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Abstract

The swift evolution of technology over the past twenty years has brought digital video from the
province of graduate school computer labs to the home of the average consumer. Furthermore,
the wireless revolution will soon enable the display of realistic, interactive digital video on a new
generation of sophisticated portable devices. Advances in video processing research will be required
to meet the demands of new applications and exploit the characteristics of new communications
systems. In this thesis, we pose, analyze, and solve several estimation problems in digital video
that arise from images taken of the same scene by different cameras, and introduce some novel
applications.

We first study the problem of estimating a projective transformation from noisy measurements.
Though this common problem in computer vision is typically solved as an eight-parameter non-
guadratic minimization, we present analytical and experimental evidence that the same solution can
be more efficiently obtained by minimizing a related functional of two parameters.

We next turn to the estimation of correspondence in the general case. We fully characterize
the class of point correspondences which can arise from a physical imaging system, and use this
understanding to design an algorithm for estimating correspondence that is particularly suitable
for wide-baseline camera configurations, where the assumptions of most existing correspondence
algorithms are unsatisfied.

We demonstrate that dense correspondence between two images of the same scene is sufficient
to synthesize realistic virtual images of the scene from new viewpoints. Prior work on still images
is extended to the synthesis of compelling virtual video from two video sequences, by means of
a novel and efficient algorithm for the recursive propagation of correspondence estimates between
video frames.

Virtual video has applications not only in visualization and entertainment, but also in wireless
multimedia applications. We show how virtual images can be used to interpolate low frame-rate
video with minimal overhead and low computational complexity, by solving an estimation problem

to construct virtual images which accurately represent real video frames.
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Chapter 1

Introduction

Twenty years ago, the storage and manipulation of digital video required unwieldy frame-buffering
hardware and processing power not found outside of an advanced computer lab. Ten years later, a
consumer with a high-end personal computer and CD-ROM drive might see short clips of digital
video interspersed with video games. Today, the average college student interacts with digital video
daily in the form of streaming news and entertainment broadcasts on the internet and movies in DVD
format. The next ten years will bring video over wireless networks to laptop computers, personal
digital assistants, cell phones, and even household appliances.

Many trends in technology and society drive the applications of digital video we will see in
the coming years. Wireless devices are getting smaller, cheaper, and more popular among a wider
segment of the public. On the other end of the spectrum, desktop computers have more processing
power, bigger hard drives, and faster internet connections than ever before. Movies are slowly
shifting to an all-digital pipeline, from shooting to post-production to projection to DVD release,
enabling a new level of compelling digital special effects. At the convergence of these trends is a
new breed of consumer who will make use of digital video at the workplace, on the commute, and
in the home, and expects that this video will be realistic and interactive.

No matter how fast processors become, engineers will always be challenged with meeting the
expectations of ever-more-demanding users in the face of limited time, restricted power, or low
bandwidth constraints. To this end, we must continue to push the limits of our understanding of
the relationships between cameras, images, and video, and exploit these relationships to store and

manipulate digital video in efficient and flexible ways.
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This thesis addresses some of the fundamental relationships between images taken of the same
scene by multiple cameras. On one hand, we will show how new images and video of the scene can
be robustly synthesized from the perspective of a camera not present in the original environment.
On the other hand, we will show how the same techniques lend themselves to the elimination of
redundant information in video so that it can be efficiently represented and transmitted. In a sense,
all the problems we address rely on estimating a dense correspondence between images. That is,
we want to estimate the image coordinates of every scene point that is visible in a pair of images.
Of course, this is a classical problem in computer vision and has been the topic of intense research
for over thirty years. However, much of the work in this area has been for stereoscopic or closely-
spaced images that do not look “too different”. Many applications of digital video in the future will
require algorithms to process images from perspectives that differ substantially.

Much of this thesis is related in spirit to recent techniques in image-based rendering from the
computer graphics community [1]-[12]. In contrast to the once prevalent school of thought that new
images of a scene should be created by projecting a model of the scene in 3-D space onto a 2-D im-
age plane, the central idea is that in certain circumstances, a new image of a scene can be created by
processing a set of images of the scene, always staying in the 2-D domain. Hence, in image-based
rendering, one of the most important quantities is image correspondence. Correspondence from
multicamera video also has many useful applications in video coding, image understanding, and
pattern recognition. While in some applications, an unstructured optical flow field may be an ade-
guate representation of correspondence between an image pair, there are many practical situations
in which a parametrized or structured correspondence is induced by the geometry of the cameras.
In addition to coupling the correspondence to a physical modeling assumption, parametrized corre-
spondence is generally more consistent, easier to manipulate, and contains more information about
the relationships between images. Each chapter of this thesis poses and solves a parametric corre-
spondence estimation problem for a different camera/scene configuration.

Chapter 2 introduces the notation and terminology that will be used throughout the text, as well
as basic background material. Chapter 3 reviews standard methods for solving various estimation

problems in digital video that we will use as building blocks in our algorithms.
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We begin the main contributions of the thesis in Chapter 4 by discussing projective transforma-
tions. Projective transformations relate the coordinates of images that are taken by either a camera
that undergoes only rotation while imaging an arbitrary scene, or one that rotates and translates
while imaging a planar surface. Estimating the eight parameters of a projective transformation be-
tween a pair of image planes induces a global, dense correspondence between them. The estimated
correspondence can be used to synthesize new views of the scene from different perspectives, e.g.
by “rotating” the camera that took one of the original images, or by mosaicking many images into a
large panorama. These applications have been well-studied, and what we address here are efficient
algorithms for the initial step of estimating a projective transformation from noisy point correspon-

dences. The contributions of the thesis in this regard include:

¢ Reduction of dimensionality. The projective transformation estimation problem is typically
posed as the minimization of a nonlinear functional of eight parameters, and solved with an
“off-the-shelf” numerical algorithm. We show that in fact, this minimization can be analyti-

cally reduced to a nonlinear problem in only two parameters.

¢ Efficient algorithms. We show that any descent algorithm to solve the eight-dimensional
minimization can be modified to produce a more efficient algorithm for the two-dimensional
problem. We propose several algorithms based on the two-dimensional problem and present

results on data from real images to experimentally verify their superiority.

e Robust algorithms. We demonstrate that not only are the algorithms we propose efficient,
but they are also robust to the types of measurement noise that could be introduced by a poorly

calibrated sensor or outliers in the data sets.

We will use projective transformations extensively in our work with images and video, but
the class of projective transformations is too restrictive to relate all the images we wish to con-
sider. Unfortunately, in general, the correspondence between an image pair has no simple global
parametrization. The onlg priori restriction on the locations of corresponding points is the well-
known epipolar constraint. However, the set of correspondences that are physically realizable is

not entirely unconstrained and has a structure that we fully characterize in Chapter 5. The thesis
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contributions here are:

e Correspondence graphsWe fully describe the class of sets of corresponding points that can
arise from a real imaging system. Previous work on correspondence almost always begins
with the monotonicity assumption, that the ordering of points along epipolar lines is an image
invariant. Instead, we consider the correspondence induced by arbitrarily complicated scenes,
and encapsulate this structure in the correspondence graph, the set of all points that are visible
in two conjugate epipolar lines. Using the formalism of correspondence graphs, we can ensure

that any estimated correspondence is consistent with a physical imaging system.

¢ Efficient algorithms. In addition to describing the topological structure of correspondence
graphs, we provide an algorithm by which they can be efficiently constructed for real images.
As a result, we can estimate dense, physically consistent correspondence between images
taken by widely separated cameras, useful for applications where geometric accuracy is cru-

cial.

The particular application of correspondence graphs that we address in Chapter 6 is the con-
struction of “virtual video”. This is physically consistent, synthetic video of a scene from the per-
spective of a moving camera not present in the original environment. This virtual video can contain
perspectives and motion that would have been impractical or impossible to obtain with a real mov-
ing camera. Applications include sports video replays, computer games, video conferencing, and

special effects. Our contributions here include:

¢ Virtual images from wide-baseline stills. Various techniques for synthesizing a virtual im-
age from two still images have been proposed in the computer graphics community, and gen-
erally rely on dense image correspondence. This correspondence is typically estimated using
algorithms that make the monotonicity assumption, thus limiting the class of input images
that can be processed. The correspondence graph framework discussed in Chapter 5 allows
us to create virtual images containing objects that violate the monotonicity assumption, yet
still appear in the correct positions. This creates a heightened degree of realism, without

resorting to 3-D modeling.
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e True virtual video. To our knowledge, there were only two types of “virtual video” created
before our work. The first consisted of moving a virtual camera around a static scene synthe-
sized from stillimages. The second required expensive, specialized hardware, many cameras,
and highly accurate scene modeling. In contrast, here we describe how to create virtual video
from multicamera video, using geometric constraints and only two cameras. We create true

virtual video, in the sense that the synthetic video evolves dynamically along with the scene.

o Efficient estimation algorithms. The virtual video is produced with an efficient recursive
propagation algorithm that builds on the estimation algorithms derived in Chapters 3, 4, and 5,
and requires minimal user interaction. We can update the correspondence estimate required to
create each virtual frame in a fraction of the time it would take to estimate the correspondence

anew for every frame pair, and prove that this fast algorithm is stable in a well-defined sense.

Virtual video can be used to create compelling graphical effects for visualization or entertain-
ment. However, if the synthetic views are actually designed to be good approximations to real
video frames, we can realize gains in rendering low frame-rate compressed video. This is especially
applicable to the emerging domain of wireless multimedia. The wireless multimedia channel has
limited bandwidth, so video data needs to be reduced in both frame size and frame rate. In addition,
the multimedia client must reconstruct the video from the transmitted data at a small computational
cost due to low power requirements. Virtual frames synthesized with the techniques of Chapter 6
are ideally suited for such requirements, since the information required to render the virtual frames
is compact and the rendering algorithm is computationally inexpensive. We explore this idea in

Chapter 7. The contributions of the thesis here include:

e Virtual-view-based time-domain interpolation of video. We propose a virtual-view-based
scheme for video interpolation. We designate a small fraction of non-uniformly spaced frames
as anchor frames, and transmit these with good fidelity. The remainder of the frames are re-

constructed using a combination of virtual image synthesis and image registration techniques.

e Low-bit-rate algorithms. The anchor frames can be selected to be few and far between, and

the side information required to synthesize images between them is amortized over potentially
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hundreds of intermediate frames. This allows us to achieve bit rates on the order of 45 kbps

or less, with better perceptual quality than MPEG-coded video at higher rates.

Taken together, the estimation algorithms introduced in this thesis provide a framework for
creating realistic and interactive synthetic video, using algorithms that are well-founded, efficient,
stable, and robust. Potential applications range from the high-bandwidth, wide-screen world of
enhanced DVD to the low-bandwidth, small-screen domain of PDAs and wireless phones. In either
case, the understanding of relationships between multicamera video enables us to create effects that

were unheard of just five years ago.
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Chapter 2

Preliminaries

In the following chapters, we will speak extensively about cameras, images, and correspondences
between them. Here we introduce the notation and terminology that will be used throughout the
text, as well as basic background material.

Section 2.1 gives the basic perspective image formation model we will use exclusively. While
other, simpler models have been proposed (e.g. orthographic projection), this model accurately
reflects the phenomena observed in images taken by real cameras. We introduce the notion of
correspondence in Section 2.3 and discuss the fundamental matrix and epipolar geometry that relate
image correspondences in the next two sections. Section 2.6 introduces affine transformations,
which are special cases of the projective transformations we will discuss in Chapter 4.

We will discuss techniques for estimating several of the quantities introduced here from real

data in Chapter 3.

2.1 Cameras and Images

In our analysis, we will consider idealized pinhole cameras. Such a cahiedescribed by:

1. A center of projectio) € R3
2. Afocal lengthf € R

3. An orientation matrixk € SO(3)
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The camera’s center and orientation are described with respect to a world coordinate system on
R3. A point P expressed in the world coordinate systenPas: (X,,Y,, Z,) can be expressed in

the camera coordinate system(oés

Xe X,
ZC Zo

The purpose of a camera is to capture a two-dimensional image of a three-dimensiond,scene
i.e. a collection of points ifR3. This image is produced by perspective projection as follows.

Each camer& has an associated image plaRelocated in the camera coordinate system at
Zc = f. The image plane inherits a natural orientation and two-dimensional coordinate system
from the camera coordinate systenXs-plane (see Figure 2.1). At this point we note that the
three-dimensional coordinate systems we consider are left-handed. This is a notational convenience,
allowing us to make the assumptions that the image plane lies between the center of projection and

the scene, and that scene points have posifiveoordinates.
oP = (X Yo, Zo)

z

Image

/ Coordinates

X

W=(XY), y

X
Camera Coordinates

Figure 2.1: Perspective projection.

A scene point? = (X¢, Ye, Z¢) is projected onto the image plafieat the pointw = (z, y) by

the perspective projection equations:

Xe Ye
l’sz—C Z/:fZ—C (2.1)
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The imageZ that is produced is a map frof into a color spac&. The color of a point is
typically a real-valued intensity or a triplet of RGB or YUV values. While the entire ray of scene
points{x(z,y, f)|x > 0} is projected to the image coordindte, y) by (2.1), the point on this ray
that gives(zx, y) its color in the imag€ is the one closest to the image plane (i.e. that point with
minimal ). This point is said to be visible; any scene point further along on the same ray is said to
be occluded.

Technically, we should be careful about the relationship between the color of image points and
the color of scene points. To simplify matters, we assume that scene points have the same color
regardless of the viewing angle (this is called the Lambertian assumption), and that the color of an
image point is the same as the color of a single corresponding scene point. In practice, the colors of
corresponding image and scene points are different due to a host of factors in a real imaging system.
These include the point spread function, color space, and dynamic range of the camera, as well as
non-Lambertian or semi-transparent objects in the scene. For more detail on the issues involved in

image formation, see [1, 2].

2.2 Homogeneous Coordinates

In certain situations it is advantageous to describe the image coordinateby the homogeneous
coordinatex(z,y, 1), wherex # 0. Clearly the image coordinate of a homogeneous coordinate
(z,y,2) can be recovered gs, %) whenz # 0. Similarly, any scene pointX,Y, Z) can be
represented in homogeneous coordinates(a8 Y, Z, 1), wherex # 0. We use the symbak to
denote the equivalence between a homogeneous coordinate and a non-homogeneous one.

A cameraC with parameter$O, f, R) can be represented bya« 4 matrixII that multiplies a
scene point expressed as a homogeneous coordinRfetinproduce an image point expressed as a
homogeneous coordinatelk¥. When the scene point is expressed in the world coordinate system,

the matrixII is given by
f 00
lle=1]0 f 0|[R —RO]
0 0 1
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Then

I = 0 f 0|[R, —RO]

- N

2.3 Two Cameras

Consider the situation in Figure 2.2, in which the same static scene is imaged by two cémeras
andC;. These could be two physically separate cameras, or a single moving camera at different
points in time. In the latter setting it is natural to say the induced images are related due to camera
motion. Let the scene coordinates of a paihin the Cy coordinate system beX, Y, Z), and in
the C; coordinate system beX’, Y’  Z’). We denote the corresponding image coordinate® of
in Py andP; by w = (z,y) andw’ = (2’,%), respectively. The points andw’ are said to be
corresponding points, and the pé&ir, ') is called a point correspondence.

The scene poinP is projected onto the image pointsandw’ via the perspective projection

equations (2.1):
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P=(X,Y,2)=(X,Y', Z)
L )

w = (X, ) 7 Z w' = (X', y)

Figure 2.2: Rigid motion of a camera.

X Y
ﬂf—fOE y_fOE
D¢ Y’
x/:f17 y/:fli

Here fy and f; are the focal lengths @y and(y, respectively. We assume that the two cameras
are related by a rigid motion, which means that ¢hecoordinate system can be expressed as a

rotation R of theC, coordinate system followed by a translatior ¢y tz]”. Thatis,

X' X tx
Y | =R|Y |+ | ty (2.2)
7' Z ts

In terms of the parameters of the camerfass R1 R, ' andt = R1(Oy — O1). Alternately, we
can writeR as

cosacosy +sinasinFsiny cosfsiny —sinacosy 4+ cosasin §sin -y
R=1 —cosasiny+sinasinBcosy cosBcosy sinasiny + cosasin3cosy
sin acos 3 —sin 3 cos acos 3

(2.3)
wherea, § and~y are rotation angles around th& Y, andZ axes, respectively, of th& coordinate
system.
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By substituting equation (2.2) into the perspective projection equations (2.1), we obtain a rela-

tionship between the two sets of image coordinates:

X/
l'/ = fl?

_ ™ %CB + ?“12%21 +riafy + L 2.4)
w4 2y + a3+ b

Y/
/
y = fl?
o %JJ + 7“22%3/ +rogf1 + % 2.5)
a %x—k%y%—rgg—l—% '

Here ther;; are the elements of the rotation matrix given in (2.3). In Section 2.6 and Chapter 4 we

will consider some special cases of (2.4)-(2.5).

2.4 The Fundamental Matrix

The following theorem from [3] expresses an important fact about the correspondence between two

images of the same scene:

Theorem 2.1: For every pair of camera&Cy, C;) in which the camera centers are separated by a
non-zero translation, there exists a matfixof rank two such that for all correspondendes w') =

((z,y), (2", y)) € Po x Py,

Proof.  Let the camera§, andC; have parameter®)y, fo, Ry) and(O1, f1, R1), respectively,
with O; # Op. Fix a correspondencav,w’) € Py x P1, and letP be the associated scene
point. Let P be expressed in the coordinate system§gpéndC; by (X,Y,Z) and(X', Y, Z'),

respectively.
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Let (R, t) relate the coordinate systems(6f, C;) so that:

X’ X
v | =R|| v | +¢ (2.6)
7 z

HereR = R R, " andt = Ro(Op — O1). From (2.6) it follows that the vectorsx’, Y, Z')7,

R(X,Y,Z)T, andRt are linearly dependent (i.e. coplanar). Therefore, we can write:

X' X
Y' | R|tx | Y =0 (2.7)
z' A
We can rewrite (2.7) as
X' ! X
Y| RT| vy |=0 (2.8)
Z' Z
where
0 —tz ty
T=1 ty 0 —tx
-ty ix 0

Now, by perspective projection, the image coordinates are:

X Y
$—f07 y—fog

X' Y’
a' = f17 y/ = flg

We can substitute into (2.8) to produce

z ! L L x
f1 fo
! / 1 1 —
(ZZ") i RT % y | =0 (2.9)
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Since neither of Z, Z’) is 0 by assumption, (2.9) implies

4 1 1
/
v i To v
/ 1 1 —
Y o RT + y | =0
1 1 1 1

This is the statement of the theorem, with= A;TRTAgl, andA; = diag(f;, fi,1). The
matrix F' is of rank two sincedg, A;, andR are always nonsingular, arfdis rank 2 for any non-
zerot € R3. SinceF depends only on the rigid motion relating the cameras, and not on the choice

of correspondence, the theorem is proved. [ |

Any matrix F’ satisfying Theorem 2.1 for a camera p@ip, C1) is called a fundamental matrix
for (Co,C1). The matrixE = RT is called the essential matrix f¢€o,C;).
The fundamental matrix is unique up to scale provided that there exists no quadric sDrface

containing the ling)yO; and every point irS [4].

2.5 Epipolar Geometry

Given the fundamental matrik for a camera paifCo, C; ), a constraint on the possible locations of

correspondences between the associated imagéZpaif; ) can be obtained.

Y.

Figure 2.3: Epipolar geometry.
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Definition. The epipolar line of a poink € P is the set of points:

RN

If w is the image of scene poii® in Py, the image ofP in P; is constrained to lie on the

by = qu' = (2',y) € Py

epipolar line’,,. Epipolar lines for points irP; can be defined accordingly. Hence, epipolar lines
exist in conjugate pair, ¢1), such that the match to a poiate ¢, must lie on¢;, and vice versa.
Conjugate epipolar lines are generated by intersecting any glarantaining the baselin€,0;
with the pair of image plang$y, P1) (see Figure 2.3). For a thorough review of epipolar geometry,
see [5].

The epipolesy € Py ande; € P, are the projections of the camera cent@isand Oy onto
Py and Py, respectively. It can be seen from Figure 2.3 that the epipolar lines in each image all
intersect at the epipole. In fact, the homogeneous coordinates of the epipalede; are the right

and left eigenvectors af, respectively, corresponding to the eigenvalue 0.

2.6 Affine Transformations

One of the fundamental relationships in image processing is the affine transformation. An affine

transformation maps a poiat € R? tow’ € R? by:
w =Aw+b
whereA € GL(2) andb € R?. Some important special cases are:

Translation: A =1

) cosf) siné
Rotation: A = ,b=0
—sinf cosf

] a 0
Scaling: A = ,0=0,0,8#0
B

1 kK
Shear:A[ ]71)0
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(b)

(©)

(d)

Figure 2.4: Special affine transformations. (a) Translation, (b) rotation, (c) scaling, (d)

shear.

The effects of these operations on a rectangle centered at the origin are illustrated in Figure

2.4. In fact, any affine transformation can be expressed as a composition of these four special

operations. Any nonsingular matrix can be factored ad = QR, where( is orthogonal (i.e. a

rotation matrix) andr is upper triangular [6]. Then we can wrif¢ as a composition of a scaling

and a shear:

a b a O
0 c 0 ¢

Qo

=

The relationship between the coordinates of two images of the same scene is often modeled as

an affine transformation to be estimated. We pause to determine when this modeling assumption is

well-founded. Reconsider equations (2.4) and (2.5) that relate the image coordinates of a point seen

by two camerag,; and(;:

, T11§1$+T12§ y+7‘13f1+ Lol
€T =
Bt et
, 21 }CIIE + 722 }cly +rosfy + B0
y =

T;’le—l- 7}”2y—|—r33+
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For this to be an affine transformation that relates every image correspondence, we require:
o 131 =0

® 133 =0

~

X

t t H
e X X °Z constant for all scene points

From the form of the rotation matrix (2.3), the first two conditions imply that the rotation angles
a andg are 0, i.e. the image planes are both parallel toXhé-plane. The third condition implies
that either the translation vectois identically O, or thatZ is constant for all points in the scene,

i.e. the scene is a planar surface parallel to the image pfanaadpP;.

Therefore, an affine transformation is induced by the motion of a perspective camera only under
somewhat restrictive conditions. However, the affine assumption is often made when the scene is
far from the cameraA is large) and the rotation anglasandg are very small. This assumption has
the advantage that the affine parameters can be efficiently estimated. We discuss such estimation

techniques in Section 3.1.
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Chapter 3

Basic Estimation Problems

In this section, we briefly review standard methods for solving various estimation problems in digital
video that we will encounter in the text.

We begin in Section 3.1 with the problem of estimating an affine transformation. We present the
classical linear least-squares solution from point matches; we will see in Chapter 4 how it is related
to the more difficult nonlinear least-squares problem of estimating a projective transformation. In
the case when point matches are not available, we briefly review correlation and Fourier-based
methods for estimating translation, rotation, and scale parameters. A wide variety of techniques for
the estimation of affine transformations is reviewed in [1].

As we saw in Chapter 2, the conjugate epipolar lines in an image pair are determined by the
fundamental matrix. Since we make use of the epipolar geometry to analyze correspondence in
Chapter 5, we discuss algorithms for estimating the fundamental matrix in Section 3.2. In Section
3.3 we discuss the related issue of estimating a pair of rectifying transformations, which facilitate
working with epipolar lines in computer programs.

In Section 3.4 we turn to the issue of automatically obtaining a set of point matches between an
image pair, a preliminary step for several of the estimation problems we will discuss. In Chapter
2 we defined a correspondence as a pair of pdimtsy’) that are the projections of some scene
point P onto a pair of image plang$?, P1). ldeally, we would like each point match to be a
correspondence, but in practice the point matches are correspondences corrupted by noise. We
conclude in Section 3.5 with a discussion of algorithms for estimating dense correspondence over

an image pair. These algorithms attempt to provide a matéh iior every point inP.

19
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3.1 Estimating Affine Transformations

3.1.1 The Linear Least-Squares Problem

Suppose we possess a set of point matdites, w}) € R* x R?,j = 1,..., N}. We assume that

these are noisy samples of a fixed but unknown affine transformafios- (A, b), so that
w; =Aw;j+b+e; j=1,...,N

where thee; are small errors. When the errors are modeled as zero-mean iid Gaussian random
variables, the maximum likelihood estimate of the parametdrs) is the minimizer(A, b) of the
least-squares functional

N
Z (w’- — Aw; — b)T (wlz — Aw; — b) (3.1

J J

N —

Q(A7 b) =

J=1
This estimate is also the minimum-variance unbiased estimgté,®f. The minimizer of the

linear least squares functional (3.1) is well known and can be expressed as:
A b =vw! (3.2)
wherelV € R3*3, V € R?*3 are given by

N T N
Zj:l Wi w; Zj:l wy

N
2j=1 U’;“F N

_ N N
Vo= [Zj:lw;'ij 2j=1“’3}

If the contribution of thej’" data pair is to be weighted by;,! the corresponding least-squares

functional is
N

]‘ !/ !/
Q(A,b) = 3 Z)\j (wf — Aw; — b)T (wf — Aw; —b)
=1

'For example, if the errors; are zero-mean independent Gaussian variables, with variancten setting; = aj_z
yields the maximum likelihood estimate @A, b).
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and the solution is given by (3.2) with" andV replaced by

N T N
D jm1 AWy Y iy Ajw;

W =
Zé\le)‘jij NZLM
_ N N
Vo= [ Sl S

This is a natural approach to estimation even when the errors are not Gaussian. However, a
data point with a very large; can dominate the estimation and pull the minimizer away from the
underlying set of parameters (see Figure 3.1a).

Principal component analysis fit to noisy data Residuals from estimated fit
T T T T

[" Residual of outlier

(a) (b)
Figure 3.1: Effects of outliers. (a) Data points and least-squares estimate, (b) Residuals
€;

Unfortunately, the residual erréf = w; —(ij+8) of an outlying point can be quite small (see
Figure 3.1b). Various technigues have been proposed for identifying and rejecting outliers [2, 3, 4].
In practice, we use the least-median-of-squares (or “X84") algorithm proposed by Rousseeuw and
Levoy [5]. Specifically, ifm is the median ofé;,j = 1,..., N}, we compute the median absolute
deviation

median; [é; — m|
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or the mean absolute deviation N
% Z |éj —m
j=1
and reject points whose residual lies more than some number of deviations from the median. The
advantage of this technique is its robustness to outliers in:batidy directions. Up to half of the
data points can be outliers and still be correctly rejected.

The least-median-square estimator is one of a more general class of robust estimators called

M-estimators [6].

3.1.2 Estimating Translation

Estimating the translation between a pair of images is a classical problem in computer vision. When
we possess a set of noisy feature correspondefiges w;.) € RZxR%j =1,...,N}, the
maximum likelihood estimate of the translation is simply the mean di]‘ferérﬂae}V Zj-vzl(w} —
w;). Zagorodnov [7] discussed how to stabilize the variance of translation estimates between a
sequence of images using multiple pairwise estimates.

