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Abstract

This paper addresses the problem of detecting counterflow motion in

videos of highly dense crowds. We focus on improving the detection per-

formance by identifying scene features — that is, features on motionless

background surfaces. We propose a three-way classifier to differentiate coun-

terflow from normal flow, simultaneously identifying scene features based on

statistics of low-level feature point tracks. By monitoring scene features,

we can reduce the likelihood that moving features’ point tracks mix with

scene feature point tracks, as well as detect and discard frames with periodic

jitter. We also construct a Scene Feature Heat Map, which reflects the space-

varying probability that object trajectories might mix with scene features.

When an object trajectory nears a high-probability region of this map, we

switch to a more time-consuming and robust joint Lucas-Kanade tracking al-

gorithm to improve performance. We evaluate the algorithms with extensive

∗Phone: +1 (518) 961-1754, Fax: +1 (518) 276-8715
Email addresses: wuz5@rpi.edu (Ziyan Wu), rjradke@ecse.rpi.edu (Richard J.

Radke )
URL: www.rpi.edu/~wuz5 (Ziyan Wu), www.ecse.rpi.edu/~rjradke (Richard J.

Radke )

Preprint submitted to Pattern Recognition Letters December 11, 2013



experiments on several datasets, including almost three weeks of data from

an airport surveillance camera network. The experiments demonstrate the

feasibility of the proposed algorithms and their significant improvements for

counterflow detection.

Keywords: counterflow, scene feature, tracking, false alarm, video

surveillance

1. Introduction1

Counterflow detection is a critical problem in security-related surveillance.2

For example, a person moving the wrong way through the exit corridor of3

an airport can prompt an entire terminal to be “dumped”, resulting in hun-4

dreds of delayed flights and inconvenienced passengers. By tracking low-level5

feature points, the typical flow direction can easily be determined. However,6

most of the cameras deployed in security surveillance networks have poor7

resolution and quality compared to a consumer digital camera, which can8

negatively affect tracking algorithms, especially during long-term operation.9

Another issue preventing automatic video analytic algorithms from replac-10

ing manual monitoring is that the false positive rate is likely to be very high11

compared to the small number of true positives in 24/7 continuous operation.12

This paper presents three contributions. First, we demonstrate that coun-13

terflow detection can be significantly improved by introducing a novel classi-14

fier to identify scene features in the image, which are then used to mitigate15

cases in which foreground and background features are mixed in the same16

point trajectory. Second, by monitoring the statistics of scene features, we17

identify jitter frames that should not play a role in tracking. Third, we con-18
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struct a Scene Feature Heat Map that enables the automatic selection of a19

suitable tracking scheme for point tracks in different locations of the image20

to achieve more robust performance. We conducted extensive experiments21

on both a standard dataset (CAVIAR) and several real-world video datasets22

acquired from an airport surveillance camera network, demonstrating that23

our counterflow detection algorithm is significantly improved by using the24

scene-feature-based algorithms. The resulting framework was in continuous25

operation for three weeks at a major airport, successfully detecting hundreds26

of counterflow events with no misses and only three false alarms.27

2. Related Work28

The problem of detecting dominant motions in crowded video and classi-29

fying outlying motions has been widely studied [8, 13, 2, 4]. Tu and Rittscher30

[17] introduced a crowd segmentation algorithm by clustering interest points31

into groups by determining maximal cliques in a graph. However, both the32

algorithm and experiments are based on videos from overhead views only,33

which is the easiest case for counterflow detection. Andrade et al. [3] pro-34

posed an algorithm for detecting abnormal movements in crowds by applying35

principal component analysis to optical flow maps and spectral clustering to36

hidden Markov models, but did not perform any real-world experiments.37

This algorithm identifies abnormal motion based on a trained flow map,38

which is sensitive to noise and may cause false positives for normal motions39

not covered by the training set. Brostow and Cipolla [7] used an unsupervised40

Bayesian detection algorithm to segment low-level feature tracklets based on41

a spatial prior and a likelihood model of coherent motion. Ali and Shah [1]42
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modeled a highly dense crowd as an aperiodic dynamical system that can be43

