagram in Figure 5.6. The intuition is that any ray fromO0

maps to a line segment with fixedi in (i, j)-space, and provided that the ray is on the “right side”

of the baseline, the segment is traversed in the direction of increasingj as we move away fromO0.

Similarly, any ray fromO1 maps to a line segment with fixedj in (i, j)-space, which is traversed in

the direction of decreasingi.

We can also derive a bound on the correspondences of points on rays from either camera.

Proposition 5.2: For any fixedθ0, θ1 ∈ (0, π),

lim
r0→∞

(i(r0, θ0), j(r0, θ0)) = (f0 tan(γ0 − θ0), f1 tan(γ1 − θ0)) (5.3)

lim
r1→∞

(i(r1, θ1), j(r1, θ1)) = (f0 tan(γ0 − θ1), f1 tan(γ1 − θ1)) (5.4)

This follows from simple algebra. Equation (5.3) acts as an upper bound onj for fixed θ0, and

equation (5.4) acts as a lower bound oni for fixed θ1. These also give the constant values ofi for

fixedθ0 andj for fixedθ1, respectively, that are implied by Proposition 5.1.

O0
O1

f0

f1(x , y)^ ^

γ0 γ1
θ0

θ1

^

^

Figure 5.7: The set of points in front of both cameras.

To obtain a lower bound onj for fixed θ0 and oni for fixed θ1, we consider Figure 5.7. The

bound is derived by requiring that a correspondence lies in front of both image planes. An important

Chapter 5: Correspondence 86

point is (x̂, ŷ), the intersection of the two image planes. This point induces two critical anglesθ̂0

andθ̂1. We require that:

θ0 > θ̂0 θ1 < θ̂1 (5.5)

Assuming a point satisfies these constraints, itsr0 andr1 coordinates satisfy

r0 > f0 sec(γ0 − θ0) r1 > f1 sec(γ1 − θ1) (5.6)

in order to be visible. Taken together, (5.5) and (5.6) induce a lower bound onj as a function ofθ0

and an upper bound oni as a function ofθ1, though it is not particularly instructive to present the

formulas.

5.3.2 The Correspondence Graph

Now we present the main result of this chapter, the correspondence graph. This is a representation

of all the points that are visible in both members of a conjugate epipolar line pair. In contrast to

assumptions of other algorithms (e.g. Ohta and Kanade, Belheumer), the result is a matching path

that need be neither monotonic nor continuous, and occlusions are explicitly removed from the

graph instead of being approximated by vertical or horizontal line segments.

Belheumer [6] mentioned a “morphologically filtered version” of the disparity function between

an epipolar line pair that is related to the correspondence graph. The filtering operation creates a

continuous, monotonic path through the epipolar matching graph that includes regions that are “half-

occluded”, i.e. visible in one image only. However, this formalism only captures simple scenes that

are constrained by monotonicity.

Now we formally define the correspondence graph:

Definition. The correspondence graphC ⊂ `0 × `1 of a sceneS with respect to the camera pair

(C0, C1) is the set of all points inS that are visible (i.e. unoccluded) in both`0 and`1, transformed

into (i, j)-space.

The correspondence graphC ⊂ S′. GenerallyC 6= S′, since the correspondence graph takes

occlusions into account and the transformed sceneS′ does not. However, we will prove that the

correspondence graph can be easily obtained from the setS′. We shall see that the construction is

related to a certain morphological operation on points in(i, j)-space, described below.

Chapter 5: Correspondence 87

Definition. A setA of points in(i, j)-space is a Southeast set if the subsets{(a, b) ∈ A | a = i}

and{(a, b) ∈ A | b = j} have at most one element for alli, j.

Definition. The Southeasting operationSe(·) produces a Southeast setA′ from a setA as follows:

A′ = Se(A) = {(i, j) ∈ A | {(a, j) ∈ A | a > i} and {(i, b) ∈ A | b < j} are empty}

The setSe(A) can be obtained fromA by considering every point(i, j) ∈ A and removing any

points that lie directly above or to the left of it (Figure 5.8).

i

j

C0 ray

C1 ray

Figure 5.8: The Southeasting operation. Points are removed in the directions of the
rays.

Proposition 5.3: The correspondence graphC for a sceneS with respect to(C0, C1) can be gener-

ated by Southeasting the transformed sceneS′.

Proof. We know that the correspondence graphC is a subset of the transformed sceneS′. It

remains to determine which points inS′ actually appear in both images. Fixi and consider the

set of pointsS′i = {(a, b) ∈ S′ | a = i}. From Proposition 5.1, these points lie on the same

ray from C0 in (x, y)-space. The pointp′ with the smallestj coordinate is closest toC0 and is

hence the only point along the ray that is imaged byC0. Therefore, the points inS′i with largerj

coordinates thanp′ are not retained in the correspondence graph. Similarly, for fixedj, consider the

setS′j = {(a, b) ∈ S′ | b = j}. These points lie on the same ray fromC1 in (x, y)-space, and the

only point that is retained in the correspondence graph is that pointq′ with the largesti coordinate.

Chapter 5: Correspondence 88

The operation described above is simply the Southeasting of the setS′. By construction, the

remaining elements in the Southeast set are precisely those points that appear in both cameras and

hence this Southeast set is by definition the correspondence graph ofS′.

Additionally, a partial converse to the above proposition is also true. That is:

Proposition 5.4: Fix a pair of cameras(C0, C1), normalized to the standard configuration in Sec-

tion 5.3.1. Then any Southeast set of points in(i, j)-space is the correspondence graph of some

physical scene, provided that conditions (5.3)–(5.6) are satisfied.

Proof. From the proof of Proposition 5.3, it is clear that a correspondence graph must be a

Southeast set. Furthermore, (5.3)–(5.6) give bounds on the possible locations of points in(i, j)-

space that correspond to a physical scene. For any Southeast point(i, j) satisfying (5.3)–(5.6), a

corresponding scene point in(x, y)-space can be obtained by intersection of the appropriate rays

from C0 andC1, i.e. by applying the inverse transformation of (5.1)-(5.2). Hence if every point in a

Southeast setC satisfies the bounds (5.3)–(5.6), a consistent sceneS can be constructed for which

C is the correspondence graph ofS with respect to(C0, C1).

5.3.3 Examples of Correspondence Graphs

A sceneS with a simple obstruction relative to two cameras is illustrated in Figure 5.9a. Figure 5.9b

shows the scene transformed into(i, j)-space. The Southeasting process is applied in Figure 5.9c to

obtain the correspondence graph in Figure 5.9d. This is the type of correspondence characteristic in

stereo, where occlusions introduce discontinuities into the correspondence, but the correspondence

remains monotonic.

It is instructive to compare the scene and graph in Figure 5.9 with those of Figure 5.10, in which

the occluding segment (labeled 6) has been decreased in length and moved closer to the cameras. In

this configuration, a part of the rear segment (labeled 3) behind the occluding segment is visible to

both camera 0 and camera 1. The labeled line segments are projected to image planeP0 in the order

1-2-3-6-5, and to the image planeP1 in the order 1-6-3-4-5. Segments 3 and 6 appear in different

orders in the projections; this reversal produces the phenomenon seen in the correspondence graph,

Chapter 5: Correspondence 89

-6 -4 -2 0 2 4 6
-4

-2

0

2

4

6

8

10

x

y

Scene and camera geometry

O0 O1

S

e0
e1

1 2 4 53

6

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

j

Southeasting the transformed scene

1

5

6

4

2
3

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

j

The correspondence graph

1

5

6

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

j

The transformed scene S'

1

5

6

4

2

3

(a) (b)

(c) (d)

Figure 5.9: Example 1 (simple occlusion). (a) Scene S in (x, y)-space. (b) Transformed
scene S′ in (i, j)-space. (c) Southeasting the transformed scene. (d) Correspondence
graph.

Chapter 5: Correspondence 90

-6 -4 -2 0 2 4 6
-4

-2

0

2

4

6

8

10

x

y

Scene and camera geometry

1 2 4 53

6

O0 O1

S

e0 e1

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

j

The transformed scene S'

1

3

5

62

4

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

j

The correspondence graph

1

3

5

6

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

j

Southeasting the transformed scene

1

3

5

6
2

4

(a) (b)

(c) (d)

Figure 5.10: Example 2 (double-nail illusion). (a) Scene S in (x, y)-space. (b) Trans-
formed scene S′ in (i, j)-space. (c) Southeasting the transformed scene. (d) Corre-
spondence graph.

Chapter 5: Correspondence 91

Figure 5.10d. We can see this is the correspondence graph associated with the double-nail illusion

in Section 5.2.

Figure 5.11: An N-piece and 2-piece input can both result in a 3-piece Southeast output.

There is no general rule that relates the number of connected components inA to the number

in Se(A) (see Figure 5.11). However, it is easy to see that the number of connected components in

Se(A) is at most three times the number of connected components inA, since Southeasting a single

connected component can split another connected component into at most three pieces.

5.4 Estimating Correspondence Graphs

Though we fully characterized the structure of a correspondence graph in the previous section, it is

not obvious how this result can be applied to real images. Our purpose in this section is to present

an algorithm for estimating the correspondence graph for a conjugate pair of epipolar lines in a real

image pair.

Algorithm 5.1: Constructing correspondence graphs.

Given the following:

• A pair of images(I0, I1)

• Segmentation and matching of the foreground objects in each image

Chapter 5: Correspondence 92

• A pair of conjugate epipolar lines(`0, `1)

Construct the correspondence graph for(`0, `1) with the following four steps:

1. Estimate an initial correspondence within the segmented regions.

2. Estimate a global correspondence for the background regions.

3. Generate a basic correspondence graph by Southeasting the set of background and foreground

correspondences.

4. Refine the pieces of each correspondence graph using a monotonic epipolar-line-based matching

algorithm.

We reviewed algorithms for estimating the fundamental matrix, and hence, the pairs of conjugate

epipolar lines, in Section 3.2. We discuss in more detail the four steps of the algorithm below.

5.4.1 Step 1: Segmentation and Correspondence of Foreground Objects

The automatic detection, segmentation, and matching of objects in an image sequence is a very

difficult problem, and beyond the scope of this thesis. In this chapter and the following ones, the

segmentation and matching of the objects in the examples were obtained (somewhat painstakingly)

by hand. Reviews of segmentation techniques are given in [11, 12].

Generally, determining objects that move independently of the background is greatly facilitated

by multiple images, e.g. temporally adjacent frames of video. A general approach is to estimate

the dominant motion of the background pixels induced by camera motion first, and analyze regions

of pixels whose motion disagrees with this dominant motion [13, 14]. This can be viewed as a

specific case of minimum-description-length layered motion estimation [15, 16] where almost all of

the pixels are in one layer and the other layers have small spatial extent compared to the first one.

Sharp segmentation and classification into the “correct” number of semantic objects can be difficult

with these approaches. It is generally also very difficult to deal with occlusions.

Another approach to the segmentation problem comes from active contours. The general idea

is to define a cost function related to the edges in an image, and to iteratively deform a closed curve

or a series of closed curves defined on the image plane to achieve a minimal cost. If the cost is

Chapter 5: Correspondence 93

defined appropriately, the minimizing curves conform to the contours of foreground objects in the

image. This process generally operates on a single image, using intensity gradient information. The

canonical references on such “snakes” are [17, 18]. A more recent active-contour-based work that

seems very promising is [19]. The conditional-density-estimation algorithm discussed in [20, 21]

also seems to be quite good at tracking moving objects in cluttered environments.

Once we possess the segmented and matched objects, we consider the intervals that are formed

by intersecting the objects with the epipolar line pair(`0, `1). If the segmentation and epipolar

geometry estimates are accurate, each interval corresponding to an object in`0 should have a match

in `1. Correspondence between each interval pair is then initialized by assuming that points match

up by linear interpolation between the boundaries.

A minor issue is how to deal with matching two objects with different numbers of connected

components when cut by an epipolar line. We use the simple heuristic illustrated in Figure 5.12, by

splitting up objects so that they have the same number of connected components along each epipolar

line.

(b)(a) (c)

Figure 5.12: Matching a “two-legged” object (a) with a “one-legged” object (b). Below
the line where the number of connected components differs, (b) is evenly split into two
pieces to produce (c), which can now be matched with (a).

Chapter 5: Correspondence 94

5.4.2 Step 2: Estimating Initial Global Correspondence for Background Pixels

Despite the battery of approaches to the correspondence problem described in Sections 3.5 and 5.1,

obtaining a good estimate of the correct correspondence between a real image plane pair, even in the

absence of occluding objects, is often problematic. Hence, any prior knowledge about the correct

correspondence should be exploited.

For example, in the absence of prior information, an algorithm that matches points along con-

jugate epipolar lines may make the default assumption that the left and right edge points of the

conjugate epipolar line pair correspond. For images in which the field of view of the cameras are

very different (e.g. Figure 5.18), this is a poorly founded assumption. The correspondence algo-

rithm can be applied with better results if the endpoints of the largest region that is projected onto

both conjugate epipolar lines are estimated. When these starting and ending points of the matching

path are well-estimated, the interiors of the delimited intervals can be more accurately matched.

In a certain class of real images (e.g. frames of sports video), much of the field of view of each

camera is comprised by a planar surface. From Section 4.1, the relationship between the coordinates

of correspondences that lie on this plane can be globally modeled by a projective transformation.

Using a small set of correspondences that lie on the plane as input, the parameters of the projective

transformation can be estimated using the techniques of Chapter 4. The estimated projective trans-

formation can be applied to the entire image planeI0 to register the planar surfaces in the coordinate

system ofI1.

The outline of the warped image superimposed onP1 provides an estimate for the correspon-

dences of points on the edges ofI0 in I1. This is schematically illustrated in Figure 5.13. The filled

quadrilaterals are the original image plane pair(P0,P1) and their rectified counterparts(P̄0, P̄1).

The dotted-line image planes in the left column are the images ofP1 inP0 andP̄0 under the assump-

tion that a projective transformationP maps the entire plane ofP0 toP1. Similarly, the dotted-line

image planes in the right column are the images ofP0 in P1 and P̄1 under this assumption. By

composition of projective transformations, the map fromP̄0 to P̄1 is given byQ = HPG−1. Since

the image planes are rectified, we know that if(x̄, ȳ) ∈ P̄0 maps to(x̄′, ȳ′) ∈ P̄1, thenȳ′ = ȳ. That

Chapter 5: Correspondence 95

P

P-1

G H

1 2 3 4 1 2 3 4

P 0 P 1

P 0 P 1

Figure 5.13: Using the planar surface to estimate initial correspondence.

Chapter 5: Correspondence 96

is, if Q = (A, b, c), then for all(x̄, ȳ),

ȳ =
a21x̄+ a22ȳ + b2
c1x̄+ c2ȳ + 1

Among other things, this implies thatc1 = c2 = 0, which means that

x̄′ = a11x̄+ a12ȳ + b1

For a fixedȳ (e.g. the horizontal line in Figure 5.13), this means thatx̄′ is a linear function of̄x.

In this example, this means that we can initially estimate that the points along lineȳ that appear in

both images lie between the points labeled 2 and 3, and that points between these two correspond by

linear interpolation. There are five other cases, depending on where the edges of the image planes

lie with respect to each other in each line. We note that non-rectified image planes would not enjoy

this linear interpolation property.

In the case where there are multiple planar surfaces in the scene, several projective transfor-

mations can be estimated to estimate the initial background correspondence. We discuss this issue

further in Section 7.3.

5.4.3 Step 3: Generating the Basic Correspondence Graph

Once we have estimates for the background and foreground correspondences, we can construct

a correspondence graph with the correct topology for each pair of conjugate epipolar lines, by

Southeasting the collection of foreground pieces with the background piece.

5.4.4 Step 4: Refining each Monotonic Piece

Since by construction, each piece of the correspondence graph is monotonic, a correspondence

algorithm that assumes monotonicity can be applied to each piece of the graph independently. If

the estimates for the segmentation and background correspondences are sufficiently accurate, the

refinement step may be constrained to select a matching path that lies in a nearby neighborhood of

the initial matching path. Any of the algorithms from Section 5.1 can be used for the refinement.

Chapter 5: Correspondence 97

5.5 Experimental Results

We now illustrate each of these steps in the estimation of the correspondence graph for a real image

pair, and exhibit that the estimation problems involved at each step can be solved accurately. We

will use the example image pair illustrated in Figure 5.14. These natural, outdoor images are from

widely separated cameras viewing a soccer game.

Figure 5.14: Original image pair (I0, I1).

The results of our hand-segmentation of the objects in(I0, I1) is illustrated in Figure 5.15. We

have segmented and matched three soccer players, the soccer ball, and the uprights of the soccer

goal. Segmentation this precise would be difficult to obtain with an automatic algorithm, especially

for the non-convex and transparent goalposts.

Figure 5.15: Image pair, with segmentation.

Chapter 5: Correspondence 98

Figure 5.16: Image pair, with point correspondences used for estimation.

The input to the fundamental matrix estimation algorithm for our example is the set of 19 point

correspondences illustrated in Figure 5.16. Of these, 12 lie on the plane of the soccer field (the

lighter dots), and 7 lie off this plane (the darker dots). All 19 correspondences were used for the

estimation ofF , which in this case was determined to be:

F̂ =


−4.3237× 10−8 2.3279× 10−6 3.2995× 10−5

−1.1623× 10−5 −9.8263× 10−6 −0.01411

4.3254× 10−4 0.01117 0.9156


Sample epipolar lines corresponding to this estimate are displayed in Figure 5.17. It can be seen

that the estimation is good, i.e. a point on an epipolar line in the left image has its match on the

corresponding epipolar line in the right image. We can quantify the accuracy by considering the

mean signed distance from each of the 19 points to its estimated epipolar line, which in this case is

0.3504, less than half a pixel width.