In the absence of a set of matched feature correspondences, the problem may be posed as a

least-squares problem over the entire image pair:

(T (2, y) — To(z + by, y + ba))? 3.3
blbzeNMNZ;; 1(z,y) — Zo( 1,y +b2)) (3.3)

This expression assumes that the images always overlapNnpixels, and that the search for the
best translation vectdb,, b2) is conducted over a neighborhogd of R2.

When the search neighborhogd is large compared to the dimensions of the images, solving
(3.3) by a brute-force correlation search is generally quite time-consuming. A standard approach is
to subsample the imag&g andZ; to an extent such that a search over all the translation vectors in
N is practical, and then propagate the translation estimates from each coarsely subsampled image
pair to a more finely subsampled image pair. Atthe higher level, the search neighborhood is confined
to lie near the previous translation estimate. This process continues until a translation estimate is

obtained for the full-resolution images.
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The following pseudocode illustrates a coarse-to-fine algorithm for estimating the translation

between twaV x N images with/ levels of subsampling.

Algorithm 3.1: Estimating translation between an image pair.
1. Subsample the imagé%), Z;) by a factor of2’.

N N]Z

2. Initialize the search neighborhood = [—57> 52

3. Forlevel=1 to¢:
(a) Initialize C* = oc.
(b) For (by,be) € N:
I. Tmin = max(1l, —b1), Tmax = min(N, N — by),

Ymin = max(l, _b2)1 Ymax = min(N, N — bg)

i, C = e o o (Ta(w,y) — Zo(x + biyy + b))’
ii. If C < C*,
A C*—C
B. (b7,03) — (b1,b2)
(c) Upsampl€Zy,Z;) by a factor of 2.

(d) N [2b%F — 1,2b% 4 1] x [2b5 — 1,205 + 1]

This algorithm requires a factor of approximatéff less arithmetic operations than a brute-
force solution of (3.3). Since only a fraction of the translation vectors are tested, there is no guar-
antee thatb;, b5) will be the true minimizer. However, in practice, if the images are sufficiently
smooth and the most coarsely subsampled images still resemble the originals, the estimate is good,
and can be computed with fewer operations than it would take to detect and match features.

Another popular method for estimating the translation between an image pair operates in the
frequency domain, using phase correlation [8]. Given two imagés,y) andZ;(x,y), denote

their Fourier transforms by

Jo(&;m) = F(Zo(z,y))
Ji(€n) = F(Ti(z,y))
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Then writing the Fourier transforms in the magnitude-phase form

Jo(€,m) = My(€,n)el®0En

Ji(€,m) = My(E,n)el1En
we can define the phase correlation functign, y) by
d(z,y) = F (e (Go&m—d1(Em)) -

By the Fourier shift theorem, i (xz,y) = Zo(x + x0,y + yo) for some shift(zg, o), then
the corresponding phase correlation functilgm, y) is an impulse centered &t, yo). Hence, the
translation between an image pair can be estimated by forming the phase correlation function (3.4)
and searching for a global maximizer. One advantage of this technique is its efficient implemen-
tation via the Fast Fourier Transform. It is also robust to illumination scale or shift in the original

image pair, or noise concentrated in a narrow band of the frequency domain.

3.1.3 Estimating Rotation and Scale

Translation estimation techniques can be extended to further estimate the rotation and scale differ-
ence between an image pair. Consider two images whose coordinates are related by rotation and an

isotropic scaling:
Zi(z,y) = To(a(x cosy + ysinvy), —a(zsiny — y cos 7)) (3.5)

Then by a change to so-called log-polar coordinates log \/x2 + 42, § = tan™! 4,(3.5)
becomes

Ti(p,0) = Zo(p + loga, 0 — )

The rotation angle and scaling factor can then be recovered by a translation estimation algo-
rithm. Reddy and Chatterji [9] suggested using phase correlation, operating in the frequency domain
and using properties of the Fourier transform. Wolberg and Zokai [10] proposed a coarse-to-fine
multiresolution algorithm that operates in the spatial domain and simultaneously estimates the trans-

lation between the image pair.
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3.2 Estimating the Fundamental Matrix

As in the projective transformation estimation problem, our objective is to select the matrix

R3*3 that best matches a given set of point mappings:
{w;j — w} €eR%j=1,...,N}

A special case arises when the data consists of hoisy samples of a fixed but unknown fundamen-

tal matrix F':
T

w; w; :
F =ej,j=1...N
1 1

Therefore, it is natural to try to minimize a least-squares cost functional such as

, T
IR =3 Uf F

Jj=1

i (3.6)
1

over the class of admissible fundamental matrices. We recalFthatst have rank two (see Section
2.4). Furthermore, the fundamental matrix is unique up to scale, so we must fix some scaling (say,
||F|| = 1 for some appropriate norm) to ensure thliatannot become arbitrarily small. Hence, the
class of admissible estimates has only seven degrees of freedom. Constrained minimizations of this
type are problematic due to the difficulty in parameterizing the class of admigsitltaugeras and
Luong [11, 12, 13] proposed some solutions in this regard and analyzed various cost functionals for
the estimation problem.

The approach we take in practice to estimating the fundamental matrix is due to Hartley [14].
Ignoring the rank-two constraint for the moment, we minimize (3.6) over the claBsith Frobe-
nius norm 1.

Each correspondenge;, w}) produces a linear equation in the elements’of

xi @l fr + x5y far + 25 31 + v far + iy fao + yifas + 2 far + Y faa + f33 =0

The equations in all the data points can be collected into a linear sysfem 0, whereA is an

N x 9 matrix involving the data, and = (fi1, f21, f31, f12, fo2, f32, 13, f23, f33)T is the vector
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of unknowns. The least-squares minimization problem is then

min  [[Af][2
st.  fTf=1

The solution to this is well known and the minimizer is the eigenvegtarR? of AT A corre-
sponding to the minimal eigenvalue. This can be computed via the SVD. This eigenvector is then
reassembled into&x 3 matrix F'.

To account for the rank-two constraint, we replace the full-rank estifidtg ™, the minimizer

of

min  ||F - F*|g (3.7)

st.  rank(F*) =2

Given the singular value decompositibh= U DV’ whereD = diag(r, s, t) with r > s > t,
the solution to (3.7) is
F*=UDvT

whereD = diag(r, s,0).

Furthermore, the data is normalized by translation to the origin and isotropic scaling before the
estimation to maintain numerical stability. Tf and7” are the3 x 3 normalizing transformations
applied to the homogeneous coordinates ofd};eandwg, then the estimate of the fundamental

matrix in the original coordinates is given by

F=T7TF*T

3.3 Estimating Rectifying Projective Transformations

Since epipolar lines are generally not aligned with one of the coordinate axes of an image, or even
parallel, the computer implementation of algorithms that work with epipolar lines can be compli-
cated. To this end, it is common in computer vision algorithms to apply a technique called rectifica-

tion to an image pair before processing, so that the epipolar lines are made parallel and horizontal.
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Definition. An associated image plane pé#y, P;) is said to be rectified when the fundamental

matrix for (Py, P; ) is the skew-symmetric matrix

0 0 0
Fo=10 0 1 (3.8)
0 -1 0

In homogeneous coordinates, the epipoles correspondifig émeey = e¢; = [1 0 0], which
means the epipolar lines are horizontal and parallel. Furthermore, expanding the fundamental matrix

equation for a correspondenger, )7, (z/,4')T) € Py x Py,

which is equivalent tg/ — y = 0. This implies that not only are the epipolar lines horizontal, they

are aligned, so that the lings= X in Py andy’ = X\ in P; are conjugate epipolar lines.

A
\
I

G e

F e
Po Po P P

Figure 3.2: Rectifying projective transformations.

Definition. Two projective transformations~, H ) are called rectifying projective transformations

for an associated image plane pghy, P;) with fundamental matrix¢” if
HTFG ' =F, (3.9)

By the above definition, if the projective transformatia@isnd H are applied toP, andP; to
produce warped image plan®s and?;, respectively, theltnﬁo, P,) is a rectified pair (Figure 3.2).

Efficient technigues for image warping are discussed by Wolberg [15].
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Equation (3.9) may be rewritten and expanded to reflect its dependence on the erttrissdi :

F = HT'F.G
_ a7
ain a2 b 0 0 0 air a2 b
= do1 Gz bo 0 0 1 a1 a2 b
C1 Co 1 0 -1 0 c1 C2 1

a21c1 — C1a21 G21C2 — C1a22 G21 — C1by

= G22C1 — C2a21 @22C2 — C2a22 Q22 — Cobo (3.10)

bac1 — azi baco — ago by — bo

From (3.10) it is clear that the rectifying condition (3.9) may be expressed as 9 equations in
the 16 unknowns of the two projective transformatiagisand H. Specifically, the parameters
(a11,a12,b1,a11,a12,b1) are entirely unconstrained aside from the requirement that their choice
not make|G| = 0 or |[H| = 0. Hence, there are 7 degrees of freedom in the choice of a rectifying
pair (G, H).

The importance of rectification has been known for many years in the field of photogrammetry
[16]. However, older methods for obtaining rectifying projective transformations for an image plane
pair generally relied on knowledge of camera parameters.

Seitz [17] and Hartley [18] described methods for deriving rectifying projective transformations
from an estimate of the fundamental matrix relating an image paim kgd Trucco [19] observed
that the rectifying transformations may be estimated without explicitly estimating the fundamental
matrix as an intermediate step.

In practice, we use Seitz's method for obtaining a rectified image pair, though it has its draw-
backs (see Section 5.6). First, an arbitrary plahparallel to the baselin®@,0; is selected that
intersectsPy andP; in two linesdy andd,, respectively (Figure 3.3). The two image planes may
be made parallel by rotating image plaRgthrough a certain anglg about the linel; (or any line
parallel tod;).

The epipolesy = (eos, eoy) ande; = (e1s, e1y) represent the projections of the camera centers
0O, andOy onto the image plang8, andP;, respectively. Therefore, an image plane parallel to the

baseline has its epipole at infinity (i.e. has third homogeneous coordinate equal to 0). The rotation
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Po

0,
Figure 3.3: Intersection of images with a plane (from [17]).

Rgl: of image planéP; about the linel; = (d;, diy, d;.) o that the new epipolg has homogeneous

coordinatese;,, €;,,0) is given by

diz?(1 — cos ;) + cos ; dizdiy(1 — cos ;) djy sin 0;
RZ: = dizdiy(1 — cos 0;) din(l —cosb;) +cosb; —di,sinb;
—djy sin §; d;iz Sin 0; cos 0;

where

1
0; = tan™! <—>
’ diyeix - dixeiy

Seitz suggests choosirigimplicitly by specifyingdy = (eoy, —€o, 0); this choice ofdy min-
imizes|y|. Then if (z,y, 2)T = F(doz, doy,0)T, it can be shown that;, = ay andd;, = —ax,
wherea = /2 + 42 .

An additional affine warp is required to align the conjugate epipolar lines. A rotatjors first

applied to each image to make the epipolar lines horizontal, i.e.

cos¢; —sing; 0
Ry, = | sing; cosp; O
0 0 1

where

16
¢i = —tan 1 Ty
Cix
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Here,ée; are the epipoles in the parallel imag(d%‘ggpo, RZ;PI). After the ¢ rotations, the funda-
mental matrix of the transformed image plane [dty, R Po, Ry, Ry P1) has the form, up to a

scale factor,
0 0O

F=RyRIFR R gy=|0 0 a
01 b
To bring the epipolar lines into alignment with those of the first image, i.e. to bring the

form (3.8), the second image is vertically scaled and translated by a riatgiven by

1 0 0
=10 —a -b
0 0 1

A pair of rectifying projective transformations that redu€do the form in (3.8) are therefore

given by:

G = Ry Ry
= TRy R

It is desirable that the projective transformations computed by this method have positive diag-
onal elements, so that no reflections are involved in the transformations. The following algorithm
can be applied:

1. NormalizeGG(3,3) = H(3,3) = 1 and check to see whethes,ass < 0. If so, ¢ should be

incremented byr and H recomputed. Thengsass > 0.

2. At this point, the first and/or second rows@fand H can be multiplied by -1 if necessary to

make the diagonal entries positive, without changing the relationship in (3.9).

Note that this method is an algorithm for selecting one pair of rectifying projective transforma-
tions from the entire family of rectifying projective transformation pairs, which has 7 degrees of
freedom. There is no guarantee that the projective transformation pair that is estimated is optimal
in any sense, and it can possibly distort the images in an undesirable way. However, a satisfac-
tory method for selecting an optimal rectifying pair of projective transformations has not yet been

proposed.
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3.4 Estimating Point Correspondences

Many algorithms for image parameter estimation problems require a set of image correspondences
as input. A common approach to obtaining such correspondences is to select a set of pixel regions
(usually rectangular blocks) ify and to find matching regions ify. The best match for a region

of pixels Ry € Zy can be defined as the regidty € 7; of the same size and shape &g that
minimizes the sum of squared intensity differences between pixels in the same position. In a sense,

this is a very specific type of translation estimation problem.

| -0 | —0 B 1o
Dé"’" O D_/’— [ BEES=— W Ry
L O — |
\ D

Figure 3.4: Regions that are difficult to match correctly.

However, some regions are worse than others for matching, in the sense that many minimato the
matching problem may exist. Figure 3.4 illustrates blocks of pixels that lie in a constant intensity
region, a region whose intensity along a linear profile is constant, and a regularly textured region.
Each of the blocks in the left images can be matched with zero error by several blocks in the right
images. Perturbations in intensity to these idealized image pairs create situations in which the global
minimizer to an intensity-difference-minimizing functional is found in the bottom of a very shallow
basin (i.e. the second derivative of the functional is very small at the minimizer).

To obtain robust results for estimation problems, it is important to obtain high-quality features
in Zy that may be unambiguously matchedZin Many indicators of pixel regions that constitute
“good” features have been proposed, including line contours, corners, and junctions.

Often the definition of a “good” feature is made without reference to the estimation problem for
which it is to be used. However, Tan et al. [20] presented an approach to finding good features for
the feature correspondence problem by formulating it in a parameter estimation framework. After
deriving the Crarar-Rao lower bound of an unbiased estimator for the parameter estimation prob-
lem, they were able to determine the types of features that minimized the variance of the estimator

for various motion models (e.g. translation, scaling, rotation). They concluded that using features
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with large intensity variations in both horizontal and vertical directions led to a low-variance es-
timator for the translation model. This is essentially the conclusion of one of a seminal series of
papers by Tomasi and Kanade [21] on extracting scene shape and camera motion using feature
correspondences in an image sequence.

When we refer to automatic feature detection and matching between two iflagé&s) in
the text, we will use the following algorithm, proposed by Tan [22] and based on theeGRao

lower-bound on the estimation of the translation of a block of pixels.

Algorithm 3.2: Feature detection and matching.

1. Compute the gradients, (x, y) and.S,(z,y) for Zy. That s,
Su(z,y) = Zo(z,y) —Zo(z —1,y)
Sy(x?y) = I[)(.’L',y) - I()(IE, Yy— 1)

2. ForeveryM x N block of pixeld",

(a) Compute the covariance matrix

Z(x,y)EF S%(l‘,y) Z(x,y)ef SISy(xay)
> eyyer S5y (@, y) X yer Sy (@, y)

(b) Compute the feature quality measure

Ir =

= (171)11 + (171)22

(c) If gr is less than some threshotdaddT to the list of features.
3. Estimate the translatiohbetweerf, andZ; (e.g. using one of the algorithms in Section 3.1.2).

4. For every block of pixelE in the list of features, find th& x N block of pixels irZ; that has
the highest correlation. To save time, the search can be performed in a local neighborhood of

the location ofl” in Z, translated byt.

To counter problems with the deformation of features, Weng and Ahuja [23] analyzed feature

attributes that are invariant to planar rigid motion. For their experiments, they used intensity and
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definitions of “edgeness” and “cornerness” as descriptors for feature matching. Their algorithm was
implemented using a coarse-to-fine methodology.

Block-matching correspondence approaches begin to fail when the motion of the camera or
of scene objects induces too much of a change in the images. In this case, the assumption that a
rectangular block of pixels in one image roughly matches a block of the same shape and size in the
other breaks down. In the wide-baseline setting, where the neighborhood of a scene point can look
very different from different points of view, this assumption may never be valid. We shall consider

approaches to correspondence in this more difficult case in Chapter 5.

3.5 Review of 2-D Correspondence Algorithms

Here we review several classical approaches to the problem of establishing dense correspondence
between an image pair. We call the algorithms in this section “2-D” because they make no use of
the epipolar constraint. Hence, it is unlikely that the result of applying such an algorithm will be
consistent with correspondence that could be obtained by a real imaging system. However, for many
applications (e.g. video coding, computer graphics) this constraint is unimportant.

We first discuss the general problem of optical flow, a class of featureless methods that estimate a
field of motion vectors for every pixel in an image pair. Next, we review layered motion algorithms,
which can be viewed as an extension of parametrized motion models to regions of an image pair.
Finally, we mention three algorithms from the computer graphics community based on interpolating
a sparse set of feature correspondences. See [24, 25] for broad reviews of general correspondence

techniques.

3.5.1 Optical Flow

A comprehensive discussion of optical flow computation is beyond the scope of this thesis; we
only present a brief review here. Barron et al. [26] reviewed and compared the performance of
many popular optical flow techniques, roughly categorized by differential techniques, region-based
matching techniques, energy-based methods, and phase-based techniques. An older and broader

reference is a survey by Aggarwal and Nandhakumar [27] of methods to compute motion from an
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image sequence. The original reference for optical flow is Horn [28].

The motion field (or velocity field)/ of P is a two-dimensional vector field. Lét, y) € Py
and(z’,y’) € P, be a visible correspondence. Then the motion veator) = M (z,y) is defined
as:

(u,v) = (@' — 2,9 —y)

Due to occlusion, some points in the scene that are visible with resp&gcate not visible with
respect ta’;. The motion field is not defined at such points/f

Optical flow is a somewhat poorly-defined term for a two-dimensional vector fiefehpgen-
erally described as the apparent or measurable motion of the intensity pattern from th€jnmage
the imageZ;. One would like the optical flow field and the motion field to be identical, but even in
ideal circumstances this is not the case. For example, any two images of an ideal Lambertian sphere
that rotates under constant illumination are identical, implying zero optical flow, yet the motion field
is non-zero. On the other hand, two images from the same camera of an ideal Lambertian sphere
illuminated by a moving light source look different, implying non-zero optical flow, although the
motion field is identically zero.

Optical flow methods are derived by assuming that the imdgesdZ; are slices of a function

g(z,y,t) for two nearby values of. It is assumed that the intensity is conserved; that is,
g(x +dx,y + oy, t + 6t) = g(x,y,t)

for some smalbz, dy, anddt. Expandingy(zx, y,t) in a Taylor series aboutro, yo, to) gives

dg dg dg
1) oy, t ot) = t ox—=+dy—=+90t—=+h.o. t. 3.11
g(xo + dx,y0 + 0y, to + 0t) = g(zo,y0,%0) + $ax+ y8y+ ot +n.o ( )

Ignoring the higher order terms in (3.11), dividing throughdbyand lettingét — 0, we obtain

the optical flow constraint
dg dg 9dg

2 ppZ 4+ 22 = 3.12
Uor Ty T =0 (3.12)
where
yode
Cdt o dt

are the components of the velocity associated with the gointyy) in thex andy directions. The

set of velocity vectorgu, v) evaluated at every point iR, comprises the optical flow field. Optical
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flow and correspondence are obviously related in thay) € Py and(xz + u,y + v) € P; are
a corresponding pair. The partial derivativesgdt, y, t) are estimated from local derivatives of
image intensity at each pixel.

The optical flow constraint (3.12) is one equation in two unknowns; hence, additional assump-
tions or constraints are required to uniquely specify the velocitiasdv. Various typical assump-

tions include:
¢ Optical flow is smooth, and nearby pixels have similar velocities
e Optical flow is piecewise-constant
e Optical flow arises from a local or global motion model (e.g. translational, affine, or projective
motion).

Optical flow technigues generally have difficulty resolving motions near depth discontinuities
and occlusions, especially when smoothness constraints are imposed on the flow. The layered mo-
tion techniques addressed in the next section attempt to compensate for these problems. Also, many
optical flow techniques make the implicit assumption that the motion between images is small (e.g.
not more than a few pixels), which is generally not true for images taken by widely separated cam-

eras, or even for video sequences generated by a briskly moving camera.

3.5.2 Layered Motion

The basic idea of layered motion is to posit the existence Hyers in the image, the motion of

each of which is described by a parametric model. Then the formatidniefmodeled by:
Iy (w, 0) = To(w — my(w,0;)) forw e Ty

wheref,, parameterizes the motion model, andT';, is the support set for thet* model. It is
generally assumed thdl'x, &k = 1,...,L} is a nonoverlapping partition of the image, though
sometimes this assumption is relaxed to allow for transparency. The parameterd ohtuels, as
well as the number of models, are to be estimated.

When almost all the pixels in the images move consistently with a single motion model (for

example, in the case when only a few objects in the scene move independently of the camera),
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this dominant motion can be estimated first, and subsequent layers and motion models estimated
recursively. Sequential estimation is generally suboptimal, because a pixel may be irrevocably
assigned to an incorrect layer in a preliminary stage. Sequential estimation methods also perform
poorly when there is no dominant motion, or several strong motions.

Wang and Adelson [29] implemented a motion segmentation algorithm based on affine motion

models for each layer:
m(w,0,...,0) = b1+ 62 + Oy
04 + 052 + Oy

The algorithm alternates between two stages: hypothesis testing to assign pixels to one of a
fixed set of motion layers, andiameans clustering method to estimate the number of layers and the
motion parameters for each layer. The algorithm terminates when only a few pixels are reassigned
after each iteration. The output from a standard optical flow technique and a fixed set of non-
overlapping layers are used to initialize the algorithm.

Hsu, Anandan, and Peleg [30] suggested applying optical flow methods to each parametrized
motion layer to capture deviations in the modeled fit. The motion of the pixels is thus described by
the parameters of a set of models, their regions of support, and a residual optical flow field.

Ayer and Sawhney [31] generalized the layered motion formulation to allow pixels to belong to
different layers with some non-binary probability. The change of intensity of a pixel was modeled
as an additive mixture of Gaussian densities. They used an expectation-maximization algorithm to
obtain a maximum-likelihood estimate of the parameters of multiple models, their layers of support,
and ownership probabilities, and a minimum-description-length principle to iteratively determine
the appropriate number of models based on the space required to encode the model parameter values
and motion residuals.

We note that an optical flow estimate is generally required by layered motion algorithms at a
preliminary stage, and thus layered motion algorithms are difficult to apply in many of the same

cases.
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3.5.3 Structure from Motion

The correspondence problem is related to another classical computer vision problem of estimating
structure from motion. Given a set of corresponding points and a pair of calibrated cameras, the 3-D
locations of the points can be obtained simply by intersecting a pair of rays from the two cameras.
Modeling assumptions can be used to construct a 3-D scene from the sparse set of 3-D features,
which induces dense correspondence between the original image planes. This is a difficult problem;
general reviews are given by Huang and Netravali [32] and Dhond and Aggarwal [33].

The canonical reference, using an orthographic camera, is Tomasi and Kanade [34], which was
later extended to a para-perspective camera model [35]. Weng et al. [36] tested various nonlinear
optimization algorithms for structure from motion using a perspective model, some of which in-
cluded the epipolar constraint. We will go into more detail on epipolar-line-based methods in the

next section.

3.5.4 Adaptive Meshes

Suppose we possess a set of point correspondgnces- w;» € R%,j =1,..., N} that we wish

to interpolate, without regard to parametric motion models. The feature points in each image can be
connected to form the vertices of a set of triangles using an algorithm called Delaunay triangulation
[37]. Points in the triangles’ interiors are associated using trilinear interpolation. That is, if point

w € Py lies within the triangle formed by, , w;,, w;,, thenw may be uniquely written:
3
w = qwj, + aewj, +azw;,  where Z o; =1
=1

This is known as writingo in barycentric coordinates. The correspondemtén P; of w is
estimated to be

_ / / /
w = oqwy, + QW;, + 3wy,

Generally this technique produces useful results only when the triangle mesh is very fine, and
the triangles are chosen to coincide with roughly planar facets of the scene. One approach towards

adaptively selecting a good mesh is described in [38].
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3.5.5 Beier-Neely Morphing

Beier-Neely morphing [39] is a standard technique used in computer graphics to create special
effects in which an object appears to continuously metamorphose from one shape and position to
another. An intermediate step in the morphing process is the construction of a continuous, nonlinear
mapping from the coordinate system7@f to the coordinate system &f.

In this method, the fixed correspondence data are directed line segments. The mapping from
a pixelw € Py tow’ € Py is computed by means of a parametrized weighted average of the
distances fromw to the control line segments #y. Constructing a good morph is rarely automatic
and typically requires some back-and-forth human interaction.

Since the weighting scheme depends on a choice of parameters and is relatively ad-hoc, it is
very unlikely that any given choice of control lines and parameters will give rise to a physically
valid correspondence. Morphing is more frequently used to generate a fine level of correspondence
between different but similar objects (e.g. faces) than to estimate correspondence between views of
the same scene. Seitz [40] combined morphing with the view interpolation technique described in
Section 6.1 to create the effect of simultaneously and continuously interpolating between the shape

and pose of two different objects.
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Chapter 4

Projective Transformations

The estimation of the parameters of a two-dimensional projective transformation is a standard prob-
lem that arises in image and video processing. A projective transformation maps a poiRt to

w’ € R? by:
W — Aw+b
Tw+d

whereA € R?*2, b, ¢ € R?, andd € R. An affine transformation is a special case of a projective

(4.1)

transformation.

One typical application is the recovery of a global motion model for points in images of a
stationary scene taken by a rotating and zooming camera [1]. The motion model can be used to
synthesize panoramic image mosaics [2, 3, 4, 5, 6]. A second application is the registration of
images of a planar surface taken by multiple separated cameras [7, 8]. These effects are illustrated
in Section 4.1.

As in Section 3.1.1, we can pose the projective transformation estimation problem as a least
squares minimization based on a finite set of noisy point samples of the underlying transformation.
However, in contrast to the affine case, this generally results in an eight-dimensional nonquadratic
minimization problem. Such a problem is typically solved numerically using an ‘off-the-shelf’
procedure such as the Gauss-Newton or Levenberg-Marquardt algorithm [9].

Within this context, we show in Section 4.2 that the general least squares problem for esti-
mating a projective transformation can be analytically reduced to a two-dimensional nonquadratic
minimization problem. Some properties of the two-dimensional cost function are discussed in Sec-

tion 4.4. In Sections 4.5 and 4.6 we discuss issues involved with the practical minimization of the

42
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cost function by analyzing its gradient and Hessian, and show that any descent algorithm for the
eight-dimensional problem can be modified to produce a more effective descent algorithm for the
two-dimensional problem. Of course, we are also concerned with real implementations of the min-
imizations on a computer, and we provide experimental results in Section 4.7 to show that Newton
methods based on the two-dimensional problem outperform analogous methods applied to the eight-
dimensional problem. Furthermore, we propose an approximate second-derivative method that is
quite robust to measurement noise. A brief summary of some of our results originally appeared in
[10].