studied with Lagrangian particle dynamics techniques. Antonini and Thiran44

[4] introduced a trajectory clustering method based on independent compo-45

nent analysis. Junejo et al. [13] applied graph cuts to segmenting tracklets.46

Cheriyadat and Radke [10] proposed a trajectory clustering algorithm based47

on non-negative matrix factorization.48

Cheriyadat and Radke [9] proposed an automatic dominant motion de-49

tection method by clustering trajectories based on longest common subse-50

quences. Since individual people are difficult to segment, the inputs to the51

algorithm are tracked low-level features obtained using optical flow. Our al-52

gorithm takes a similar approach. However, these types of algorithms might53

not yield good results in situations involving low-resolution cameras and poor54

image quality. Marcenaro and Vernazza [15] proposed an image stabilization55

algorithm based on feature tracking in which scene features are used as refer-56

ences to compensate for the motion of the camera. In this paper, we propose57

a classifier to identify scene features in the context of detecting counterflow58

motion. We show that by using information from the scene features, the per-59

formance and accuracy of foreground object point tracking can be improved60

under low-quality, complex-background conditions.61

An earlier version of this paper appeared in [18]. Here, a new concept, the62

Scene Feature Heat Map, and a joint processing mechanism within a camera63

network are proposed in order to further reduce the false alarm rate. A new64

experiment on the CAVIAR dataset and a more extensive long-term experi-65

ment using a camera network at an airport are presented, demonstrating the66

effectiveness of the proposed algorithm.67
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(a) (b)

Figure 1: Results of feature tracking. (a) Features detected in the image. (b) Point tracks
extracted from a video sequence.

can track large pixel motions while keeping the size of the integration window
relatively small.

The results of feature tracking are shown in Figure 1, in which red circles
indicate all the features detected in the current frame (up to a maximum
number, e.g., 300) and blue circles indicate reliably-trackable features. New
features are added to the tracker every 5-10 frames, discarding those too close
to current tracks. These feature tracks form a large trajectory set.

4. Improving Robustness with a Scene Feature Classifier

This low-level feature point tracking is often inaccurate, due to both the
low resolution and quality of the input videos and periodic jitter. Conse-
quently, it is common for features on foreground objects (corresponding to
the allowable/counter flow) to mix or merge with stationary scene features,
as illustrated in Figure 2.

Our solution to this problem is to build a three-way classifier to classify
normal flow, counterflow, and scene features. The point tracks are classified
at a specified interval (e.g., every 300 frames). The recognized scene features
can also be used to compensate for location drift caused by jitter. Here we
assume flow goes roughly up-and-down on the image.

Let Lj = {(xj(1), yj(1)), . . . , (xj(nj), yj(nj))} be the data of the jth point

4

Figure 1: Results of feature tracking. (a) Features detected in the image. (b) Point tracks

extracted from a video sequence.

3. Feature Tracking68

Even in the age of high-quality consumer digital cameras, videos from69

surveillance camera networks are frequently low-resolution (e.g., 352×240).70

Since we want the system to process video streams from tens of cameras in71

real time, and the dominant (or allowable) direction of motion is all we need72

to know, we use low-level features to track the flow. We first identify low-73

level features in the initial frame using the FAST corner detector [16]. The74

features are then tracked over time using the Kanade-Lucas-Tomasi (KLT)75

optical flow algorithm [14], adapting the pyramid representation in [6], which76

can track large pixel motions while keeping the size of the integration window77

relatively small.78

The results of feature tracking are shown in Figure 1, in which red circles79

indicate all the features detected in the current frame (up to a maximum80

number, e.g., 300) and blue circles indicate reliably-trackable features. New81

features are added to the tracker every 5-10 frames, discarding those too close82
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to current tracks. These feature tracks form a large trajectory set.83