As discussed in Section 3.3, to implement algorithms on a computer, it is often convenient to

rectify the images so that conjugate epipolar lines and aligned and horizontal. We take this approach

here; Figure 5.18 illustrates the rectified soccer image pair. The estimated rectifying projective

transformations are:

G =


0.9995 0.0305 −0.0008

−0.0305 0.9995 0

0.0008 2.5797× 10−5 1



Chapter 5: Correspondence 99

Figure 5.17: Image pair, with sample epipolar lines.

H =


0.9999 −0.0119 −0.0002

−0.0030 1.2652 −82.1072

0.0002 −0.0008 1


The epipolar lines shown in Figure 5.17 are redisplayed, and are shown to be horizontal, which

means that the estimation is good. That is, the correspondences on one row in the left image can

be found on the same row in the right image. We can assess the quality of the rectifying pair by

computingH−TFG−1 and comparing it toF ∗. In this case,

‖H−TFG−1 − F ∗‖2 = 1.2829× 10−14

which is on the order of machine precision. Another measure of rectifier quality is to look at the

mean difference of they coordinates of the 19 rectified data points, which in this case is0.4181,

less than half a pixel width.

Now we are ready to proceed with the construction of the correspondence graph. The images

in this example are well-suited to the planar assumption discussed in Section 5.4.2. The 12 points

that lie on the soccer field (indicated by the lighter dots in Figure 5.16) are used for the estimation,

and the projective transformation that warps the plane of the soccer field inP0 to the plane inP1 is

estimated to be:

P =


0.6494 3.3081 −432.5712

0.0238 0.7897 59.0927

0.0007 0.0004 1

 (5.7)

Chapter 5: Correspondence 100

Figure 5.18: Rectified image pair, with sample epipolar lines.

Figure 5.19: Registration of planar surface in soccer images.

Figure 5.19 shows the result of warpingP0 byP to produce a new imagẽP0, and overlaying this

new image ontoP1. Only the region ofP̃0 containing the soccer field is displayed; of course, points

that lie off of the planar surface (e.g. the soccer players) are distorted and registered incorrectly.

However, by comparing the continuity of the images across the thick lines delimitingP̃0, we can see

that the registration of the planar surface is accurate. The mean error in the projective transformation

fit to the 12 data points is0.9731, less than one pixel width.

At this point the foreground objects can be Southeasted against the background to create the

Chapter 5: Correspondence 101

basic topology of the correspondence graph for each conjugate epipolar line pair.

450 500 550 600 650
400

420

440

460

480

500

520

540

560

580

600

Epipolar line, left image

Frame 415, time update, line pair 71

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

Figure 5.20: Correspondence graph (basic topology), line 71, enhanced to show the
Southeasting operation. The thin lines are the goalposts; the thicker line is the goalie.

Figures 5.20-5.22 show the result for the three pairs of epipolar lines in Figure 5.17. The South-

easting operation is shown graphically by the “shadows” in the figures; the correspondence graph

itself is comprised by the solid line segments that are unshadowed. The dashed lines indicate re-

gions visible inI0 but not inI1 because they are occluded or lie outside the field of view. The

dotted lines indicate similar regions visible inI1 but not inI0. Figure 5.20 indicates the kind of

complexity that can occur in real correspondence. This is the epipolar line pair that cuts across the

two goalposts and the goalie. In one image, the goalie stands between the goalposts; in the other he

stands completely to one side. We can see that correspondence along this epipolar line pair is decid-

edly non-monotonic. The Southeast correspondence graph gives a physically consistent estimate of

which regions in the line pair can correspond.

Figures 5.23-5.25 show the results of refining the monotonic pieces of each correspondence

graphs of Figures 5.20-5.22. In our experiments we use the Ohta and Kanade algorithm on each

monotonic piece of the correspondence graph. We can assume there are no occlusions, by construc-

tion of the correspondence graph. Here, we searched for the lowest-cost matching path that lies

Chapter 5: Correspondence 102

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, time update, line pair 105

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

Figure 5.21: Correspondence graph (basic topology), line 105.

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, time update, line pair 120

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

Figure 5.22: Correspondence graph (basic topology), line 120.

Chapter 5: Correspondence 103

450 500 550 600 650
400

420

440

460

480

500

520

540

560

580

600

Epipolar line, left image

Frame 415, measurement update, line pair 71

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

Figure 5.23: Correspondence graph (refined), line 71.

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, measurement update, line pair 105

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

Figure 5.24: Correspondence graph (refined), line 105.

Chapter 5: Correspondence 104

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, measurement update, line pair 120

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

Figure 5.25: Correspondence graph (refined), line 120.

within 8 pixels of the basic correspondence graph.

We can see that correspondence on both the background and foreground objects is refined by

the procedure, but that by construction, the topology of the refined correspondence graphs is the

same as that of the basic correspondence graphs. The quality of the refined correspondence can be

appreciated visually in Figures 6.4-6.6 from Chapter 6.

5.6 Conclusions

By ensuring that an estimated correspondence produces a valid (i.e. Southeast) correspondence

graph, we are explicitly prevented from attempting to match pixels from regions that do not appear

in both images, a pitfall of many correspondence algorithms.

However, the pieces of the graph removed by Southeasting need not be discarded. The lighter

segments in Figures 5.23-5.25 can also be used to estimate the correct locations of regions not seen

in both images. For example, given an object inI1, we can estimate which piece ofI0 it occludes,

simply by linearly interpolating between edges of correspondence graph pieces. We shall see an

application to filling in “holes” in correspondence in Section 6.2.

Chapter 5: Correspondence 105

The issue of obtaining good rectified images has not yet been satisfactorily solved. Seitz’s

method, which we currently use, can sometimes produce rectified images that are extremely warped,

as in Figure 5.26. It is desirable to solve the problem of finding a pair of rectifying projective

transformations that minimizes the distortion of the warped images for a given fundamental matrix

estimate. Of course, rectification is just a computational convenience, and a good implementation

should avoid unnecessary resampling of images and operate as much as possible on unsampled

image data.

Figure 5.26: An unsatisfactory pair of rectified images.

Exploring the relationship of correspondences in more than two images is a natural extension of

this research, and much work in this regard has already been done by Faugeras [22, 23] and Shashua

[24, 25]. We have shown that even in the case when the camera centers are colinear, for three

conjugate epipolar lines parametrized by(i, j, k), there is no operation analogous to Southeasting

in (i, j, k)-space by which points in a setS′ are removed along paths that are independent of the

starting point. There are some simplifications when the focal lengths are all the same, but in general,

Chapter 5: Correspondence 106

it seems that a different approach may be required for higher dimensions.

5.7 References

[1] O.D. Faugeras.Three-Dimensional Computer Vision: A Geometric Viewpoint.MIT Press,

1993.

[2] R. Radke, V. Zagorodnov, S. Kulkarni and P. Ramadge. Estimating Correspondence in Digital

Video. InProc. ITCC 2001, Las Vegas, Nevada, April 2001.

[3] M. Puterman.Markov Decision Processes : Discrete Stochastic Dynamic Programming. John

Wiley and Sons, 1994.

[4] I.J. Cox, S.L. Hingorani, and S.B. Rao. A Maximum Likelihood Stereo Algorithm.Computer

Vision and Image Understanding, Vol. 63, No. 3, pp. 542–567, May 1996.

[5] Y. Ohta and T. Kanade. Stereo by Intra- and Inter-Scanline Search Using Dynamic Program-

ming. IEEE PAMI, Vol. 7, No. 2, pp. 139–154, March 1985.

[6] P.N. Belhumeur. A Bayesian Approach to Binocular Stereopsis.International Journal of

Computer Vision, Vol. 19, No. 3, pp 237–260, 1996.

[7] H. Ishikawa and D. Geiger. Occlusions, Discontinuities, and Epipolar Lines in Stereo. InProc.

ECCV ’98, Freiburg, Germany, 1998.

[8] C. Tomasi and R. Manduchi. Stereo Matching as a Nearest-Neighbor Problem.IEEE PAMI,

Vol. 20, No. 3, pp. 333–340, March 1998.

[9] R. Radke, P. Ramadge, S. Kulkarni, T. Echigo and S. Iisaku. Recursive Propagation of Corre-

spondences with Applications to the Creation of Virtual Video. InProc. ICIP 2000, Vancouver,

Canada, September 2000.

[10] D. Sankoff and J. Kruskal, eds.Time Warps, String Edits, and Macromolecules: The Theory

and Practice of Sequence Comparison.Addison-Wesley, 1983.

Chapter 5: Correspondence 107

[11] N. R. Pal and S. K. Pal. A Review on Image Segmentation Techniques.Pattern Recognition,

vol. 26, pp. 1277–1294, 1993.

[12] M.G. Strintzis and S. Malassiotis. Object-Based Coding of Stereoscopic and 3-D Image Se-

quences.IEEE Signal Processing Magazine, vol. 16, no. 3, pp. 14–28, May 1999.

[13] N. Diehl. Object-Oriented Motion Estimation and Segmentation in Image Sequences.Signal

Processing, Image Communication, vol. 3, pp. 23–56, February 1991.

[14] M. Hoetter and R. Thoma. Image Segmentation Based on Object Oriented Mapping Parameter

Estimation.Signal Processing, vol. 15, no. 3, pp. 315–334, October 1988.

[15] S. Ayer and H.S. Sawhney. Layered Representation of Motion Video using Robust Maximum-

Likelihood Estimation of Mixture Models and MDL Encoding. InProc. ICCV ’95, June 1995.

[16] H. Zheng and S.D. Blostein. Motion-Based Object Segmentation and Estimation Using the

MDL Principle. IEEE Trans. on Image Processing, vol. 4, no. 9, pp. 1223–1235, 1995.

[17] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models.International

Journal of Computer Vision, vol. 1, pp. 321–331, 1988.

[18] C. Xu and J.L. Prince. Snakes, Shapes, and Gradient Vector Flow.IEEE Transactions on

Image Processing, vol. 7, no. 3, pp. 359–369, March 1998.

[19] A. Tsai, A. Yezzi, Jr., and A.S. Willsky. Curve Evolution, Boundary-Value Stochastic Pro-

cesses, the Mumford-Shah Problem, and Missing Data Applications. InProc. ICIP 2000,

Vancouver, Canada, September 2000.

[20] M. Isard and A. Blake. CONDENSATION – Conditional Density Propagation for Visual

Tracking. International Journal of Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

[21] J. MacCormick and A. Blake. A Probabilistic Exclusion Principle for Tracking Multiple Ob-

jects. International Journal of Computer Vision, vol. 39, no. 1, pp. 57–71, 2000.

[22] O.D. Faugeras and B. Mourrain. On the Geometry and Algebra of the Point and Line Corre-

spondences BetweenN Images.Proc. ICCV ’95, pp. 951–956, June 1995.

Chapter 5: Correspondence 108

[23] O.D. Faugeras. What Can be Seen in Three Dimensions With an Uncalibrated Stereo Rig?

Proc. ECCV ’92, pp. 563–578, May 1992.

[24] A. Shashua. Trilinear Tensor: The Fundamental Construct of Multiple-view Geometry and

its Applications. InInternational Workshop on Algebraic Frames For The Perception Action

Cycle (AFPAC), Kiel, Germany, 1997.

[25] A. Shashua and M. Werman. On the Trilinear Tensor of Three Perspective Views and its

Underlying Geometry. InProc. ICCV ’95, June 1995.

Chapter 6

Virtual Video

The past six years have witnessed an explosion of techniques for generating what can be termed

“virtual views”. Given a set of images of the same scene at the same time taken by different cameras,

the virtual view problem is to synthesize an image from the viewpoint of a camera not in the original

set. The problem can be generalized to that of synthesizing video from the viewpoint of a moving

camera, given a set of real video sequences.

Virtual video has made its way into the public eye thanks to commercials (e.g. The Gap’s

“Khakis Swing” commercial), movies (e.g. The Matrix), and televised sporting events (e.g. Super-

bowl XXXV). The typical effect is of a camera navigating through a frozen or slowed-down scene.

Such effects are created using a highly specialized camera rig with tens or hundreds of cameras

positioned along the desired camera path. Each “virtual image” is either a real image from one

of the closely spaced cameras, or is interpolated from an adjacent pair of real images using small-

baseline algorithms. These techniques can be categorized as hardware solutions to the virtual video

problem. Related techniques from computer graphics include the light field [1] and lumigraph [2],

which require hundreds or thousands of images, huge amounts of storage, and copious processing

time to synthesize new views of a scene.

Our interest is in synthesizing physically correct virtual images, that is, images that are created

with well-founded geometric principles instead of ad-hoc techniques. Furthermore, we would like

to synthesize virtual images in situations where strong calibration (knowledge of 3-D location and

orientation) of the source cameras is unavailable, and many cameras are not required. In this chapter,

we will confine our attention to the case when images from exactly two source cameras are available.

109

Chapter 6: Virtual Video 110

Other researchers (e.g. Laveau and Faugeras [3] and Avidan and Shashua [4]) have discussed using

images from more than two cameras to create virtual still images. A recent paper by Ma et. al [5]

characterizes the set of physically correct virtual images that can be obtained from a finite number

of real images. In the case of video, however, it can be quite difficult to obtain two synchronized

video sequences of the same scene, much less three or more.

We begin in Section 6.1 by reviewing view morphing, a general method for synthesizing an

intermediate virtual image whose optical center lies on the line through the optical centers of the

two source cameras. We will illustrate our examples in the text using the view morphing algo-

rithm exclusively. There are many other approaches to image-based view synthesis in the computer

graphics literature (e.g. McMillan and Bishop [6]). However, virtual view synthesis algorithms

share the trait that they depend fundamentally on estimating a dense correspondence between the

source image planes.

We demonstrate in Section 6.2 how the estimate of a set of correspondence graphs between a

wide-baseline image pair can be used to generate compelling virtual images of a scene. Unlike many

view synthesis results that incorporate correspondence algorithms using a monotonicity assumption,

we are able to display a much richer class of virtual images here.

Next we address the virtual video problem. Aside from the hardware solutions discussed above,

the only other type of virtual video we know of prior to this work was created by moving a virtual

camera through a static scene, so that objects seem to be frozen in time. In contrast, here we create

true virtual video from a pair of source video sequences, in the sense that the virtual video evolves

dynamically along with the scene.

One näıve solution to the virtual video problem is to treat it as an independent sequence of virtual

view problems over the length of the source videos. However, this approach is prohibitively time-

consuming, since estimating dense correspondence between an image pair, especially a widely-

spaced one, generally requires human intervention. More importantly, the independent problems

do not exploit the temporal regularity of the input video. That is, assuming that the motion of the

cameras and scene objects is small, we expect that the correspondence required to synthesize virtual

images at adjacent frames is similar.

In Section 6.3 we present the main contribution of the chapter, a framework for the recursive

Chapter 6: Virtual Video 111

propagation of correspondences between frames of two video sequences. The propagation consists

of a time update step and a measurement update step. The time update depends only on the dy-

namics of the source cameras, while the measurement update can be tailored to any member of a

general class of image correspondence algorithms. Using these results, the correspondence estimate

relating each frame pair can be propagated and updated in a fraction of the time required to estimate

correspondences anew at every frame. While virtual video is our motivating application, the recur-

sive correspondence propagation framework applies to any two-camera video application in which

correspondence is difficult and prohibitively time-consuming to estimate by processing frame pairs

independently.

We demonstrate our experimental results on real test video from a natural outdoor scene in

Section 6.4. The scene is complex, with many moving objects, yet the synthetic virtual video looks

realistic and conveys a convincing 3-D effect. The user need only provide a small set of point

matches in the first frame pair, and an algorithm to segment and track moving objects in the scene.

A shorter version of this work originally appeared in [7].

6.1 Review of View Morphing

6.1.1 View Interpolation

The first result we present is called view interpolation. We consider the camera configuration of

Figure 6.1, in which the two image planesP0 andP1 are parallel to each other and to the baseline.

Without loss of generality, we can fixO0 = (0, 0, 0) andO1 = (1, 0, 0), and takeR0 andR1 to

be the identityI. The camera matricesΠ0 andΠ1 are then given by:

Π0 =


f0 0 0 0

0 f0 0 0

0 0 1 0



Chapter 6: Virtual Video 112

O0

Os

O1

f0

f1

fs

P

w0

ws

w1

P 0

P s

P 1

Figure 6.1: View interpolation.

Π1 =


f1 0 0 −f1

0 f1 0 0

0 0 1 0


If we consider a correspondence1 (w0, w1) ∈ P0×P1 induced by a scene pointP = (X,Y, Z),

then Chen and Williams [8] noted that

(1− s)

 w0

1

+ s

 w1

1

 = (1− s) 1
Z

Π0

 P

1

+ s
1
Z

Π1

 P

1



=
1
Z


(1− s)f0 + sf1 0 0 −sf1

0 (1− s)f0 + sf1 0 0

0 0 1 0


 P

1



=
1
Z

Πs

 P

1

 (6.1)

1Here we have made a slight shift in notation, from the(w,w′) that we used in the previous chapters to(w0, w1).
The reason is that we are now viewingC0 andC1 as the endpoints of a “line segment” of cameras parametrized by the
subscript.

Chapter 6: Virtual Video 113

Whens ∈ [0, 1], the matrixΠs corresponds to a cameraCs with

Os =
(

sf1

(1− s)f0 + sf1
, 0, 0

)
(6.2)

fs = (1− s)f0 + sf1 (6.3)

Rs = I (6.4)

Then ifws is the projection ofP by Cs, ws

1

 = (1− s)

 w0

1

+ s

 w1

1


so we have

ws = (1− s)w0 + sw1 (6.5)

Hence, interpolating the image coordinates of the projections ofP is the same as projectingP

onto the image plane of an interpolated (in the sense of (6.2)-(6.4)) camera. The fact that the origin

of the camera is a nonlinear function ofs is slightly disagreeable, but we shall generalize the view

interpolation result considerably in the next section.