Though here we concentrate exclusively on the minimization of the nonlinear least-squares cost
functional introduced in Section 4.2, other methods for approaching the projective transformation
estimation problem exist. Tan [11] introduced an approximation to make the least-squares problem
linear, which is valid when the parameters are very close to 0. Kanatani [1] proposed a tensor-
based approximation that reduces the estimation problem to an eigendecomposition. However, the
mapping (4.1) is very sensitive to changes indlparameters, and as these parameters deviate from
0, the above approximations quickly diverge from the solution to the nonlinear problem.

Instead of using a set of point correspondences as a basis for estimating a projective trans-
formation, Mann and Picard [2] proposed an iterative technique for simultaneously estimating the
transformation parameters and optical flow over an entire image pair. However, they used bilinear

approximations to the projective transformations in each step in order to simplify the estimation.

4.1 Origins of Projective Transformations

For M € R3*3 with det(M) # 0, i.e., M € GL(3), write

A b

' d
with A € R?*?2, pandc € R?*!, andd € R. Then the transformatiog,; of the plane defined by

B Aw+b

= 7 4.2
cTw+d (4.2)

gm(w)
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is called a projective transformatibwith homogeneous coordinatds.

We state without proof the following well-known properties of projective transformations.
Proposition 4.1: The family of projective transformations of the plane has the following properties:

1. The composition afy; - g is the projective transformatiogy v .

2. The identity transformation of the plane is the projective transformagiorwhere! is the

identity matrix inR3.
3. gu has the inverse projective transformatiof) ™ = gp/-1.

4, The homogeneous coordinateg f are unique to within a scalar multiple.

We see from the above that the set of projective transformations of the plane forms a&group
under function composition. In the remainder of the development, we will normélizel, so
that a projective transformation is uniquely characterized by eight paraniétets(A, b, ¢). This
excludes the set of transformations with= 0. However, this subset of transformations is not
usually of interest. We note that the set of affine transformatiéns a subgroup off. The two
“projective” parameters af account for the keystoning effects of perspective projection (see Figure

4.1).

(b)

Figure 4.1: Perspective effects. (a) Effect of varying c1, (b) Effect of varying cs.

Again, we pause to determine when the assumption that two images are related by a projective

transformation is well-founded. Reconsider equations (2.4) and (2.5) from Chapter 2 that relate the

LA projective transformation is sometimes also known as a collineation or a homography.
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image coordinates of a point seen by two camépaand( :

S T11§1$+T12§?/+7’13f1+ ixh 4.3)
Fot Py trat g |
f fi tyfl
Tl T + TFyY + 7"23f1 +
y = —L fo (4.4)

T;’Ol:l? + 7}”214 + r33 —|-
For this to be a projective transformation that globally relates the image coordinates, for every

scene pointX, Y, Z) we require:

t
% = aiz+5y+m
t
7Y = T+ foy + 72
tz
- = aszx + B3y + 73

for some constant scalass, 3;, v;. These conditions are satisfied when either:
l.tx =ty =tz =0o0r
2. ki X + kY +ksZ =1

In the first case, corresponding to a camera whose optical center undergoes no translation, we
obtain

, T11§1$+T12§1y+7’13f1

€T =

TR
, Ty 90+7“22§1y+7’23f1
R S T

An example of three such images composed into the same frame of reference with appropriate
projective transformations is illustrated in Figure 4.2. Note the nonlinear warping of the images.

In the second case, corresponding to a planar scene, (4.3)-(4.4) become:

, (r o tixfik)z + (lef +ix fik2)y + (ri3f1 + tx fiks)
xr =
(B +tzk)z + (52 + tzh)y + (33 + tzk3)
) (7“21f + by fik)z + (7“22f + ty fik2)y + (rasfi + ty fiks)
y g

(7«;01 +tzk)T + (7}3’02 +tzka)y + (r33 +tzks)
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Figure 4.3: Images of a planar scene.
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An example of a pair of images of a planar surface, registered by an appropriate projective
transformation, is illustrated in Figure 4.3.

Note thatg,, in (4.2) is defined at all points @&? except those on the lin€ w + 1 = 0, which
is called the singular line of the transformatiggy. Along this line Aw + b # 0, since the matrix
M e GL(3).

In the two cases above, singular lines have a geometric interpretation. The singular line is simply
the intersection of the image plafg with the planeZ’ = 0 corresponding to the parallel transport
of the image plané; to the center of projectio®;. This is illustrated in Figure 4.4. In practical
situations (e.g. when the image planes are of finite extent, and one camera is not in the field of view

of the other) all the points if?, lie to one side of the singular line.

singular line

singular line

(a) (b)

Figure 4.4: (a) Singular line in fixed-center case, (b) Singular line in translated case.

For a fixed projective transformation, hence for a fixethere is a line ofw in Py that lie on

the corresponding singular line. Conversely, for a fixed Py, there is a singular line afin R?.
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The admissible region [oX of the (Crcz) plane

Figure 4.5: The admissible region  C, of the (c1,c2) plane generated by data points from
actual images. Thin lines represent singular lines; thick lines are singular lines that
actively bound the admissible region.

4.2 The Least Squares Estimate

Our objective is to select the parametdis = (A, b, c) so thatgy, best fits a given set of point
matches:

{ijw;ERQ,jzl,...,N}

A case of special interest arises when the data consists of noisy samples of a fixed but unknown

projective transformationy,:
L= : ,j=1...N
w; = gn+(wj) +ej, j=1...

Heree; € R is the error in the measurementgfi- (w;). In this case we seek an estimateof
M*. As discussed in Section 3.4, in practice, the noisy point samples originate from automatically
generated or manually selected feature correspondences in an image pair such as similar blocks of
pixels, intersections of lines, or corners.

An estimate)M is, by definition,admissibleif the singular line ofgy; does not intersect the
convex hullW of 0 andw;, j = 1,..., N. Since0 € W, M is admissible if and only i# w+1 > 0
forall w € W. This is equivalent to the requirement thgiwj +1>0,7=1,...,N. This defines
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an open convex s&t, c R? of allowed values for, and M is admissible if and only it: € C,.
The set of admissible estimates is the open{get b,c): A € R*?*2 b € R? ¢ € C,}. Note
that admissibility does not requitk/ € GL(3). Figure 4.5 illustrates the admissible regiop
generated by data points from an actual image pair.

The least squares estimaté = (A, b, ¢) consists of those values of, b andc that globally
minimize:

I n/ ,  Awj+b\" /[, Awj+b
=33 (4= ) (v-a) 49

over all admissible\ = (A, b, c). In general this estimate need not be an elemeid bf3) and
hence need not itself be a projective transformation. However, for a wide range of reasonable models
for the noise terms;, j = 1,... N, M will generically be an element of the open sek(3). We
defer the proof thaf) has a global minimum within the set of admissible estimates to the end of
Section 4.5.

For a fixed data set, obtaining the least squares estimate requires solving a nonlinear minimiza-
tion problem over an open subset of &dimensional Euclidean space. However, as Theorem 4.1
below shows, the solution can be obtained by solving a nonlinear minimization problem over an

open convex subset &?.

Theorem 4.1: Assuming that the points;, j = 1,..., N are not colinear, the least squares esti-
mateM has the forn{ A(¢), b(¢), ¢) and thus lies on the-dimensional submanifold

M2 {(A,b,c): A= A(c),b = b(c),c € C,} of the eight dimensional spad&*2 x R? x C,.

Proof: SinceM minimizes (4.5), it follows that we must havg,Q(M) = 0, D,Q(M) = 0, and
DCQ(M) = 0. This yields the normal equations:

T

waw?

AZ cTw + z Z cTw —|— ;éT@jj]ﬁ =0 (4.6
w'

AZ cTw + z ¥ Z cTw +1 ;W =0 .7)

Aw; +b Aw; +b W
= | . ! =0 4.8
Z (w] (éij + 1>> <6ij + 1> Twj+1 (4.8)

J
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We can rewrite (4.6) and (4.7) as a linear system:
[A b W) =V(e) (4.9)
whereW (c) € R3*3, V(c) € R?*3 are functions of € R? and the data points, given by:
W) = (4.10)

N o ) -
J=1 43 (c) 7=1 g3 (c)

(4.11)
V(e = [y, oy, ] (4.12)
Hereg;(c) = ¢l'w; + 1. Therefore, defining
[ A(e) ble) 1= V(W () (4.13)
we have(A, b, ¢) = (A(é), b(¢), ¢) and the theorem follows. |

We make a standing assumption that the pofats : ; = 1,..., N} are not colinear ifR?.
This ensures thdl’(c) is positive definite and hence thatc) andb(c) are defined for alt € C,.
In view of Theorem 4.1, we can define a two-dimensional cost functiénal', — R by
N

J(c) = lz <w’- _ M>T (w’. _ w> (4.14)

, J clwj+1 J clwj+1
J=1

J(c) is simply the least squares cost function restricted to the man¥éldBy construction, for
any M, = (A(c,),b(co), o) € M, Q(M,) = J(c,). Hence the global minimizing solution df(c)
within C, is é. This reduces the determination of the least squares estiniatethe minimization
of J overC,.

From the proof of the theorem, we can see that the 8-dimensional minimizati@Oidf de-
couples into a nonlinear 2-dimensional minimizatiorc@nd a solution of a linear system for the
“affine” parameterg A, b). This agrees nicely with the affine solution (3.2) of Section 3.1.1, which
is in fact (4.13) withc = 0. The problem considered in this chapter can be viewed as a specific case

of a general mixed least-squares problem that separates into linear and nonlinear variables. Golub
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Figure 4.6: Two views of the cost function J(c1,co) for data points from actual images.

The dark lines are the singular lines that actively bound C,.
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and Pereyra [12] studied such problems and discussed their minimization. We go into considerably
more detail here, exploring the structure of our specific problem.

Casting the problem in a two-dimensional setting allows us to visualize the cost function and
the steps that a minimization algorithm takes. We shall show in Section 4.5 that in addition to being
of reduced dimensionality, the cost functidiic) can be numerically minimized more efficiently
than the cost functiof) (M).

Figure 4.6 illustrates two views of the cost functidrgraphed over the regiafi, for data points
from a pair of natural images. For this example, the cost funclitvas a single minimum within

C,, located at the bottom of a deep bowl.

4.3 Data Normalization

To avoid numerical instabilities introduced by data measurements that vary by orders of magnitude,
it is generally wise to normalize the data before processing it. Hence, we need to understand how
the solution to the least-squares problem using the normalized data is related to the solution of the
problem in the original coordinates. To this end, we present the following lemma, which is easily

proven.
Lemma 4.1: Consider the data sets given by

zj = ij+t

r / /

fort,t’ e R2,Q,R e GL(2),andj = 1,...,N. If M = (A,b,¢) is the minimizer of

N T
1 Awj +b Aw; +b
M) == L9 7 r_ 273 7
QM) 2 Z <w3 cTw; + 1> (wj clwj + 1)

J=1
then the minimizei/ = (4, b, ¢) of
N T
~ 1 Az; +b Azj +b
M) = - ;o Az ;o Az
QM) QZ<2~7 csz—|-1> (J csz+1>
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is given by
(A5.6) = RAQ '+ téTQ™' Rb— RAQ 't Q T¢c
T 1-elQ=1t 7 1-¢TQ~ 1t "1-eTQ 1t
In other words,

- R Y A—-te"Q R b+ At) L, QTé
A,b,e) = _RY 4.15
(4,5,¢) ( T+t 0 1+t 14t (4.15)

In practice, we normalize the data so that the measurements are zero mean with range approxi-

mately[—1, 1]. This corresponds to a choice of

_ 1 N ) ;1 N /
P= N 2.5=1j W= 2l W)
a «a !

=3 (man | — pip| + max; [y — Myl)

For this choice oft, t’, Q, R), we can rewrite (4.15) as

4 Blodei)
—Eg

. of(b— AL)
b= ol 4y

g M
. é
C =

o — pe

4.4 The Behavior ofJ on Singular Lines

For ¢* on one or more singular lines, the matrid@sc*) and V(c¢*) that define( A(c*), b(c*))
in (4.13) are not defined. However, below we provide two results concerning the finiteness and
continuity of the functions(c) andb(c) asc approaches a singular line. In the first theorem, we

consider the behavior as we approach a point that lies on exactly one singular line.

Theorem 4.2: Fix ¢* such that*w; +1 = 0, andc*Tw;+1 # 0for j # 1. Definec(a) = ¢*+ah,

whereh is an approach vector iiR?. Theng; (c(a)) = ah®w; # 0 whena # 0 andhTw; # 0
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(i.e. the approach direction is not along the singular line). We henceforth assumé’thatis
normalized to 1, so thaiy; (¢(a)) = «. By solving (4.13) with(«), we naturally defined(«) and
b(a).

1. The limiting values

[ A, b, |=1lm[ A(a) b(a) ]

a—0

are well-defined and finite.

2. (A,,b,) is the solution to the well-defined constrained least-squares problem

N T
i 1 , ij +b , ij +b
Iﬂf? 2 Z <wj B cTw; +1 Wi~ cTw; +1
Jj=2
s.t. Awi +b=0

3. The limiting value of{9¥1+%© a5 approaches* is wi.

cTwi+1

Proof: The proof can be found in Appendix A. [ |

This result shows that, unlike the cost functi@Q/), the cost function/(c) is finite and con-
tinuous along the singular lines. However, along singular lines the resulting least-squares projective
transformation estimates are not member&é{3). The second and third parts of the theorem give
some additional intuition as to how, andb, are converging. Not only are they selected to keep
the cost function finite, but they act to zero out the offending data point’s contribution to the cost
function.

It is also important to consider the limiting behavior(ef(c), b(c)) asc approaches an intersec-
tion of two singular lines. To this end, we state the following theorem without proof; the omitted

proof is straightforward but tedious, and follows the same pattern as the proof of Theorem 4.2.

Theorem 4.3: Suppose*Tw; +1 = 0 andc*Tws + 1 = 0, with ¢*Tw; + 1 # 0 for j > 2. Define
c(a) = ¢*T + ah, whereh is an approach vector iiR?; this defines4 () andb(«) through (4.13).

Abbreviatep = [w! 1]T andgq = [wl 1]T. We assume these points are distinct.

2pTw; = 1is just a line parallel to the singular line. As we decreasewe approach the singular poirt along
lines parallel toc*Tw; +1 = 0.
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1. The limiting values ag approaches the intersection of singular lines is well-defined and finite:

(4, 5] = lm[ A(@) ba) ]
(" W5 q)p — (" W5 'p)glp" Wy !
(" Ws ') (¢TW5 'q) — (¢" Wy 'p)?
[(p" W5 'p)g — (W' Wy 'q)plg" Wy 1}
q

= VE,)W3—1 I —

+ - — —
(" Wy 'p)(d" Wyt q) — (¢"W5 'p)?
where
N wjw! N  w;
- J J
e | T @ 2= @
3= ZN w]T ZN 1
=3 Py 2wi=3 ()
_ N wjwl N W
Vs = {Za'::’» o) =3 qj(i*)]

2. The expression above is equivalent to the solution of the constrained minimization problem over

N — 2 data points:

N T
i 1 , ij +b , ij +b
Hf}gl 2 Z <wj a Twj + 1> <wj - Twj+1
7j=3
s.t. Awi +b=0 (4.16)
Awy +b=0 (4.17)

The corresponding Lagrange multipliers for (4.16) and (4.17) respectively are:

(@™ W5 9)p — (" W5 'p)g

A= VWit L — L
S TW5 ) (T Wy ) — (qT Wy p)?
w o= vl P e = 0TWs a)p
S TW ) (qT Wyt g) — (¢ Wy tp)?

3. The limiting values satisfy
a—0 (¢t +ah)Tw; +1 1

A(a)wy + b(a) -

I
ali% (C* + ah)Twz +1

The intersection of three singular lines requires that three data points be colinear, which is

generally not the case. However, in such an event one can prove a corresponding result on the

finiteness and continuity ol (c) andb(c), and so on.
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45 Line-Search Descent

Typical algorithms for the minimization of a nonlinear function such as (4.5) operate in an iterative
fashion as follows. Given a current approximatitif, of M select a direction, and search along
the line from M}, in the directiond;, for the minimum of the objective function. The next approxi-
mationy 4 is the value of\/ at this minimum. Typically the directiod, is related to the gradient
of the objective function evaluated &f;,.

Specifically, we consider a line-descent-based approach for minim2idd). Let M;, =
(A, b, cx), k > 0, be the approximation af/ after stepk and letd, = (F, gk, hi) denote the

search direction used at stepThen

(Akg1, bry1s cog1) = (Ag, by ci) + ar(EFr, gr, hi)

where the step size;, > 0 is selected to ensure th@(M11) < Q(My).

For all such schemes we can make several observations/) et (4,, by, c,) With A, € R?*2,

andb,, ¢, € R?. Define the projection o/, onto M to be P(M,) 2 (A(co),b(co), Co)-

Theorem 4.4: Letd = (F, g, h) with F € R?*2, andg, h € R2. Then

1. For anyM,, J(Co) = Q(P(Mo)) < Q(Mo)'

2. For M, on M, define

M(a) = M,+ad
c(B) = co+ph
of = argmin,>q Q(M(a))

f* = argmings, J(c(0))

Mg« = (A(c(87)), b(c(87)), c(57))

ThenQ(Mpg-) = J(c(87)), andQ(Mp-) < Q(P(M(a"))) < Q(M (")) < Q(M,).
3. ForM,onM,ifd = (F,g,h) is a descent direction faf) at M,, thenh is a descent direction

for J at c,.
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Proof:

1. Consider minimizing(M) with M constrained so that = ¢,. The normal equations for this
problem are linear and have the unique solutidn,) andb(c,). Hence on the constraint set c¢,,

Q (M) has a unique global minimum at the po{at(c,), b(c,), ¢o) = P(M,). SincelM, lies in this
set,Q(P(M,)) < Q(M,).

2. Fors > 0, Mg = (A(c(8)),b(c(3)), c(3)) is a curve onM passing throughd/, (8 = 0) and
P(M(a*)) (8 = a*). Along this curveQ(Mgz) = J(c(8)). Hence the minimum of) along the
curve occurs a = §*. ThusJ(c(5*)) = Q(Mp+) < Q(P(M(c*))). The other inequalities

follow from part (1) and the definition af*.

3. Since(F, g, h) is a descent direction fap at M,, there existay, > 0 such thaQ (M, + ad) <
Q(M,) for all a € [0, a,]. Fora > 0let M, = (A(co, + ah),b(co + ah), c, + ah). Then for all
a € [0,a0), J(co+ah) = Q(My) < Q(M,+ad) < Q(M,) = J(c,). The firstinequality follows

from part (1); the second follows from the fact tlis a descent direction fap at M,. [ |

Theorem 4.4 indicates that each step of an iterative minimizatiap(af ) can be improved
by exploiting the formulasi(c) andb(c) to project the next approximation onto the manifdid.
Moreover, part (2) indicates that minimizing(c) in the directionh;, from ¢, yields a greater de-
crease in the least squares objective than either minimi2irig) in the directiond;, from M}, and
then projecting, or simply minimizin@ (M) in the directiond;, from M. Other issues aside, this
suggests that obtaining the least squares estimate by iteratively minimigings more efficient
than a similar scheme applied €@(M). The third part of the theorem shows that at any point on
the manifold M, every descent direction fdp yields a corresponding descent direction forlf
we combine this with part (2) we see that minimizatior/ailong this direction will yield a smaller
value of the least squares objective function than minimizig the given descent direction. Note
that parts (2) and (3) of the theorem do not generally hold\igroff the manifold M.

Of course,J is a more complex function thag and hence it is conceivable that the necessary

computations in minimizing/ are also more complex. However, as far as the gradient is concerned
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this is not the case. To see this, Jeft(c) = (A(c), b(c), c). Then for eacth € R?,
DJ(c)h = DaQ(M(c)) - DeA(c)h + DpQ(M (c))Dcb(c)h + DQ(M(c))h
SinceM (c) lies onM, DAQ(M(c)) = DyQ(M(c)) = 0. Then from (4.8),
ViJ(e) = DQ(M(c)) (4.18)

_ i <w4 _A(Qw, + 5(0)>T A()w; +b(e)  w

J lwj+1 dwj+1 dwj+1

j=1

The computation ofd(c) andb(c) is equivalent to the computation & 4() andV,(Q, and can
be efficiently accomplished by solving the linear system (4.9). The computatiow @fiven A(c)
andb(c) is equivalent to the computation 8f.Q). Thus the computation of the gradient.bis no
more complex than computing the gradientaf

We note that at this point, we can prove the following:

Theorem 4.5: If the set of admissible estimat€s is compact, the has a global minimum id’,

and @ has a global minimum iiR?*? x R? x C,.

Proof. From Theorems 4.2 and 4.3, we have thids continuous over the compact €&, so
it must have a global minimizerin C,. For anyM = (A,b,c) with ¢ € C,, we have from the
first part of Theorem 4.4 th&® (M) > Q(P(M)) = J(c), so the global minimizer of) must be
(A(é),b(¢),¢). |

4.6 Second-Derivative Methods

It is well known that minimization methods based on the second derivative of the objective func-
tion have superior rates of convergence. These methods are based on various modifications of the
Newton-Raphson and Gauss-Newton schemes (see Appendix B). Appligdthese operate by
setting

My = My, — H(M,) " 'VQ(My)

whereH (M) is either the Hessian @p at M, or a suitable approximation.
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A(e)w;j+b(c)

Tw1 then we can write

If we definew; =

1 al / ~\T / ~
Q(M)=§Z(wj—wj) (w; — ;)

j=1
Then
N
DQ(M) = =) (w)—1y) D
j=1
N N
DQM) = > DiTDuw;— " (w) — ;)" D*i;
j=1 j=1

D2Q(M) is the Hessian of) at M and the first term is the Gauss-Newton approximation of the
Hessian.

It is straightforward to derive expressions for the Hessian@ ahd.J and their Gauss-Newton
approximations. The Hessian fdris quite cumbersome sincé depends ore both directly and

through the dependence dfc) andb(c) onc. The result is:

N
1 . . .
H = Z 2( ) [(wj — 2€j)ijij]-T — N]T(wj — z—:j)ij] (4.19)
j=1 g;¢
where
Ej = (w; — 'lf}j)
N, o[04, 04 ob
b 861 J 861 862 J 802
The Gauss-Newton approximation to the Hessian is:
T
Heon =7 %(Nj — wjwi )T (N; — djw])
j=1 qj

The details of these derivations, as well as an explanation of how to compute the partial deriva-
tives of A andb with respect ta:, are contained in Appendix C.

The complexity of these expressions raises the issue of obtaining efficiently computable approx-
imations to the Hessian of. For example, one natural approximation is to assumeAtatdb are
independent of so that/V; becomes 0. This results in the approximation to the Hessian

N
H=>" ! (0 — 2¢5)TibjwjwT | (4.20)

q;(c) g

J=1
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In fact, this matrix is the same as thex 2 block of partials%%?. We will see how algorithms
based on this approximation and the Gauss-Newton approximation fare in the presence of different
types of noise in Section 4.7.

In general, we will use the following framework for our second-derivative methods to minimize
J(c). The only difference is the approximation to the Hessian used in step 3. Figure 4.7 illustrates

the process.

Algorithm 4.1: Newton scheme for minimizing

1. Initializec = 0.

2. Compute the gradient of exactly using (4.18). That is:

o
VI(e) =Y —~elwjuw,

= ai(c)

3. Approximate the Hessia%g by some positive semidefinite matfix

4. Use these quantities to update the value a$ing an approximate Newton-Raphson step. That
is:
c—c+aH'VJ(c)
5. Use the new value efto update the values of andb using the formulas ford(c) andb(c).

That is, solve:

whereg;(c) = ¢f'w; + 1 and

Wi(e) =
Zj:lqu—(]c) Zj=1w
_ N wjwh N W
V(e = [ o, um v,

6. Test for convergence. Exit or return to step 2.
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Initialize ¢=0

No Yes
Converged? Done
A(c), ble) Newton-
Raphson
step
cl A,b 0J W
D]

Figure 4.7: Proposed algorithm for minimizing J(c).

The initialization ofc = 0 in step 1 is justified in practice, since the values: ér projective
transformations arising from real image processing problems oftencdhave(10~%) (see Table
4.1). This provides an additional advantage over the numerical minimizatioy( &f), which
requires accurate initial estimates of the parameteendb. Since these parameters relate to the
zooming, rotation, and translation between an image pair, additional pre-processing is generally
required to obtain even coarse initial estimates. Algorithms to find a valaaro$tep 4 that brings
about a sufficient decrease in the cost function are generally based on a backtracking and cubic
interpolation strategy [9]. Experimental results on the performance of this proposed algorithm are

reported in Section 4.7.
4.7 Experimental Results

We implemented five minimization algorithms:

1. GNQ: Standard Gauss-Newton appliedio
2. GN J: Standard Gauss-Newton appliedito

3. N: Approximate Newton applied td, usingH from (4.20).
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4. QdirJ: Approximate Newton applied td, using the projections of search directions frgm

onto the manifold, as suggested by Theorem 4.4.

5. NJ: Full Newton applied toJ, using the actual Hessian (4.19).

The algorithms were compared on six sets of point correspondences, each obtained from pairs
of natural images related by projective transformations. Three of the image pairs were created by
a rotating camera; point correspondences for these images were obtained automatically using the
feature detection and matching algorithm described in Section 3.4. The other three image pairs are
different views of planar scenes; in these cases the point correspondences were obtained manually.
For all six images there is very little noise in the correspondences. However, in our experiments, we
added noise of two different types to each of the measurements to test the algorithms’ robustness.
This noise was added prior to the normalization described in Section 4.3. The two types of noise

were:

1. Gaussian noise of increasing variance. That is, random noise was added to each nominal corre-

spondencéx, y) — (2/,y') to obtain(z, §) — (&',7’), where

T=x+m y=1y+n

¥ =1 +ny 7=y +ny

andn;, i = 1,2, 3,4 are independent zero-mean Gaussian random variables with vasiance

2. As above, except;, i = 1,2, 3,4 is drawn from a zero-mean Gaussian distribution of variance

5 with probabilityl — p, and from a uniform distribution ovér-50, 50] with probability p.

The first type of noise simulates increasingly inaccurate feature correspondences. Inaccura-
cies in real applications could come from poor sensors, suboptimal correspondence algorithms, or
coarsely subsampled data. For example, if the images were subsampled by a faétor ehch
direction before estimating correspondence, we could expect errors in thex&nggels in the

original coordinates.
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Example First Second | Number an a2 b1 ¢1
Number | Image Image of w; a1 22 ba &9
1 Firestonel| Firestone2 70 1.1781 | -0.0640| -173.88 | 0.0006
0.1316 | 1.1045 0.01 -0.0001
2 Firestone2| Firestonel 69 0.8486 | 0.0636 | 146.44 | -0.0005
-0.0976| 0.9728 | -17.47 | 0.0001
3 B320fr0 B320frl1 90 0.8532 | -0.0223| 8.51 -0.0004
-0.0166 | 0.9639 | -1.68 0.0002
4 Trackl Track2 30 0.9703 | -1.5266| 83.10 | -0.0004
-0.0404| 0.9630 | -5.85 | -0.0007
5 Atrium1 Atrium2 35 1.1146 | 0.6413 | -95.36 | 0.0005
-0.0790| 0.6171 2.50 -0.0008
6 Atrium2 Atrium3 33 0.7564 | -0.6599 | 160.15 | -0.0004
0.0010 | 0.8996 | 13.44 | 0.0009

Table 4.1: Information and nominal parameters for the 6 data sets.