4. Improving Robustness with a Scene Feature Classifier84

This low-level feature point tracking is often inaccurate, due to both the85

low resolution and quality of the input videos and periodic jitter. Conse-86

quently, it is common for features on foreground objects (corresponding to87

the allowable/counter flow) to mix or merge with stationary scene features,88

as illustrated in Figure 2.89

Our solution to this problem is to build a three-way classifier to identify90

normal flow, counterflow, and scene features. The point tracks are classified91

at a specified interval (e.g., every 300 frames). The recognized scene features92

can also be used to compensate for location drift caused by jitter. Here we93

assume flow goes roughly up-and-down on the image.94

Let Lj = {(xj(1), yj(1)), . . . , (xj(nj), yj(nj))} be the data of the jth point95

track. We define two features (dj
1, d

j
2) for each trajectory Lj as96

dj
1 =

1

n2
j

bnj
3
c∑

i=1

yj(nj − i)− yj(i)

dj
2 =

1

nj

√√√√
nj∑

i=2

(xj(i)− xj(1))2 + (yj(i)− yj(1))2

That is, dj
1 represents the difference in sum on y between the first third and97

last third of the trajectory, and dj
2 represents the variance of the points on98

the trajectory from their initial position.99

As Figure 3 illustrates, the three-way classifier separates trajectories cor-100

responding to normal flow, counterflow, and scene features based on the rule101
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Figure 2: Foreground points mixing with scene points.

Lj =





normal flow dj
1 > a, dj

2 > b

counterflow dj
1 ≤ a, dj

2 > b

scene feature dj
2 ≤ b

(1)

The value of b in the classifier to separate scene points can be obtained102

by learning the standard deviation in the image location of features from103

an image sequence containing only the background. We used b = 10 in our104

experiments. The value of a is trained on a short sequence based on user105

editing of missed detections and false alarms. That is, a is set to an initial106

value (e.g., 5) and is adjusted based on user edits to the smallest number107

such that the classifier has no missed detections (which are operationally108

extremely costly).109
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Figure 3: Result of the three-way classifier and Scene Feature Heat Map. (a) Feature
tracks. (b) Classifier result corresponding to (a). (c) Scene Feature Heat Map correspond-
ing to (a).
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Figure 3: Result of the three-way classifier and Scene Feature Heat Map. (a) Feature

tracks. (b) Classifier result corresponding to (a). (c) Scene Feature Heat Map correspond-

ing to (a).
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After the scene features are classified, they can be used to deal with110

two issues. First, point tracks that were classified as scene points in the111

previous decision are matched and tracked only after all of the other (flow)112

features are matched and tracked for each frame. This step significantly113

reduces the probability that scene features mix with moving features and114

confuse the tracker/classifier, as we show in Section 7. Second, the statistics115

of scene features provide an easy way to detect frames with jitter, as shown in116

Figure 4. We can easily learn a threshold on the change in x values along the117

trajectories for scene points that detects jitter frames. These frames are then118

ignored for the purposes of tracking and classification, which substantially119

improves robustness.120

5. Scene Feature Heat Map121

Using only the feature tracks classified as scene features S, we generate a122

Scene Feature Heat Map (SFHM) to further reduce false alarms, defined as:123

h(u, v) =
∑

Lj∈S
exp




−1

2σ2


u− xj(nj)

v − yj(nj)



>

Σ−1


u− xj(nj)

v − yj(nj)








(2)

in which Σ is the 2× 2 covariance matrix of point track data Lj. σ is a scale124

factor depending on the image size, defined as125

σ = b−2
√

(W 2 +H2) (3)

in which W and H are the width and height of the image respectively. Figure126

3(c) shows a Scene Feature Heat Map generated from the results shown in127

Figure 3(a-b). The SFHM is basically a visualization of the probability that128

a feature track at the given pixel contains a scene feature.129
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Figure 4: Statistics of (a) moving points and (b) scene feature points. Jitter frames are
clearly visible as spikes in (b).

That is, we define the overall tracking problem at a pixel as minimizing C
by finding the displacement t = (tx, ty)>, in which

C =

{
CLK h(x, y) < βσ

CJLK = CLK + λCHS otherwise
(4)

in which β is a positive constant (we use 1.0 in our experiments), λ is a
smoothing term which can be set to a constant (in our experiments λ = σ2),

8

Figure 4: Statistics of (a) moving points and (b) scene feature points. Jitter frames are

clearly visible as spikes in (b).