The basic and important result (6.5) shows that a new projection of the scene can be obtained

without knowledge of the three-dimensional locations of cameras or scene points. Provided that

given any pointw0 ∈ P0, its correspondencew1 ∈ P1 can be estimated, the correspondence

ws ∈ Ps can be computed through (6.5). Algorithms for estimating correspondence at a very fine

level between an image pair have been extensively studied (see Section 3.5 and Chapter 5), and

as a result, compelling and physically “correct” intermediate images of a scene can be synthesized

without any three-dimensional modeling. Chen and Williams called this result view interpolation.

Incidentally, the matrixΠs of (6.1) represents a physical camera providedfs > 0. When

f0 ≥ f1, as sketched in Figure 6.1, this means that the view interpolation formulas represent a

physical camera whenevers ≤ f0

f0−f1
. That is, the projection onto any image plane “beyond”P0

(i.e. s < 0) and some image planes “beyond”P1 (i.e. s ∈
(

1, 1 + f1

f0−f1

)
) can be extrapolated. In

particular, iff0 = f1, then the projection onto anyPs can be computed.

Chapter 6: Virtual Video 114

6.1.2 View Morphing

Here we show how the view interpolation result can be extended to a more general class of virtual

images.

O0

Os

O1

P

G

H

P 0 P s

P 1

P 0

P s

P 1

w0

ws

w1
K

Figure 6.2: View morphing.

As we reviewed in Section 3.3, when the epipolar geometry is known between an image plane

pair (P0,P1), there are several methods for selecting a pair of rectifying projective transformations

(G,H). The transformationsG andH represent underlying rotations of the camerasC0 andC1 to

new cameras̄C0 andC̄1 that have the same optical centers. The corresponding image planesP0 and

P1 are rotated to new image planesP̄0 andP̄1. such that after rectification,̄P0 andP̄1 are parallel

to each other and to the camera baseline, with their epipolar lines aligned and coincident with lines

of constanty. Since this is precisely the configuration for view interpolation discussed above, a new

view can be synthesized from the perspective of a cameraC̄s whose originOs lies at thes-way point

betweenO0 andO1, and whose image planēPs is parallel toP̄0 andP̄1.

The image planePs of an arbitrary cameraCs with origin Os can be obtained from̄Ps by

application of an appropriate projective transformationK that effectively rotates the image plane

from P̄s to Ps. Then if (w0, ws, w1) are the projections of a scene pointP onto the image planes

Chapter 6: Virtual Video 115

(P0,Ps,P1), we have the central equation

ws = K−1((1− s)G(w0) + sH(w1)) (6.6)

This result, illustrated in Figure 6.2, was first obtained by Seitz and Dyer [9], who called the

process view morphing.

Since the focal lengths of the camerasC̄0 andC̄1 are equal by construction, the view interpolation

equation (6.5) is valid for any value ofs. Hence, we can use (6.6) to construct the projection onto

the image plane of any camera whose optical center lies on the line throughO0 andO1, not just

cameras withs ∈ [0, 1]. This was not mentioned in Seitz’s original work, though the extrapolation

property was recognized by others, e.g. Scharstein [10].

6.2 Experimental Results: Virtual Images from Wide-Baseline Stills

We now return to the pair of test images illustrated in Figure 6.3, which is the same example from

Chapter 5. In Section 5.5, we estimated the correspondence graph for each pair of conjugate epipolar

lines using our proposed algorithm, and thus we possess a dense correspondence between the image

planesP0 andP1. This is all we need to create virtual views of the same scene.

Figure 6.3: Original image pair (I0, I1).

The view morphing equation (6.6) is a statement only about the positions of corresponding

points in the image planes, not about their colors. Here we proceed from the Lambertian assumption

that scene points have the same color regardless of the viewing angle, and that the color of an image

Chapter 6: Virtual Video 116

point is the same as the color of a single corresponding scene point. To compensate for deviations

from these assumptions in real images, we will color points in the virtual images by a weighted

average:

Is(ws) = (1− s)I0(w0) + sI1(w1) (6.7)

We use the choice of rectifying projective transformations suggested by Seitz [9] and detailed

in Section 3.3. In the examples of this chapter, we will fix the postwarping transformationK to be

the identity. However, one of our main interests in Chapter 7 will be the estimation of a projective

transformation that aligns a virtual image with a real image as well as possible.

(a) (b)

Figure 6.4: Synthesized virtual image Îs at s = 0.5. (a) no filling of occluded regions.
(b) filling of occluded regions by planar assumption.

For each pair of conjugate epipolar lines (corresponding to rows of the rectified images) we

estimated the correspondence graph, as described in Section 5.4 and illustrated in Figures 5.23-

5.25. Each scene point that is visible in both images is rendered on the virtual image plane using the

view morphing equations (6.6) and (6.7) withs = 0.5. Pixels are rendered in the order of decreasing

disparity, that is, back to front. The result is illustrated in Figure 6.4a. While the rendered pixels

appear realistic, the eye is drawn to two striking artifacts:

1. The black regions in the image plane that correspond to pixels visible in only one of the images

(I0, I1). For example, each soccer player has two “shadows” corresponding to the piece of the

soccer field that was occluded from each perspective.

Chapter 6: Virtual Video 117

2. The limited extent of the virtual image compared to the originals. This is caused by the relatively

small region visible in both image planes.

In this example, we can alleviate both of the above problems by supposing that the background

is a planar surface.2 Consider a scene pointP that is visible inI0 atw0 but is not visible inI1. We

compute an estimatẽw1 that is the image ofw0 under the projective transformation induced by the

planar surface. Then(w0, w̃1) can be treated as a correspondence, and the projectionws of P in Ps

can be estimated as

ws = (1− s)G(w0) + sH(w̃1)

However, in this case we should only use the color of the point in the image where it is visible,

that is,

Is(ws) = I0(w0)

We take a similar tactic for points that are visible inI1 but not inI0. Of course, there may be

regions that are visible in neither image due to occlusions by multiple objects. A correspondence

estimate(w̃0, w̃1) can be obtained for such a point from the planar assumption, but there is no color

information for this point. In this case, we can interpolate the colors from either side of the missing

piece, or use a default color. We note that the correspondences of occluded points induced by the

planar assumption are displayed as dotted and dashed lines in Figures 5.23-5.25.

The result of filling in occluded regions by the planar assumption is illustrated in Figure 6.4b.

Since the planar assumption is valid over many occluded pixels, the virtual image is much more

realistic. Distortion is visible in several regions where the planar assumption is invalid, such as the

stands in the upper left corner, and the soccer players at the upper right. However, the virtual image

is a convincing rendition of the scene from a viewpoint that is halfway between the unknown optical

centers of the original cameras. Interpolated views withs = 0.25 ands = 0.75 are illustrated in

Figure 6.5, and extrapolated views withs = −0.5 ands = 1.5 are illustrated in Figure 6.6.

We emphasize that the realism of the virtual images is due to the complicated but physically

correct correspondence encapsulated by the set of correspondence graphs. The original work by

Seitz applied Beier-Neely morphing [11] or an epipolar-line-based correspondence algorithm [12]
2Recall that we introduced this assumption in Section 5.4.2 in order to construct the basic correspondence graphs.

Chapter 6: Virtual Video 118

(a) (b)

Figure 6.5: Interpolated virtual images Îs at (a) s = 0.25, (b) s = 0.75.

(a) (b)

Figure 6.6: Extrapolated virtual images Îs at (a) s = −0.5, (b) s = 1.5.

Chapter 6: Virtual Video 119

to obtain a dense correspondence between a pair of images. However, these techniques make the

monotonicity assumption, which is clearly violated in this data set. Using correspondence graphs

allows us to obtain a much richer set of virtual images than was previously demonstrated. We can

see arrangements of objects in the virtual images (e.g. the position of the goalie with respect to the

goalposts in Figure 6.5b) that never occurred in the original frames.

6.3 Virtual Video

In this section we present the main contribution of the chapter, a framework for the recursive prop-

agation of correspondences between frames of two video sequences. Our motivating application is

the efficient and accurate synthesis of virtual video, which will be demonstrated in the next section.

6.3.1 Notation

We consider a pair of rotating cameras,C0 andC1, taking images of a dynamic scene. The image

taken byCk at timei for i = 0, 1, 2, . . . is defined byIk(i), which lies on a coordinatized image

planePk(i). Our goal is to synthesize the virtual image sequence{Is(i), i = 0, 1, 2, . . .} of the

scene from the perspective of a moving virtual cameraCs.

We assume the cameras’ centers of projection are not coincident, so that every pair of image

planesP0(i) andP1(i) is related by a fundamental matrixF (i). We also assume each camera’s

center of projection to be constant. Hence, the plane coordinates ofPk(i − 1) andPk(i) are re-

lated by a projective transformation, denoted byP (i) andQ(i) for k = 0, 1 respectively. These

assumptions are reasonable in many domains of application such as sports video, where multiple

cameras mounted on tripods simultaneously view a scene. The cameras can rotate and zoom, but

the translational motion of the tripods is small with respect to the distance to the scene points.

As discussed in Chapter 5, we facilitate the estimation of correspondence along conjugate epipo-

lar lines by rectifying the input image planes. The rectifying projective transformations chosen at

time i are denoted asG(i) andH(i), which when applied to the image planesP0(i) andP1(i) pro-

duce image planes̄P0(i) andP̄1(i) respectively. The various relationships between image planes

are illustrated in Figure 6.7.

Chapter 6: Virtual Video 120

Video
Sequence 0

Video
Sequence 1

P (i)0

P (i+1)0

P (i)1

P (i+1)1

P (i)0 P (i)1

P (i+1)0 P (i+1)1
F(i+1)

Q(i+1)

G(i) H(i)

G(i+1) H(i+1)

P(i+1)

F(i)

Figure 6.7: Relationships between image planes.

To ease the notation in this section, we will defineχ∗(i) as the (true) correspondence between

the image pairP0(i) andP1(i). To make this more formal, let the set of conjugate epipolar line

pairs betweenP0(i) andP1(i) be parametrized by the real numberβ in an intervalIi ⊂ R. The

intervalIi is finite due to the finite extent of the image planes. Asβ ranges overIi, it induces the

family of conjugate epipolar linesL(i) = {(`β0 (i), `β1 (i)), β ∈ Ii}. Let X(i) be the space of all

possible correspondence graphs for the familyL(i). Making use of Proposition 5.4 from Chapter

5, χ ∈ X(i) if and only if χ = {Aβ , β ∈ Ii}, where eachAβ is a Southeast set for(`β0 (i), `β1 (i))

satisfying the bounds (5.3)–(5.6). Clearly the true correspondenceχ∗(i) is an element of the space

X.

In order to quantify how close two estimates of correspondence are, we will define a metricdXi

on the spaceXi. We will use as a subcomponent the Hausdorff metricdH induced by a metricd

onR2. LetH be the collection of all nonempty, compact (in the sense ofd) subsets ofR2. The

Hausdorff metric onH is defined as follows:

dH(A,B) = inf{δ | A ⊂ B(δ) and B ⊂ A(δ)}

whereA,B ∈ H andA(δ) is the dilation operator defined in terms ofd by

A(δ) = {x ∈ R2| inf
y∈A

d(x, y) < δ}

Then we can define the metricdXi by

dXi(χ, χ
′) = sup

β
dH(Aβ, A′β)

Chapter 6: Virtual Video 121

whereχ = {Aβ, β ∈ Ii} andχ′ = {A′β, β ∈ Ii}. We can think ofdXi as measuring theL∞ distance

between two estimates of correspondence. In this section, we will assume all correspondence graphs

are closed sets.

Our goal is to efficiently obtain an estimate ofχ∗(i) at every time step. In the next three sections

we discuss our proposed algorithm in detail. In Section 6.3.5 we provide analysis to bound the

accuracy of our estimates using the metric onXi defined above.

6.3.2 Recursive Propagation

Let χ̃(i) be an estimate ofχ∗(i) obtained by the application of a correspondence algorithmCi. We

assume that the application of the operatorCi is a time-consuming task, either because a lengthy

search process or human intervention is required.

We wish to more efficiently estimateχ∗(i) at each time. We do so by exploiting the temporal

regularity of the video, estimating the effect of camera motion, and using a computationally simpler

approximation ofCi. Namely, letχ̂(i | j) be an approximation of̃χ(i) based on information from

time j. χ̂(i | j) defined by:

χ̂(0 | 0) = χ̃(0)

χ̂(i+ 1 | i) = T i+1(χ̂(i | i))

χ̂(i+ 1 | i+ 1) = M i+1(χ̂(i+ 1 | i))

Here,T i+1 is a time update operator that propagates the correspondence estimate from timei to

i + 1, andM i+1 is a measurement update operator that refines the estimate using new information

that has become available at timei + 1. The time-dependency of the update operators arises from

their dependency on the imagesI0(i+ 1) andI1(i+ 1).

To make this algorithm more concrete, we now discuss the operatorsT i andM i in more detail.

Chapter 6: Virtual Video 122

6.3.3 Time Update

Given complete knowledge of the camera motion of Figure 6.7, the new position at timei + 1 of a

point match(w0(i), w1(i)) ∈ P0(i)× P1(i) is

(w0(i+ 1), w1(i+ 1)) = (P (i+ 1)w0(i), Q(i+ 1)w1(i))

That is, if the only difference between the frames at timesi andi + 1 is due to motion of the

cameras, the coordinates ofPk(i) andPk(i + 1), k = 0, 1, are globally related by a projective

transformation.

The time update for rectified image planes can be expressed in a particularly simple form. Sup-

pose(G(i),H(i)) rectify (P0(i),P1(i)), such thatH(i)−TF (i)G(i)−1 = F ∗. We would like to

choose a pair of projective transformations(G(i+ 1),H(i+ 1)) that rectify(P0(i+ 1),P1(i+ 1)).

Such a pair is given by the following lemma:

Lemma 6.1: (G(i)P (i+ 1)−1,H(i)Q(i+ 1)−1) is a rectifying pair for(P0(i+ 1),P1(i+ 1)).

Proof. It is easily proven that the fundamental matrixF (i + 1) relating(P0(i + 1),P1(i + 1))

is given by

F (i+ 1) = Q(i+ 1)−TF (i)P (i+ 1)−1

Since

(H(i)Q(i+ 1)−1)−TF (i+ 1)(G(i)P (i+ 1)−1)−1 = H(i)−TF (i)G(i)−1 = F ∗

we conclude that(G(i)P (i+ 1)−1,H(i)Q(i+ 1)−1) is a rectifying pair.

Therefore, we fix

G(i+ 1) = G(i)P (i+ 1)−1 (6.8)

H(i+ 1) = H(i)Q(i+ 1)−1 (6.9)

Using this special rectifying pair, a point match(w̄0(i), w̄1(i)) from the rectified images̄P0(i)×

P̄1(i) is propagated to the rectified imagesP̄0(i+ 1)× P̄1(i+ 1) by

(w̄0(i+ 1), w̄1(i+ 1)) = (G(i+ 1)P (i+ 1)G(i)−1w̄0(i),H(i+ 1)Q(i+ 1)H(i)−1w̄1(i))

= (w̄0(i), w̄1(i))

Chapter 6: Virtual Video 123

That is, the propagating transformation is simply the identity. Given that we use the rectifying

pair in (6.8)-(6.9), this leads us to define the time update operatorT i+1 that operates on a corre-

spondence estimateχ = {Aβ , β ∈ Ii} to simply be

T i+1(χ) = χ

This is well-defined since the coordinates ofIi andIi+1 agree by construction of the rectifying

projective transformations. For the same reason, we can drop the subscript from the metricdXi

since the epipolar lines agree, and refer simply todX .

Of course, the various projective transformations are generally estimated using a regression

algorithm as described in Chapter 4, so in practice we use an approximationT̂ i+1 of T i+1 given by

T̂ i+1(χ) = χ

where the estimated rectifying projective transformations(Ĝ(i+ 1), Ĥ(i+ 1)) are compositions of

other estimates given by

(Ĝ(i+ 1), Ĥ(i+ 1)) = (Ĝ(i)P̂ (i+ 1)−1, Ĥ(i)Q̂(i+ 1)−1)

In Section 6.3.5 we will analyze the implications of this approximation.

Objects that move independently of the camera can be time-updated using a separate segmen-

tation and tracking algorithm if desired. We will discuss our implementation of time-updating in

practice in Section 6.4.

6.3.4 Measurement Update

Let Ci be the operator that takes as input an image pair(I0(i), I1(i)) and produces an estimate

χ̃(i) of the set of correspondence graphs for each pair of conjugate epipolar lines as described in

Section 5.4, Algorithm 5.1. This requires the estimation of the basic topology of the correspondence

graphs, followed by the solution of a set of monotonic matching problems over a series of series of

rectangular domains (see Figure 6.8). We denote this set of domains asDi.

However, at timesi > 0, we possess the set of time-updated correspondence graphs from time

i− 1, which we assume to be a good estimate of the set of correspondence graphs at timei. Hence,

Chapter 6: Virtual Video 124

epipolar line in I 0

ep
ip

ol
ar

 li
ne

 in
I

 1

starting
node

ending
node

Figure 6.8: The set Di of rectangular domains searched by the correspondence opera-
tor Ci given basic correspondence graph topology for one epipolar line pair.

we need not search over the set of all possible matching paths as we did at time 0. Instead, given an

estimate of correspondenceχ,we define the measurement update operatorM i(χ) to beCi restricted

to anε-ball aroundχ. This is illustrated in Figure 6.9 for one epipolar line pair. We denote this set

of domains asBi. Specifically, ifχ is the set of Southeast sets{Aβ , β ∈ Ii}, then

Bi = {A(ε)
βi
} ∩ Di (6.10)

RecallA(ε) is theε-dilation operator introduced in Section 6.3.1. We intersect theε-ball with Di

so that the output of the measurement update operatorM i(χ) is still a Southeast set with the same

topology and endpoints asχ.