The second type of noise simulates a generally good correspondence algorithm with increasing
probability of obtaining a non-Gaussian outlier. Such outliers can occur, for example, when a block-
matching algorithm “finds” a matching block with a lower mean-squared-error than the correct
block induced by camera and object motion.

The information about the test images and the nominal (zero-noise) estimated projective trans-
formation parameters for each example are given in Table 4.1. For all examples, the five differ-
ent minimization algorithms all converged to the same projective transformation estimate. The
2-dimensional methods were initialized with= 0. The 8-dimensional methods were initialized
with A = I,b = 0,¢ = 0. In each case we ensured that the algorithms employed the same compu-
tational procedures and tests for convergence in the appropriately-dimensioned space. Namely, the

algorithm terminates when either of the following conditions are fulfilled:

1. The relative change in the gradient is small enough:

V f(z); max{|z;|, t;}
|f(2)]

<107
1<i<d

2. The relative change in successive values of the parameters is small enough:

|Az|

= <906
max{]:ri\,ti} -
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wherez = (a1, a12,a21,a22,b1,be, c1,c2), d = 8 in the eight-dimensional case and= (c1, ¢2),

d = 2 in the two-dimensional case, arfds the appropriately-dimensioned least-squares functional
Q@ or J. Additionally, ¢; is a “typical” value of parameterto avoid problems with defining relative
change when the parameters are small. In our tests wetused, 1,1, 1, 100, 10, .0001, .0001).

This choice is justified given the underlying parameters for our data set (see Table 4.1).

The number of floating point operations required for the three algorithms to converge with the
purely Gaussian noise model is illustrated in Figures 4.8-4.13. Figures 4.8-4.10 pertain to the images
taken by rotating cameras, and Figures 4.11-4.13 pertain to the images of planar sceneaxi¥he
in each figure is the varianee of the noise added to the correspondences. The number of floating
point operations in each line graph is the mean of 100 trials at the same noise variance with different
realizations of the random variables.

We can see that using th@ search directions od is uniformly better than doing standard
Gauss-Newton o), and that Gauss-Newton ohis uniformly better than both. The full Newton
method onJ does better than the Gauss-newton method/ at higher noise variances, though
worse at lower noise variances. This is consistent with the observations in Dennis [9, p. 226].

Interestingly, the approximate Newton method using the Hessian approximation in (4.20) is only
superior to other methods at high variances. This would indicate that Vihitan be computed
efficiently, it is a poor approximation to the true Hessidni.e. the partial derivatives ol andb
with respect ta are significant. This is confirmed by plotting the indicalldf — H| /|| H|| as a
function of the noise variance for the first data set, illustrated in Figure 4.14. For comparison, we
also show the indicatdtHgn — H||/||H]|| for the Gauss-Newton method. We can see that in the
presence of no noise, roughly 85% of the Hessian is “unapproximated? ,byompared to only
0.1% for the Gauss-Newton case. Though Méeration requires fewer floating point operations,

18 iterations were required compared to only 3 for Gauss-Newton. However, the Gauss-Newton
approximation contains none of the terms in the full Hessian involyinghe errors in the fitted

data. Hence, as the noise variance increddgs; becomes an increasingly poor approximation. On
the other handff contains one of the; terms from the full Hessian and incrementally improves
with increasinge;. Of course, the substantial partial derivative terms that make up most of the

Hessian are still ignored.
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Floating point operations vs. noise in correspondence (Firestone 1-2)
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Figure 4.8: Floating point operation counts for the Firestone 1-2 data set, purely Gaus-
sian noise.

x 10° Floating point operations vs. noise in correspondence (Firestone 2-1)
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Figure 4.9: Floating point operation counts for the Firestone 2-1 data set, purely Gaus-
sian noise.
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x 10° Floating point operations vs. noise in correspondence (B320 frames 0-1)
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Figure 4.10: Floating point operation counts for the B320 0-1 data set, purely Gaussian
noise.

x10* Floating point operations vs. noise in correspondence (Track)
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Figure 4.11: Floating point operation counts for the Track data set, purely Gaussian
noise.
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10 x10* Floating point operations vs. noise in correspondence (Atrium 1-2)
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Figure 4.12: Floating point operation counts for the Atrium 1-2 data set, purely Gaus-
sian noise.

x10* Floating point operations vs. noise in correspondence (Atrium 2-3)
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Figure 4.13: Floating point operation counts for the Atrium 2-3 data set, purely Gaus-
sian noise.
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Figure 4.15: Floating point operation counts for the Firestone 1-2 data set, Gaussian

noise with outliers.

N and GN.J methods.
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x 10° Floating point operations vs. outlier probability (nominal variance 5) (Firestone 2-1)
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Figure 4.16: Floating point operation counts for the Firestone 2-1 data set, Gaussian

noise with outliers.

Outlier probability

x 10° Floating point operations vs. outlier probability (nominal variance 5) (B320 frames 0-1)
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Figure 4.17: Floating point operation counts for the B320 0-1 data set, Gaussian noise
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x 10* Floating point operations vs. outlier probability (nominal variance 5) (Track)
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Figure 4.18: Floating point operation counts for the Track data set, Gaussian noise with
outliers.

x10* Floating point operations vs. outlier probability (nominal variance 5) (Atrium 1-2)
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Figure 4.19: Floating point operation counts for the Atrium 1-2 data set, Gaussian noise
with outliers.
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x 10" Floating point operations vs. outlier probability (nominal variance 5) (Atrium 2-3)
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Figure 4.20: Floating point operation counts for the Atrium 2-3 data set, Gaussian noise
with outliers.

The number of floating point operations required for the three algorithms to converge with
the outlier noise model is illustrated in Figures 4.15-4.20. Again, Figures 4.15-4.17 pertain to the
images taken by rotating cameras, and Figures 4.18-4.20 pertain to the images of planar scenes. The
x axis in each figure is the probabilippthat a coordinate is an outlier. The number of floating point
operations in each line graph is the mean of 100 trials at the same outlier probability with different
realizations of the random variables.

The results here again indicate the superiority of the two-dimensional algorithms. The main
difference is the lower rate of decrease of fiiecurves, which indicates that the Gauss-Newton
method onJ is a better choice overall when the correspondence contains outliers. Of course, a
good estimation scheme will iteratively reject outliers until the noise can be well-modeled by a

Gaussian distribution, and re-estimate, in which casé\tteethod may be more efficient.
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4.8 Conclusions

The experimental results indicate that obtaining the least squares estimate of the parameters of a
projective transformation using the algorithms proposed in Section 4.6 to minintizeoffers a

distinct efficiency advantage over using a standard algorithm such as Gauss-Newton to minimize
QM).

Future research in this area includes a deeper investigation of how the relationship between the
positions of the data points, the noise in their measurement, and the underlying projective transfor-
mation parameters affect the convergence of the algorithm. For example, our simulations indicate
that theN algorithm presented is quite robust to high-variance noise. Its computational cost seems
to decrease with noise variance while the costs of the other algorithms increase. However, we lack
a rigorous analysis of why this is so.

Additionally, we hope to use the two-dimensional cost functign) to analyze the existence
and behavior of local minima. We have been able to construct data sets that induce a cost function
J(c) with multiple local minima over the regio,, and have experimentally obtained bifurcation
diagrams for the minima as the configuration of the data points is continuously varied. However,
in our experience with projective transformations arising from real data, we have never observed
multiple local minima in the least-squares cost functional. We would like to prove or disprove the
hypothesis that in the general case (e.g. a large number of noisy measurements obtained from real
images), the cost function is convex ovegy and hence has a unique global minima in this domain.

We only address the estimation of a single projective transformation here, but there are natural
extensions to the joint estimation of the projective transformations relating several images, e.qg.
frames of a video sequence. The composition of multiple pairwise estimates is suboptimal for the
joint problem, and can lead to unstable error growth. Additional issues arise when the images are

constrained to form a seamled®)° panorama, as in Szeliski [3].
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Chapter 5

Correspondence

Many image and video processing problems hinge on possessing a dense (subpixel-level) estimate of
correspondence between a set of still images. Applications of correspondence are diverse, including
motion compensation in video coding, construction of a 3-D model of a scene from images, and the
association of points on similar objects for computer graphics effects.

Of course, the more that is knovenpriori about the position and motion of cameras and scene
objects, the easier the correspondence problem becomes. However, in this chapter, we assume no
prior knowledge about the content of the scene or the cameras that produced the images, since this
information is often unavailable, e.g. for archival video.

Moreover, we distinguish between photometric techniques, which match points based entirely
on the local variation of intensity between images, and geometric techniques, which attempt to find
correspondence consistent with a physical scene. Photometric correspondence is useful in domains
such as video coding, but less useful for applications where geometry is crucial, such as the virtual
view synthesis algorithms we will discuss in the next chapter.

The classical correspondence problem is a fundamental and difficult problem in computer vi-
sion, as evidenced by more than 30 years of research. In Section 3.5, we reviewed several lines of

investigation. Many notable approaches derive from optical flow and other techniques in‘stereo.

1The word “stereo” is generally used in the context of cameras whose centers of projection are closely separated with
respect to their distance to the scene, so that the effects of occlusions are minor. The situation in which the centers of
projection of the cameras are widely separated with respect to their distance to the scene is sometimes referred to as the
wide-baseline case.

75



Chapter 5: Correspondence 76

While in photometric applications, an unstructured optical flow field may be an adequate repre-
sentation of correspondence between an image pair, there are many practical situations in which a
parametrized or structured correspondence is induced by the geometry of the cameras. For exam-
ple, when a camera undergoes rotation only, the projective transformations discussed in Chapter 4
provide one example of correspondence over entire image planes parametrized by only eight real
numbers. Layered-motion techniques also fall into this category.

However, for an arbitrary image pair of the same scene, the correspondence between the images
has no simple global parametrization. The oalgriori constraint on correspondence is the well-
known epipolar constraint [1]. In theory, this reduces the correspondence problem to a series of
1-D matching problems. We review several approaches to solving the correspondence problem in
the context of conjugate epipolar lines in Section 5.1. While these techniques are unstable in the
small-baseline cadeour interest here and in the following chapters is in the wide-baseline setting.

Virtually every epipolar-line-based correspondence algorithm makes the assumption that scene
points are projected onto conjugate epipolar lines in the same order. This is called the monotonicity
assumption. Typically, it is made so that dynamic programming or polynomial-time algorithms can
be used to efficiently obtain solutions. However, as we illustrate in Section 5.2, the monotonicity
assumption is generally invalid in the wide-baseline case.

Our goal in Section 5.3 is to fully describe the class of sets of corresponding points that can
arise from a real imaging system. Instead of making the monotonicity assumption, we consider
the correspondence induced by arbitrarily complicated scenes, and encapsulate this structure in the
correspondence graph, the set of all points that are visible in two conjugate epipolar lines. Using the
formalism of correspondence graphs, we can ensure that any estimated correspondence is consistent
with a physical imaging system, which is especially important for geometric applications.

The second main contribution of the chapter is Section 5.4, in which we present an algorithm for
estimating correspondence graphs from real images. As a result, we can generate dense, physically
consistent correspondence between images taken by widely separated cameras, useful for applica-
tions where geometric accuracy is crucial. Each step of the estimation algorithm is illustrated in

Section 5.5 with an example from natural, outdoor video.

2The fundamental matrix is undefined when the camera centers are coincident.
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The correspondence graph was introduced in [2], and is used in the virtual video applications

we discuss in Chapters 6 and 7.

5.1 Review of Epipolar Correspondence Algorithms

As reviewed in Section 2.5, epipolar lines exist in conjugate pdifs/;), such that the match

to a pointw € ¢y must lie on/;, and vice versa. This means that the correspondence problem is
fundamentally a one-dimensional problem, not a two-dimensional one. If an estimate of the epipolar
geometry is available, many correspondence algorithms exist to exploit this constraint.

ending
node

epipolar linein 1,

starting
node

epipolar line in 1,

Figure 5.1: Matching graph for conjugate epipolar lines.

Each approach we review below makes the monotonicity assumption that correspondences ap-
pear along conjugate epipolar lines in the same order. This allows the use of dynamic programming
[3] technigues to efficiently solve the various estimation problems. The result of the estimation for

a conjugate epipolar line paffy, ¢1) can then be expressed as a monotonic path thréygh/;,
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as illustrated in Figure 5.1. However, we will show in the remainder of the chapter that corre-
spondence from real images can be considerably more complex, and discuss how to estimate 1-D
correspondence in full generality.

Some algorithms build in constraints that ensure similar correspondence is estimated across
adjacent epipolar lines. This is especially important in light of the observation in [4] that multiple

global minima may exist for problems solved at each conjugate epipolar line pair.

5.1.1 Basic Dynamic Programming: Ohta and Kanade

Ohta and Kanade [5] described a dynamic programming approach in which the nodes of the program
correspond to edges detected in each epipolar line. The entities that are matched between conjugate
epipolar lines are intervals of nearly constant-intensity pixels. Points in a pair of matched intervals

are put into correspondence by linearly interpolating between the endpoints.

Interval from epipolar line in image 0 Interval from epipolar line in image 1

[T T Tk LTI ]

lMean Mean l

O > [ O

A

Mean

Figure 5.2: Ohta and Kanade interval-matching cost function.

The function used to measure the cost of matching an intégval ¢y = {aq,...,ax} and
i1 € £ = {b1,...,b;} is based on the varianee of the intensities in the two intervals from a

sample meam, calculated as:
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The cost function is illustrated schematically in Figure 5.2. Both intervals contribute equally to

the mean and variance. The cost of the segment that matches these intervals is then computed as
C=0?VE2+12

The cost function is motivated by the assumption that pixels in matching intervals arise from
a homogeneous-intensity surface in the scene and therefore have similar image intensities, so that
the variance between correctly matched intervals should be small. A slightly different, somewhat
ad-hoc cost was defined for an occluded path.

The authors also described a higher-dimensional matching problem over the entire image pair in
which the nodes in the dynamic program are edges that cross many epipolar lines. This formulation
explicitly enforces consistency between nearby epipolar lines.

Once the cost function and the nodes of the problem are fixed, it is straightforward to apply

dynamic programming to find the least-cost path through the epipolar-line matching graph.

5.1.2 Bayesian Approach: Belheumer

Belheumer [6] discussed a series of explicit prior models for the structure of a scene, and developed a
Bayesian approach to solving the correspondence problem for each model. The goal is to obtain the
maximuma posteriori(MAP) estimate of the disparities (i.e. motion vectors between corresponding
points) between the epipolar line pair. This was accomplished by defining a prior distribution on the
disparity function as a stochastic process comprised of Brownian motion and Poisson processes. In
the most complicated model, the scene is composed of multiple objects, the surfaces of which may
be steeply sloping or have creases.

Dynamic programming is applied in the case where conjugate epipolar line pairs are treated
independently, and a heuristic variant dubbed “iterated stochastic dynamic programming” is used
to enforce consistency constraints. In addition, this approach is notable in its exploration of the

relationship between foreground objects and “half-occluded” (i.e. visible in one image but not
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both) background regions. We discuss the full structure and implications of this relationship in the

next section.

5.1.3 Maximum Likelihood Approach: Cox et al.

While Belheumer placed a prior density on the structure of the scene and computed the Bayesian
MAP estimate, Cox et al. [4] derived a maximum likelihood (ML) estimate for the stereo cor-
respondence problem that requires no prior distributions. Their maximum likelihood algorithm
assumes that the intensities of corresponding pixels are normally distributed about a true common
value, which leads to a matching cost based on the weighted squared error between the intensities
of candidate corresponding points. The authors were able to obtain good results without further
assumptions about local smoothness of correspondences.

A system of cohesiveness constraints is also introduced to minimize the number of horizontal
discontinuities in each epipolar line and the number of vertical discontinuities across epipolar lines.

Occlusions are modeled, though the cost of occlusion is the same regardless of local image detail.

5.1.4 Maximum-Flow Graph: Ishikawa and Geiger

Ishikawa and Geiger [7] described an approach to compute the disparity map by solving a global
optimization problem that modeled occlusions, discontinuities, and epipolar line interactions. The
optimization problem is mapped to a maximum-flow problem on a directed graph, which can be
solved in polynomial time. In their model, a disparity discontinuity in one image is constrained to
match an occluded region in the other image. Edges and junctions are used as matching primitives.
The capacities of edges in the graph are adjusted to enforce the monotonicity constraint, require
consistency between epipolar lines and smoothness in disparity, and penalize discontinuities and

occlusions. However, their algorithm appears to be very slow.

5.1.5 Curve Matching: Tomasi and Manduchi

Tomasi and Manduchi [8] proposed a novel approach for matching epipolar lines, based on rep-

resenting each epipolar line as a curve in a higher dimensional space whose coordinate axes are
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intensity, derivative of intensity, and so on. Then the correspondence problem can be cast as finding
the matching of points on a pair of curvesRA’ that minimizes a radial distance function. Occluded

regions are represented in this context by unmatched loops of the curves.

5.2 Non-Monotonicity

Here we illustrate that the order of corresponding points along conjugate epipolar lines is not in-

variant from image to image, even though this is the basis of the commonly invoked monotonicity

assumption. Consider the scene in Figure 5.3, in which a thin post stands before a wall. The left
camera sees point to the left of pointB, while the right camera sees poistto the right of point

B.

C/

N
SR

/

Figure 5.3: The “double nail illusion”.

This phenomenon is sometimes called the “double-nail illusion”, and is dismissed as relatively
uncommon in stereo. However, it occurs frequently in images from wide-baseline video, which
comprise most of the examples in this thesis.

Figure 5.4 illustrates regions of two real images of the same scene, rectified so that epipolar lines
are horizontal. The numbered objects appear in different orders along conjugate epipolar lines due

to the large perspective difference between the images. Each inconsistency in ordering generates a
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Figure 5.4: Violations of monotonicity.

local violation of the monotonicity assumption in the affected conjugate epipolar lines. A monotonic
path through a matching graph such as the one illustrated in Figure 5.1 cannot represent the correct
matching.

Unfortunately, relaxing the monotonicity assumption to allow arbitrary matching of points be-
tween conjugate epipolar lines results in a problem of high combinatorial complexity, not suitable
for dynamic programming [10]. However, the set of correspondences that are physically realizable

is not entirely unconstrained, and has a specific structure that we derive in the next section.

5.3 The Correspondence Graph

5.3.1 Constraints on Correspondence

In the following, we fix a pair of camera&,C;) whose centers of projection af and Oy,
respectively. These cameras have associated image faeesl P, that lie between the cameras’
respective centers of projection and the sc8na collection of points ifR?. Select a plan&
containing the baseline, and view the intersectio®afith the camera centers, the image planes,
and the scene points as an imaging system with a 2-D stea& N ® and 1-D image planes (the
pair of conjugate epipolar linggy, ¢1)). This is illustrated in Figure 5.5.

We fix a coordinate systeifx, y) on ® by letting Oy = (0,0) and placing0; at (1,0).2 The

3Scene points are assumed to have posifigeordinates.
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Figure 5.5: Epipolar geometry.

epipolar lineg, and/; inherit natural one-dimensional coordinate systems (den@ad; respec-
tively), oriented so that increasinigandj correspond to increasing In this setting, a correspon-
dence is the realization of a poifit, y) in the scene as a pdit, j) € ¢y x ¢1. We will denote a$’
the representation of the scefén (i, j)-space.

Explicitly, the bijective transformation frorti, y)-space td, j)-space is given by:

) sinyy — y cos Yo

i(v,y) = fo——r . (5.1)
T COS Yo + Yy Sy

(x —1)sin~y; — ycosvyi

(x — 1) cosvy1 + ysiny;

where~y; is the angle the optical axis 6f makes with the positive-axis. We implicitly define two
new coordinate system&;, 0y), (r1,61) in terms of the(x, y) coordinate system by:

(z,y) = (rocosby, rosinby)

(z,y) = (ricosby +1, r1sinby)
These are just the polar coordinates(ofy) with respect toO, and O, respectively. It is clear

that the mappings between the four sets of coordinates are bijective, and hence the coordinate trans-

forms (i, j) = Jo(ro,00) and(i, j) = Ji(r1,0:1) are well-defined. An important property of these
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Figure 5.6: Mapping from (x,y)-space to (4, j)-space.

mappings is:
Proposition 5.1: For any fixeddy, 0; € (0, ),
% -0 >0

oro org

i 95 _
8r1<0 87‘1_0

Proof.  The partials of7, j) with respect tqx, y) are

S
o Jfo Yy
i (zcosyo +ysiny)? | _,
Oy
o
o fi (1

9 ((z —1)cosno +ysiny)? | _(; 1)
dy

Then by the chain rule, we obtain

01
oo | _ 0
01 — fosin 6
L or1 | L (zcosyop+ysinyp)?
[ 05 1 [ f1sin6g
dro _ ((z—1) cosy1+ysinvy1)2
9j
| o I 0
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Sincefy, 0; € (0,7), sin §p andsin #; are positive, and the property is proven. |

The proof can also be seen from the diagram in Figure 5.6. The intuition is that any rag@from
maps to a line segment with fixedn (i, j)-space, and provided that the ray is on the “right side”
of the baseline, the segment is traversed in the direction of increasisgve move away fror@.
Similarly, any ray fromO; maps to a line segment with fixgdn (i, j)-space, which is traversed in
the direction of decreasing

We can also derive a bound on the correspondences of points on rays from either camera.

Proposition 5.2: For any fixeddy, 6; € (0, ),

r(}i_{noo(i(roy 00),J(r0,00)) = (fotan(yo — 0o), f1tan(y1 — o)) (5.3)
rlhgloo(i(ﬁ, 01),4(r1,01)) = (fotan(yo — 61), f1tan(y1 — 01)) (5.4)

This follows from simple algebra. Equation (5.3) acts as an upper boundfenfixed 8y, and
equation (5.4) acts as a lower boundidior fixed #,. These also give the constant valueg &dr

fixed 8y andj for fixed 6,1, respectively, that are implied by Proposition 5.1.

Figure 5.7: The set of points in front of both cameras.

To obtain a lower bound oy for fixed 8y and oni for fixed 6, we consider Figure 5.7. The

bound is derived by requiring that a correspondence lies in front of both image planes. An important
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point is (z, y), the intersection of the two image planes. This point induces two critical afigles
and6;. We require that:

90 > éo 91 < él (5-5)

Assuming a point satisfies these constraints;jtandr; coordinates satisfy

ro > fosec(vo — o) r1 > frsec(yr — 01) (5.6)

in order to be visible. Taken together, (5.5) and (5.6) induce a lower bougicgsm function ob,
and an upper bound anas a function of, though it is not particularly instructive to present the

formulas.

5.3.2 The Correspondence Graph

Now we present the main result of this chapter, the correspondence graph. This is a representation
of all the points that are visible in both members of a conjugate epipolar line pair. In contrast to
assumptions of other algorithms (e.g. Ohta and Kanade, Belheumer), the result is a matching path
that need be neither monotonic nor continuous, and occlusions are explicitly removed from the
graph instead of being approximated by vertical or horizontal line segments.

Belheumer [6] mentioned a “morphologically filtered version” of the disparity function between
an epipolar line pair that is related to the correspondence graph. The filtering operation creates a
continuous, monotonic path through the epipolar matching graph that includes regions that are “half-
occluded”, i.e. visible in one image only. However, this formalism only captures simple scenes that
are constrained by monotonicity.

Now we formally define the correspondence graph:

Definition. The correspondence graghC /¢y x ¢; of a sceneS with respect to the camera pair
(Co, C1) is the set of all points if® that are visible (i.e. unoccluded) in bothand/,, transformed
into (4, j)-space.

The correspondence graph C S’. GenerallyC' # S’, since the correspondence graph takes
occlusions into account and the transformed sc#nd@oes not. However, we will prove that the
correspondence graph can be easily obtained from th& s&Ve shall see that the construction is

related to a certain morphological operation on point§ iri)-space, described below.
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Definition. A setA of points in(7, j)-space is a Southeast set if the subgétsb) € A | a = i}

and{(a,b) € A| b= j} have at most one element for ll;.

Definition. The Southeasting operatidfz(-) produces a Southeast s&tfrom a setA as follows:
A= Se(A) ={(i,j) € A|{(a,j) € Ala>i} and {(i,b) € A|b < j} are empty}

The setSe(A) can be obtained from by considering every poirt, j) € A and removing any

points that lie directly above or to the left of it (Figure 5.8).

]

A

< o
Ciray

> |

Figure 5.8: The Southeasting operation. Points are removed in the directions of the
rays.

Proposition 5.3: The correspondence gragghfor a sceneS with respect tqCy, C;) can be gener-

ated by Southeasting the transformed sc&he

Proof. ~ We know that the correspondence graphs a subset of the transformed scesie It
remains to determine which points 81 actually appear in both images. Fixand consider the
set of pointsS; = {(a,b) € S’ | a = i}. From Proposition 5.1, these points lie on the same
ray fromCy in (z,y)-space. The poinp’ with the smallest coordinate is closest t6, and is
hence the only point along the ray that is imaged’hy Therefore, the points i8] with largerj
coordinates thap’ are not retained in the correspondence graph. Similarly, for fixednsider the
setS; = {(a,b) € 8’ | b = j}. These points lie on the same ray fréhin (z,y)-space, and the

only point that is retained in the correspondence graph is that goivith the largest coordinate.
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The operation described above is simply the Southeasting of tH&.s&y construction, the
remaining elements in the Southeast set are precisely those points that appear in both cameras and

hence this Southeast set is by definition the correspondence gr&fh of [ |

Additionally, a partial converse to the above proposition is also true. That is:

Proposition 5.4: Fix a pair of cameragCy, C;), normalized to the standard configuration in Sec-
tion 5.3.1. Then any Southeast set of points:iry)-space is the correspondence graph of some

physical scene, provided that conditions (5.3)—(5.6) are satisfied.

Proof. From the proof of Proposition 5.3, it is clear that a correspondence graph must be a
Southeast set. Furthermore, (5.3)—(5.6) give bounds on the possible locations of pginjs-in
space that correspond to a physical scene. For any Southeastipgjngatisfying (5.3)—(5.6), a
corresponding scene point (&, y)-space can be obtained by intersection of the appropriate rays
from Cy andCy, i.e. by applying the inverse transformation of (5.1)-(5.2). Hence if every point in a
Southeast set’ satisfies the bounds (5.3)—(5.6), a consistent s8ecen be constructed for which

C'is the correspondence graphSwith respect taCy, C1). |

5.3.3 Examples of Correspondence Graphs

A sceneS with a simple obstruction relative to two cameras is illustrated in Figure 5.9a. Figure 5.9b
shows the scene transformed iiftpj )-space. The Southeasting process is applied in Figure 5.9c to
obtain the correspondence graph in Figure 5.9d. This is the type of correspondence characteristic in
stereo, where occlusions introduce discontinuities into the correspondence, but the correspondence
remains monotonic.

Itis instructive to compare the scene and graph in Figure 5.9 with those of Figure 5.10, in which
the occluding segment (labeled 6) has been decreased in length and moved closer to the cameras. In
this configuration, a part of the rear segment (labeled 3) behind the occluding segment is visible to
both camera 0 and camera 1. The labeled line segments are projected to image, jiethe order
1-2-3-6-5, and to the image plafg in the order 1-6-3-4-5. Segments 3 and 6 appear in different

orders in the projections; this reversal produces the phenomenon seen in the correspondence graph,
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Figure 5.9: Example 1 (simple occlusion). (a) Scene
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Figure 5.10: Example 2 (double-nail illusion). (a) Scene
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Figure 5.10d. We can see this is the correspondence graph associated with the double-nail illusion

in Section 5.2.

AN
B

Figure 5.11: An N-piece and 2-piece input can both result in a 3-piece Southeast output.

There is no general rule that relates the number of connected componehts iime number
in Se(A) (see Figure 5.11). However, it is easy to see that the number of connected components in
Se(A) is at most three times the number of connected componewrtssimce Southeasting a single

connected component can split another connected component into at most three pieces.

5.4 Estimating Correspondence Graphs

Though we fully characterized the structure of a correspondence graph in the previous section, it is
not obvious how this result can be applied to real images. Our purpose in this section is to present
an algorithm for estimating the correspondence graph for a conjugate pair of epipolar lines in a real

image pair.

Algorithm 5.1: Constructing correspondence graphs.

Given the following:

e A pair of image<Zy,Z;)

e Segmentation and matching of the foreground objects in each image
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e A pair of conjugate epipolar line€, ¢1)

Construct the correspondence graph {ég, ¢1) with the following four steps:

1. Estimate an initial correspondence within the segmented regions.
2. Estimate a global correspondence for the background regions.

3. Generate a basic correspondence graph by Southeasting the set of background and foreground

correspondences.

4. Refine the pieces of each correspondence graph using a monotonic epipolar-line-based matching

algorithm.

We reviewed algorithms for estimating the fundamental matrix, and hence, the pairs of conjugate

epipolar lines, in Section 3.2. We discuss in more detail the four steps of the algorithm below.

5.4.1 Step 1: Segmentation and Correspondence of Foreground Objects

The automatic detection, segmentation, and matching of objects in an image sequence is a very
difficult problem, and beyond the scope of this thesis. In this chapter and the following ones, the
segmentation and matching of the objects in the examples were obtained (somewhat painstakingly)
by hand. Reviews of segmentation techniques are given in [11, 12].

Generally, determining objects that move independently of the background is greatly facilitated
by multiple images, e.g. temporally adjacent frames of video. A general approach is to estimate
the dominant motion of the background pixels induced by camera motion first, and analyze regions
of pixels whose motion disagrees with this dominant motion [13, 14]. This can be viewed as a
specific case of minimum-description-length layered motion estimation [15, 16] where almost all of
the pixels are in one layer and the other layers have small spatial extent compared to the first one.
Sharp segmentation and classification into the “correct” number of semantic objects can be difficult
with these approaches. It is generally also very difficult to deal with occlusions.

Another approach to the segmentation problem comes from active contours. The general idea
is to define a cost function related to the edges in an image, and to iteratively deform a closed curve

or a series of closed curves defined on the image plane to achieve a minimal cost. If the cost is
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defined appropriately, the minimizing curves conform to the contours of foreground objects in the
image. This process generally operates on a single image, using intensity gradient information. The
canonical references on such “snakes” are [17, 18]. A more recent active-contour-based work that
seems very promising is [19]. The conditional-density-estimation algorithm discussed in [20, 21]
also seems to be quite good at tracking moving objects in cluttered environments.

Once we possess the segmented and matched objects, we consider the intervals that are formed
by intersecting the objects with the epipolar line pdis, ¢1). If the segmentation and epipolar
geometry estimates are accurate, each interval corresponding to an olfjestiduld have a match
in 1. Correspondence between each interval pair is then initialized by assuming that points match
up by linear interpolation between the boundaries.

A minor issue is how to deal with matching two objects with different numbers of connected
components when cut by an epipolar line. We use the simple heuristic illustrated in Figure 5.12, by
splitting up objects so that they have the same number of connected components along each epipolar

line.

(@) (b) (©)

Figure 5.12: Matching a “two-legged” object (a) with a “one-legged” object (b). Below
the line where the number of connected components differs, (b) is evenly split into two
pieces to produce (c), which can now be matched with (a).
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5.4.2 Step 2: Estimating Initial Global Correspondence for Background Pixels

Despite the battery of approaches to the correspondence problem described in Sections 3.5 and 5.1,
obtaining a good estimate of the correct correspondence between a real image plane pair, even in the
absence of occluding objects, is often problematic. Hence, any prior knowledge about the correct
correspondence should be exploited.

For example, in the absence of prior information, an algorithm that matches points along con-
jugate epipolar lines may make the default assumption that the left and right edge points of the
conjugate epipolar line pair correspond. For images in which the field of view of the cameras are
very different (e.g. Figure 5.18), this is a poorly founded assumption. The correspondence algo-
rithm can be applied with better results if the endpoints of the largest region that is projected onto
both conjugate epipolar lines are estimated. When these starting and ending points of the matching
path are well-estimated, the interiors of the delimited intervals can be more accurately matched.

In a certain class of real images (e.g. frames of sports video), much of the field of view of each
camera is comprised by a planar surface. From Section 4.1, the relationship between the coordinates
of correspondences that lie on this plane can be globally modeled by a projective transformation.
Using a small set of correspondences that lie on the plane as input, the parameters of the projective
transformation can be estimated using the techniques of Chapter 4. The estimated projective trans-
formation can be applied to the entire image planéo register the planar surfaces in the coordinate
system ofZ;.

The outline of the warped image superimposed®mprovides an estimate for the correspon-
dences of points on the edgesigfin Z;. This is schematically illustrated in Figure 5.13. The filled
quadrilaterals are the original image plane (&, P;) and their rectified counterpart®,, P;).

The dotted-line image planes in the left column are the imag®s of Py and?P, under the assump-
tion that a projective transformatia® maps the entire plane &, to P;. Similarly, the dotted-line
image planes in the right column are the image$gfin P; andP; under this assumption. By
composition of projective transformations, the map friBgto P; is given byQ = HPG~'. Since

the image planes are rectified, we know thdtify) € Py maps to(z’,3') € Py, theny’ = 3. That
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Figure 5.13: Using the planar surface to estimate initial correspondence.
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is, if @ = (A, b, ), then for all(z, y),

a1 T + agi + bo
1T+ coy+ 1

g =
Among other things, this implies that = ¢ = 0, which means that
¥ =anT+any+h

For a fixedy (e.g. the horizontal line in Figure 5.13), this means ttas a linear function of:.
In this example, this means that we can initially estimate that the points along tivee appear in
both images lie between the points labeled 2 and 3, and that points between these two correspond by
linear interpolation. There are five other cases, depending on where the edges of the image planes
lie with respect to each other in each line. We note that non-rectified image planes would not enjoy
this linear interpolation property.

In the case where there are multiple planar surfaces in the scene, several projective transfor-
mations can be estimated to estimate the initial background correspondence. We discuss this issue

further in Section 7.3.

5.4.3 Step 3: Generating the Basic Correspondence Graph

Once we have estimates for the background and foreground correspondences, we can construct
a correspondence graph with the correct topology for each pair of conjugate epipolar lines, by

Southeasting the collection of foreground pieces with the background piece.

5.4.4 Step 4: Refining each Monotonic Piece

Since by construction, each piece of the correspondence graph is monotonic, a correspondence
algorithm that assumes monotonicity can be applied to each piece of the graph independently. If

the estimates for the segmentation and background correspondences are sufficiently accurate, the
refinement step may be constrained to select a matching path that lies in a nearby neighborhood of

the initial matching path. Any of the algorithms from Section 5.1 can be used for the refinement.
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5.5 Experimental Results

We now illustrate each of these steps in the estimation of the correspondence graph for a real image
pair, and exhibit that the estimation problems involved at each step can be solved accurately. We

will use the example image pair illustrated in Figure 5.14. These natural, outdoor images are from

widely separated cameras viewing a soccer game.

Figure 5.14: Original image pair  (Zy,Z;).

The results of our hand-segmentation of the objectginZ, ) is illustrated in Figure 5.15. We
have segmented and matched three soccer players, the soccer ball, and the uprights of the soccer
goal. Segmentation this precise would be difficult to obtain with an automatic algorithm, especially

for the non-convex and transparent goalposts.

Figure 5.15: Image pair, with segmentation.
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Figure 5.16: Image pair, with point correspondences used for estimation.

The input to the fundamental matrix estimation algorithm for our example is the set of 19 point
correspondences illustrated in Figure 5.16. Of these, 12 lie on the plane of the soccer field (the
lighter dots), and 7 lie off this plane (the darker dots). All 19 correspondences were used for the

estimation ofF', which in this case was determined to be:

—4.3237x 1078  2.3279 x 107¢  3.2995 x 10~°
F=1] -11623x10® —9.8263 x 106 —0.01411
4.3254 x 1074 0.01117 0.9156

Sample epipolar lines corresponding to this estimate are displayed in Figure 5.17. It can be seen
that the estimation is good, i.e. a point on an epipolar line in the left image has its match on the
corresponding epipolar line in the right image. We can quantify the accuracy by considering the
mean signed distance from each of the 19 points to its estimated epipolar line, which in this case is
0.3504, less than half a pixel width.

As discussed in Section 3.3, to implement algorithms on a computer, it is often convenient to
rectify the images so that conjugate epipolar lines and aligned and horizontal. We take this approach
here; Figure 5.18 illustrates the rectified soccer image pair. The estimated rectifying projective

transformations are:

0.9995 0.0305 —0.0008
G = —0.0305 0.9995 0
0.0008  2.5797 x 107° 1
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Figure 5.17: Image pair, with sample epipolar lines.

0.9999 —-0.0119 —0.0002
H = —0.0030 1.2652 —82.1072
0.0002 —0.0008 1
The epipolar lines shown in Figure 5.17 are redisplayed, and are shown to be horizontal, which
means that the estimation is good. That is, the correspondences on one row in the left image can
be found on the same row in the right image. We can assess the quality of the rectifying pair by

computingd T FG~! and comparing it td"*. In this case,
|HTFG™ — F*||y = 1.2829 x 10~

which is on the order of machine precision. Another measure of rectifier quality is to look at the
mean difference of thg coordinates of the 19 rectified data points, which in this ca$ediss1,
less than half a pixel width.

Now we are ready to proceed with the construction of the correspondence graph. The images
in this example are well-suited to the planar assumption discussed in Section 5.4.2. The 12 points
that lie on the soccer field (indicated by the lighter dots in Figure 5.16) are used for the estimation,
and the projective transformation that warps the plane of the soccer fi@dtmthe plane irP; is

estimated to be:
0.6494 3.3081 —432.5712

P=0.0238 0.7897 59.0927 (5.7)
0.0007 0.0004 1
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Figure 5.19: Registration of planar surface in soccer images.

Figure 5.19 shows the result of warpifg by P to produce a new imag@,, and overlaying this
new image ontd;. Only the region ofP, containing the soccer field is displayed:; of course, points
that lie off of the planar surface (e.g. the soccer players) are distorted and registered incorrectly.
However, by comparing the continuity of the images across the thick lines deliri§inge can see
that the registration of the planar surface is accurate. The mean error in the projective transformation
fit to the 12 data points i8.9731, less than one pixel width.

At this point the foreground objects can be Southeasted against the background to create the



Chapter 5: Correspondence 101

basic topology of the correspondence graph for each conjugate epipolar line pair.

Frame 415, time update, line pair 71

Epipolar line, left image
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Figure 5.20: Correspondence graph (basic topology), line 71, enhanced to show the
Southeasting operation. The thin lines are the goalposts; the thicker line is the goalie.

Figures 5.20-5.22 show the result for the three pairs of epipolar lines in Figure 5.17. The South-
easting operation is shown graphically by the “shadows” in the figures; the correspondence graph
itself is comprised by the solid line segments that are unshadowed. The dashed lines indicate re-
gions visible inZy but not inZ; because they are occluded or lie outside the field of view. The
dotted lines indicate similar regions visible Ta but not inZ,. Figure 5.20 indicates the kind of
complexity that can occur in real correspondence. This is the epipolar line pair that cuts across the
two goalposts and the goalie. In one image, the goalie stands between the goalposts; in the other he
stands completely to one side. We can see that correspondence along this epipolar line pair is decid-
edly non-monotonic. The Southeast correspondence graph gives a physically consistent estimate of
which regions in the line pair can correspond.

Figures 5.23-5.25 show the results of refining the monotonic pieces of each correspondence
graphs of Figures 5.20-5.22. In our experiments we use the Ohta and Kanade algorithm on each
monotonic piece of the correspondence graph. We can assume there are no occlusions, by construc-

tion of the correspondence graph. Here, we searched for the lowest-cost matching path that lies
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Frame 415, time update, line pair 105
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Figure 5.21: Correspondence graph (basic topology), line 105.

Frame 415, time update, line pair 120
Epipolar line, left image

Epipolar line, right image
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Figure 5.22: Correspondence graph (basic topology), line 120.
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Frame 415, measurement update, line pair 71

Epipolar line, left image

Epipolar line, right image
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Figure 5.23: Correspondence graph (refined), line 71.

Frame 415, measurement update, line pair 105
Epipolar line, left image

Epipolar line, right image
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Figure 5.24: Correspondence graph (refined), line 105.
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Frame 415, measurement update, line pair 120

Epipolar line, left image

Epipolar line, right image
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Figure 5.25: Correspondence graph (refined), line 120.

within 8 pixels of the basic correspondence graph.

We can see that correspondence on both the background and foreground objects is refined by
the procedure, but that by construction, the topology of the refined correspondence graphs is the
same as that of the basic correspondence graphs. The quality of the refined correspondence can be

appreciated visually in Figures 6.4-6.6 from Chapter 6.

5.6 Conclusions

By ensuring that an estimated correspondence produces a valid (i.e. Southeast) correspondence
graph, we are explicitly prevented from attempting to match pixels from regions that do not appear
in both images, a pitfall of many correspondence algorithms.

However, the pieces of the graph removed by Southeasting need not be discarded. The lighter
segments in Figures 5.23-5.25 can also be used to estimate the correct locations of regions not seen
in both images. For example, given an objecTinwe can estimate which piece Bf it occludes,
simply by linearly interpolating between edges of correspondence graph pieces. We shall see an

application to filling in “holes” in correspondence in Section 6.2.
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The issue of obtaining good rectified images has not yet been satisfactorily solved. Seitz’s
method, which we currently use, can sometimes produce rectified images that are extremely warped,
as in Figure 5.26. It is desirable to solve the problem of finding a pair of rectifying projective
transformations that minimizes the distortion of the warped images for a given fundamental matrix
estimate. Of course, rectification is just a computational convenience, and a good implementation

should avoid unnecessary resampling of images and operate as much as possible on unsampled

image data.

Figure 5.26: An unsatisfactory pair of rectified images.

Exploring the relationship of correspondences in more than two images is a natural extension of
this research, and much work in this regard has already been done by Faugeras [22, 23] and Shashua
[24, 25]. We have shown that even in the case when the camera centers are colinear, for three
conjugate epipolar lines parametrized (dyj, k), there is no operation analogous to Southeasting
in (¢, 7, k)-space by which points in a sBt are removed along paths that are independent of the

starting point. There are some simplifications when the focal lengths are all the same, but in general,
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it seems that a different approach may be required for higher dimensions.
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Chapter 6

Virtual Video

The past six years have witnessed an explosion of techniques for generating what can be termed
“virtual views”. Given a set of images of the same scene at the same time taken by different cameras,
the virtual view problem is to synthesize an image from the viewpoint of a camera not in the original
set. The problem can be generalized to that of synthesizing video from the viewpoint of a moving
camera, given a set of real video sequences.

Virtual video has made its way into the public eye thanks to commercials (e.g. The Gap’s
“Khakis Swing” commercial), movies (e.g. The Matrix), and televised sporting events (e.g. Super-
bowl XXXV). The typical effect is of a camera navigating through a frozen or slowed-down scene.
Such effects are created using a highly specialized camera rig with tens or hundreds of cameras
positioned along the desired camera path. Each “virtual image” is either a real image from one
of the closely spaced cameras, or is interpolated from an adjacent pair of real images using small-
baseline algorithms. These techniques can be categorized as hardware solutions to the virtual video
problem. Related techniques from computer graphics include the light field [1] and lumigraph [2],
which require hundreds or thousands of images, huge amounts of storage, and copious processing
time to synthesize new views of a scene.

Our interest is in synthesizing physically correct virtual images, that is, images that are created
with well-founded geometric principles instead of ad-hoc techniques. Furthermore, we would like
to synthesize virtual images in situations where strong calibration (knowledge of 3-D location and
orientation) of the source cameras is unavailable, and many cameras are not required. In this chapter,

we will confine our attention to the case when images from exactly two source cameras are available.

109
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Other researchers (e.g. Laveau and Faugeras [3] and Avidan and Shashua [4]) have discussed using
images from more than two cameras to create virtual still images. A recent paper by Ma et. al [5]
characterizes the set of physically correct virtual images that can be obtained from a finite number
of real images. In the case of video, however, it can be quite difficult to obtain two synchronized
video sequences of the same scene, much less three or more.

We begin in Section 6.1 by reviewing view morphing, a general method for synthesizing an
intermediate virtual image whose optical center lies on the line through the optical centers of the
two source cameras. We will illustrate our examples in the text using the view morphing algo-
rithm exclusively. There are many other approaches to image-based view synthesis in the computer
graphics literature (e.g. McMillan and Bishop [6]). However, virtual view synthesis algorithms
share the trait that they depend fundamentally on estimating a dense correspondence between the
source image planes.

We demonstrate in Section 6.2 how the estimate of a set of correspondence graphs between a
wide-baseline image pair can be used to generate compelling virtual images of a scene. Unlike many
view synthesis results that incorporate correspondence algorithms using a monotonicity assumption,
we are able to display a much richer class of virtual images here.

Next we address the virtual video problem. Aside from the hardware solutions discussed above,
the only other type of virtual video we know of prior to this work was created by moving a virtual
camera through a static scene, so that objects seem to be frozen in time. In contrast, here we create
true virtual video from a pair of source video sequences, in the sense that the virtual video evolves
dynamically along with the scene.

One ndve solution to the virtual video problem is to treat it as an independent sequence of virtual
view problems over the length of the source videos. However, this approach is prohibitively time-
consuming, since estimating dense correspondence between an image pair, especially a widely-
spaced one, generally requires human intervention. More importantly, the independent problems
do not exploit the temporal regularity of the input video. That is, assuming that the motion of the
cameras and scene objects is small, we expect that the correspondence required to synthesize virtual
images at adjacent frames is similar.

In Section 6.3 we present the main contribution of the chapter, a framework for the recursive
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propagation of correspondences between frames of two video sequences. The propagation consists
of a time update step and a measurement update step. The time update depends only on the dy-
namics of the source cameras, while the measurement update can be tailored to any member of a
general class of image correspondence algorithms. Using these results, the correspondence estimate
relating each frame pair can be propagated and updated in a fraction of the time required to estimate
correspondences anew at every frame. While virtual video is our motivating application, the recur-
sive correspondence propagation framework applies to any two-camera video application in which
correspondence is difficult and prohibitively time-consuming to estimate by processing frame pairs
independently.

We demonstrate our experimental results on real test video from a natural outdoor scene in
Section 6.4. The scene is complex, with many moving objects, yet the synthetic virtual video looks
realistic and conveys a convincing 3-D effect. The user need only provide a small set of point
matches in the first frame pair, and an algorithm to segment and track moving objects in the scene.

A shorter version of this work originally appeared in [7].

6.1 Review of View Morphing

6.1.1 View Interpolation

The first result we present is called view interpolation. We consider the camera configuration of
Figure 6.1, in which the two image plan®s andP; are parallel to each other and to the baseline.
Without loss of generality, we can fi¥, = (0,0,0) andO; = (1,0,0), and takeR, andR; to

be the identity/. The camera matricd$y, andII; are then given by:

fo 0 0 0
Iy = | 0 fo 00
0 0 10
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Figure 6.1: View interpolation.

fi 00 —fi
m = |0 f, 0 0
0O 0 1 0

If we consider a corresponderideuy, w;) € Py x Py induced by a scene poift = (X,Y, Z),

then Chen and Williams [8] noted that

wo w1 1 P 1 P
(1—1s) +s = (1—-s)=1p +s=1T
1 1 Z 1 Z 1
(1-s5)fo+sf 0 0 —sfi
1
= - 0 (1—8)fotsfi 0 0
1
0 0 1 0
1H P 6.1

'Here we have made a slight shift in notation, from g w’) that we used in the previous chapteri@), w1 ).
The reason is that we are now viewig andC, as the endpoints of a “line segment” of cameras parametrized by the
subscript.
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Whens € [0, 1], the matrixII; corresponds to a cameta with

sfi
Os = | ——F——,0,0 6.2
() ©-2
fs = (A=9)fo+sfi (6.3)
Then ifw; is the projection of® by Cs,
Wg _ (1 B s) wo 4 w1
1 1 1
so we have

ws = (1 — s)wp + swq (6.5)

Hence, interpolating the image coordinates of the projectiorn? isfthe same as projecting
onto the image plane of an interpolated (in the sense of (6.2)-(6.4)) camera. The fact that the origin
of the camera is a nonlinear function ofs slightly disagreeable, but we shall generalize the view
interpolation result considerably in the next section.

The basic and important result (6.5) shows that a new projection of the scene can be obtained
without knowledge of the three-dimensional locations of cameras or scene points. Provided that
given any pointwy € Py, its correspondence; € P; can be estimated, the correspondence
ws € P, can be computed through (6.5). Algorithms for estimating correspondence at a very fine
level between an image pair have been extensively studied (see Section 3.5 and Chapter 5), and
as a result, compelling and physically “correct” intermediate images of a scene can be synthesized
without any three-dimensional modeling. Chen and Williams called this result view interpolation.

Incidentally, the matriXiT; of (6.1) represents a physical camera proviged> 0. When

fo > fi1, as sketched in Figure 6.1, this means that the view interpolation formulas represent a

physical camera whenever< fof_ofl. That is, the projection onto any image plane “beyofy”

(i.e. s < 0) and some image planes “beyor#] (i.e. s € (1, 1+ ﬂjfi—lﬁ)) can be extrapolated. In

particular, if fo = f1, then the projection onto arfy, can be computed.
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6.1.2 View Morphing

Here we show how the view interpolation result can be extended to a more general class of virtual

images.

Figure 6.2: View morphing.

As we reviewed in Section 3.3, when the epipolar geometry is known between an image plane
pair (Po, P1), there are several methods for selecting a pair of rectifying projective transformations
(G, H). The transformation& and H represent underlying rotations of the cameafaandC; to
new camerag, andC; that have the same optical centers. The corresponding image faaes
P, are rotated to new image plan®s andP;. such that after rectificatiory andP; are parallel
to each other and to the camera baseline, with their epipolar lines aligned and coincident with lines
of constanty. Since this is precisely the configuration for view interpolation discussed above, a new
view can be synthesized from the perspective of a cadigndnose originO; lies at thes-way point
betweenD, andO;, and whose image plarR, is parallel toP, andP;.

The image planéP, of an arbitrary camerd, with origin O, can be obtained frorP, by
application of an appropriate projective transformatidrthat effectively rotates the image plane

from P, to P,. Then if (wg, ws, w) are the projections of a scene poidtonto the image planes
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(Po, Ps, P1), we have the central equation
ws = K~ ((1 = 5)G(wo) + sH(w)) (6.6)

This result, illustrated in Figure 6.2, was first obtained by Seitz and Dyer [9], who called the
process view morphing.

Since the focal lengths of the came€asandC; are equal by construction, the view interpolation
equation (6.5) is valid for any value ef Hence, we can use (6.6) to construct the projection onto
the image plane of any camera whose optical center lies on the line thégpighd O1, not just
cameras withs € [0, 1]. This was not mentioned in Seitz’s original work, though the extrapolation

property was recognized by others, e.g. Scharstein [10].

6.2 Experimental Results: Virtual Images from Wide-Baseline Stills

We now return to the pair of test images illustrated in Figure 6.3, which is the same example from
Chapter 5. In Section 5.5, we estimated the correspondence graph for each pair of conjugate epipolar

lines using our proposed algorithm, and thus we possess a dense correspondence between the image

planesP, andP;. This is all we need to create virtual views of the same scene.

Figure 6.3: Original image pair  (Zy,Z1).

The view morphing equation (6.6) is a statement only about the positions of corresponding
points in the image planes, not about their colors. Here we proceed from the Lambertian assumption

that scene points have the same color regardless of the viewing angle, and that the color of an image
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point is the same as the color of a single corresponding scene point. To compensate for deviations
from these assumptions in real images, we will color points in the virtual images by a weighted
average:

Zs(ws) = (1 = 5)Zo(wo) + sZ1(w1) (6.7)

We use the choice of rectifying projective transformations suggested by Seitz [9] and detailed
in Section 3.3. In the examples of this chapter, we will fix the postwarping transfornyatiorbe

the identity. However, one of our main interests in Chapter 7 will be the estimation of a projective

transformation that aligns a virtual image with a real image as well as possible.

@) (b)

Figure 6.4: Synthesized virtual image 7, at s = 0.5. (a) no filling of occluded regions.
(b) filling of occluded regions by planar assumption.

For each pair of conjugate epipolar lines (corresponding to rows of the rectified images) we
estimated the correspondence graph, as described in Section 5.4 and illustrated in Figures 5.23-
5.25. Each scene point that is visible in both images is rendered on the virtual image plane using the
view morphing equations (6.6) and (6.7) with= 0.5. Pixels are rendered in the order of decreasing
disparity, that is, back to front. The result is illustrated in Figure 6.4a. While the rendered pixels

appear realistic, the eye is drawn to two striking artifacts:

1. The black regions in the image plane that correspond to pixels visible in only one of the images
(Zo,Z,). For example, each soccer player has two “shadows” corresponding to the piece of the

soccer field that was occluded from each perspective.
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2. The limited extent of the virtual image compared to the originals. This is caused by the relatively

small region visible in both image planes.

In this example, we can alleviate both of the above problems by supposing that the background
is a planar surfaceé Consider a scene poitfit that is visible inZ, atwy but is not visible inZ;. We
compute an estimat@; that is the image ofvy under the projective transformation induced by the
planar surface. Thefwy, w;) can be treated as a correspondence, and the projectiohP in P
can be estimated as

ws = (1= )G (wo) + sH (1)

However, in this case we should only use the color of the point in the image where it is visible,
that is,
Zs(ws) = Zo(wo)

We take a similar tactic for points that are visibleZinbut not inZy. Of course, there may be
regions that are visible in neither image due to occlusions by multiple objects. A correspondence
estimate(wy, w1 ) can be obtained for such a point from the planar assumption, but there is no color
information for this point. In this case, we can interpolate the colors from either side of the missing
piece, or use a default color. We note that the correspondences of occluded points induced by the
planar assumption are displayed as dotted and dashed lines in Figures 5.23-5.25.