By construction,Bi ⊂ Di, and ifε is small the area ofBi can be substantially smaller than the

area ofDi. Specifically, ifDi is the union ofK rectangles with dimensionsMk×Nk, k = 1, . . . ,K,

then the ratior of the area ofBi to the area ofDi is approximately

r =
K∑
k=1

2ε(Mk +Nk)− ε2

MkNk

Chapter 6: Virtual Video 125

epipolar line in I 0

ep
ip

ol
ar

 li
ne

 in
I

 1

starting
node

ending
node

time-updated
correspondence graph

measurement update
search neighborhood

measurement-updated
correspondence graph

Figure 6.9: Measurement update by searching a local neighborhood Bi around the time-
updated estimate.

if the dilation is based on theL1 norm, and

r =
K∑
k=1

2ε
√
M2
k +N2

k − ε
2M

2
k+N2

k
MkNk

MkNk

if the dilation is based on theL2 norm. In either case, ifε � Mk, Nk, r becomes quite small.

Thus, the measurement updateM i can be computed more efficiently than the full correspondence

operatorCi, since the computation required to solve the correspondence estimation problem over a

domain is proportional to the area of that domain.

6.3.5 Error Analysis

We use the recurrencêχ(i | i) = M iT̂ i(χ̂(i − 1 | i − 1)), whereT̂ i is an estimate of the true

T i induced by camera dynamics as in Section 6.3.3. We are interested in bounding the difference

between the output of the(T̂ ,M) algorithm and the true correspondenceχ∗(i). To this end, we

define the estimation error at each timei as:

εTM (i) = dX(χ∗(i), χ̂(i | i))

Chapter 6: Virtual Video 126

Then we can prove the following theorem on the dynamics ofεTM :

Theorem 6.1: Suppose there exist constantsα, γ, δ, andρ such that for alli,

dX(T i(χ), T̂ i(χ)) ≤ γ (6.11)

dX(T i(χ), T i(χ′)) ≤ α dX(χ, χ′) (6.12)

dX(χ∗(i+ 1), T i(χ∗(i))) ≤ δ (6.13)

dX(χ̃(i), χ∗(i)) ≤ ρ (6.14)

and that

M i(χ̃(i)) = χ̃(i) (6.15)

Let ε be the radius of the ball used in the measurement update (6.10). Then providedα < 1, the

(T̂ ,M) algorithm is stable in the sense that

lim sup εTM (i) ≤ ρ+
2ε+ 3γ + (α+ 1)ρ+ δ

1− α
(6.16)

First we prove a simple lemma:

Lemma 6.2: If ε is the radius of the ball used in the measurement update (6.10), then

dX(M i(χ),M i(χ′)) ≤ 2ε+ dX(χ, χ′)

Proof. First we show thatdX(χ,M i(χ)) is bounded. Letχ = {Aβ, β ∈ Ii}. Fix β and consider

a monotonic piecea of Aβ. By construction,M i(a) ⊂ a(ε) since the measurement-updated path

must lie within anε-ball of a. Conversely,a ⊂ M i(a)(ε). This can be seen from the diagram in

Figure 6.10. For any pointp on a, construct the ball of radiusε aboutp. Since the measurement-

updated path is continuous and has the same endpoints asa, it must pass through this ball, and hence

every pointp of a is contained in anε-ball about some point ofM i(a).

ThusdH(a,M i(a)) ≤ ε for every monotonic piece ofAβ and hencedH(Aβ ,M i(Aβ)) ≤ ε.

Therefore,dX(χ,M i(χ)) ≤ ε, and from the triangle inequality, it follows thatdX(M i(χ),M i(χ′)) ≤

2ε+ dX(χ, χ′), as desired.

Chapter 6: Virtual Video 127

ε

a

Mi(a)

p

Figure 6.10: Proof that a ⊂M i(a)(ε).

Proof of Theorem. First, we define an auxiliary estimation errorεD:

εD(i) = dX(χ̃(i), χ̂(i | i))

By repeated applications of the triangle inequality, it is straightforward to show that

dX(T̂ i(χ), T̂ i(χ′)) ≤ 2γ + αdX(χ, χ′)

dX(T i(χ̃(i− 1)), χ̃(i)) ≤ (α+ 1)ρ+ δ

We can compute an upper bound onεD(i):

εD(i) = dX(χ̃(i), χ̂(i | i))

= dX(M i(χ̃(i)),M i(χ̂(i | i− 1)))

≤ 2ε+ dX(χ̃(i), χ̂(i | i− 1))

= 2ε+ dX(χ̃(i), T̂ i(χ̂(i− 1 | i− 1)))

≤ 2ε+ dX(χ̃(i), T i(χ̃(i− 1))) +

dX(T i(χ̃(i− 1)), T̂ i(χ̃(i− 1))) + dX(T̂ i(χ̃(i− 1)), T̂ i(χ̂(i− 1 | i− 1)))

≤ 2ε+ ((α+ 1)ρ+ δ) + (γ) + (2γ + αdX(χ̃(i− 1), χ̂(i− 1 | i− 1))

= 2ε+ 3γ + (α+ 1)ρ+ δ + αεD(i− 1)

Chapter 6: Virtual Video 128

Hence,

ε∞D ≡ lim sup εD(i)

≤ 2ε+ 3γ + (α+ 1)ρ+ δ

1− α

Finally, sinceεTM (i) = dX(χ∗(i), χ̂(i)) ≤ ρ+ εD(i), we have

ε∞TM ≡ lim sup εTM (i)

≤ ρ+ lim sup εD(i)

≤ ρ+
2ε+ 3γ + (α+ 1)ρ+ δ

1− α

which is the statement of the theorem.

The conditions of the theorem are not unusually stringent. We require that the outputχ̃(i) of Ci

is fixed byM i, which is the case whenM i is a restriction ofCi over a smaller domain. The constant

γ of (6.11) reflects the accuracy of the projective transformation estimation algorithm, which is a

function of the algorithm itself as well as the noise in the point matches. For well-chosen feature

extraction and transformation estimation algorithms,γ should be on the order of a few pixel widths.

The constantδ of (6.13) reflects scene dynamics that are not modeled by the rotation of the cameras,

and can be interpreted as the maximum distance objects can move after compensating for camera

motion. If the frames are closely spaced in time, this is again on the order of a few pixel widths. The

constantα of (6.12) is related to the relative distance two points can move apart after the application

of the projective transformation embedded inT i. Since the greatest relative expansion occurs at

one edge of the finite-extent image plane,α is related not only to the underlying rotation and zoom

parameters of the cameras between adjacent frames but also to the dimensions of the image plane.

The parameterε should be chosen proportional toα, δ, andγ. The smaller these parameters are, the

more accurate the time update is, and the narrower the search neighborhood needs to be.

By (6.16), the error in the recursive propagation algorithm is uniformly bounded for all time. In

particular, whenρ = 0, i.e. the operatorCi produces the true correspondenceχ∗(i), the error in

the(T̂ ,M) algorithm is bounded by a quantity that depends on the amount of object motion in the

scene, the error in the approximation ofT i by T̂ i, and the radius of the measurement update. As

these quantities decrease to zero, so does the asymptotic error of the(T̂ ,M) algorithm.

Chapter 6: Virtual Video 129

6.4 Experimental Results: Virtual Video from Wide-Baseline Video

Here we demonstrate the results of the recursive propagation framework in the context of creating

virtual video. Our test sequence is 43 frames long and constitutes a single event from a soccer game

(a player attempts to kick the ball and is tripped). The frames are340× 240 pixels, and come from

a high-quality digital video camera.

We make an implementational comment regarding the filling-in of occluded regions as the algo-

rithm progresses. In Section 6.1 we discussed how the planar assumption could be used to estimate

correspondence for points visible in only one image. While the planar assumption can be propagated

to subsequent frames by composing projective transformations, we can do better by time-updating

the correspondence for the entire background piece at each iteration, regardless of visibility. Parts

of this background piece that had been seen in previous frames have had their correspondence esti-

mated at prior steps, and may become visible again. Hence, our implementation of the time-update

is:

Algorithm 6.1: Practical time-update.

1. Estimate the projective transformationsP (i) andQ(i).

2. Rectify the image planes at timei+ 1 with the approximate rectifying pair

(Ĝ(i)P̂ (i+ 1)−1, Ĥ(i)Q̂(i+ 1)−1).

3. Initialize the background correspondence at timei+1 in the rectified images to be the same as the

background correspondence at timei, discounting any previous information about which regions

were occluded.

4. Track the foreground objects to their locations at timei+ 1.

5. Create a basic correspondence graph for each epipolar line pair by Southeasting the foreground

pieces onto the background piece. Retain correspondence estimates for the occluded regions to

use in rendering and in subsequent iterations.

The last three steps of the algorithm are illustrated schematically in Figure 6.11.

Chapter 6: Virtual Video 130

epipolar line in I 0

ep
ip

ol
ar

 li
ne

 in
I

 1

starting
node

ending
node

epipolar line in I 0

ep
ip

ol
ar

 li
ne

 in
I

 1

starting
node

ending
node

(a)

(b)

Figure 6.11: Filling in occluded regions in the time update. (a) The regions of the corre-
spondence graph from time i removed by Southeasting are retained. (b) At time i+1, the
entire background is reinitialized as a visible piece and the new object is Southeasted
onto it.

Chapter 6: Virtual Video 131

Our current implementation produces virtual video at about 20 frames per minute. The only

user intervention required is a sparse set of point correspondences in the initial frame pair (used to

estimate the fundamental matrix and the projective transformation relating the dominant plane in

the image pair), and segmentation and tracking information for moving objects in each frame (used

to construct correct correspondence graphs). In this example, to obtain the best possible results, this

information was obtained by hand.

The projective transformationsP (i) andQ(i) were estimated using the efficient algorithm de-

scribed in Chapter 4, using point matches extracted by the automatic feature selection algorithm

described in Section 3.4. The measurement update used an 8-pixel search neighborhood about the

time-updated estimate.

Figure 6.12-6.14 illustrate the results of the algorithm on conjugate epipolar lines 71, 105, and

120 for the first and second frames of video (labeled Frame 415 and Frame 417). The upper left

hand corner of each figure is the basic correspondence graph for Frame 415 induced by the planar

assumption and object segmentation. The upper right hand corner is the refined correspondence

graph for Frame 415 obtained by applying the measurement update operator to the basic correspon-

dence graph. The lower left hand corner is the correspondence graph for Frame 417 obtained by the

time update, and the lower right hand corner is the correspondence graph for Frame 417 obtained

by the measurement update.

The correspondence graphs all seem rather similar (which is the point of the algorithm). How-

ever, it can be seen clearly in Figure 6.13 that the background correspondence from Frame 415 is

time-updated to the same location in Frame 417 (note the “elbow” at the lower left end of the long

piece). This correspondence is refined by the measurement update (and the elbow disappears).

More compelling are the virtual video frames rendered using this correspondence. Six such

frames are illustrated in Figures 6.15-6.20. In each figure, the upper left and upper right images are

real images{I0(i), I1(i)} seen at timei, corresponding to locations along the baseline ofs = 0

ands = 1. The lower left image is a rendition of the scene from a stationary camera with optical

center fixed ats = 0.5. The lower right image is a rendition from a moving camera whose optical

center moves at constant speed froms = 0 to s = 1. The figures are selected to be spaced apart

along the baseline by roughlys5 . Over the course of the video clip, cameraC0 undergoes a slow pan

Chapter 6: Virtual Video 132

450 500 550 600 650
400

420

440

460

480

500

520

540

560

580

600

Epipolar line, left image

Frame 415, time update, line pair 71

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

450 500 550 600 650
400

420

440

460

480

500

520

540

560

580

600

Epipolar line, left image

Frame 415, measurement update, line pair 71

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

(a) (b)

450 500 550 600 650
400

420

440

460

480

500

520

540

560

580

600

Epipolar line, left image

Frame 417, time update, line pair 71

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

450 500 550 600 650
400

420

440

460

480

500

520

540

560

580

600

Epipolar line, left image

Frame 417, measurement update, line pair 71

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

(c) (d)

Figure 6.12: Correspondence graphs, line 71. (a) Frame 415 initialization. (b) Frame 415
measurement update. (c) Frame 417 time update. (d) Frame 417 measurement update.

Chapter 6: Virtual Video 133

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, time update, line pair 105

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, measurement update, line pair 105

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

(a) (b)

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 417, time update, line pair 105

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 417, measurement update, line pair 105

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

(c) (d)

Figure 6.13: Correspondence graphs, line 105. (a) Frame 415 initialization. (b) Frame
415 measurement update. (c) Frame 417 time update. (d) Frame 417 measurement
update.

Chapter 6: Virtual Video 134

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, time update, line pair 120

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 415, measurement update, line pair 120

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

(a) (b)

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 417, time update, line pair 120

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

450 500 550 600 650 700 750 800
300

350

400

450

500

550

600

Epipolar line, left image

Frame 417, measurement update, line pair 120

E
pi

po
la

r
lin

e,
 r

ig
ht

 im
ag

e

(c) (d)

Figure 6.14: Correspondence graphs, line 120. (a) Frame 415 initialization. (b) Frame
415 measurement update. (c) Frame 417 time update. (d) Frame 417 measurement
update.

Chapter 6: Virtual Video 135

to the right, while cameraC1 slowly zooms in. The virtual camera has dynamics observed in neither

of the source video clips.

Figure 6.15: Frame 415. Upper left, original C0 frame, s = 0. Upper right, original C1
frame, s = 1. Lower left, virtual Cs frame, s = 0.5. Lower right, virtual Cs frame, s = 0.

Unfortunately, it is difficult to convey the three-dimensional feeling of the rendered video from

these still images. However, as in the single-frame-pair example we presented in Section 6.2, each

of the virtual images is a convincing rendition of the dynamic from an intermediate viewpoint. We

emphasize that the effects exhibited here are similar to those produced by specialized multicamera

hardware. However, here we only require two uncalibrated cameras and no 3-D scene modeling.

These results show that understanding the relationship between image correspondence and camera

motion can be a powerful tool.

In later frames of the video, there are minor but visible artifacts. Notably, some of the play-

ers seem to “lose their heads”- the head of the player appears several pixels away from the correct

Chapter 6: Virtual Video 136

Figure 6.16: Frame 433. Upper left, original C0 frame, s = 0. Upper right, original C1
frame, s = 1. Lower left, virtual Cs frame, s = 0.5. Lower right, virtual Cs frame, s = 0.2143.

Chapter 6: Virtual Video 137

Figure 6.17: Frame 447. Upper left, original C0 frame, s = 0. Upper right, original C1
frame, s = 1. Lower left, virtual Cs frame, s = 0.5. Lower right, virtual Cs frame, s = 0.3810.

Chapter 6: Virtual Video 138

Figure 6.18: Frame 465. Upper left, original C0 frame, s = 0. Upper right, original C1
frame, s = 1. Lower left, virtual Cs frame, s = 0.5. Lower right, virtual Cs frame, s = 0.5952.

Chapter 6: Virtual Video 139

Figure 6.19: Frame 487. Upper left, original C0 frame, s = 0. Upper right, original C1
frame, s = 1. Lower left, virtual Cs frame, s = 0.5. Lower right, virtual Cs frame, s = 0.8571.

Chapter 6: Virtual Video 140

Figure 6.20: Frame 499. Upper left, original C0 frame, s = 0. Upper right, original C1
frame, s = 1. Lower left, virtual Cs frame, s = 0.5. Lower right, virtual Cs frame, s = 1.

Chapter 6: Virtual Video 141

location on top of the body. This is especially visible in Figure 6.19. This is largely due to the accu-

mulation of errors in the estimation of the projective transformationsP (i) andQ(i), which in turn

affect the accuracy of the estimated rectifying projective transformationsG(i) andH(i). Though

our projective transformation estimation algorithm is generally quite accurate, aftern iterations, the

projective transformationŝG(n) andĤ(n) applied toP0(n) andP1(n) are compositions ofn esti-

mated transformations. In this video sequence, whenn is more than about 25,(Ĝ(n), Ĥ(n)) are no

longer close to a rectifying pair. This problem could be alleviated by a periodic re-estimation of the

epipolar geometry. We address this issue briefly in the next section.

6.5 Conclusions

There are many directions for future work in the area of virtual video, both in improving the stability

of the estimation algorithm and in the rendering of the synthetic images.

As addressed in the text, the propagation process eventually destabilizes, due to accumulation

of errors in the estimation of the projective transformations. What is required is a reinitialization of

the epipolar geometry. However, since this estimation requires the selection and matching of fea-

ture points between images with a substantial perspective difference, user intervention is generally

required to obtain reliable results. Since some matching points are selected by the user for the first

frame pair, one approach is to track these points through each image sequence, using a measure of

feature similarity that is invariant to perspective distortion (e.g. based on corners). Periodically, the

algorithm could be restarted with a new estimate of the fundamental matrix and rectifying projective

transformations. Automatically detecting that restarting is necessary and maintaining continuity of

the rectifying transformations and virtual images across the restarted frame would be problems to

overcome.

The perceptual quality of the rendered images could be improved using techniques from com-

puter graphics. For example, given appropriate texture models, planar surfaces in the scene could be

rendered by texture mapping instead of interpolation of image intensities at each frame pair. How-

ever, a time-invariant texture-mapping method would perform poorly if the scene were undergoing

a steady change in illumination.

Chapter 6: Virtual Video 142

The accuracy of the object segmentation also affects the perceptual quality of the rendered

images. If an object is segmented too conservatively, pieces of the background will be erroneously

removed and rendered along with the object. On the other hand, if an object is segmented too

liberally, pieces of the object will be erroneously left behind on the background. On the whole,

conservative segmentation is preferable to liberal segmentation in cases where the background is

approximately uniform, as in our example.

We also note that the algorithm presented here depends crucially on the assumption thatP0(i)

andP1(i) are images of the same scene taken at exactly the same time. This type of synchronization

is common in broadcast video, especially sports video, where an editor needs to be able to switch

between different cameras with no noticeable discrepancies in timing. Obtaining synchronized

video from multiple cameras of a dynamic scene without professional equipment is difficult, and

the estimation of and compensation for synchronization offsets between multiple video sequences

would be an interesting research problem.