The result of filling in occluded regions by the planar assumption is illustrated in Figure 6.4b.
Since the planar assumption is valid over many occluded pixels, the virtual image is much more
realistic. Distortion is visible in several regions where the planar assumption is invalid, such as the
stands in the upper left corner, and the soccer players at the upper right. However, the virtual image
is a convincing rendition of the scene from a viewpoint that is halfway between the unknown optical
centers of the original cameras. Interpolated views with 0.25 ands = 0.75 are illustrated in
Figure 6.5, and extrapolated views with= —0.5 ands = 1.5 are illustrated in Figure 6.6.

We emphasize that the realism of the virtual images is due to the complicated but physically
correct correspondence encapsulated by the set of correspondence graphs. The original work by

Seitz applied Beier-Neely morphing [11] or an epipolar-line-based correspondence algorithm [12]

2Recall that we introduced this assumption in Section 5.4.2 in order to construct the basic correspondence graphs.
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@) (b)

Figure 6.5: Interpolated virtual images 7, at (a) s = 0.25, (b) s = 0.75.

@ (b)

Figure 6.6: Extrapolated virtual images 7, at (a) s = —0.5, (b) s = 1.5.
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to obtain a dense correspondence between a pair of images. However, these techniques make the
monotonicity assumption, which is clearly violated in this data set. Using correspondence graphs
allows us to obtain a much richer set of virtual images than was previously demonstrated. We can
see arrangements of objects in the virtual images (e.g. the position of the goalie with respect to the

goalposts in Figure 6.5b) that never occurred in the original frames.

6.3 Virtual Video

In this section we present the main contribution of the chapter, a framework for the recursive prop-
agation of correspondences between frames of two video sequences. Our motivating application is

the efficient and accurate synthesis of virtual video, which will be demonstrated in the next section.

6.3.1 Notation

We consider a pair of rotating camer&g,andC;, taking images of a dynamic scene. The image
taken byCy, at timei fori = 0,1,2,... is defined byZ, (i), which lies on a coordinatized image
planeP;(i). Our goal is to synthesize the virtual image sequefitgi),: = 0,1,2,...} of the
scene from the perspective of a moving virtual cantgra

We assume the cameras’ centers of projection are not coincident, so that every pair of image
planesPy (i) andP; (i) is related by a fundamental matriX(i). We also assume each camera’s
center of projection to be constant. Hence, the plane coordinatBg(of- 1) and Py (i) are re-
lated by a projective transformation, denoted Bi) andQ(i) for £k = 0,1 respectively. These
assumptions are reasonable in many domains of application such as sports video, where multiple
cameras mounted on tripods simultaneously view a scene. The cameras can rotate and zoom, but
the translational motion of the tripods is small with respect to the distance to the scene points.

As discussed in Chapter 5, we facilitate the estimation of correspondence along conjugate epipo-
lar lines by rectifying the input image planes. The rectifying projective transformations chosen at
time s are denoted a§' (i) and H (i), which when applied to the image plarfég(i) andP; (i) pro-
duce image planeB, (i) andP; (i) respectively. The various relationships between image planes

are illustrated in Figure 6.7.
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Video Video
Sequence 0 Sequence 1

Pol) [ Py |0

G(i)

P(i+1) Q(i+1)

G(i+1) F(i+1) H(i+1)

Py (i+1) P, (i+1)

| |

Figure 6.7: Relationships between image planes.

To ease the notation in this section, we will defyggi) as the (true) correspondence between
the image paifP, (i) andP; (). To make this more formal, let the set of conjugate epipolar line
pairs betweerPy(i) andP; (i) be parametrized by the real numbein an intervall; C R. The
interval I; is finite due to the finite extent of the image planes. Asanges over;, it induces the
family of conjugate epipolar line& (i) = {(Eg(i),éf(i)),ﬁ € I;}. Let X (i) be the space of all
possible correspondence graphs for the famify). Making use of Proposition 5.4 from Chapter
5, x € X(¢) ifand only if x = {Ag, 8 € I;}, where eachg is a Southeast set f(@foﬂ(i),ﬁf(i))
satisfying the bounds (5.3)—(5.6). Clearly the true correspondet@égis an element of the space
X.

In order to quantify how close two estimates of correspondence are, we will define adnetric
on the spaceX;. We will use as a subcomponent the Hausdorff metficinduced by a metrie
onR2. Let H be the collection of all nonempty, compact (in the sensé)afubsets ofR?. The

Hausdorff metric ort{ is defined as follows:
di(A,B) =inf{6 | Ac B® and B c A®}
whereA, B € H and A" is the dilation operator defined in termsdby
AY) = {2 e R?| inf d(z,y) < 6}
yeA
Then we can define the metidg, by

dx, (6 x) = sup dr(Ag, Aj)



Chapter 6: Virtual Video 121

wherey = {Ag, B € I;} andx’ = {4}, B € I;}. We can think ofix, as measuring the* distance
between two estimates of correspondence. In this section, we will assume all correspondence graphs
are closed sets.

Our goal is to efficiently obtain an estimatexgf(:) at every time step. In the next three sections
we discuss our proposed algorithm in detail. In Section 6.3.5 we provide analysis to bound the

accuracy of our estimates using the metric’ondefined above.

6.3.2 Recursive Propagation

Let ¥(7) be an estimate of* (i) obtained by the application of a correspondence algorimne
assume that the application of the operaféris a time-consuming task, either because a lengthy
search process or human intervention is required.

We wish to more efficiently estimate*(:) at each time. We do so by exploiting the temporal
regularity of the video, estimating the effect of camera motion, and using a computationally simpler
approximation ofC*. Namely, letg(i | j) be an approximation of (i) based on information from

time j. x(i | j) defined by:

X(010) = x(0)
X(@+11]3) = TH(x(|4))

RE+1]i+1) = MY +1]4))

Here, T%*! is a time update operator that propagates the correspondence estimate frantatime
i+ 1, andM*! is a measurement update operator that refines the estimate using new information
that has become available at tirhe- 1. The time-dependency of the update operators arises from
their dependency on the imadgégi + 1) andZ; (i + 1).

To make this algorithm more concrete, we now discuss the opefBt@isdA/? in more detail.
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6.3.3 Time Update

Given complete knowledge of the camera motion of Figure 6.7, the new position at 4imef a
point match(wo(7), w1 (i)) € Po(i) x Pi(7) is
(wo(i 4 1), wi(i+ 1)) = (P(i + Dwo (i), Qi + 1)wi (i)

That is, if the only difference between the frames at tihasd: + 1 is due to motion of the
cameras, the coordinates Bf.(i) andPx(i + 1), £ = 0,1, are globally related by a projective
transformation.

The time update for rectified image planes can be expressed in a particularly simple form. Sup-
pose(G(i), H(i)) rectify (Py(i), P1()), such thatd (i)~ F(i)G(i)~' = F*. We would like to
choose a pair of projective transformaticid(i + 1), H (i + 1)) that rectify(Py(i + 1), P1(i + 1)).

Such a pair is given by the following lemma:

Lemma6.1: (G(i)P(i+1)~1, H(#)Q(>i + 1)) is a rectifying pair for(Py(i + 1), P1(i + 1)).
Proof.  Itis easily proven that the fundamental matfii + 1) relating(Po(i + 1), P1(i + 1))
is given by
Fli+1)=Q+ 1) TF(i)P@i+1)"*
Since
HHQG+ 1Y TFi+1D)(GHPE+1) ™Y =HGTFGHG6E) ™ = F*
we conclude thatG(i)P(i + 1)1, H(i)Q(i + 1)) is a rectifying pair. |
Therefore, we fix
Gi+1) = G@HPGE+1)"! (6.8)
H(i+1) = H@HQG+1)! (6.9)

Using this special rectifying pair, a point mat@hg (7), w; (7)) from the rectified image®, (i) x

P, () is propagated to the rectified imag@g(i + 1) x Py (i + 1) by
(Wo(i + 1), w1 (i +1)) = (G(i+1)P>i+1)GE)  wo(i), H(i +1)Q(i + 1)H (i) 'w1(4))
= (Wo(4), w1 ()
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That is, the propagating transformation is simply the identity. Given that we use the rectifying
pair in (6.8)-(6.9), this leads us to define the time update opefator that operates on a corre-

spondence estimate= {Ag, 3 € I;} to simply be
T (x) = x

This is well-defined since the coordinateslpindI; . agree by construction of the rectifying
projective transformations. For the same reason, we can drop the subscript from thedmetric
since the epipolar lines agree, and refer simplg to

Of course, the various projective transformations are generally estimated using a regression

algorithm as described in Chapter 4, so in practice we use an approxiriiationf 7! given by
T (x) = x

where the estimated rectifying projective transformati@igi + 1), H (i + 1)) are compositions of

other estimates given by
(GGi4+1),H(i+1) = (G@HPGE+1)"L HOQMGE+ 1))
In Section 6.3.5 we will analyze the implications of this approximation.
Objects that move independently of the camera can be time-updated using a separate segmen-
tation and tracking algorithm if desired. We will discuss our implementation of time-updating in

practice in Section 6.4.

6.3.4 Measurement Update

Let C* be the operator that takes as input an image (#&ifi), Z;(i)) and produces an estimate
x(7) of the set of correspondence graphs for each pair of conjugate epipolar lines as described in
Section 5.4, Algorithm 5.1. This requires the estimation of the basic topology of the correspondence
graphs, followed by the solution of a set of monotonic matching problems over a series of series of
rectangular domains (see Figure 6.8). We denote this set of domai¥s as

However, at timeg > 0, we possess the set of time-updated correspondence graphs from time

1 — 1, which we assume to be a good estimate of the set of correspondence graphg .atiemee,
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Figure 6.8: The set D’ of rectangular domains searched by the correspondence opera-
tor C' given basic correspondence graph topology for one epipolar line pair.

we need not search over the set of all possible matching paths as we did at time 0. Instead, given an
estimate of correspondengewe define the measurement update operdftbfy ) to beC” restricted
to ane-ball aroundy. This is illustrated in Figure 6.9 for one epipolar line pair. We denote this set

of domains as3’. Specifically, ifx is the set of Southeast setd s, 3 € I;}, then
B ={A}n D (6.10)

Recall A®) is thee-dilation operator introduced in Section 6.3.1. We intersectthall with D’
so that the output of the measurement update opehdtoy ) is still a Southeast set with the same
topology and endpoints as
By construction3 C D¢, and if< is small the area 0B’ can be substantially smaller than the
area ofD’. Specifically, ifD? is the union ofK rectangles with dimensiong, x Ny, k = 1,..., K,
then the ratio- of the area of3’ to the area oD’ is approximately
K

2e(My, + Ni) — 2
M}, Ny,

i
I
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Figure 6.9: Measurement update by searching a local neighborhood B¢ around the time-
updated estimate.

if the dilation is based on the; norm, and

2 2
K 2 2 _ 2 M+Ny
2ey /M2 + NZ — 225t T
r = E

M. Ny,

k=1
if the dilation is based on thés norm. In either case, f <« M, N, r becomes quite small.
Thus, the measurement updaté can be computed more efficiently than the full correspondence
operatorC?, since the computation required to solve the correspondence estimation problem over a

domain is proportional to the area of that domain.

6.3.5 Error Analysis

We use the recurrencg(i | i) = M'T(x(i — 1 | i — 1)), whereT" is an estimate of the true
T* induced by camera dynamics as in Section 6.3.3. We are interested in bounding the difference
between the output of thel’, M) algorithm and the true correspondengdi). To this end, we

define the estimation error at each timas:

ern (i) = dx (X" (i), X (i | ©))
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Then we can prove the following theorem on the dynamics-of:

Theorem 6.1: Suppose there exist constantsy, ¢, andp such that for alk;,

dx(T'(x), T'(x) < 7 (6.11)
dx(T'(x), T'(X)) < adx(x,X) (6.12)
dx (" (i +1), T'(X*(9)) < 6 (6.13)
dx(x(i),x"(1)) < p (6.14)
and that
M (x(1)) = x(0) (6.15)

Lete be the radius of the ball used in the measurement update (6.10). Then proviged, the

(T, M) algorithm is stable in the sense that

26 +3v+ (a+1)p+46
11—«

limsuperp (i) < p+ (6.16)

First we prove a simple lemma:
Lemma 6.2: If ¢ is the radius of the ball used in the measurement update (6.10), then
dx (M'(x), M'(X)) < 2 + dx(x,X')

Proof.  First we show thatx (x, M(x)) is bounded. Lek = {Ag, 3 € I;}. Fix 3 and consider
a monotonic piece of Az. By construction,M*(a) C a'®) since the measurement-updated path
must lie within ane-ball of a. Converselys ¢ M*(a)(®). This can be seen from the diagram in
Figure 6.10. For any point on a, construct the ball of radius aboutp. Since the measurement-
updated path is continuous and has the same endpoimté asust pass through this ball, and hence
every pointp of a is contained in aa-ball about some point af/*(a).

Thusdg(a, M'(a)) < e for every monotonic piece afiz and hencely (Ag, M*(Ap)) < e.
Thereforedy (x, M*(x)) < ¢, and from the triangle inequality, it follows that (M*(x), M*(x')) <
2e +dx(x,x'), as desired. |
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Figure 6.10: Proof that a c M*(a)(®).

Proof of Theorem.  First, we define an auxiliary estimation erkgy:
ep(i) = dx(x(i),X(¢ | 7))
By repeated applications of the triangle inequality, it is straightforward to show that

dx(T'(x), T'(X)) < 2v+adx(x, X))

dx (T'(x(i —1)),X(i) < (a+1)p+6

We can compute an upper boundqs(i):

ep(i) = dx(x(i), x(z 1))

IN
[\~
™
+
=¥
b
>
S
=
<
|
=
+

dx (TR — 1), TR0 = 1)) + dx (T (70 = 1)), TG — 1] i — 1))

2e+ ((a+Dp+0)+ () +2y+adx(x(i—1),x(i —1]i—1))

IN

= 2e+3y+(a+1)p+d+aep(i—1)
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Hence,
€5 = limsupep(i)
26 +3v+ (a+1)p+9
- l1-a

Finally, sinceerys (i) = dx (x*(7), x(7)) < p+ ep(i), we have

ey = limsupepp (i)

< p+limsupep(i)
2¢e +3v+ (a+1)p+0
* 1-a

<
which is the statement of the theorem. |

The conditions of the theorem are not unusually stringent. We require that the §@tpaf C*
is fixed byM*?, which is the case wheh/" is a restriction of>? over a smaller domain. The constant
~ of (6.11) reflects the accuracy of the projective transformation estimation algorithm, which is a
function of the algorithm itself as well as the noise in the point matches. For well-chosen feature
extraction and transformation estimation algorithmshould be on the order of a few pixel widths.
The constand of (6.13) reflects scene dynamics that are not modeled by the rotation of the cameras,
and can be interpreted as the maximum distance objects can move after compensating for camera
motion. If the frames are closely spaced in time, this is again on the order of a few pixel widths. The
constanty of (6.12) is related to the relative distance two points can move apart after the application
of the projective transformation embeddedZih Since the greatest relative expansion occurs at
one edge of the finite-extent image plands related not only to the underlying rotation and zoom
parameters of the cameras between adjacent frames but also to the dimensions of the image plane.
The parameter should be chosen proportionaldod, andy. The smaller these parameters are, the
more accurate the time update is, and the narrower the search neighborhood needs to be.

By (6.16), the error in the recursive propagation algorithm is uniformly bounded for all time. In
particular, wherp = 0, i.e. the operato€® produces the true correspondencei), the error in
the (T, M) algorithm is bounded by a quantity that depends on the amount of object motion in the
scene, the error in the approximation®f by 7%, and the radius of the measurement update. As

these quantities decrease to zero, so does the asymptotic error(ﬁtme algorithm.
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6.4 Experimental Results: Virtual Video from Wide-Baseline Video

Here we demonstrate the results of the recursive propagation framework in the context of creating
virtual video. Our test sequence is 43 frames long and constitutes a single event from a soccer game
(a player attempts to kick the ball and is tripped). The frame84be< 240 pixels, and come from

a high-quality digital video camera.

We make an implementational comment regarding the filling-in of occluded regions as the algo-
rithm progresses. In Section 6.1 we discussed how the planar assumption could be used to estimate
correspondence for points visible in only one image. While the planar assumption can be propagated
to subsequent frames by composing projective transformations, we can do better by time-updating
the correspondence for the entire background piece at each iteration, regardless of visibility. Parts
of this background piece that had been seen in previous frames have had their correspondence esti-
mated at prior steps, and may become visible again. Hence, our implementation of the time-update

is:
Algorithm 6.1: Practical time-update.

1. Estimate the projective transformatiof*$i) and Q(i).

2. Rectify the image planes at tirhe- 1 with the approximate rectifying pair
(G)P>i+ 1)L HH)Q> + 1)),

3. Initialize the background correspondence at timel in the rectified images to be the same as the
background correspondence at timeliscounting any previous information about which regions

were occluded.
4. Track the foreground objects to their locations at tiime 1.

5. Create a basic correspondence graph for each epipolar line pair by Southeasting the foreground
pieces onto the background piece. Retain correspondence estimates for the occluded regions to

use in rendering and in subsequent iterations.

The last three steps of the algorithm are illustrated schematically in Figure 6.11.
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Figure 6.11: Filling in occluded regions in the time update. (a) The regions of the corre-
spondence graph from time i removed by Southeasting are retained. (b) Attime  i+1, the
entire background is reinitialized as a visible piece and the new object is Southeasted
onto it.
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Our current implementation produces virtual video at about 20 frames per minute. The only
user intervention required is a sparse set of point correspondences in the initial frame pair (used to
estimate the fundamental matrix and the projective transformation relating the dominant plane in
the image pair), and segmentation and tracking information for moving objects in each frame (used
to construct correct correspondence graphs). In this example, to obtain the best possible results, this
information was obtained by hand.

The projective transformation8(:) and (i) were estimated using the efficient algorithm de-
scribed in Chapter 4, using point matches extracted by the automatic feature selection algorithm
described in Section 3.4. The measurement update used an 8-pixel search neighborhood about the
time-updated estimate.

Figure 6.12-6.14 illustrate the results of the algorithm on conjugate epipolar lines 71, 105, and
120 for the first and second frames of video (labeled Frame 415 and Frame 417). The upper left
hand corner of each figure is the basic correspondence graph for Frame 415 induced by the planar
assumption and object segmentation. The upper right hand corner is the refined correspondence
graph for Frame 415 obtained by applying the measurement update operator to the basic correspon-
dence graph. The lower left hand corner is the correspondence graph for Frame 417 obtained by the
time update, and the lower right hand corner is the correspondence graph for Frame 417 obtained
by the measurement update.

The correspondence graphs all seem rather similar (which is the point of the algorithm). How-
ever, it can be seen clearly in Figure 6.13 that the background correspondence from Frame 415 is
time-updated to the same location in Frame 417 (note the “elbow” at the lower left end of the long
piece). This correspondence is refined by the measurement update (and the elbow disappears).

More compelling are the virtual video frames rendered using this correspondence. Six such
frames are illustrated in Figures 6.15-6.20. In each figure, the upper left and upper right images are
real images(Zy(i),Z1 (i)} seen at time, corresponding to locations along the baseling ef 0
ands = 1. The lower left image is a rendition of the scene from a stationary camera with optical
center fixed at = 0.5. The lower right image is a rendition from a moving camera whose optical
center moves at constant speed frera- 0 to s = 1. The figures are selected to be spaced apart

along the baseline by roughfy. Over the course of the video clip, camégaundergoes a slow pan
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Figure 6.12: Correspondence graphs, line 71
measurement update. (c) Frame 417 time update. (d) Frame 417 measurement update.
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Frame 415, time update, line pair 105 Frame 415, measurement update, line pair 105

Epipolar line, left image Epipolar line, left image

° 500 ° 500
& &
g g
E E
H £

g ‘ 7 450 g B r 450
& k4
g g
=1 8|
& &

400 400

350

. . . . . 1 300 . 1 I . . 1 300

450 500 550 600 650 700 750 800 450 500 550 600 650 700 750 800
Frame 417, time update, line pair 105 Frame 417, measurement update, line pair 105

Epipolar line, left image Epipolar line, left image

a a
g @
£ £
| )

f - 7 as0 g . 7/ aso
5 5
3 g
=1 o

“ {400 Y a00

1350

, , . , . . . . . . . , 200

450 500 550 600 650 700 750 800 450 500 550 600 650 700 750 800

() (d)

Figure 6.13: Correspondence graphs, line 105. (a) Frame 415 initialization. (b) Frame
415 measurement update. (c) Frame 417 time update. (d) Frame 417 measurement
update.
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to the right, while cameré; slowly zooms in. The virtual camera has dynamics observed in neither

of the source video clips.

Figure 6.15: Frame 415. Upper left, original  Cp frame, s = 0. Upper right, original C;
frame, s = 1. Lower left, virtual C, frame, s = 0.5. Lower right, virtual C; frame, s = 0.

Unfortunately, it is difficult to convey the three-dimensional feeling of the rendered video from
these still images. However, as in the single-frame-pair example we presented in Section 6.2, each
of the virtual images is a convincing rendition of the dynamic from an intermediate viewpoint. We
emphasize that the effects exhibited here are similar to those produced by specialized multicamera
hardware. However, here we only require two uncalibrated cameras and no 3-D scene modeling.
These results show that understanding the relationship between image correspondence and camera
motion can be a powerful tool.

In later frames of the video, there are minor but visible artifacts. Notably, some of the play-

ers seem to “lose their heads”- the head of the player appears several pixels away from the correct
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Figure 6.16: Frame 433. Upper left, original Cy frame, s = 0. Upper right, original C;
frame, s = 1. Lower left, virtual C, frame, s = 0.5. Lower right, virtual C, frame, s = 0.2143.
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Figure 6.17: Frame 447. Upper left, original Cy frame, s = 0. Upper right, original C;
frame, s = 1. Lower left, virtual C, frame, s = 0.5. Lower right, virtual C, frame, s = 0.3810.
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Figure 6.18: Frame 465. Upper left, original Cy frame, s = 0. Upper right, original C;
frame, s = 1. Lower left, virtual C, frame, s = 0.5. Lower right, virtual C, frame, s = 0.5952.
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Figure 6.19: Frame 487. Upper left, original Cy frame, s = 0. Upper right, original C;
frame, s = 1. Lower left, virtual C, frame, s = 0.5. Lower right, virtual C, frame, s = 0.8571.



Chapter 6: Virtual Video 140

Figure 6.20: Frame 499. Upper left, original Cy frame, s = 0. Upper right, original C;
frame, s = 1. Lower left, virtual C, frame, s = 0.5. Lower right, virtual C, frame, s = 1.
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location on top of the body. This is especially visible in Figure 6.19. This is largely due to the accu-
mulation of errors in the estimation of the projective transformatiBig andQ (i), which in turn

affect the accuracy of the estimated rectifying projective transformatifsand H (i). Though

our projective transformation estimation algorithm is generally quite accuratenaftegations, the
projective transformation§/(n) and H (n) applied toPy(n) andP; (n) are compositions of, esti-
mated transformations. In this video sequence, whisnmore than about 25%(3(n), H(n)) are no
longer close to a rectifying pair. This problem could be alleviated by a periodic re-estimation of the

epipolar geometry. We address this issue briefly in the next section.

6.5 Conclusions

There are many directions for future work in the area of virtual video, both in improving the stability
of the estimation algorithm and in the rendering of the synthetic images.

As addressed in the text, the propagation process eventually destabilizes, due to accumulation
of errors in the estimation of the projective transformations. What is required is a reinitialization of
the epipolar geometry. However, since this estimation requires the selection and matching of fea-
ture points between images with a substantial perspective difference, user intervention is generally
required to obtain reliable results. Since some matching points are selected by the user for the first
frame pair, one approach is to track these points through each image sequence, using a measure of
feature similarity that is invariant to perspective distortion (e.g. based on corners). Periodically, the
algorithm could be restarted with a new estimate of the fundamental matrix and rectifying projective
transformations. Automatically detecting that restarting is necessary and maintaining continuity of
the rectifying transformations and virtual images across the restarted frame would be problems to
overcome.

The perceptual quality of the rendered images could be improved using techniques from com-
puter graphics. For example, given appropriate texture models, planar surfaces in the scene could be
rendered by texture mapping instead of interpolation of image intensities at each frame pair. How-
ever, a time-invariant texture-mapping method would perform poorly if the scene were undergoing

a steady change in illumination.
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The accuracy of the object segmentation also affects the perceptual quality of the rendered
images. If an object is segmented too conservatively, pieces of the background will be erroneously
removed and rendered along with the object. On the other hand, if an object is segmented too
liberally, pieces of the object will be erroneously left behind on the background. On the whole,
conservative segmentation is preferable to liberal segmentation in cases where the background is
approximately uniform, as in our example.

We also note that the algorithm presented here depends crucially on the assumptRy{ithat
andP; (i) are images of the same scene taken at exactly the same time. This type of synchronization
is common in broadcast video, especially sports video, where an editor needs to be able to switch
between different cameras with no noticeable discrepancies in timing. Obtaining synchronized
video from multiple cameras of a dynamic scene without professional equipment is difficult, and
the estimation of and compensation for synchronization offsets between multiple video sequences
would be an interesting research problem.

This work can be thought of interpolation of video frames in the spatial (camera) domain. How-
ever, once we have estimated the correspondence graph between frames of video, it can be used to
interpolate frames in the time domain as well. We develop this idea more in Chapter 7. One of the
difficult issues here is the correct interpolation of locations of objects that move independently of
the camera between frames. If a good solution is obtained, we can obtain virtual video at a higher
frame rate than the original video sequences.

As an aside, we mention that the virtual video described here has no audio component, and
one might naturally ask whether ideas from view interpolation apply to the problem of synthesizing
virtual audio. This is in fact the case, and in Appendix D we supply a derivation and implementation
of audio interpolation equations, for synthesizing the audio signal that would be received by a

microphone located between two real microphones.
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Chapter 7

View Morphing for Time-Domain

Interpolation of Low-Bit-Rate Video

In the previous chapter, we discussed several of the estimation problems involved with synthesiz-
ing virtual video, and demonstrated the graphical effects that can be achieved with virtual video
techniques. However, since the main application of virtual video we discussed was to synthesize
images from the perspective of cameras that did not exist in the original environment, there was no
guantitative measure of the quality of the synthesized views.

In this final chapter, we show that in addition to enabling compelling graphical effects, virtual
view-based algorithms can have benefits in other engineering applications. Specifically, we discuss
the domain of low bit-rate video coding for wireless multimedia applications.

Current video coding algorithms exploit the fact that adjacent frames in a video shot are usually
very similar. Typically some set of frames, a small fraction of the total number, are coded indepen-
dently with high fidelity, and the rest of the frames are coded with reference to these anchor frames
by motion compensation.

In Section 6.2 we demonstrated that given correspondence between two image planes, a certain
class of physically correct perspective views can be constructed. Even when the perspective dif-
ference between the two source images is sizable, accurate intermediate views can be synthesized.
This gives us a new perspective on video coding, since we no longer need adhere to the assumption
that one frame can be well-predicted from another only if they look similar.

This chapter builds on all the previous ones to present an algorithm for synthesizing virtual

144
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images of a scene that match frames from a source video clip. We use this algorithm for inter-
polation of video frames in the time domain, using a small amount of information to construct an
approximation of the original video. Since this approach is based on estimating functions of the
underlying camera motion parameters, and not on local block-based motion, it can capture relation-
ships between image correspondences that extend across many (perhaps hundreds) of video frames.
Each interpolated image can be rendered using only a few tens of bytes of side information, and
the rendering process itself has low computational requirements. We present experimental results
to demonstrate that for a 45 kbps (kilobits per secbbit)rate, our algorithm gives significant per-
ceptual improvement over MPEG-1 coded video at a higher bit rate. Our approach is particularly
amenable to representing computer-generated video, for which the correspondence and camera mo-
tion information required for view synthesis is readily available at render time. We note that while
there has been some work on using “virtual views” for video coding (e.g. [1]), these are generally
mesh-based methods aimed at the small-baseline case for compressing video teleconferencing data.
Our results give a higher PSNR for a lower bit rate.

In Section 7.1 we briefly review existing video compression standards, which are generally
based on block-based motion compensation. These can be thought of as algorithms for interpolation
of video frames in the time domain from relatively high-fidelity, independently coded anchor frames.
The various schemes differ in the positioning of the anchor frames and the type and amount of
side information that is used to reconstruct the intermediate frames, but they share the underlying
assumption that the intermediate frames should not look too different from the anchor frames.

In Section 7.2, we present an algorithm for time-domain interpolation of video frames that fits
into the same framework as above. The advantage of our method is the use of view morphing to
synthesize intermediate views between anchor frames, which removes the restriction that adjacent
anchor frames are temporally close and visually similar. Consequently, in theory, the anchor frames

can be taken much further apart than is common in current compression standards.

Throughout this chapter, “kilobits” has the literal interpretation of 1000 bits, and not the common interpretation of
1024 bits.
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To apply view interpolation methods, we require a dense and accurate estimate of correspon-
dence between each pair of anchor frames. We discussed many of the issues involved in this esti-
mation in Chapter 5, and make some additional comments in Section 7.3.

Once the anchor frames have been specified, the heart of the algorithm lies in synthesizing a
virtual image that is a good approximation to an actual frame of a video sequence. In Section 7.4,
we pose and solve the problem of jointly estimating the relative position of the virtual camera and
the projective transformation that rotates the virtual image plane to align with the actual image

plane.

We show some experimental results from our algorithm in Section 7.5 and discuss future work

in Section 7.6. A shorter version of the results in this chapter appeared in [2].

7.1 Review of Video Compression Algorithms

While video compression algorithms differ considerably in details of implementation, the vast ma-
jority of them are based on block-based motion compensation and transform coding. The general

approach, illustrated in Figure 7.1, can be described by:

Algorithm 7.1: Block-based motion-compensated video compression.

1. Designate each video frame as intracoded (1), predictive (P), or bidirectional (B).
2. Encode the | frames independently with relatively high fidelity, e.g. with a transform-coding still
image compression algorithm.

3. Spliteach P frame into smaller blocks. For each block, search for a matching block in the previous
| or P frame that has low mean-squared error. Save the motion vector that points from the source
block to its match, and encode the residual between the two blocks using transform coding.

4. Do the same for B frames, except search for the matching block in both the previous and subse-

quent I/P frames.

5. Efficiently code the data to be transmitted with a mixture of variable length coding algorithms.
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Figure 7.1: Schematic of block-based motion-compensation video compression algo-
rithms. | frames are coded independently. P frames look to the previous I/P frame to
match blocks. B frames look to the previous I/P frame and to the next I/P frame to
match blocks.

The prevalent MPEG-x and H.26x standards both fall under this framework. MPEG-1 [3] was
designed for general video compression at bit rates up to 1.5 Mb/sec. MPEG-2 [4] was a general-
ization of MPEG-1 to allow for interlacing and larger frames. MPEG-4 [5] is targeted at a flexible,
object-oriented representation of video that allows different regions of pixels to be separately en-
coded at different rates. MPEG-4 also extends the block-based model to further allow the projective
warping of a set of background pixels, and mesh-based modeling of video objects [6]. H.261 [7] is
a standard comparable to MPEG-1 designed for ISDN lines at data rates up to 2 Mb/sec. H.263 [8]
is similar to H.261, but geared for teleconferencing and designed for much lower bit rates, e.g. 64
kbps.

The various algorithms differ in several aspects (for example, the labeling of frames as I/P/B,
the restrictions put on the motion vectors for each P/B frame, the frame sizes that are supported,
the order and method by which the residuals of blocks are coded) but these details are unimportant
for the discussion here. The main point is that current video compression schemes are almost
universally based on block-based motion compensation, with the underlying assumption that the
frames designated as P or B are visually similar to the frames designated as | on either side, so that

the mean-squared error between a block and its predictor is small. In practice, the | frames are taken
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Figure 7.2: (a) Two frames of test video, separated by 15 frames. (b) Their absolute
luminance difference (darker pixels have a higher magnitude).
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to be on the order of 10-30 frames apart. For example, the two frames in Figure 7.2a are 15 frames
apart in the 30 frames per second (fps) clip of test video we will consider in Section 7.5. Figure
7.2b, the luminance difference between them, indicates that corresponding pixels are not more than
8 pixels apart after the 15 frames have elapsed.

The transmission and reconstruction of video in wireless multimedia poses a much more difficult

problem than it does in a wired setting. There are three main issues that complicate matters:

1. The wireless multimedia channel has very limited bandwidth compared to a wired channel, so
video data needs to be reduced in both frame size and frame rate. An uncompressed 24 bits-per-
pixel (bpp) video at 320 x 240 pixel resolution, 30 fps, requires a data rate of 55 Mbps (megabits
per second). In contrast, a typical set of H.263 parameters is QCIF resolution (176 x 144 pixels)

at 10 fps, to be encoded at a bit rate of 11.36 kbps.

2. The wireless multimedia client has a limited power supply. Since the power required for one pass
through an algorithm grows with the number of arithmetic operations that need to be executed,

we require simple algorithms to reconstruct video from the transmitted data.

3. The wireless multimedia channel has very high bit error rates. The probability that a bit is cor-
rupted may be as high as 0.01. For video compression schemes that use variable length coding, a
single bit error can have damaging effects over several of the reconstructed video frames. There-
fore, the compressed video bitstream needs to have robust error correction capabilities. Adding

error correction further reduces the bit rate available for video data.

While issues of error correction cannot be ignored in a practical video-over-wireless scheme,
here we take a higher-level approach that addresses the issues of limited bandwidth and complex-
ity. Many of the algorithms that have been designed for error correction at the encoder or error
concealment at the decoder [9] can be applied to the algorithm we propose. We will discuss as-
pects of error protection in Section 7.6. We emphasize that currently, this scheme is built on top of,
and is compatible with, standard video compression algorithms. When a segment of video that is
suitable for interpolation is encountered, the server can transmit the low-overhead side information

concurrently with a standard video data stream. A “smart” receiver equipped with our algorithm can
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take advantage of this information to render the video segment at higher quality, while a “normal”

receiver ignores the side information and produces standard-quality video.

7.2 View Morphing as a Predictive Mechanism

We consider the camera path illustrated in Figure 7.3a. Here, dots and arrows represent the positions

and orientations of a camera during a video shot of a static scene.

@)

v A
V/ \Y
v

A
A Vé \ A
!( Y v
g =\
(b)

Figure 7.3: View morphing for interpolating video from a translating camera. (a) A video
shot in which the camera translates. (b) Frames are designated as anchor (A) frames
or virtual (V) frames.

Our approach to frame interpolation is illustrated in Figure 7.3b. A fraction of the frames are
selected to be anchor, or “A”, frames. These frames are the same as intracoded frames in the
standard terminology, and are transmitted with good fidelity using a standard image compression
scheme. The rest of the frames are designated as virtual, or “V”, frames. These are interpolated
between adjacent A frames using the view synthesis and registration algorithm described below.

We saw in Chapter 6 that for piecewise linear paths, we can synthesize virtual frames using
view morphing that resemble real views of a scene, and are physically correct perspective views

provided the estimate of correspondence between image planes is accurate. This is true even when
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the perspective difference between the source frames is quite large. Hence, in principle, we may
temporally subsample the video at wide intervals to obtain the A frames. The anchor frames need
not be equally spaced along the image sequence; ideally they should automatically be chosen with

respect to estimated camera dynamics.
In the remainder we assume the A frames have been chosen and consider one line segment of
Figure 7.3b. We will work with a sequence of video fram&s}, with ¢ = 0, At, 2A¢, ..., 1, which
are generated by a moving camera whose (unknown) parameters atamngC; }. We designate
(Zv,Z,) as the anchor frames, with associated image pl&RgsP;). Our goal is to synthesize a
virtual imageZ; using view morphing betweef, andZ; to approximate each intermediate frame

Z:. The information that comprises the transmitted video is thus:
1. The anchor frame&y, Z;) (suitably compressed).
and the following side information:
2. A pair of rectifying projective transformation&:, H) that rectify(Zy, Z;).

3. The structured correspondence (i.e. set of correspondence graphs) between the ima@® planes

and?P;.

4. The camera position of each virtual frame, described as a fragtadmlistance along the baseline

connecting the optical centers@f andC; (1 floating point number per V frame).

5. The projective transformatio’; that aligns each virtual frame with the corresponding actual

frameZ; (8 floating point numbers per V frame).

Then for every estimated corresponding gais, w1) in Py x Py, a pixel is rendered at position
wy in Z; by view morphing:

wy = K; (11— s1)G(wo) + s¢H (wr)) (7.1)

~

Towy) = (1— s)To(wo) + siTa(wn) (72)

The perceptual fidelity of video frames interpolated using the algorithm above depends crucially
on the accuracy of the correspondence at step 3 above, and the estimatasdX; at steps 4 and

5. Our practical approach to these estimation problems is discussed in Sections 7.3 and 7.4 below.
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Should the original video be synthetic and computer-rendered, the renderer can be easily modi-
fied to output precise information about correspondence and camera motion between frames, saving

the trouble of estimating them later.

7.3 Correspondence Between Anchor Frames

We take the same approach to estimating correspondence between the pair of imagéplangs
as detailed in Chapter 5. First we estimate the epipolar geometry from a sparse set of point matches,
and then we construct the correspondence graph for each pair of conjugate epipoldp Jihgs

In Section 5.4.2 we discussed how the assumption that a planar surface comprises the entire
scene induces correspondence between a pair of image planes. The result generalizes to the case
when the scene is composed of a set of planar facets. For any such facet, consider its image in a
pair of rectified image plang$Py, P1). Let ((zg,v), (x1,y)) and((«3,y), (z%,y)) be two pairs of
corresponding points on the image of the facePinx P;. The same argument from Section 5.4.2
applies to each facet. That is, linear interpolation between corresponding points produces correct

correspondence in the interior of the delimited interval, and
(((1 - a)x(l) + Oél‘%, y)v ((1 - Oé)l’% + ax%,y))

is a correct correspondence fere [0, 1]. Again, we note that this interpolation is only valid on
a planar facet, for rectified image planes. The construction of a correspondence graph for a scene
composed of planar facets is illustrated in Figure 7.4. Interpolation as discussed above can be used
to initialize correspondence between anchor frames when we possess a set of several control line
segments which delimit planar facets of the scene, e.g. the edges of the rectangular solid in Figure
7.4 or the line segments in Figure 7.6.

A correspondence graph can itself be “compressed” by simplification. For example, if bit rate
requirements are particularly stringent, a basic correspondence graph obtained by linearly interpo-
lating between control lines can be transmitted, instead of the refined version obtained by dynamic

programming that contains more nodes, and hence requires more bits to describe.
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Figure 7.4: (a) and (b) Rectified image planes of a scene composed of planar facets. (c)
Correspondence graph for highlighted epipolar line pair, constructed by linear interpo-
lation between endpoints of facets.
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7.4 Aligning the Virtual and Actual Frames

Given the correspondence betwe@?,, P;) and a pair of rectifying projective transformations
(G, H), it remains to describe the approximatinby the nine parameters;, K;) required by

the view morphing equation 7.1. Hence, we can wiijtas an explicit function of the parameters:

-,Z—t = Ist,Kt
The problem of estimatings,, K;) can naturally be posed as a minimization problem:

. 2
min Z (1'37;((11)) — It(w))
s€[0,1]  wep;
K € GL(3)

Solving this problem fos and K simultaneously is difficult due to the complicated dependence of

T,k on s through the correspondence relatif#), P ). In practice, we separate the minimization

problem as:

min  min ) Z (fsk(w) —Zt<w)>2

s€[0,1] KEGL(3) =

Sinces is fixed for the interior problem, it is simply the problem of finding the best projective
transformation relatinj&l andZ;. We can apply the efficient estimation algorithms discussed
in Chapter 4. WherfsJ andZ; are similar, automatic feature extraction techniques such as the
one described in Section 3.4 can be applied to obtain data points for the optimizations. However,
depending on the choice of rectifying projective transformati@rsH ), the synthetic image that
results from view morphing may have a much different orientation than the frame we wish to predict.
For this reason, we apply an initial projective transformatioji's';@ to better align the two images
for feature matching. The previous estimatefgf A, is a natural choice (at = 0, we have the
zero-error solutionky, = G~'). The same applies to the search neighborhood fosince we
assume the camera motion is continuous and its velocity is bounded, we only need to refine the

initial estimates; = 3;_ ;. This leads to our final algorithm for the estimation(éf, f(t):

Algorithm 7.2: View morphing for matching video frames.

1. Initialize 3o = 0, Ko = G~ 1.
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2. Fort = At,2At, ..., NAt:

(a) Fix a search rang@smin, Smax) abouts;_a¢.
(b) Initialize 8, = 8;_n¢, Kt = Ky_ay, err = oo.

(c) Fors € [Smin; Smax)"

i. Construct the virtual imagé, » .

ii. Extract matching features betwe#i %, A, @NdZy.

iii. Estimate the projective transformatioli relating fs Koo ns andZ; using the extracted fea-

tures.

iv. Construct the virtual imagx?i‘S REyn,

v. If Z ("Z-s,f(f(t,At (w) —Z}/(w))2 < err,

If the video to be interpolated is in MPEG format, an alternative initial estimate obuld be
obtained by rapidly estimating the magnitude and direction of camera motion from MPEG motion

vectors [10]. Experimental results from our algorithm are demonstrated in the next section.

7.5 Experimental Results

We applied our interpolation method to a 180-frame, single-shot, 24-bit color, 320 x 240 test se-
guence captured with a digital video camera. The first and last frames (Figure 7.5) were designated
as anchor frames, and the remaining 178 frames were designated as “V” frames to be interpolated.
The camera motion is roughly linear, though the speed is not uniform. From Figure 7.5 we can

see that the perspective difference between the anchor frames is substantial, and that a block from
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Figure 7.5: The two anchor frames: (a) Frame 0, (b) Frame 179.

an intermediate frame would probably have a poor (i.e. high error) match in either of the anchor
frames.

The anchor frames with the 66 feature points used to initialize the epipolar geometry and the 28
control lines used to initialize the correspondence are illustrated in Figure 7.6. To achieve maximal
compression, we did not refine the correspondence obtained by linearly interpolating between the
control lines. An additional set of features was used to estimate the projective transformations
corresponding to the left and right walls (Figure 7.7). These are used to determine the correct

starting and ending points in the conjugate epipolar line matching graphs.

Figure 7.6: Anchor frames, with feature points and control lines used to initialize cor-
respondence.
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Figure 7.7: Anchor frames, with feature points used to specify the left (light-colored
dots) and right (dark-colored dots) walls.

In this example, we set the search neighborhood fto be
[gt—At — 005, §t—At + 005] N [0, 1]

This interval was sampled in steps @‘6 = 0.0056. The resulting estimates for the entire
sequence are displayed in Figure 7.8.

Figure 7.9 illustrates the original, interpolated, and luminance difference frames for frames
taken at every second (30 frames) of the test sequence. From the difference images we can see
that the interpolated images align quite well with the original frames of video. The errors around
edges are largely due to the blurriness of the virtual images introduced by several steps of image
resampling. The other major artifacts are the black regions around the borders of the interpolated
images that correspond to areas of the virtual frame visible in neither of the anchor frames. In
this example, these areas are not too large and could be filled in by the type of error-concealment
algorithms devised for other video compression schemes. The total file size of the information
required to interpolate is roughly 35400 bytes (18000 bytes total for the two JPEG-coded anchor
frames, 11000 bytes for the compressed correspondence information, 36 bytes for the parameters of
each virtual frame). Clearly the number of interpolated frames has a negligible effect on the size of
the transmitted data. For video in which the camera moves slowly along an approximately piecewise
linear path, we therefore expect reasonable performance for a small amount of side information. The

total bit rate in this example is 47.22 kbps.
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Figure 7.8: Estimates of the camera location S¢.
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Figure 7.10 displays the luminance peak signal-to-noise ratio (PSNR) over the video sequence,

defined for each frame as:

1 2552
PSNR = 1010g;9 77 ) —
Ll ey (Ti(w) ~ Zifw))

whereR is the subset oP; that is visible in both of the anchor frames. The luminance images are
assumed to have pixel intensities ranging from 0 to 255. The PSNR is lowest in the middle of the
sequence, which stands to reason since the images here are the least similar to the anchor frames.
The mean PSNR over the entire sequence is 30.2 dB, which seems competitive with the H.263
simulations reported in [11, Fig. 12]. The PSNR could be increased by reducing the blurriness of
the virtual images through postprocessing or by reducing the number of image resampling steps
(see Section 7.6). We also note that we have made little effort to represent the correspondence
graph estimates and;, K;) pairs in highly compressed forms that reflect the correlations between
adjacent epipolar line pairs and nearby frames. Better compression of these quantities would also
increase the PSNR.

For comparison, we constructed an MPEG-1 video of the same test sequence, constrained to
have the smallest bit rate the coder would produce. In this case, the size of the MPEG video is
more than twice as large as the amount of information required for view morphing, at 111 KB, for
a bit rate of 148 kbps. At this bit rate, the MPEG blocking and compression artifacts are severe,
especially in high-detail, perceptually significant areas of the image. In contrast, the virtual image
is well-defined and relatively sharper in these areas. This can be seen clearly in the close-ups of a
typical frame shown in Figures 7.11a-7.11c. We note that for comparison, this MPEG video has a
mean luminance PSNR of 33.1 dB. This is not surprising, since the bit rate is higher, and MPEG
video is designed to minimize the mean-squared-error between original and reconstructed blocks.
Figure 7.11 confirms that PSNR may be mathematically convenient, but it is a poor measure of
perceptual quality.

In addition to comparing our results with MPEG-1 coded video, as illustrated here, we hope to
process our test video with an MPEG-4 or H.263 encoder that is specifically targeted for low-bit-
rate applications. However, at this time, there is no fully-featured source code for such encoders

available for public-domain use.



Chapter 7: View Morphing for Time-Domain Interpolation of Low-Bit-Rate Video 160

— ———
-
L_—
—
- vl -

30

90

© —
——
——

Figure 7.9: Frames 30, 60, 90, 120, and 150 of the B320 sequence. Left column: original
images. Middle column: interpolated images. Right column: grayscale error images.
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B320 sequence PSNR (30 fps, 320 x 240)
34 T T T T

33

32F

31

PSNR

30

29

27 ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180

Frame number

Figure 7.10: Peak signal to noise ratio over the test video sequence.
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Figure 7.11: (a) Detail, original frame 90, (b) Detail, interpolated frame 90, (c) Detail,
MPEG frame 90.
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7.6 Conclusions

We suggest that methods, like the one introduced here, that exploit the relationship between camera
motion and image correspondences can be profitably incorporated into a low bit-rate video scheme.
As the technology matures and users expect more content over wireless multimedia devices, tech-
niques that match the characteristics of the wireless multimedia network are necessary. The methods
described here are not proposed as a final solution to the problem, or as a substitute for traditional
video compression techniques at higher bit rates. However, we hope that these ideas provide a
starting point for continuing research on more general video, and that tools such as these will be
incorporated into future compression standards.

As demonstrated above, our approach is well-suited to wireless low bit-rate video in special
cases of camera motion, and can be used to increase frame rate without much overhead. The com-
putationally expensive (about 5 frames per minute) step of estimating parameters and encoding the
video can be done once at the multimedia server, and amortized over a large number of downloads.
The low bit-rate (e.g. 45 kbps) data stream can be easily transmitted over a wireless channel. The
video can be rendered at the multimedia client for a low computational cost, since each rendered
pixel is simply a weighted average of two pixels from the source images. The low complexity of
the algorithm translates to low power consumption for a wireless device. Since power is also nec-
essary for the error-correction decoding that would be required for a wireless channel, having a
computationally simple reconstruction algorithm is even more important.

We emphasize that the algorithm is much less expensive if the source video comes from computer-
generated imagery for which correspondence and camera motion information is easily obtained.
Levoy [12] and Wallach et al. [13] made similar observations that using correspondence informa-
tion for computer-generated video has significant benefits in MPEG compression. In the future, we
would like to modify a ray-tracer to supply image correspondence and camera motion information
to demonstrate these effects.

There are many improvements that could be made to the implementation of our coder, and
several interesting research problems to address. The biggest problem with our current algorithm

is the perceptually distracting jitter in the reconstructed video, since the estimatiep &f;) is
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essentially independent for each frame. Even though the synthetic frames are individually good
approximations to the original frames they represent, the result does not convey a sense of fluid
camera motion as well as it could. Of course, since the original camera motion may be jerky,

imposing too many smoothness constraints on the estimation could be unwise. This is a topic of
current research.

The second most distracting artifact is the slight blurriness of the reconstructed images com-
pared to the original video frames. This is caused by three steps of image resampling in our current
implementation:

1. Applying the rectifying projective transformatio(s, H) to (Zy,Z;)
2. Constructingfst’f with the view morphing equation
3. Applying the alignment projective transformatif to Z,, ; to constructZ,, g,

The first and third resampling operations could be eliminated by removing the dependence of
our rendering algorithm on explicitly rectified images. This leaves step 2 as the main rendering
step, which as written in (7.2) is simply a weighted average of the intensities of two pixels from the
original source images. Of course, the “pixels” might not have integer coordinates, which would
require another step of bilinear interpolation. If even more sharpness is required, instead of using a
weighted average in (7.2), the resampled image could just take its intensity from one or the other of
the anchor frames. This would trade off sharpness for a lack of robustness to illumination changes
in the scene. Additionally, standard post-processing techniques (e.g. unsharp masking) could be
used to improve the perceptual quality of the video at the decoder.

Clearly, the success of view-interpolation-based methods depends greatly on the selection of
good anchor frames. The automatic selection of such frames based on estimated camera dynamics
is one of the next research problems we wish to consider.

We have not addressed the case when objects are moving in the scene independently of the
camera. However, our method can be viewed as a generalization of one feature of the MPEG-
4 standard, which allows a region of pixels to be designated as the “background”, and warped
projectively as if it lies on a plane. The foreground moving objects (called “sprites” in MPEG-4)

can then be replaced on the warped background.
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Finally, we comment on the type of unequal error protection that would be required for this
scheme. The most important information in the video representation are, in order:
1. The parameters,, K;): a bit error here affects the entire reconstructed infage
2. The estimated correspondence betw@gnZz, ): a bit error here affects the same epipolar line
in each reconstructed image
3. The images$Z,Z,) themselves: if they are JPEG compressed, a bit error here affegts &n
block of pixels, which may cause errors in a few pixels in each reconstructed image.
Of course, any video compression scheme based on variable length coding is equally sensitive

to bit errors, especially to additions and deletions of bits.
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Chapter 8

Conclusions

Throughout this thesis, we returned frequently to the estimation and application of projective trans-
formations. In Chapter 4, we posed the projective transformation estimation problem as a parameter
estimation problem over noisy point matches. In prior work, this estimation problem is either sim-
plified using affine or small-motion assumptions to produce a linear least-squares problem, or solved
directly as a nonlinear minimization using numerical methods. We showed with extensive analysis
that the cost function associated with the projective transformation estimate has considerable struc-
ture, and that this structure can be exploited to construct efficient minimization algorithms that are
robust to measurement noise. Our minimization algorithms were shown to constitute a substantial
improvement over the off-the-shelf methods that are typically used.

The correspondence induced between two image planes by a projective transformation is only
a subset of the set of correspondences that can arise from two views of a scene taken by physi-
cal cameras. This set is rich and complicated, and much prior work on estimating correspondence
only searches over the subset of monotonic correspondence, for which the ordering of correspon-
dences along conjugate epipolar lines is invariant. In Chapter 5, we ventured beyond monotonic
correspondence and fully characterized the structure of the elements of the entire set of viable cor-
respondences. This led us to the problem of estimating correspondence in the general setting, and
we showed how the formalism of correspondence graphs can be used to ensure that any estimated
correspondence is consistent with a physical imaging system.

In Chapter 6, we used our correspondence estimates to synthesize virtual views of a scene from

wide-baseline still images using view morphing. Since the estimated correspondences are both

167
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geometrically and photometrically accurate, the synthetic images are realistic perspective views of
the scene, rendered from novel camera positions. We then posed our third estimation problem, that
of efficiently estimating correspondence between two video sequences. We exploited the temporal
regularity of video to create a recursive framework for the propagation of correspondence estimates.
We proved the stability of our algorithm in theory, and demonstrated its application to real video.
The result is compelling virtual video that evolves dynamically along with the scene, constructed
with minimal input from the user. This is a substantial improvement over the previous state of the
art, which required either a static scene or an expensive hardware assembly to produce a similar
effect.

Finally, in Chapter 7, we showed how virtual images, sometimes viewed only as graphical
special effects, can be made useful in the context of time-domain interpolation of video frames for
low-bitrate applications. Our final estimation problem was to synthesize the virtual image between
two frames of video that best matches a real intermediate frame. Understanding the geometric
connections between the positions of cameras and image correspondences allows us to store fewer
intracoded frames and to synthesize realistic intermediate images that may resemble none of the
intracoded frames. This is an exciting topic of current research that we hope will have applications
in wireless multimedia.

The four main estimation problems in digital video we considered in this thesis, and the appli-
cations we discussed, are summarized in Table 8.1.

All of the estimation problems in this thesis are tied to the age-old problem of correspondence.

In Chapter 5, we considered the fundamental question, “What sets are valid correspondences?”,
which led to the definition of the correspondence graph. We might ask other questions. How can
we guantify the “complexity” of a (scene,camera) pair? Is there a sampling theorem for scenes
and cameras? That is, if we want enough information to describe a given scene with some fixed
degree of accuracy, how finely do we need to space a set of perspective cameras? Conversely, for a
fixed scene and finite number of cameras, where should the cameras be placed to be able to render
the largest possible set of virtual views with some fixed degree of accuracy? The formalism of the
correspondence graph may help answer some of these questions.