This work can be thought of interpolation of video frames in the spatial (camera) domain. How-

ever, once we have estimated the correspondence graph between frames of video, it can be used to

interpolate frames in the time domain as well. We develop this idea more in Chapter 7. One of the

difficult issues here is the correct interpolation of locations of objects that move independently of

the camera between frames. If a good solution is obtained, we can obtain virtual video at a higher

frame rate than the original video sequences.

As an aside, we mention that the virtual video described here has no audio component, and

one might naturally ask whether ideas from view interpolation apply to the problem of synthesizing

virtual audio. This is in fact the case, and in Appendix D we supply a derivation and implementation

of audio interpolation equations, for synthesizing the audio signal that would be received by a

microphone located between two real microphones.

6.6 References

[1] M. Levoy and P. Hanrahan. Light Field Rendering.Computer Graphics (SIGGRAPH ’96), pp.

31–42, August 1996.

Chapter 6: Virtual Video 143

[2] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M.F. Cohen. The Lumigraph.Computer Graphics

(SIGGRAPH ’96), pp. 43–54, August 1996.

[3] S. Laveau and O.D. Faugeras. 3-D Scene Representation as a Collection of Images and Fun-

damental Matrices. Technical Report 2205, INRIA-Sophia Antipolis, February 1994.

[4] S. Avidan and A. Shashua. Novel View Synthesis by Cascading Trilinear Tensors.IEEE

Transactions on Visualization and Computer Graphics, vol. 4, no. 4, October-December 1998.

[5] Y. Ma, S. Soatto, J. Kǒsecḱa, and S. Sastry. Euclidean Reconstruction and Reprojection up to

Subgroups.International Journal of Computer Vision, Vol. 38, No. 3, pp. 219–229, 2000.

[6] L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering System.Com-

puter Graphics (SIGGRAPH ’95), pp. 39–46, August 1995.

[7] R. Radke, P. Ramadge, S. Kulkarni, T. Echigo, and S. Iisaku. Recursive Propagation of Corre-

spondences with Applications to the Creation of Virtual Video. InProc. ICIP 2000, Vancouver,

Canada, September 2000.

[8] S.E. Chen and L. Williams. View Interpolation for Image Synthesis.Computer Graphics

(SIGGRAPH ’93), pp. 279–288, July 1993.

[9] S.M. Seitz and C.R. Dyer. View Morphing.Computer Graphics (SIGGRAPH ’96), pp. 21–30,

August 1996.

[10] D. Scharstein. Stereo Vision for View Synthesis.Proc. CVPR ’96, pp. 852–858, 1996.

[11] T. Beier and S. Neely. Feature-Based Image Metamorphosis.Computer Graphics (SIGGRAPH

’92), pp. 35–42, July 1992.

[12] Y. Ohta and T. Kanade. Stereo by Intra- and Inter-Scanline Search Using Dynamic Program-

ming. IEEE PAMI, Vol. 7, No. 2, pp. 139–154, March 1985.

Chapter 7

View Morphing for Time-Domain

Interpolation of Low-Bit-Rate Video

In the previous chapter, we discussed several of the estimation problems involved with synthesiz-

ing virtual video, and demonstrated the graphical effects that can be achieved with virtual video

techniques. However, since the main application of virtual video we discussed was to synthesize

images from the perspective of cameras that did not exist in the original environment, there was no

quantitative measure of the quality of the synthesized views.

In this final chapter, we show that in addition to enabling compelling graphical effects, virtual

view-based algorithms can have benefits in other engineering applications. Specifically, we discuss

the domain of low bit-rate video coding for wireless multimedia applications.

Current video coding algorithms exploit the fact that adjacent frames in a video shot are usually

very similar. Typically some set of frames, a small fraction of the total number, are coded indepen-

dently with high fidelity, and the rest of the frames are coded with reference to these anchor frames

by motion compensation.

In Section 6.2 we demonstrated that given correspondence between two image planes, a certain

class of physically correct perspective views can be constructed. Even when the perspective dif-

ference between the two source images is sizable, accurate intermediate views can be synthesized.

This gives us a new perspective on video coding, since we no longer need adhere to the assumption

that one frame can be well-predicted from another only if they look similar.

This chapter builds on all the previous ones to present an algorithm for synthesizing virtual

144

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 145

images of a scene that match frames from a source video clip. We use this algorithm for inter-

polation of video frames in the time domain, using a small amount of information to construct an

approximation of the original video. Since this approach is based on estimating functions of the

underlying camera motion parameters, and not on local block-based motion, it can capture relation-

ships between image correspondences that extend across many (perhaps hundreds) of video frames.

Each interpolated image can be rendered using only a few tens of bytes of side information, and

the rendering process itself has low computational requirements. We present experimental results

to demonstrate that for a 45 kbps (kilobits per second)1 bit rate, our algorithm gives significant per-

ceptual improvement over MPEG-1 coded video at a higher bit rate. Our approach is particularly

amenable to representing computer-generated video, for which the correspondence and camera mo-

tion information required for view synthesis is readily available at render time. We note that while

there has been some work on using “virtual views” for video coding (e.g. [1]), these are generally

mesh-based methods aimed at the small-baseline case for compressing video teleconferencing data.

Our results give a higher PSNR for a lower bit rate.

In Section 7.1 we briefly review existing video compression standards, which are generally

based on block-based motion compensation. These can be thought of as algorithms for interpolation

of video frames in the time domain from relatively high-fidelity, independently coded anchor frames.

The various schemes differ in the positioning of the anchor frames and the type and amount of

side information that is used to reconstruct the intermediate frames, but they share the underlying

assumption that the intermediate frames should not look too different from the anchor frames.

In Section 7.2, we present an algorithm for time-domain interpolation of video frames that fits

into the same framework as above. The advantage of our method is the use of view morphing to

synthesize intermediate views between anchor frames, which removes the restriction that adjacent

anchor frames are temporally close and visually similar. Consequently, in theory, the anchor frames

can be taken much further apart than is common in current compression standards.
1Throughout this chapter, “kilobits” has the literal interpretation of 1000 bits, and not the common interpretation of

1024 bits.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 146

To apply view interpolation methods, we require a dense and accurate estimate of correspon-

dence between each pair of anchor frames. We discussed many of the issues involved in this esti-

mation in Chapter 5, and make some additional comments in Section 7.3.

Once the anchor frames have been specified, the heart of the algorithm lies in synthesizing a

virtual image that is a good approximation to an actual frame of a video sequence. In Section 7.4,

we pose and solve the problem of jointly estimating the relative position of the virtual camera and

the projective transformation that rotates the virtual image plane to align with the actual image

plane.

We show some experimental results from our algorithm in Section 7.5 and discuss future work

in Section 7.6. A shorter version of the results in this chapter appeared in [2].

7.1 Review of Video Compression Algorithms

While video compression algorithms differ considerably in details of implementation, the vast ma-

jority of them are based on block-based motion compensation and transform coding. The general

approach, illustrated in Figure 7.1, can be described by:

Algorithm 7.1: Block-based motion-compensated video compression.

1. Designate each video frame as intracoded (I), predictive (P), or bidirectional (B).

2. Encode the I frames independently with relatively high fidelity, e.g. with a transform-coding still

image compression algorithm.

3. Split each P frame into smaller blocks. For each block, search for a matching block in the previous

I or P frame that has low mean-squared error. Save the motion vector that points from the source

block to its match, and encode the residual between the two blocks using transform coding.

4. Do the same for B frames, except search for the matching block in both the previous and subse-

quent I/P frames.

5. Efficiently code the data to be transmitted with a mixture of variable length coding algorithms.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 147

I B B P B B P B B I

Figure 7.1: Schematic of block-based motion-compensation video compression algo-
rithms. I frames are coded independently. P frames look to the previous I/P frame to
match blocks. B frames look to the previous I/P frame and to the next I/P frame to
match blocks.

The prevalent MPEG-x and H.26x standards both fall under this framework. MPEG-1 [3] was

designed for general video compression at bit rates up to 1.5 Mb/sec. MPEG-2 [4] was a general-

ization of MPEG-1 to allow for interlacing and larger frames. MPEG-4 [5] is targeted at a flexible,

object-oriented representation of video that allows different regions of pixels to be separately en-

coded at different rates. MPEG-4 also extends the block-based model to further allow the projective

warping of a set of background pixels, and mesh-based modeling of video objects [6]. H.261 [7] is

a standard comparable to MPEG-1 designed for ISDN lines at data rates up to 2 Mb/sec. H.263 [8]

is similar to H.261, but geared for teleconferencing and designed for much lower bit rates, e.g. 64

kbps.

The various algorithms differ in several aspects (for example, the labeling of frames as I/P/B,

the restrictions put on the motion vectors for each P/B frame, the frame sizes that are supported,

the order and method by which the residuals of blocks are coded) but these details are unimportant

for the discussion here. The main point is that current video compression schemes are almost

universally based on block-based motion compensation, with the underlying assumption that the

frames designated as P or B are visually similar to the frames designated as I on either side, so that

the mean-squared error between a block and its predictor is small. In practice, the I frames are taken

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 148

(a)

(b)

Figure 7.2: (a) Two frames of test video, separated by 15 frames. (b) Their absolute
luminance difference (darker pixels have a higher magnitude).

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 149

to be on the order of 10-30 frames apart. For example, the two frames in Figure 7.2a are 15 frames

apart in the 30 frames per second (fps) clip of test video we will consider in Section 7.5. Figure

7.2b, the luminance difference between them, indicates that corresponding pixels are not more than

8 pixels apart after the 15 frames have elapsed.

The transmission and reconstruction of video in wireless multimedia poses a much more difficult

problem than it does in a wired setting. There are three main issues that complicate matters:

1. The wireless multimedia channel has very limited bandwidth compared to a wired channel, so

video data needs to be reduced in both frame size and frame rate. An uncompressed 24 bits-per-

pixel (bpp) video at 320 x 240 pixel resolution, 30 fps, requires a data rate of 55 Mbps (megabits

per second). In contrast, a typical set of H.263 parameters is QCIF resolution (176 x 144 pixels)

at 10 fps, to be encoded at a bit rate of 11.36 kbps.

2. The wireless multimedia client has a limited power supply. Since the power required for one pass

through an algorithm grows with the number of arithmetic operations that need to be executed,

we require simple algorithms to reconstruct video from the transmitted data.

3. The wireless multimedia channel has very high bit error rates. The probability that a bit is cor-

rupted may be as high as 0.01. For video compression schemes that use variable length coding, a

single bit error can have damaging effects over several of the reconstructed video frames. There-

fore, the compressed video bitstream needs to have robust error correction capabilities. Adding

error correction further reduces the bit rate available for video data.

While issues of error correction cannot be ignored in a practical video-over-wireless scheme,

here we take a higher-level approach that addresses the issues of limited bandwidth and complex-

ity. Many of the algorithms that have been designed for error correction at the encoder or error

concealment at the decoder [9] can be applied to the algorithm we propose. We will discuss as-

pects of error protection in Section 7.6. We emphasize that currently, this scheme is built on top of,

and is compatible with, standard video compression algorithms. When a segment of video that is

suitable for interpolation is encountered, the server can transmit the low-overhead side information

concurrently with a standard video data stream. A “smart” receiver equipped with our algorithm can

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 150

take advantage of this information to render the video segment at higher quality, while a “normal”

receiver ignores the side information and produces standard-quality video.

7.2 View Morphing as a Predictive Mechanism

We consider the camera path illustrated in Figure 7.3a. Here, dots and arrows represent the positions

and orientations of a camera during a video shot of a static scene.

(a)

(b)

A

A

A

A

A
v

v
v

v
v

v
v

v
v

Figure 7.3: View morphing for interpolating video from a translating camera. (a) A video
shot in which the camera translates. (b) Frames are designated as anchor (A) frames
or virtual (V) frames.

Our approach to frame interpolation is illustrated in Figure 7.3b. A fraction of the frames are

selected to be anchor, or “A”, frames. These frames are the same as intracoded frames in the

standard terminology, and are transmitted with good fidelity using a standard image compression

scheme. The rest of the frames are designated as virtual, or “V”, frames. These are interpolated

between adjacent A frames using the view synthesis and registration algorithm described below.

We saw in Chapter 6 that for piecewise linear paths, we can synthesize virtual frames using

view morphing that resemble real views of a scene, and are physically correct perspective views

provided the estimate of correspondence between image planes is accurate. This is true even when

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 151

the perspective difference between the source frames is quite large. Hence, in principle, we may

temporally subsample the video at wide intervals to obtain the A frames. The anchor frames need

not be equally spaced along the image sequence; ideally they should automatically be chosen with

respect to estimated camera dynamics.

In the remainder we assume the A frames have been chosen and consider one line segment of

Figure 7.3b. We will work with a sequence of video frames{It}, with t = 0,∆t, 2∆t, . . . , 1, which

are generated by a moving camera whose (unknown) parameters at timet are{Ct}. We designate

(I0, I1) as the anchor frames, with associated image planes(P0,P1). Our goal is to synthesize a

virtual imageÎt using view morphing betweenI0 andI1 to approximate each intermediate frame

It. The information that comprises the transmitted video is thus:

1. The anchor frames(I0, I1) (suitably compressed).

and the following side information:

2. A pair of rectifying projective transformations(G,H) that rectify(I0, I1).

3. The structured correspondence (i.e. set of correspondence graphs) between the image planesP0

andP1.

4. The camera position of each virtual frame, described as a fractionst of distance along the baseline

connecting the optical centers ofC0 andC1 (1 floating point number per V frame).

5. The projective transformationKt that aligns each virtual frame with the corresponding actual

frameIt (8 floating point numbers per V frame).

Then for every estimated corresponding pair(w0, w1) in P0×P1, a pixel is rendered at position

wt in Ît by view morphing:

wt = K−1
t ((1− st)G(w0) + stH(w1)) (7.1)

Ît(wt) = (1− st)I0(w0) + stI1(w1) (7.2)

The perceptual fidelity of video frames interpolated using the algorithm above depends crucially

on the accuracy of the correspondence at step 3 above, and the estimates ofst andKt at steps 4 and

5. Our practical approach to these estimation problems is discussed in Sections 7.3 and 7.4 below.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 152

Should the original video be synthetic and computer-rendered, the renderer can be easily modi-

fied to output precise information about correspondence and camera motion between frames, saving

the trouble of estimating them later.

7.3 Correspondence Between Anchor Frames

We take the same approach to estimating correspondence between the pair of image planes(P0,P1)

as detailed in Chapter 5. First we estimate the epipolar geometry from a sparse set of point matches,

and then we construct the correspondence graph for each pair of conjugate epipolar lines(`0, `1).

In Section 5.4.2 we discussed how the assumption that a planar surface comprises the entire

scene induces correspondence between a pair of image planes. The result generalizes to the case

when the scene is composed of a set of planar facets. For any such facet, consider its image in a

pair of rectified image planes(P0,P1). Let ((x1
0, y), (x1

1, y)) and((x2
0, y), (x2

1, y)) be two pairs of

corresponding points on the image of the facet inP0 × P1. The same argument from Section 5.4.2

applies to each facet. That is, linear interpolation between corresponding points produces correct

correspondence in the interior of the delimited interval, and

(((1− α)x1
0 + αx2

0, y), ((1− α)x1
1 + αx2

1, y))

is a correct correspondence forα ∈ [0, 1]. Again, we note that this interpolation is only valid on

a planar facet, for rectified image planes. The construction of a correspondence graph for a scene

composed of planar facets is illustrated in Figure 7.4. Interpolation as discussed above can be used

to initialize correspondence between anchor frames when we possess a set of several control line

segments which delimit planar facets of the scene, e.g. the edges of the rectangular solid in Figure

7.4 or the line segments in Figure 7.6.

A correspondence graph can itself be “compressed” by simplification. For example, if bit rate

requirements are particularly stringent, a basic correspondence graph obtained by linearly interpo-

lating between control lines can be transmitted, instead of the refined version obtained by dynamic

programming that contains more nodes, and hence requires more bits to describe.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 153

epipolar line in I 0

ep
ip

ol
ar

 li
ne

 in
I

 1

(a) (b)

(c)

Figure 7.4: (a) and (b) Rectified image planes of a scene composed of planar facets. (c)
Correspondence graph for highlighted epipolar line pair, constructed by linear interpo-
lation between endpoints of facets.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 154

7.4 Aligning the Virtual and Actual Frames

Given the correspondence between(P0,P1) and a pair of rectifying projective transformations

(G,H), it remains to describe the approximationÎt by the nine parameters(st,Kt) required by

the view morphing equation 7.1. Hence, we can writeÎt as an explicit function of the parameters:

Ît = Îst,Kt

The problem of estimating(st,Kt) can naturally be posed as a minimization problem:

min
s ∈ [0, 1]

K ∈ GL(3)

∑
w∈Pt

(
Îs,K(w)− It(w)

)2

Solving this problem fors andK simultaneously is difficult due to the complicated dependence of

Îs,K on s through the correspondence relating(P0,P1). In practice, we separate the minimization

problem as:

min
s∈[0,1]

min
K∈GL(3)

∑
w∈Pt

(
Îs,K(w)− It(w)

)2

Sinces is fixed for the interior problem, it is simply the problem of finding the best projective

transformation relatinĝIs,I andIt. We can apply the efficient estimation algorithms discussed

in Chapter 4. When̂Is,I andIt are similar, automatic feature extraction techniques such as the

one described in Section 3.4 can be applied to obtain data points for the optimizations. However,

depending on the choice of rectifying projective transformations(G,H), the synthetic image that

results from view morphing may have a much different orientation than the frame we wish to predict.

For this reason, we apply an initial projective transformation toÎs,I to better align the two images

for feature matching. The previous estimate ofKt−∆t is a natural choice (att = 0, we have the

zero-error solutionK0 = G−1). The same applies to the search neighborhood forŝt; since we

assume the camera motion is continuous and its velocity is bounded, we only need to refine the

initial estimatêst = ŝt−∆t. This leads to our final algorithm for the estimation of(ŝt, K̂t):

Algorithm 7.2: View morphing for matching video frames.

1. Initialize ŝ0 = 0, K̂0 = G−1.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 155

2. For t = ∆t, 2∆t, . . . , N∆t:

(a) Fix a search range[smin, smax] aboutŝt−∆t.

(b) Initialize ŝt = ŝt−∆t, K̂t = K̂t−∆t, err =∞.

(c) For s ∈ [smin, smax]:

i. Construct the virtual imagêIs,K̂t−∆t
.

ii. Extract matching features betweenÎs,K̂t−∆t
andIt.

iii. Estimate the projective transformatioñK relating Îs,K̂t−∆t
andIt using the extracted fea-

tures.

iv. Construct the virtual imagêIs,K̃K̂t−∆t
.

v. If
∑
w∈Pt

(
Îs,K̃K̂t−∆t

(w)− It(w)
)2

< err ,

A. err ←
∑
w∈Pt

(
Îs,K̃K̂t−∆t

(w)− It(w)
)2

B. ŝt ← s

C. K̂t ← K̃K̂t−∆t

If the video to be interpolated is in MPEG format, an alternative initial estimate ofst could be

obtained by rapidly estimating the magnitude and direction of camera motion from MPEG motion

vectors [10]. Experimental results from our algorithm are demonstrated in the next section.

7.5 Experimental Results

We applied our interpolation method to a 180-frame, single-shot, 24-bit color, 320 x 240 test se-

quence captured with a digital video camera. The first and last frames (Figure 7.5) were designated

as anchor frames, and the remaining 178 frames were designated as “V” frames to be interpolated.

The camera motion is roughly linear, though the speed is not uniform. From Figure 7.5 we can

see that the perspective difference between the anchor frames is substantial, and that a block from

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 156

(a) (b)

Figure 7.5: The two anchor frames: (a) Frame 0, (b) Frame 179.

an intermediate frame would probably have a poor (i.e. high error) match in either of the anchor

frames.

The anchor frames with the 66 feature points used to initialize the epipolar geometry and the 28

control lines used to initialize the correspondence are illustrated in Figure 7.6. To achieve maximal

compression, we did not refine the correspondence obtained by linearly interpolating between the

control lines. An additional set of features was used to estimate the projective transformations

corresponding to the left and right walls (Figure 7.7). These are used to determine the correct

starting and ending points in the conjugate epipolar line matching graphs.

Figure 7.6: Anchor frames, with feature points and control lines used to initialize cor-
respondence.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 157

Figure 7.7: Anchor frames, with feature points used to specify the left (light-colored
dots) and right (dark-colored dots) walls.

In this example, we set the search neighborhood forŝt to be

[ŝt−∆t − 0.05, ŝt−∆t + 0.05] ∩ [0, 1]

This interval was sampled in steps of1180 = 0.0056. The resulting estimateŝst for the entire

sequence are displayed in Figure 7.8.

Figure 7.9 illustrates the original, interpolated, and luminance difference frames for frames

taken at every second (30 frames) of the test sequence. From the difference images we can see

that the interpolated images align quite well with the original frames of video. The errors around

edges are largely due to the blurriness of the virtual images introduced by several steps of image

resampling. The other major artifacts are the black regions around the borders of the interpolated

images that correspond to areas of the virtual frame visible in neither of the anchor frames. In

this example, these areas are not too large and could be filled in by the type of error-concealment

algorithms devised for other video compression schemes. The total file size of the information

required to interpolate is roughly 35400 bytes (18000 bytes total for the two JPEG-coded anchor

frames, 11000 bytes for the compressed correspondence information, 36 bytes for the parameters of

each virtual frame). Clearly the number of interpolated frames has a negligible effect on the size of

the transmitted data. For video in which the camera moves slowly along an approximately piecewise

linear path, we therefore expect reasonable performance for a small amount of side information. The

total bit rate in this example is 47.22 kbps.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 158

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frame number

E
st

im
at

ed
 v

al
ue

 o
f s

Estimated location of camera along baseline, B320 sequence

Figure 7.8: Estimates of the camera location st.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 159

Figure 7.10 displays the luminance peak signal-to-noise ratio (PSNR) over the video sequence,

defined for each frame as:

PSNR = 10 log10

1
|R|

∑
w∈R

2552(
It(w)− Ît(w)

)2

whereR is the subset ofPt that is visible in both of the anchor frames. The luminance images are

assumed to have pixel intensities ranging from 0 to 255. The PSNR is lowest in the middle of the

sequence, which stands to reason since the images here are the least similar to the anchor frames.

The mean PSNR over the entire sequence is 30.2 dB, which seems competitive with the H.263

simulations reported in [11, Fig. 12]. The PSNR could be increased by reducing the blurriness of

the virtual images through postprocessing or by reducing the number of image resampling steps

(see Section 7.6). We also note that we have made little effort to represent the correspondence

graph estimates and(st,Kt) pairs in highly compressed forms that reflect the correlations between

adjacent epipolar line pairs and nearby frames. Better compression of these quantities would also

increase the PSNR.

For comparison, we constructed an MPEG-1 video of the same test sequence, constrained to

have the smallest bit rate the coder would produce. In this case, the size of the MPEG video is

more than twice as large as the amount of information required for view morphing, at 111 KB, for

a bit rate of 148 kbps. At this bit rate, the MPEG blocking and compression artifacts are severe,

especially in high-detail, perceptually significant areas of the image. In contrast, the virtual image

is well-defined and relatively sharper in these areas. This can be seen clearly in the close-ups of a

typical frame shown in Figures 7.11a-7.11c. We note that for comparison, this MPEG video has a

mean luminance PSNR of 33.1 dB. This is not surprising, since the bit rate is higher, and MPEG

video is designed to minimize the mean-squared-error between original and reconstructed blocks.

Figure 7.11 confirms that PSNR may be mathematically convenient, but it is a poor measure of

perceptual quality.

In addition to comparing our results with MPEG-1 coded video, as illustrated here, we hope to

process our test video with an MPEG-4 or H.263 encoder that is specifically targeted for low-bit-

rate applications. However, at this time, there is no fully-featured source code for such encoders

available for public-domain use.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 160

Figure 7.9: Frames 30, 60, 90, 120, and 150 of the B320 sequence. Left column: original
images. Middle column: interpolated images. Right column: grayscale error images.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 161

0 20 40 60 80 100 120 140 160 180
27

28

29

30

31

32

33

34

Frame number

P
S

N
R

B320 sequence PSNR (30 fps, 320 x 240)

Figure 7.10: Peak signal to noise ratio over the test video sequence.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 162

(a)

(b)

(c)

Figure 7.11: (a) Detail, original frame 90, (b) Detail, interpolated frame 90, (c) Detail,
MPEG frame 90.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 163

7.6 Conclusions

We suggest that methods, like the one introduced here, that exploit the relationship between camera

motion and image correspondences can be profitably incorporated into a low bit-rate video scheme.

As the technology matures and users expect more content over wireless multimedia devices, tech-

niques that match the characteristics of the wireless multimedia network are necessary. The methods

described here are not proposed as a final solution to the problem, or as a substitute for traditional

video compression techniques at higher bit rates. However, we hope that these ideas provide a

starting point for continuing research on more general video, and that tools such as these will be

incorporated into future compression standards.

As demonstrated above, our approach is well-suited to wireless low bit-rate video in special

cases of camera motion, and can be used to increase frame rate without much overhead. The com-

putationally expensive (about 5 frames per minute) step of estimating parameters and encoding the

video can be done once at the multimedia server, and amortized over a large number of downloads.

The low bit-rate (e.g. 45 kbps) data stream can be easily transmitted over a wireless channel. The

video can be rendered at the multimedia client for a low computational cost, since each rendered

pixel is simply a weighted average of two pixels from the source images. The low complexity of

the algorithm translates to low power consumption for a wireless device. Since power is also nec-

essary for the error-correction decoding that would be required for a wireless channel, having a

computationally simple reconstruction algorithm is even more important.

We emphasize that the algorithm is much less expensive if the source video comes from computer-

generated imagery for which correspondence and camera motion information is easily obtained.

Levoy [12] and Wallach et al. [13] made similar observations that using correspondence informa-

tion for computer-generated video has significant benefits in MPEG compression. In the future, we

would like to modify a ray-tracer to supply image correspondence and camera motion information

to demonstrate these effects.

There are many improvements that could be made to the implementation of our coder, and

several interesting research problems to address. The biggest problem with our current algorithm

is the perceptually distracting jitter in the reconstructed video, since the estimation of(st,Kt) is

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 164

essentially independent for each frame. Even though the synthetic frames are individually good

approximations to the original frames they represent, the result does not convey a sense of fluid

camera motion as well as it could. Of course, since the original camera motion may be jerky,

imposing too many smoothness constraints on the estimation could be unwise. This is a topic of

current research.

The second most distracting artifact is the slight blurriness of the reconstructed images com-

pared to the original video frames. This is caused by three steps of image resampling in our current

implementation:

1. Applying the rectifying projective transformations(G,H) to (I0, I1)

2. ConstructinĝIst,I with the view morphing equation

3. Applying the alignment projective transformationKt to Îst,I to construct̂Ist,Kt

The first and third resampling operations could be eliminated by removing the dependence of

our rendering algorithm on explicitly rectified images. This leaves step 2 as the main rendering

step, which as written in (7.2) is simply a weighted average of the intensities of two pixels from the

original source images. Of course, the “pixels” might not have integer coordinates, which would

require another step of bilinear interpolation. If even more sharpness is required, instead of using a

weighted average in (7.2), the resampled image could just take its intensity from one or the other of

the anchor frames. This would trade off sharpness for a lack of robustness to illumination changes

in the scene. Additionally, standard post-processing techniques (e.g. unsharp masking) could be

used to improve the perceptual quality of the video at the decoder.

Clearly, the success of view-interpolation-based methods depends greatly on the selection of

good anchor frames. The automatic selection of such frames based on estimated camera dynamics

is one of the next research problems we wish to consider.

We have not addressed the case when objects are moving in the scene independently of the

camera. However, our method can be viewed as a generalization of one feature of the MPEG-

4 standard, which allows a region of pixels to be designated as the “background”, and warped

projectively as if it lies on a plane. The foreground moving objects (called “sprites” in MPEG-4)

can then be replaced on the warped background.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 165

Finally, we comment on the type of unequal error protection that would be required for this

scheme. The most important information in the video representation are, in order:

1. The parameters(st,Kt): a bit error here affects the entire reconstructed imageÎt.

2. The estimated correspondence between(I0, I1): a bit error here affects the same epipolar line

in each reconstructed image

3. The images(I0, I1) themselves: if they are JPEG compressed, a bit error here affects an8× 8

block of pixels, which may cause errors in a few pixels in each reconstructed image.

Of course, any video compression scheme based on variable length coding is equally sensitive

to bit errors, especially to additions and deletions of bits.

7.7 References

[1] R-S. Wang and Y. Wang. Multiview Video Sequence Analysis, Compression, and Virtual

Viewpoint Synthesis.IEEE Transactions on Circuits and Systems for Video Technology, vol.

10, no. 3, pp. 397–410, April 2000.

[2] R. Radke, P. Ramadge, S. Kulkarni, and T. Echigo. Using View Interpolation for Low Bit-Rate

Video. InProc. ICIP 2001, Greece, October 2001.

[3] D. LeGall. MPEG: A Video Compression Standard for Multimedia Applications.Communi-

cations of the ACM, vol. 34, no. 4, pp. 46–58, April 1991.

[4] ISO/IEC 13818. MPEG-2 International Standard, Information technology, Generic Coding of

Moving Pictures and Associated Audio Information.

[5] T. Sikora. The MPEG-4 Video Standard Verification Model.IEEE Transactions on Circuits

and Systems for Video Technology, vol. 7, no. 1, pp. 19–31, 1997.

[6] A.M. Tekalp, P. van Beek, C. Toklu, and B. Günsel. Two-Dimensional Mesh-Based Visual-

Object Representation for Interactive Synthetic/Natural Digital Video.Proceedings of the

IEEE, vol. 86, no. 6, pp. 1029–1051, June 1998.

[7] CCITT Recommendation H.261, Video Codec For Audiovisual Services Atp × 64 kbit/s,

Genf, 1990.

Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 166

[8] G. Cote, B. Erol, M. Gallant, and F. Kossentini. H.263+: Video Coding at Low Bit Rates.

IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 7, November

1998.

[9] Y. Wang and Q-F. Zhu. Error Control and Concealment for Video Communication: A Review.

Proceedings of the IEEE, vol. 86, no. 5, pp. 974–997, May 1998.

[10] Y.P. Tan, D. D. Saur, S. R. Kulkarni, and P. J. Ramadge. Rapid Estimation of Camera Motion

from Compressed Video With Application to Video Annotation.IEEE Trans. on Circuits and

Systems for Video Technology, vol. 10, no. 1, pp. 133–146, February 2000.

[11] L. Hanzo. Bandwidth-Efficient Wireless Multimedia Communications.Proceedings of the

IEEE, vol. 86, no. 7, pp. 1342–1382, July 1998.

[12] M. Levoy. Polygon-Assisted JPEG and MPEG Compression of Synthetic Images.Computer

Graphics (SIGGRAPH ’95),pp. 21–28, August 1995.

[13] D. Wallach, S. Kunapalli, and M. Cohen. Accelerated MPEG Compression of Dynamic Polyg-

onal Scenes.Computer Graphics (SIGGRAPH ’94), pp. 196–196, August 1994.

Chapter 8

Conclusions

Throughout this thesis, we returned frequently to the estimation and application of projective trans-

formations. In Chapter 4, we posed the projective transformation estimation problem as a parameter

estimation problem over noisy point matches. In prior work, this estimation problem is either sim-

plified using affine or small-motion assumptions to produce a linear least-squares problem, or solved

directly as a nonlinear minimization using numerical methods. We showed with extensive analysis

that the cost function associated with the projective transformation estimate has considerable struc-

ture, and that this structure can be exploited to construct efficient minimization algorithms that are

robust to measurement noise. Our minimization algorithms were shown to constitute a substantial

improvement over the off-the-shelf methods that are typically used.

The correspondence induced between two image planes by a projective transformation is only

a subset of the set of correspondences that can arise from two views of a scene taken by physi-

cal cameras. This set is rich and complicated, and much prior work on estimating correspondence

only searches over the subset of monotonic correspondence, for which the ordering of correspon-

dences along conjugate epipolar lines is invariant. In Chapter 5, we ventured beyond monotonic

correspondence and fully characterized the structure of the elements of the entire set of viable cor-

respondences. This led us to the problem of estimating correspondence in the general setting, and

we showed how the formalism of correspondence graphs can be used to ensure that any estimated

correspondence is consistent with a physical imaging system.

In Chapter 6, we used our correspondence estimates to synthesize virtual views of a scene from

wide-baseline still images using view morphing. Since the estimated correspondences are both

167

Chapter 8: Conclusions 168

geometrically and photometrically accurate, the synthetic images are realistic perspective views of

the scene, rendered from novel camera positions. We then posed our third estimation problem, that

of efficiently estimating correspondence between two video sequences. We exploited the temporal

regularity of video to create a recursive framework for the propagation of correspondence estimates.

We proved the stability of our algorithm in theory, and demonstrated its application to real video.

The result is compelling virtual video that evolves dynamically along with the scene, constructed

with minimal input from the user. This is a substantial improvement over the previous state of the

art, which required either a static scene or an expensive hardware assembly to produce a similar

effect.

Finally, in Chapter 7, we showed how virtual images, sometimes viewed only as graphical

special effects, can be made useful in the context of time-domain interpolation of video frames for

low-bitrate applications. Our final estimation problem was to synthesize the virtual image between

two frames of video that best matches a real intermediate frame. Understanding the geometric

connections between the positions of cameras and image correspondences allows us to store fewer

intracoded frames and to synthesize realistic intermediate images that may resemble none of the

intracoded frames. This is an exciting topic of current research that we hope will have applications

in wireless multimedia.

The four main estimation problems in digital video we considered in this thesis, and the appli-

cations we discussed, are summarized in Table 8.1.

All of the estimation problems in this thesis are tied to the age-old problem of correspondence.

In Chapter 5, we considered the fundamental question, “What sets are valid correspondences?”,

which led to the definition of the correspondence graph. We might ask other questions. How can

we quantify the “complexity” of a (scene,camera) pair? Is there a sampling theorem for scenes

and cameras? That is, if we want enough information to describe a given scene with some fixed

degree of accuracy, how finely do we need to space a set of perspective cameras? Conversely, for a

fixed scene and finite number of cameras, where should the cameras be placed to be able to render

the largest possible set of virtual views with some fixed degree of accuracy? The formalism of the

correspondence graph may help answer some of these questions.

As we showed in Chapters 6 and 7, an estimate of correspondence that is consistent with the

Chapter 8: Conclusions 169

Chapter Estimation Problem Application
4 Projective transformations from noisy

point correspondences
Image and video mosaics

5 Correspondence between a general pair
of image planes

Wide-baseline virtual images

6 Correspondence between a pair of video
sequences of the same scene taken by ro-
tating cameras

Virtual video

7 Position and orientation of a camera as it
moves along a linear path during a video
sequence

Virtual time-domain interpolants of real
video

Table 8.1: Thesis contributions.

underlying geometry of a scene can have significant benefits in visualization and video coding.

We contend that geometric correspondence is inherently superior to photometric correspondence

in applications where a notion of physical correctness or consistency is important. Most video

coding algorithms can match up points arbitrarily, disregarding the epipolar constraint, much less

considerations of physical consistency. This may be good for mean-squared error over short time

intervals, but it ignores the long-term connections between image correspondences that are induced

by compactly parameterizable camera motion. When coding efficiency is an issue, we feel that more

redundancy can be removed by exploiting geometric constraints using image-based algorithms. As a

side benefit, the rendering component of an image-based algorithm is typically less computationally

demanding than a transform-coding based algorithm such as MPEG decompression.