As we showed in Chapters 6 and 7, an estimate of correspondence that is consistent with the
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Chapter| Estimation Problem Application
4 Projective transformations from noigylmage and video mosaics
point correspondences
5 Correspondence between a general palide-baseline virtual images
of image planes
6 Correspondence between a pair of videdirtual video

sequences of the same scene taken by ro-
tating cameras
7 Position and orientation of a camera as Nirtual time-domain interpolants of rea
moves along a linear path during a vide@ideo
sequence

Table 8.1: Thesis contributions.

underlying geometry of a scene can have significant benefits in visualization and video coding.
We contend that geometric correspondence is inherently superior to photometric correspondence
in applications where a notion of physical correctness or consistency is important. Most video
coding algorithms can match up points arbitrarily, disregarding the epipolar constraint, much less
considerations of physical consistency. This may be good for mean-squared error over short time
intervals, but it ignores the long-term connections between image correspondences that are induced
by compactly parameterizable camera motion. When coding efficiency is an issue, we feel that more
redundancy can be removed by exploiting geometric constraints using image-based algorithms. As a
side benefit, the rendering component of an image-based algorithm is typically less computationally
demanding than a transform-coding based algorithm such as MPEG decompression.

As applications that require a 3-D sense of scene develop, we expect that algorithms, such as
the ones described in this thesis, that are based on well-founded estimates of parameters of camera
motion will become increasingly important. We envision an algorithm that takes into account esti-
mates of camera motion parameters, requirements for rendering quality, and constraints on bit rate,
and decides that some sequences of video frames are best coded by a projective warping of a single
frame, others can be synthesized using virtual view techniques, and so on, to create a hybrid video
coder that operates in several modes.

Finally, we note that many research problems at the interface between equations and silicon must
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be solved to bring the estimation algorithms we propose here from a powerful desktop computer to
a portable wireless device. Issues of power control, fixed-point arithmetic, limited color depth, low
available memory, and robust error correction would all be involved. Bringing effective and efficient

video processing to wireless multimedia will challenge researchers for years to come.



Appendix A

Proof of Theorem 4.2

1. We split up the expressions (4.10)-(4.12) by separating out the first point (and notigg that

Q):
wiw! N “’jij w1 N o w
2 +Z':22— _2+Z‘:2 H
W(c" +ah) = o . SfT(a) ° A
vy ZN J L+ ZN .
o2 =2 %(a) o 7=2 g3 (a)
N . w! wl N whwT w! N w’
V(c + ah) = [ % + ijz ﬁ El + Zj:Z Qj(i") ]

Hereg;(a) = (¢* + ah)Tw; + 1. We now rewrite the defining equation (4.9) as:

1| wiw] w 1
[ Afa) b(a)]{az{ A }+W2<a>][awapT+v2<a>} (A1)
wy
where

N wiwl N _w,
Waa) = | DT Zim T
N W N 1
2= qf(ja) 2= q;(a)
_ N wiwp N W
al0) = | Xhgm Y- g

We note that as — 0, Wa(a) andVz(«) converge to well-defined finite matricég,(0) and
V2(0). In the following, we will use the notationd’s, V5 with the understanding that they are
functions ofa. While it is true that fora. > 0, Ws(a) andVa(«) are also functions ok, the

limiting valuesW(0) andV4(0) are independent df.
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Taking (A.1) and isolatingl(«) andb(«) on the left-hand side, we have

-1

1, g 1 | wiw] w
[ A(a) bla) ]= [awlp +V2:| 2 o 1 + Wa (A.2)

Here we have introduced the abbreviatios: [w? 1]7. First consider the matrix that is inverted
in (A.2) above. Using the matrix inversion lemma, we can write

-1

T —1
1 wiwy Wi 1 1
3 ! + W = [—p—pT + W2:|
« wl 1 o«
1

1 1 L1 _
- W21—@W21p[1+@pTW21p] pl Wyt

— _ _ -1 _
— W2 1 W2 lp [062 +pTW2 lp] pTW2 1

2 a2+ pTWytp
Ty —1
-1 pp- W,
= W [I—z—Tzl]
as+pt Wy p
Therefore, we can rewrite (A.2) as
1, 7 _1[ "Wy }
= |- + VW - ———=—
[ A(a) b(a) ] Llwﬂ? 2] 5 o2 1 Wiy
e s @+ "Wy p) I = T Wy
a2+ pTWy'p
Ty —1
+Va Wyt [I— Wy — ]
a? +ptWy'p
TW71
— W Wy W {I— AL - ]
S e a2+ pTWy 'p
Letting @ — 0 in the above, we obtain
[ 4, b, ] = lim[ 4(a) ba) ]
Tyrr—1
= Wyt [I—pp W@l ] (A.3)
pTWyp
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2. Consider the minimization problem

N T
1 Aw; Aw;
min L (w(_ﬂ) (w/__ﬂ> (Ad)

The normal equations for the constrained problem are:

N T N wT N w'wT .
A b ——1—— -y LI 4 = 0
Z(*Tw +1 5 T Z(C*Tw.+1)2 Zc*Tw.+1+ w1
=2 = ! =2 !
N N N w'
A b ——4+X =0
JZQ cTw; +12+ jz: *Tw +1)2 jz;c*ijHJr
Awi+b = 0

Here )\ is a Lagrange multiplier ilR%. Rewriting these normal equations in the notation of the

previous section, we obtain

[ Ab ] = VQWQ_l - APTWQ_l (A.5)

(A b]p =0 (A.6)

It is easy to see that (A.5) is satisfied by the choicéAy, b,) in (A.3), with

. %) WQ_ lp
pTWytp

Furthermore( A,, b,) satisfy the constraint equation (A.6). Hence, by uniqueness of the solu-

tion of the linear least squares problem, we conclude that along singular lines, the solution of

(4.9) converges to the solution of the constrained minimization problem (A.4) posed over the

data set minus the offending point.
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3. From the expression (A.3), we can also obtain an expression for the point to (ahidh, c*)

mapsw; :
A(a)w; + b(a) |
a—0 (¢* + ah)Tw; +1 i%a[ Aa) b(a) Ip
= lim —wip"W;! @
am0a P2 G2 T T
Tw—l
+Va Wy [I— e ]
a2 +pTW2 P
= lim wip" W, ! P
1P 2 a2+pTW271p
- 1 pp"Wy'p
VoWt | =p — 2
+VaWy [a Qa2+ plWolp
Ty —1
= lim w/ p V[;Z ]il + Vs 2—1 ap .
a=0 a4 ptW. a? +pTWy'p
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Newton Methods

In Chapter 4, we referred to the Newton and Gauss-Newton methods for minimizing a nonlinear

function of several parameters. We describe these methods now. The problem we wish to solve is:

Problem 1: Given measurement dafdz;,y;) € R x R, j = 1,..., N} and a continuously dif-
ferentiable functiory : RM+X —, R, determine the parameter valuéé,, . .., Ak} that minimize
the cost functional
N
J(Or,.. . 0k) = > (g — F(2j:01,...,0K))? (B.1)

j=1
We collect the measurement data and parameters into vectors:
Y1
y=1 : 0 =10, -, 0k]
YN
Since the measurement data that appear inside the funttoa fixed, we suppress the depen-
dence off on the datar; and write
f(xla 0)
f(0) = :
f(xNa 0)

The cost functional (B.1) can now be written
J(0) =y —£(6)]" [y — £(6)] (B.2)
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Necessary conditions f@* to minimize (B.2) are

aJ
o o
Yoy = |+ |wo)=0 (8.3
o
L 00k
527 002 00100k
_o0rJ .. P
| 96,00 902,

The notation in (B.4) is shorthand for the positive definiteness of the mg-»%éixe*).

The condition (B.3) can be written:

0J o e Of
%(9 )= —2[y —£(0 )]T%(g )=0
or equivalently,
8fT * *
55 (@)l — O] =0 (8.5)

Note thatg—g isanN x K matrix. Whenf is a linear function of the parametefisgiven by

f(0) = FO, g—g is a matrix k' € RY*X that doesn't depend o, and (B.5) is a linear equation in
6%, the solution of which is:

6= (FT'F)~1FTy

However, in general, (B.5) is a nonlinear system of equatiorgstimat must be solved by nu-
merical means.

We begin by expanding the cost functid@) in a Taylor series about some po#it:

2
J(0) = J(0%) + g—;(e*)(e —6%) + %(0 - 0*)T%(0*)(0 —6*)+h.o. t. (B.6)
PR R Lt L LU LA LA
062 £ T T g2 26" ' 06
N .
= -2 [Z[yk - f(%;@]%(@*) +2HTH (B.7)
k=1
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In (B.7) we have denotedl = %(0*). Ignoring the higher order terms in (B.6), minimizing the

resulting quadratic with respect & and solving for the minimizer gives

27, 1 o
@) 5

0=0"— [@ = (017 (B.8)

When we add a step size parameter to (B.8), and substitute the expansion (B.7), we obtain:

N

H"H = [ye — f(21;6)]

k=1

0% f (k3 )

6=6"+0 062

-1
(0*)] H"ly — £(6%)] (B.9)

Under certain conditions, @8 is a good estimate of the minimizér the parameter@ produced
by (B.9) are an incrementally better estimatefof The new estimate can then replace the old
(0 — 6%) and (B.9) reapplied. The iterations terminate when the t&rhiy — f(6*)] in (B.9)
becomes vanishingly small (which is the condition (B.5)). The iteration suggested by (B.9) is called
the Newton-Raphson methodhe convergence of the algorithm is governed by the choice of the
step size parameter Usually,p is chosen to reduce (not necessarily minimiZeglong the search
direction(HT H)~'H™ (y — £(6*)). This can be accomplished by a backtracking algorithm based
on cubic interpolation [1].

A simplification of (B.9) is obtained by dropping the second term in the inverted matrix, pro-

ducing the update equation
0=0"+p(HTH) " 'H (y — £(6"))

This simplified iteration is known a&auss’s methodr the Gauss-Newton methodsauss’s

method can be alternately derived by considering the modeling assumption that
y =f£(0)+v (B.10)

wherev is a small noise term. By ignoring and expanding (B.10) in a Taylor series about a point

0*, we obtain

of
y = f(9*)+%(9*)(9—0*)+h. o.t.

— £(6")+ H(@O—0")+h.o.t. (B.11)
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If we ignore the higher order terms in (B.11), we obtain a linear equatiah timat may be
rewritten as:
0=0"+(H"H)'H (y — £(8)) (B.12)
When a step size paramejeis added to (B.12) we again obtain Gauss’s method.
A third algorithm is obtained by assuming that the inverted matrix in (B.9) is equal to the iden-

tity. Substituting and adding a step size parameter, we obtain
0=6"+pH [y — f(6")] (B.13)

The iteration suggested by (B.13) is the well-knosteepest descent methodhe descent
direction H” [y — f(6*)] is simply the gradient of the functias.
Finally, theLevenberg-Marquardt methasd obtained as a cross between the Gauss and steepest

descent methods. The Levenberg-Marquardt iteration is based on the recursion:
0 =0 +p[H H+ | ' H [y — £(6")]

When A = 0, the Levenberg-Marquardt iteration is the same as a Gauss iteration. -As
0o, the Levenberg-Marquardt iteration tends to a step along the gradient. Careful tuning of the
parameter\ as the algorithm progresses generally leads to a quicker convergence rate than either
of the two sub-methods. The goal is an attempt to make Gauss’s method globally convergent by
ensuring that the “Hessian” is positive definite. This falls into a more general class of techniques
calledtrust region methods

More details about these algorithms (e.g. choice of step size, termination criteria, search di-
rections, pitfalls) are beyond the scope of this paper and can be found in Dennis and Schnabel [1],
Seber and Wild [2], Sorenson [3] and Ortega and Rheinbolt [4]. Implementations of the algorithms

in the C programming language can be found in [5]. Implementational details are also discussed in

[6].
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Appendix C

The Hessian ofJ(c)

Here we compute the Hessian #fc), and derive its Gauss-Newton approximation. Due to the

implicit dependence off andb on ¢ through (4.13), the forms are quite complex.

C.1 The Hessian ltself

Recall from (4.18) we have:

N T
Alc)w; +b(e)\" A(c)w; +b(c)  w;
_ r_ J J J
viI(e) = Z (w] Twj+1 Awj+1 dwj+1
7j=1
We rewrite this slightly ash.J(c)(h) to reflect that the derivativéd.J(c) acts on a direction

h € R? to produce a scalar by:

DJ(c)(h) = VJ()Th
N

_ Z (u/ _Alw; + b(C)>T A(c)w; +b(c) ijh (C.1)

J cTwj+1 dwj+1 dwj+1

j=1
Similarly, assuming sufficient regularity of, the second derivativ®?.J(c) acts on a direction

h € R? to produce a scalar by:
-3
oc?

Our goal is to obtain the Hessi%i%, a symmetric matrix ilR?*2. Differentiating (C.1) with

D2J(c)(h) =h (C.2)

respect ta:, we obtain

180
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N , - O\ T A(c)w; + b(c w]Th
D2J(c)(h) = Z<wj_T—|—l()> D< (CT)’wj_:_l()>(h)Cij+1

N
> p (At | A b0 wih

dwj+1 dwj+1

N AQw; + b\ A(Q)w; +b(e)  (wTh)?
_Z<wj_ Ty 1 > T+ 1 (wy 117

j=1
Introducing the abbreviations; = A(C%lfujf’l(c) ande; = (w§ - w]> we have
J
N T N ~ T ~
€; . Dw;(h)*w;(h
D*J(e)(h) = > — »]+ 1ij(h)wfh -3 iw.—+1])wfh
j=1 " j=1 J
N T.s .
— Z Ej Wy ('U)Th>2
o (Cij + 1)2 J
Noting that
, DA(c)(hw; + Db(c)(h) _ @jwih
ij(h) = ‘ — '
cw; + 1 cw; + 1
we obtain
DUIOM) = ZN: eF(DA(c)(h)w; + Db(c)(h)) Ty _ ZN: hTwieTiwlh
¢ B = (cTwj +1)2 wi st (cTwj +1)2
N N
B DA(c)(hyw; + Db(e)(W)]" _dj 1,
= cw; + 1 cwj +1 7
A T T N N ~
wjiw; h W, T 1 WjE; Wjw;
h — h h
+ cwj+ 1| cwj+ 1" ]; (cTwj +1)2
N
Di — 2 .)TUA).
R A ) S I Y (C.3)
L1 (cTw; +1)2 7

(C.4)

DA(c)(h)w; + Db(¢c)h] w]h
cw; + 1 cw; +1

The first term (C.3) is already in the form we seek (C.2). Now we clarify how to express the

second term (C.4) in the same form. We note that the approximation to the Hessian (4.20) comes
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from assumingD A(c) and Db(c) are identically O in (C.4). Here is the expansion of (C.4):

N
S iy — )" [DA(C)(h)wj + Db(c)h] wlh
= J J cw; + 1 cw; + 1
N i
(b; — ;)T 0A 0A b dc T
= ) N R  w + (L + L I,
;(cTw 12 [\oe " 0 2) T e T 9e )|
N )
B (w; — )T oA 0b 8A Ob T
B ; (cTwj +1)%2 [\ 9cq Wit Be Ocy i+ des it Bey Do ha| wjh
N T _
B wj h L 8A ~0b . 8A ob
N jz::l (cTwj +1)2 _(wj =)' 801 it e Ocy b+ () — &) 802 i+ dcs
N T [ N P
= —— )
= (cTw; + 1) | Do (i — ;)T (802 w; + 802)
N
_ T o Wi 1 3¢ e
= h Z(cTw.+1)2 " ( X 1> wj | h
=1 I —&j) (acQ wj + 802)

)

(C.5)

It remains to actually compulgcéi andg—fi. We begin with the system of defining equations

A +b R J3 —
=1 C ’LU] e (C w; + 1) st cw; + 1
- al 1 N
A +b _ J —
jzzl cTw] + 1)2 ; (cTwj +1)2 ]2::1 cwj + 1
and differentiate:
0A i ij;fp b XN: w;-.F -
O o (cTw; +1)*  dcy ot (cTw; +1)2
N N T N )T
24 ’ % j o W
Jz::l (cTw; 1>3x3 ! J§=:1 (cTw; +1)3" g§=:1 (cTw; +1)2
0A N w; ob i 1 B
N A N . N o
24 ! x;+2b Ti— J

(C.6)

(C.7)

(C.8)

(C.9)
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N w! N
0A wiw Gb
— —_— C.10
ey Z (cTw, + Z cTw] +1)2 ( )
Jj=1 ]:1
N N w’-wT
24 E 9 § E A E—yy
el (G @+ + (Tw; +1)2%  (Twj + 12"
N N
A w, ab 1
— —_— + — ——— = C.1l11
Jca ; (cTwj +1)2 * dca ; (cTwj +1)2 ( )

N w’~

N N
W 1
2AY —— Ly 420y oy — Y Ly
JZ:; (cTw; + 1)3yﬂ T ; (cTwj +1)3 Yi ]Z:; (cTw; + 1)2%

Like the normal equations (C.6)-(C.7), these are systems of linear equations that can be solved

for and ‘% . The equations can be simplified as:

0A ob
[361 acl]W(C) = X (€12
0A  0b
[—a@ _8CQ]W(C> — Y(o) (C.13)

whereW (c) € R3*3, X (c) € R?*3, andY (c) € R**3 are functions of: € R? and the data points,

given by:
B N ij-T N w;
> je1 qu_(c]) 2 =1 qf-—(JC)
W) =
N wT N 1
I > =1 (1]2_—(7,;) 2j-1 a(c)
— wT N w/.wT T g
X(C) = N w’- r
_ <2A Y. LIS DIl q%)% ~ 2= qu(';)xj)
[ N wjwT N w]f N owd N '
v 2A ijl Wyj + 2b Zj:l Wyj - Zj:l q;(c) Yi
C - ! r
N w N N
_ <2A i1 gl + 2 Y — L q—()y])

Hereg;(c) = ¢''w; + 1. Note thatiW(c) in (C.12)-(C.13) is the same matrix that appears in (4.9),

which leads us to write the equations t&jb, and their partials with respect tosimultaneously as
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a block triangula® x 9 system of equations:

WQ(C) —ng(c) —Wgy(c)
av e a2l 0 w0 =W
0 0 Wa(c)
where
B N wjwT N w
Z] 1 qj(c]) Z]:l qZ(Jc)
Wa(e) =
N wT N 1
i Z]:l qQ(Jc) Zj:l HE)
B N  wjw N w
i @G L=t gt
Wia(c) =
N w] N
2 =1 Q?(jc) i 2= q31(0) i
B N  wjw N w
E]:l qé(;) Yj Zg:l q3(7c)yﬂ
WBy(C) =
N w] N
I SR
_ [~ wjw] N W]
Vi(e) = ] Zj:l qj(cj) Zj:1 (Ij(JC):|
[ wiw? w)
Var(e) = | 0, 20 T it qf-(]c)%]
[ N w’.wT N ’LU/v
Vay(e) = | X250 —qu(cj) Yi Dojma qg(Jc)yj}

C.2 The Gauss-Newton Approximation

184

—ng(c) ]

Though we know the Hessian is symmetric, this is unclear from the expansions of the second term

(C.4) or (C.5). Furthermore, it is also not obvious which terms in the Hessian comprise the Gauss-

Newton approximation.

We know that the cost functiosi(c) can be written

Z eje(C

+51y )2
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where
a117; + a12y; + by
5jx(c) — IE/- o J J
c1x; +coyj + 1
a1 x; + agy; + bo
gjylc) = y; - . .

c1zj + coyj + 1

In this form, the gradient of is given by
N
VJ(c) = ejalc) - Vejule) + gjylc) - Vejy(c) (C.14)
7=1

In the notation of the previous section, it is straightforward to derive

1 oA, T 0by
Vejq(c — | Tjw; — —— w; — ——
j(€) g;(c) [ 7 Oc T de
1 DA, T Dby
Vejyle) = Jjw; — —(— Wj — 5
jy(c) () [yj j e J e
where
DA, _ %62111 8510121
Oc da1y  daia
L Oci dc1 |
04y _ Go G
Oc dagy  Oaga
L Oci Oc1 |
S
o [ m
oc by
L Ocz |
S
O _ | Ba
oc by
L Ocz |

Substituting into (C.14), we obtain
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N N 1 N
Each of the term§_ ", TSI Wi 2t G Eiv Wi et 4o S 2oj=1 (o) Siv 1S ident-
cally zero for the two-dimensional problem; these are the normal equdiias D,(Q that are O

by construction on the manifold. Hence we obtain

N
1
VI(c) =Y — el wjuw;
a0

as before.

The second derivative af(c) can be written

Z Veja(c) - Veju(c o + Vejy(c) - VEjy(C)T + €ja(c) - VQij(C) +ejyle) - v25jy(0)

(C.15)
The first two terms comprise the Gauss-Newton approximation to the Hessian and can be written
explicitly as:
N T
eN Z} ¢2(c) [ Wi e YT e ] [”’J“’J Y179 T Bc
X DA, T o] [. 7 70Ay  ObyT
+]Z” [%‘wﬂ“wwf‘% T

This sum of rank-one matrices can be rearranged as

1 . .
Hon = § o (N; = djw] )T (N, — djw])
=% (c)

where
0A ob 0A 0b }

N: = | —w. _ . _
J |:801 Wi + 661 8 w] + 862
To evaluate the second part of the Hessian, we reqtdes,.(c) andVZe;, (c), given by

N T
1 0A; 0Ob R
Vejz(c) = E 200 [wj <w]T% + e ;ijjT>

oA, T b 1
+ <—1 w; + = i’j’tUj) w]T] + (V2A1wj +V bl)

Oc J oc

N T
1 8A2 8[)2 N
Ve, (c) = g 20 [wj <w]T§ + B ij;;

8A2T oby T 1 2 2
vaz o902 s I Aot
+ < 9 wj + 9% ijj> w; | + qj(c) (V qw;j +V bg)
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It may be unclear how to evalual@zAle and VQAQ’LUJ‘ but as we shall see it will not be

necessary. The second part of the Hessian is given by

H = 5jx( ) : VZEjac( ) +ejy(e) - V2€jy(0)

8A1 8b1T . aAlT 8b1 R
- Z ¢ [ j(”f'T%*% —%wf)+(ﬁ wj + &~ = djw; | wj

0Ay b T AT oby .
Z o [ (e e+ e ol )+ (e s e v )]
N

1
+> 0 (V2 Arejpw; + V3bigj, + V2 Asejyw; + V3hoez) (C.16)

j=1
The terms in (C.16) are identically zero, since the parameters are constrained to lie on the
manifold.
The remaining terms can be rearranged as

M
H = E 5
=1

200 TN —i—NTeJ — 2¢; w]ij:ﬂ
J

Writing the Hessian as the sum B and H gives

N
H:Z2

j=1 4

T — ej)w] —wj(i; — ;)" N; + (0 — 2¢5) " dbjwjw] |

In this form the Hessian is clearly symmetric. However, it can be shown that the equations in

the partials (C.8)-(C.11) imply that

which means that

7B o

Jj=1

q 253) wjw;w NT( Ej)ij]

This is the expression we derived earlier as (C.5).



Appendix D

Audio Interpolation

As an aside, we prove a simple result about when there is enough information contained in the
audio signals received at two microphones to synthesize the audio received at a third “virtual”
microphone. We show that when the virtual microphone is located along the line connecting the
two real microphones (the “baseline”), the audio can be synthesized with no knowledge besides the
distance between the two microphones.

We call this result “audio interpolation” as a direct analogy to the term “view interpolation”
from computer vision. Instead of using two real images of a scene to synthesize a new, physically
correct image of the scene from a different perspective, we seek to use two real sounds of an envi-
ronment to synthesize new, physically correct audio of the environment from a different position. In
terms of prior work, Slaney et al. proposed an algorithm called “audio morphing” [1], a method for
automatically transitioning from one sound into another. While the intermediate signals may sound
plausible, they do not correspond to sound produced by real underlying sources and microphones.
This is in direct analogy to Beier-Neely morphing, which produces intermediate images that cor-
respond to no real physical objects. By combining audio interpolation with view interpolation, we
can create virtual video that contains both images and sound.

We consider the one-source, two-microphone scenario in Figure D.1. Note the similarity to
Figures 6.1 and 6.2. We assume that the source, locafedaanhnidirectionally broadcasts a signal
x(t) which is received at the omnidirectional microphores and M; asz(t) andz(t). We
assume that the microphones are calibrated in the sense that the distaeteeen them is known.

This is slightly less general than the results from view interpolation, for which the distance between

188
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Figure D.1: Microphone configuration.

the cameras need not be known.

We define the distances &f to My and M, to bedy andd; respectively. The location of the
source is unknown; however, from the amplitude and delay differences of the sigialsand
x1(t) we can compute the differenég = d; — dy and the ratioig = j—é. The distanced; andd;

can be easily recovered as

do
d =
0 ag — 1
CL()50
d =
! ag — 1

We are interested in synthesizing the signal that would have been received at a micrdfphone
placed a fractiors of the way along the line connecting, to M; (the “baseline”). It is sufficient
to calculate the distanaé,. This can be computed by a straightforward application of the law of

cosines as

dy = \/s(1 — )A2 + (1 - 5)d3 + o (D.1)

This formula is correct for any value ef not justs € [0, 1] as sketched in the figure. That is,

the virtual microphone can range anywhere along the line thraddghndM{,. This means that we
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may take the original microphones to be as close together as we like. We can also see from (D.1)
that knowledge of the microphone separation is necessary; the dependehés removed only in
the trivial cases when the virtual microphone isat 0 or s = 1.

The signal from the virtual microphone can be reconstructed as:

d ds —d
xs(t) = d—oxo (t - 0>

wherev is the speed of sound. Unfortunately, the audio interpolation equation we derived is for
a single source only. However, there has recently been substantial success on the problem of sep-
arating multiple sources from two stereo mixtures. In particular, Jourjine et al. [2] presented a
novel method for blindly separating any number of sources using only two mixtures. The main
assumption of the algorithm is that the sources are W-disjoint orthogonal, i.e. the supports of the
windowed Fourier transforms of each paif(¢), z;(t)) of source signals are disjoint. This assump-
tion was shown to be viable for mixtures of real sources, e.g. multiple voices speaking simultane-
ously. Mixing parameters of the sources are estimated by clustering ratios of the time-frequency
representations of the mixtures. The estimates of the mixing parameters are used to partition the
time-frequency representation of one mixture to recover the original sources. The technique is valid
even when the number of sources is larger than the number of mixtures.

By coupling the audio interpolation equation with Jourjine’s algorithm, we can synthesize real-
istic virtual audio even in the presence of multiple sources.

The baseline connectindy/, and M; is unique in that it is the only location where the sound
from a virtual microphone can be synthesized from only two microphones and multiple unknown
sources. Using the signals)(t) andz(t), each source can be located only up to a point on a
circle orthogonal to the baseline (Figure D.2). Three calibrated, non-colinear microphones can
locate each source up to a pair of points; four calibrated, non-coplanar microphones can locate each
source unambiguously. Thus, two calibrated microphones is really the only “interesting” case in

which virtual audio can be synthesized from incomplete information.
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source 3
source 2

Figure D.2: Loci of sources that can be obtained with two microphones.
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