As applications that require a 3-D sense of scene develop, we expect that algorithms, such as

the ones described in this thesis, that are based on well-founded estimates of parameters of camera

motion will become increasingly important. We envision an algorithm that takes into account esti-

mates of camera motion parameters, requirements for rendering quality, and constraints on bit rate,

and decides that some sequences of video frames are best coded by a projective warping of a single

frame, others can be synthesized using virtual view techniques, and so on, to create a hybrid video

coder that operates in several modes.

Finally, we note that many research problems at the interface between equations and silicon must

Chapter 8: Conclusions 170

be solved to bring the estimation algorithms we propose here from a powerful desktop computer to

a portable wireless device. Issues of power control, fixed-point arithmetic, limited color depth, low

available memory, and robust error correction would all be involved. Bringing effective and efficient

video processing to wireless multimedia will challenge researchers for years to come.

Appendix A

Proof of Theorem 4.2

1. We split up the expressions (4.10)-(4.12) by separating out the first point (and noting thatq1 =

α):

W (c∗ + αh) =

 w1wT1
α2 +

∑N
j=2

wjw
T
j

q2
j (α)

w1
α2 +

∑N
j=2

wj
q2
j (α)

wT1
α2 +

∑N
j=2

wTj
q2
j (α)

1
α2 +

∑N
j=2

1
q2
j (α)


V (c∗ + αh) =

[
w′1w

T
1

α +
∑N

j=2

w′jw
T
j

qj(α)
w′1
α +

∑N
j=2

w′j
qj(α)

]
Hereqj(α) = (c∗ + αh)Twj + 1. We now rewrite the defining equation (4.9) as:

[A(α) b(α)]

 1
α2

 w1w
T
1 w1

wT1 1

+W2(α)

 =
[

1
α
w′1p

T + V2(α)
]

(A.1)

where

W2(α) =

 ∑N
j=2

wjw
T
j

q2
j (α)

∑N
j=2

wj
q2
j (α)∑N

j=2

wTj
q2
j (α)

∑N
j=2

1
q2
j (α)


V2(α) =

[∑N
j=2

w′jw
T
j

qj(α)

∑N
j=2

w′j
qj(α)

]
We note that asα → 0, W2(α) andV2(α) converge to well-defined finite matricesW2(0) and

V2(0). In the following, we will use the notationsW2, V2 with the understanding that they are

functions ofα. While it is true that forα > 0, W2(α) andV2(α) are also functions ofh, the

limiting valuesW2(0) andV2(0) are independent ofh.

171

Appendix A: Proof of Theorem 4.2 172

Taking (A.1) and isolatingA(α) andb(α) on the left-hand side, we have

[A(α) b(α)] =
[

1
α
w′1p

T + V2

] 1
α2

 w1w
T
1 w1

wT1 1

+W2

−1

(A.2)

Here we have introduced the abbreviationp = [wT1 1]T . First consider the matrix that is inverted

in (A.2) above. Using the matrix inversion lemma, we can write 1
α2

 w1w
T
1 w1

wT1 1

+W2

−1

=
[

1
α
p

1
α
pT +W2

]−1

= W−1
2 − 1

α2
W−1

2 p

[
1 +

1
α2
pTW−1

2 p

]−1

pTW−1
2

= W−1
2 −W−1

2 p
[
α2 + pTW−1

2 p
]−1

pTW−1
2

= W−1
2 − W−1

2 ppTW−1
2

α2 + pTW−1
2 p

= W−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]

Therefore, we can rewrite (A.2) as

[A(α) b(α)] =
[

1
α
w′1p

T + V2

]
W−1

2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]
= w′1p

TW−1
2

[
1
α

(
α2 + pTW−1

2 p
)
I − 1

αpp
TW−1

2

α2 + pTW−1
2 p

]

+V2W
−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]
= w′1p

TW−1
2

α

α2 + pTW−1
2 p

+ V2W
−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]

Lettingα→ 0 in the above, we obtain

[Ao bo] = lim
α→0

[A(α) b(α)]

= V2W
−1
2

[
I − ppTW−1

2

pTW−1
2 p

]
(A.3)

Appendix A: Proof of Theorem 4.2 173

2. Consider the minimization problem

min
A,b

1
2

N∑
j=2

(
w′j −

Awj + b

c∗Twj + 1

)T (
w′j −

Awj + b

c∗Twj + 1

)
(A.4)

s.t. Aw1 + b = 0

The normal equations for the constrained problem are:

A
N∑
j=2

wjw
T
j

(c∗Twj + 1)2
+ b

N∑
j=2

wTj
(c∗Twj + 1)2

−
N∑
j=2

w′jw
T
j

c∗Twj + 1
+ λwT1 = 0

A

N∑
j=2

wj
(c∗Twj + 1)2

+ b

N∑
j=2

1
(c∗Twj + 1)2

−
N∑
j=2

w′j
c∗Twj + 1

+ λ = 0

Aw1 + b = 0

Hereλ is a Lagrange multiplier inR2. Rewriting these normal equations in the notation of the

previous section, we obtain

[A b] = V2W
−1
2 − λpTW−1

2 (A.5)[
A b

]
p = 0 (A.6)

It is easy to see that (A.5) is satisfied by the choice of(Ao, bo) in (A.3), with

λ =
V2W

−1
2 p

pTW−1
2 p

Furthermore,(Ao, bo) satisfy the constraint equation (A.6). Hence, by uniqueness of the solu-

tion of the linear least squares problem, we conclude that along singular lines, the solution of

(4.9) converges to the solution of the constrained minimization problem (A.4) posed over the

data set minus the offending point.

Appendix A: Proof of Theorem 4.2 174

3. From the expression (A.3), we can also obtain an expression for the point to which(Ao, bo, c∗)

mapsw1:

lim
α→0

A(α)w1 + b(α)
(c∗ + αh)Tw1 + 1

= lim
α→0

1
α

[A(α) b(α)]p

= lim
α→0

1
α
w′1p

TW−1
2

α

α2 + pTW−1
2 p

+V2W
−1
2

[
I − ppTW−1

2

α2 + pTW−1
2 p

]
p

= lim
α→0

w′1p
TW−1

2

p

α2 + pTW−1
2 p

+V2W
−1
2

[
1
α
p− 1

α

ppTW−1
2 p

α2 + pTW−1
2 p

]
= lim

α→0
w′1

pTW−1
2 p

α2 + pTW−1
2 p

+ V2W
−1
2

αp

α2 + pTW−1
2 p

= w′1

Appendix B

Newton Methods

In Chapter 4, we referred to the Newton and Gauss-Newton methods for minimizing a nonlinear

function of several parameters. We describe these methods now. The problem we wish to solve is:

Problem 1: Given measurement data{(xj , yj) ∈ RM ×R, j = 1, . . . , N} and a continuously dif-

ferentiable functionf : RM+K → R, determine the parameter values{θ̂1, . . . , θ̂K} that minimize

the cost functional

J(θ1, . . . , θK) =
N∑
j=1

(yj − f(xj ; θ1, . . . , θK))2 (B.1)

We collect the measurement data and parameters into vectors:

y =


y1

...

yN

 θ = [θ1, · · · , θK]

Since the measurement data that appear inside the functionf are fixed, we suppress the depen-

dence off on the dataxj and write

f(θ) =


f(x1,θ)

...

f(xN ,θ)


The cost functional (B.1) can now be written

J(θ) = [y − f(θ)]T [y − f(θ)] (B.2)

175

Appendix B: Newton Methods 176

Necessary conditions forθ∗ to minimize (B.2) are

∂J

∂θ
(θ∗) =


∂J
∂θ1
...

∂J
∂θK

 (θ∗) = 0 (B.3)

∂2J

∂θ2 (θ∗) =


∂2J
∂θ2

1
· · · ∂2J

∂θ1∂θK
...

...
...

∂2J
∂θ1∂θK

· · · ∂2J
∂θ2
K

 (θ∗) > 0 (B.4)

The notation in (B.4) is shorthand for the positive definiteness of the matrix∂2J

∂θ2 (θ∗).

The condition (B.3) can be written:

∂J

∂θ
(θ∗) = −2[y − f(θ∗)]T

∂f
∂θ

(θ∗) = 0

or equivalently,
∂f
∂θ

T

(θ∗)[y − f(θ∗)] = 0 (B.5)

Note that ∂f
∂θ

is anN × K matrix. Whenf is a linear function of the parametersθ given by

f(θ) = Fθ, ∂f
∂θ

is a matrixF ∈ RN×K that doesn’t depend onθ, and (B.5) is a linear equation in

θ∗, the solution of which is:

θ̂ = (F TF)−1F Ty

However, in general, (B.5) is a nonlinear system of equations inθ that must be solved by nu-

merical means.

We begin by expanding the cost functionJ(θ) in a Taylor series about some pointθ∗:

J(θ) = J(θ∗) +
∂J

∂θ
(θ∗)(θ − θ∗) +

1
2

(θ − θ∗)T ∂
2J

∂θ2 (θ∗)(θ − θ∗) + h. o. t . (B.6)

∂2J

∂θ2 (θ∗) = −2

[
N∑
k=1

[yk − f(xk;θ)]
∂2f(xk;θ)

∂θ2 (θ∗)

]
+ 2

∂f
∂θ

(θ∗)T
∂f
∂θ

(θ∗)

= −2

[
N∑
k=1

[yk − f(xk;θ)]
∂2f(xk;θ)

∂θ2 (θ∗)

]
+ 2HTH (B.7)

Appendix B: Newton Methods 177

In (B.7) we have denotedH = ∂f
∂θ

(θ∗). Ignoring the higher order terms in (B.6), minimizing the

resulting quadratic with respect toθ, and solving for the minimizer gives

θ = θ∗ −
[
∂2J

∂θ2 (θ∗)
]−1

∂J

∂θ
(θ∗)T (B.8)

When we add a step size parameter to (B.8), and substitute the expansion (B.7), we obtain:

θ = θ∗ + ρ

[
HTH −

N∑
k=1

[yk − f(xk;θ)]
∂2f(xk;θ)

∂θ2 (θ∗)

]−1

HT [y − f(θ∗)] (B.9)

Under certain conditions, ifθ∗ is a good estimate of the minimizerθ̂, the parametersθ produced

by (B.9) are an incrementally better estimate ofθ̂. The new estimate can then replace the old

(θ → θ∗) and (B.9) reapplied. The iterations terminate when the termHT [y − f(θ∗)] in (B.9)

becomes vanishingly small (which is the condition (B.5)). The iteration suggested by (B.9) is called

the Newton-Raphson method. The convergence of the algorithm is governed by the choice of the

step size parameterρ. Usually,ρ is chosen to reduce (not necessarily minimize)J along the search

direction(HTH)−1HT (y − f(θ∗)). This can be accomplished by a backtracking algorithm based

on cubic interpolation [1].

A simplification of (B.9) is obtained by dropping the second term in the inverted matrix, pro-

ducing the update equation

θ = θ∗ + ρ(HTH)−1HT (y − f(θ∗))

This simplified iteration is known asGauss’s methodor theGauss-Newton method. Gauss’s

method can be alternately derived by considering the modeling assumption that

y = f(θ) + v (B.10)

wherev is a small noise term. By ignoringv and expanding (B.10) in a Taylor series about a point

θ∗, we obtain

y = f(θ∗) +
∂f
∂θ

(θ∗)(θ − θ∗) + h. o. t .

= f(θ∗) +H(θ − θ∗) + h. o. t . (B.11)

Appendix B: Newton Methods 178

If we ignore the higher order terms in (B.11), we obtain a linear equation inθ that may be

rewritten as:

θ = θ∗ + (HTH)−1HT (y − f(θ∗)) (B.12)

When a step size parameterρ is added to (B.12) we again obtain Gauss’s method.

A third algorithm is obtained by assuming that the inverted matrix in (B.9) is equal to the iden-

tity. Substituting and adding a step size parameter, we obtain

θ = θ∗ + ρ̂HT [y − f(θ∗)] (B.13)

The iteration suggested by (B.13) is the well-knownsteepest descent method. The descent

directionHT [y − f(θ∗)] is simply the gradient of the functionJ .

Finally, theLevenberg-Marquardt methodis obtained as a cross between the Gauss and steepest

descent methods. The Levenberg-Marquardt iteration is based on the recursion:

θ = θ∗ + ρ
[
HTH + λI

]−1
HT [y − f(θ∗)]

Whenλ = 0, the Levenberg-Marquardt iteration is the same as a Gauss iteration. Asλ →

∞, the Levenberg-Marquardt iteration tends to a step along the gradient. Careful tuning of the

parameterλ as the algorithm progresses generally leads to a quicker convergence rate than either

of the two sub-methods. The goal is an attempt to make Gauss’s method globally convergent by

ensuring that the “Hessian” is positive definite. This falls into a more general class of techniques

calledtrust region methods.

More details about these algorithms (e.g. choice of step size, termination criteria, search di-

rections, pitfalls) are beyond the scope of this paper and can be found in Dennis and Schnabel [1],

Seber and Wild [2], Sorenson [3] and Ortega and Rheinbolt [4]. Implementations of the algorithms

in the C programming language can be found in [5]. Implementational details are also discussed in

[6].

References

[1] J.E. Dennis, Jr. and R.B. Schnabel.Numerical Methods for Unconstrianed Optimization and

Nonlinear EquationsSIAM, Philadelphia, 1996.

Appendix B: Newton Methods 179

[2] G.A.F. Seber and C.J. Wild.Nonlinear Regression. John Wiley and Sons, 1989.

[3] H.W. Sorenson.Parameter Estimation: Principles and Problems.Marcel Dekker, Inc., New

York, 1980.

[4] J.M. Ortega and W.C. Rheinbolt.Iterative Solution of Nonlinear Equations in Several Variables.

Academic Press, London, 1970.

[5] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.Numerical Recipes in C: The

Art of Scientific Computing.Cambridge University Press, 1992.

[6] The MathWorks, Inc.Matlab Optimization Toolbox User’s Guide, Version 5.May, 1997.

Appendix C

The Hessian ofJ(c)

Here we compute the Hessian ofJ(c), and derive its Gauss-Newton approximation. Due to the

implicit dependence ofA andb on c through (4.13), the forms are quite complex.

C.1 The Hessian Itself

Recall from (4.18) we have:

∇J(c) =
N∑
j=1

(
w′j −

A(c)wj + b(c)
cTwj + 1

)T A(c)wj + b(c)
cTwj + 1

wj
cTwj + 1

We rewrite this slightly asDJ(c)(h) to reflect that the derivativeDJ(c) acts on a direction

h ∈ R2 to produce a scalar by:

DJ(c)(h) = ∇J(c)Th

=
N∑
j=1

(
w′j −

A(c)wj + b(c)
cTwj + 1

)T A(c)wj + b(c)
cTwj + 1

wTj h

cTwj + 1
(C.1)

Similarly, assuming sufficient regularity ofJ , the second derivativeD2J(c) acts on a direction

h ∈ R2 to produce a scalar by:

D2J(c)(h) = hT
∂2J

∂c2
h (C.2)

Our goal is to obtain the Hessian∂
2J
∂c2

, a symmetric matrix inR2×2. Differentiating (C.1) with

respect toc, we obtain

180

Appendix C: The Hessian of J(c) 181

D2J(c)(h) =
N∑
j=1

(
w′j −

A(c)wj + b(c)
cTwj + 1

)T
D

(
A(c)wj + b(c)
cTwj + 1

)
(h)

wTj h

cTwj + 1

−
N∑
j=1

D

(
A(c)wj + b(c)
cTwj + 1

)
(h)

T A(c)wj + b(c)
cTwj + 1

wTj h

cTwj + 1

−
N∑
j=1

(
w′j −

A(c)wj + b(c)
cTwj + 1

)T A(c)wj + b(c)
cTwj + 1

(wTj h)2

(cTwj + 1)2

Introducing the abbreviationŝwj = A(c)wj+b(c)

cTwj+1
andεj =

(
w′j − ŵj

)
, we have

D2J(c)(h) =
N∑
j=1

εTj
cwj + 1

Dŵj(h)wTj h−
N∑
j=1

Dŵj(h)T ŵj(h)
cwj + 1

wTj h

−
N∑
j=1

εTj ŵj

(cTwj + 1)2
(wTj h)2

Noting that

Dŵj(h) =
DA(c)(h)wj +Db(c)(h)

cwj + 1
−
ŵjw

T
j h

cwj + 1

we obtain

D2J(c)(h) =
N∑
j=1

εTj (DA(c)(h)wj +Db(c)(h))
(cTwj + 1)2

wTj h−
N∑
j=1

hTwjε
T
j ŵjw

T
j h

(cTwj + 1)2

−
N∑
j=1

[
DA(c)(h)wj +Db(c)(h)

cwj + 1

]T ŵj
cwj + 1

wTj h

+

[
ŵjw

T
j h

cwj + 1

]T
ŵj

cwj + 1
wTj h−

N∑
j=1

hT
wjε

T
j ŵjw

T
j

(cTwj + 1)2
h

= hT

 N∑
j=1

(ŵj − 2εj)T ŵj
(cTwj + 1)2

wjw
T
j

h (C.3)

−
N∑
j=1

(ŵj − εj)T
[
DA(c)(h)wj +Db(c)h

cwj + 1

]
wTj h

cwj + 1
(C.4)

The first term (C.3) is already in the form we seek (C.2). Now we clarify how to express the

second term (C.4) in the same form. We note that the approximation to the Hessian (4.20) comes

Appendix C: The Hessian of J(c) 182

from assumingDA(c) andDb(c) are identically 0 in (C.4). Here is the expansion of (C.4):

N∑
j=1

(ŵj − εj)T
[
DA(c)(h)wj +Db(c)h

cwj + 1

]
wTj h

cwj + 1

=
N∑
j=1

(ŵj − εj)T

(cTwj + 1)2

[(
∂A

∂c1
h1 +

∂A

∂c2
h2

)
wj +

(
∂b

∂c1
h1 +

∂c

∂c2
h2

)]
wTj h

=
N∑
j=1

(ŵj − εj)T

(cTwj + 1)2

[(
∂A

∂c1
wj +

∂b

∂c1

)
h1 +

(
∂A

∂c2
wj +

∂b

∂c2

)
h2

]
wTj h

=
N∑
j=1

wTj h

(cTwj + 1)2

[
(ŵj − εj)T

(
∂A

∂c1
wj +

∂b

∂c1

)
h1 + (ŵj − εj)T

(
∂A

∂c2
wj +

∂b

∂c2

)
h2

]

=
N∑
j=1

wTj h

(cTwj + 1)2

 h1

h2

T  (ŵj − εj)T
(
∂A
∂c1
wj + ∂b

∂c1

)
(ŵj − εj)T

(
∂A
∂c2
wj + ∂b

∂c2

)


= hT

 N∑
j=1

1
(cTwj + 1)2

 (ŵj − εj)T
(
∂A
∂c1
wj + ∂b

∂c1

)
(ŵj − εj)T

(
∂A
∂c2
wj + ∂b

∂c2

)
wTj

h (C.5)

It remains to actually compute∂A∂ci and ∂b
∂ci

. We begin with the system of defining equations

A

N∑
j=1

wjw
T
j

(cTwj + 1)2
+ b

N∑
j=1

wTj
(cTwj + 1)2

−
N∑
j=1

w′jw
T
j

cwj + 1
= 0 (C.6)

A

N∑
j=1

wj
(cTwj + 1)2

+ b

N∑
j=1

1
(cTwj + 1)2

−
N∑
j=1

w′j
cwj + 1

= 0 (C.7)

and differentiate:

∂A

∂c1

N∑
j=1

wjw
T
j

(cTwj + 1)2
+

∂b

∂c1

N∑
j=1

wTj
(cTwj + 1)2

= (C.8)

2A
N∑
j=1

wjw
T
j

(cTwj + 1)3
xj + 2b

N∑
j=1

wTj
(cTwj + 1)3

xj −
N∑
j=1

w′jw
T
j

(cTwj + 1)2
xj

∂A

∂c1

N∑
j=1

wj
(cTwj + 1)2

+
∂b

∂c1

N∑
j=1

1
(cTwj + 1)2

= (C.9)

2A
N∑
j=1

wj
(cTwj + 1)3

xj + 2b
N∑
j=1

1
(cTwj + 1)3

xj −
N∑
j=1

w′j
(cTwj + 1)2

xj

Appendix C: The Hessian of J(c) 183

∂A

∂c2

N∑
j=1

wjw
T
j

(cTwj + 1)2
+

∂b

∂c2

N∑
j=1

wTj
(cTwj + 1)2

= (C.10)

2A
N∑
j=1

wjw
T
j

(cTwj + 1)3
yj + 2b

N∑
j=1

wTj
(cTwj + 1)3

yj −
N∑
j=1

w′jw
T
j

(cTwj + 1)2
yj

∂A

∂c2

N∑
j=1

wj
(cTwj + 1)2

+
∂b

∂c2

N∑
j=1

1
(cTwj + 1)2

= (C.11)

2A
N∑
j=1

wj
(cTwj + 1)3

yj + 2b
N∑
j=1

1
(cTwj + 1)3

yj −
N∑
j=1

w′j
(cTwj + 1)2

yj

Like the normal equations (C.6)-(C.7), these are systems of linear equations that can be solved

for ∂A
∂ci

and ∂b
∂ci

. The equations can be simplified as:[
∂A

∂c1

∂b

∂c1

]
W (c) = X(c) (C.12)[

∂A

∂c2

∂b

∂c2

]
W (c) = Y (c) (C.13)

whereW (c) ∈ R3×3,X(c) ∈ R2×3, andY (c) ∈ R2×3 are functions ofc ∈ R2 and the data points,

given by:

W (c) =


∑N

j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)

∑N
j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)



X(c) =


(

2A
∑N

j=1

wjw
T
j

q3
j (c)

xj + 2b
∑N

j=1

wTj
q3
j (c)

xj −
∑N

j=1

w′jw
T
j

q2
j (c)

xj

)T
(

2A
∑N

j=1
wj
q3
j (c)

xj + 2b
∑N

j=1
1

q3
j (c)

xj −
∑N

j=1

w′j
q2
j (c)

xj

)T

T

Y (c) =


(

2A
∑N

j=1

wjw
T
j

q3
j (c)

yj + 2b
∑N

j=1

wTj
q3
j (c)

yj −
∑N

j=1

w′jw
T
j

q2
j (c)

yj

)T
(

2A
∑N

j=1
wj
q3
j (c)

yj + 2b
∑N

j=1
1

q3
j (c)

yj −
∑N

j=1

w′j
q2
j (c)

yj

)T

T

Hereqj(c) = cTwj + 1. Note thatW (c) in (C.12)-(C.13) is the same matrix that appears in (4.9),

which leads us to write the equations forA,b, and their partials with respect toc simultaneously as

Appendix C: The Hessian of J(c) 184

a block triangular9× 9 system of equations:

[A b ∂A
∂c1

∂b
∂c1

∂A
∂c2

∂b
∂c2

]


W2(c) −W3x(c) −W3y(c)

0 W2(c) 0

0 0 W2(c)

 = [V1(c) −V2x(c) −V2y(c)]

where

W2(c) =


∑N

j=1

wjw
T
j

q2
j (c)

∑N
j=1

wj
q2
j (c)

∑N
j=1

wTj
q2
j (c)

∑N
j=1

1
q2
j (c)



W3x(c) =


∑N

j=1

wjw
T
j

q3
j (c)

xj
∑N

j=1
wj
q3
j (c)

xj

∑N
j=1

wTj
q3
j (c)

xj
∑N

j=1
1

q3
j (c)

xj



W3y(c) =


∑N

j=1

wjw
T
j

q3
j (c)

yj
∑N

j=1
wj
q3
j (c)

yj

∑N
j=1

wTj
q3
j (c)

yj
∑N

j=1
1

q3
j (c)

yj


V1(c) =

[∑N
j=1

w′jw
T
j

qj(c)

∑N
j=1

w′j
qj(c)

]
V2x(c) =

[∑N
j=1

w′jw
T
j

q2
j (c)

xj
∑N

j=1

w′j
q2
j (c)

xj

]
V2y(c) =

[∑N
j=1

w′jw
T
j

q2
j (c)

yj
∑N

j=1

w′j
q2
j (c)

yj

]

C.2 The Gauss-Newton Approximation

Though we know the Hessian is symmetric, this is unclear from the expansions of the second term

(C.4) or (C.5). Furthermore, it is also not obvious which terms in the Hessian comprise the Gauss-

Newton approximation.

We know that the cost functionJ(c) can be written

J(c) =
1
2

N∑
j=1

εjx(c)2 + εjy(c)2

Appendix C: The Hessian of J(c) 185

where

εjx(c) = x′j −
a11xj + a12yj + b1
c1xj + c2yj + 1

εjy(c) = y′j −
a21xj + a22yj + b2
c1xj + c2yj + 1

In this form, the gradient ofJ is given by

∇J(c) =
N∑
j=1

εjx(c) · ∇εjx(c) + εjy(c) · ∇εjy(c) (C.14)

In the notation of the previous section, it is straightforward to derive

∇εjx(c) =
1

qj(c)

[
x̂jwj −

∂A1

∂c

T

wj −
∂b1
∂c

]
∇εjy(c) =

1
qj(c)

[
ŷjwj −

∂A2

∂c

T

wj −
∂b2
∂c

]
where

∂A1

∂c
=

 ∂a11
∂c1

∂a11
∂c2

∂a12
∂c1

∂a12
∂c1


∂A2

∂c
=

 ∂a21
∂c1

∂a21
∂c2

∂a22
∂c1

∂a22
∂c1


∂b1
∂c

=

 ∂b1
∂c1

∂b1
∂c2


∂b2
∂c

=

 ∂b2
∂c1

∂b2
∂c2


Substituting into (C.14), we obtain

∇J(c) =
N∑
j=1

1
qj(c)

εTj ŵjwj −

∂A1

∂c

T N∑
j=1

1
qj(c)

εjxwj +
∂A2

∂c

T N∑
j=1

1
qj(c)

εjywj+

∂b1
∂c

N∑
j=1

1
qj(c)

εjx +
∂b2
∂c

N∑
j=1

1
qj(c)

εjy



Appendix C: The Hessian of J(c) 186

Each of the terms
∑N

j=1
1

qj(c)
εjxwj ,

∑N
j=1

1
qj(c)

εjywj ,
∑N

j=1
1

qj(c)
εjx,

∑N
j=1

1
qj(c)

εjy is identi-

cally zero for the two-dimensional problem; these are the normal equationsDAQ, DbQ that are 0

by construction on the manifold. Hence we obtain

∇J(c) =
N∑
j=1

1
qj(c)

εTj ŵjwj

as before.

The second derivative ofJ(c) can be written

∇2J(c) =
N∑
j=1

∇εjx(c) · ∇εjx(c)T +∇εjy(c) · ∇εjy(c)T + εjx(c) · ∇2εjx(c) + εjy(c) · ∇2εjy(c)

(C.15)

The first two terms comprise the Gauss-Newton approximation to the Hessian and can be written

explicitly as:

HGN =
N∑
j=1

1
q2
j (c)

[
x̂jwj −

∂A1

∂c

T

wj −
∂b1
∂c

] [
x̂jw

T
j − wTj

∂A1

∂c
− ∂b1

∂c

T]

+
N∑
j=1

1
q2
j (c)

[
ŷjwj −

∂A2

∂c

T

wj −
∂b2
∂c

] [
ŷjw

T
j − wTj

∂A2

∂c
− ∂b2

∂c

T]
This sum of rank-one matrices can be rearranged as

HGN =
N∑
j=1

1
q2
j (c)

(Nj − ŵjwTj)T (Nj − ŵjwTj)

where

Nj =
[
∂A

∂c1
wj +

∂b

∂c1

∂A

∂c2
wj +

∂b

∂c2

]
To evaluate the second part of the Hessian, we require∇2εjx(c) and∇2εjy(c), given by

∇2εjx(c) =
N∑
j=1

1
q2
j (c)

[
wj

(
wTj

∂A1

∂c
+
∂b1
∂c

T

− x̂jwTj
)

+
(
∂A1

∂c

T

wj +
∂b1
∂c
− x̂jwj

)
wTj

]
+

1
qj(c)

(
∇2A1wj +∇2b1

)
∇2εjy(c) =

N∑
j=1

1
q2
j (c)

[
wj

(
wTj

∂A2

∂c
+
∂b2
∂c

T

− ŷjwTj
)

+
(
∂A2

∂c

T

wj +
∂b2
∂c
− ŷjwj

)
wTj

]
+

1
qj(c)

(
∇2A2wj +∇2b2

)

Appendix C: The Hessian of J(c) 187

It may be unclear how to evaluate∇2A1wj and∇2A2wj but as we shall see it will not be

necessary. The second part of the Hessian is given by

H̄ = εjx(c) · ∇2εjx(c) + εjy(c) · ∇2εjy(c)

=
N∑
j=1

1
q2
j (c)

εjx

[
wj

(
wTj

∂A1

∂c
+
∂b1
∂c

T

− x̂jwTj
)

+
(
∂A1

∂c

T

wj +
∂b1
∂c
− x̂jwj

)
wTj

]

+
N∑
j=1

1
q2
j (c)

εjy

[
wj

(
wTj

∂A2

∂c
+
∂b2
∂c

T

− ŷjwTj
)

+
(
∂A2

∂c

T

wj +
∂b2
∂c
− ŷjwj

)
wTj

]

+
N∑
j=1

1
qj(c)

(
∇2A1εjxwj +∇2b1εjx +∇2A2εjywj +∇2b2εjx

)
(C.16)

The terms in (C.16) are identically zero, since the parameters are constrained to lie on the

manifold.

The remaining terms can be rearranged as

H̄ =
N∑
j=1

1
q2
j (c)

[
wjε

T
j Nj +NT

j εjw
T
j − 2εTj ŵjwjw

T
J

]
Writing the Hessian as the sum ofHGN andH̄ gives

H =
N∑
j=1

1
q2
j (c)

[
NT
j Nj −NT

j (ŵj − εj)wTj − wj(ŵj − εj)TNj + (ŵj − 2εj)T ŵjwjwTj
]

In this form the Hessian is clearly symmetric. However, it can be shown that the equations in

the partials (C.8)-(C.11) imply that

N∑
j=1

1
q2
j (c)

[
Nj − (ŵj − εj)wTj

]T
Nj = 0

which means that

H =
N∑
j=1

1
q2
j (c)

[
(ŵj − 2εj)T ŵjwjwTj −NT

j (ŵj − εj)wTj
]

This is the expression we derived earlier as (C.5).

Appendix D

Audio Interpolation

As an aside, we prove a simple result about when there is enough information contained in the

audio signals received at two microphones to synthesize the audio received at a third “virtual”

microphone. We show that when the virtual microphone is located along the line connecting the

two real microphones (the “baseline”), the audio can be synthesized with no knowledge besides the

distance between the two microphones.

We call this result “audio interpolation” as a direct analogy to the term “view interpolation”

from computer vision. Instead of using two real images of a scene to synthesize a new, physically

correct image of the scene from a different perspective, we seek to use two real sounds of an envi-

ronment to synthesize new, physically correct audio of the environment from a different position. In

terms of prior work, Slaney et al. proposed an algorithm called “audio morphing” [1], a method for

automatically transitioning from one sound into another. While the intermediate signals may sound

plausible, they do not correspond to sound produced by real underlying sources and microphones.

This is in direct analogy to Beier-Neely morphing, which produces intermediate images that cor-

respond to no real physical objects. By combining audio interpolation with view interpolation, we

can create virtual video that contains both images and sound.

We consider the one-source, two-microphone scenario in Figure D.1. Note the similarity to

Figures 6.1 and 6.2. We assume that the source, located atP , omnidirectionally broadcasts a signal

x(t) which is received at the omnidirectional microphonesM0 andM1 asx0(t) andx1(t). We

assume that the microphones are calibrated in the sense that the distance∆ between them is known.

This is slightly less general than the results from view interpolation, for which the distance between

188

Appendix D: Audio Interpolation 189

s∆
(1- s)∆

d0 d1

ds

M0

M1
Ms

P

Figure D.1: Microphone configuration.

the cameras need not be known.

We define the distances ofP to M0 andM1 to bed0 andd1 respectively. The location of the

source is unknown; however, from the amplitude and delay differences of the signalsx0(t) and

x1(t) we can compute the differenceδ0 = d1 − d0 and the ratioa0 = d1
d0

. The distancesd0 andd1

can be easily recovered as

d0 =
δ0

a0 − 1

d1 =
a0δ0

a0 − 1

We are interested in synthesizing the signal that would have been received at a microphoneMs

placed a fractions of the way along the line connectingM0 toM1 (the “baseline”). It is sufficient

to calculate the distanceds. This can be computed by a straightforward application of the law of

cosines as

ds =
√
s(1− s)∆2 + (1− s)d2

0 + αd2
1 (D.1)

This formula is correct for any value ofs, not justs ∈ [0, 1] as sketched in the figure. That is,

the virtual microphone can range anywhere along the line throughM0 andM1. This means that we

Appendix D: Audio Interpolation 190

may take the original microphones to be as close together as we like. We can also see from (D.1)

that knowledge of the microphone separation is necessary; the dependence on∆ is removed only in

the trivial cases when the virtual microphone is ats = 0 or s = 1.

The signal from the virtual microphone can be reconstructed as:

xs(t) =
d0

ds
x0

(
t− ds − d0

ν

)
whereν is the speed of sound. Unfortunately, the audio interpolation equation we derived is for

a single source only. However, there has recently been substantial success on the problem of sep-

arating multiple sources from two stereo mixtures. In particular, Jourjine et al. [2] presented a

novel method for blindly separating any number of sources using only two mixtures. The main

assumption of the algorithm is that the sources are W-disjoint orthogonal, i.e. the supports of the

windowed Fourier transforms of each pair(xi(t), xj(t)) of source signals are disjoint. This assump-

tion was shown to be viable for mixtures of real sources, e.g. multiple voices speaking simultane-

ously. Mixing parameters of the sources are estimated by clustering ratios of the time-frequency

representations of the mixtures. The estimates of the mixing parameters are used to partition the

time-frequency representation of one mixture to recover the original sources. The technique is valid

even when the number of sources is larger than the number of mixtures.

By coupling the audio interpolation equation with Jourjine’s algorithm, we can synthesize real-

istic virtual audio even in the presence of multiple sources.

The baseline connectingM0 andM1 is unique in that it is the only location where the sound

from a virtual microphone can be synthesized from only two microphones and multiple unknown

sources. Using the signalsx0(t) andx1(t), each source can be located only up to a point on a

circle orthogonal to the baseline (Figure D.2). Three calibrated, non-colinear microphones can

locate each source up to a pair of points; four calibrated, non-coplanar microphones can locate each

source unambiguously. Thus, two calibrated microphones is really the only “interesting” case in

which virtual audio can be synthesized from incomplete information.

Appendix D: Audio Interpolation 191

M0

M1

source 1

source 2
source 3

Figure D.2: Loci of sources that can be obtained with two microphones.

References

[1] M. Slaney, M. Covell and B. Lassiter. Automatic Audio Morphing. InProc. ICASSP 1996,

May 1996.

[2] A. Jourjine, S. Rickard, and O. Yilmaz. Blind Separation of Disjoint Orthogonal Signals:

DemixingN Sources from 2 Mixtures. InProc. ICASSP 2000, June 2000.