When a tracked feature moves close to a “high-heat” region on the SFHM,130

it is more likely to mix with scene features. Hence, in this case, we use131

a Pyramidal Joint Lucas-Kanade (JLK) algorithm [5] for feature tracking,132

which combines the Kanade-Lucas [14] and Horn-Schunck [12] optical flow133

algorithms. That is, we define the overall tracking problem at a pixel as134
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minimizing C by finding the displacement t = (tx, ty)>, in which135

C =





CLK h(x, y) < βσ

CJLK = CLK + λCHS otherwise
(4)

The two cost functions are defined as

CLK(u, v) =
∑

(x,y)

w(x, y) (I(x+ u, y + v, t+ 1)− I(x, y, t))2

CHS(u, v) =

∥∥∥∥∥∥


u
v


−


û
v̂



∥∥∥∥∥∥

2

(5)

in which w(x, y) is a windowing function and (û, v̂)> is the expected displace-136

ment computed by fitting an affine motion model to the displacements of Ne137

neighboring moving features weighted by their distance to the feature (we138

used Ne = 5 in our experiment).139

In (4), β is a positive constant ( we use 1.0 in our experiments.) This num-140

ber can be set according to computational load and computational power;141

that is, the higher the available computational power, the smaller β should142

be set. λ is a smoothing term which we set to λ = σ2.143

The problem of minimizing C = CLK + λCHS can be solved using Jacobi144

iterations [5]. The JLK algorithm is more time consuming (usually 5-10 times145

slower than KLT), but with the help from neighboring moving features, the146

tracked feature points are less likely to merge or mix with scene features. The147

proposed SFHM method makes the tracking algorithm more robust while148

maintaining similar processing speed compared to KLT. More sample frames149

and their corresponding SFHMs and outputs from the classifier are shown in150

Figure 5.151
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Figure 5: Classifier output and Scene Feature Heat Map for typical frames. The first

row shows the frames processed with tracklets. The second row shows the output of the

three-way classifier. The third row shows the corresponding Scene Feature Heat Map.

Features are tracked for every frame and are classified after a certain152

interval depending on the frame rate of the camera. Tracklets classified as153

counterflow are considered as potential alarms. Detection is finalized after154

an additional criterion. We found that most of the false alarms are caused by155

mixing tracks. Even with the three-way classifier, some of the mixed tracks156

are hard to filter since some regions contain both scene features and humans.157

However, the trajectories of mixed tracks are usually highly random. The158
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correlations between x and y coordinates are significantly lower than those159

of other trajectories. By setting a threshold (we used 0.5 in our experiments)160

on the correlation for trajectories, most false alarms caused by mixing point161

tracks can be eliminated.162

6. Joint Processing in a Camera Network163

In most cases, the configuration/floor plan of the camera surveillance164

network is known, which can be leveraged to further reduce the false positive165

rate. Even though all the cameras may not share overlapping fields of view,166

they generally cover the same path, which usually means that counterflow167

should be detected in more than one camera. The design of the joint decision168

mechanism depends on the physical setup of the camera network, as discussed169

further in the next section.170

7. Experiments171

We evaluated our algorithms on several datasets, both standard ones and172

custom-collected video at a large US airport (Cleveland-Hopkins Interna-173

tional).174

7.1. CAVIAR175

First, we tested our algorithms on the standard CAVIAR dataset (clips176

from a shopping center in Portugal) [11]. 27 video sequences from the corridor177

view were used in the experiments, in which WalkByShop1cor, 2LeaveShop1cor178

and 2LeaveShop2cor were used to train the classifier.179

The other 24 sequences were tested with and without our scene-feature180

based algorithm. As a baseline, we compare the results against a classifier181
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Sample images from CAVIAR with annotated results.

The other 24 sequences are tested with and without our scene-feature
based algorithm. As a baseline, we compare the results against a classifier
that only discriminates between normal flow and counterflow using the d1

feature (i.e., not taking into account scene features). The results are shown
in Table 1. Several examples are shown in Figure 6. Normal trajectories
are displayed in green while counterflow trajectories are displayed in red.
From the results we can see that with the 3-way classifier, the detection rate
has been improved from 79% to 99%, while the false positive rate has been
reduced from 19% to 8%. When adding the SFHM, the detection rate reaches
100% without any false positives.

11

Figure 6: Sample images from CAVIAR with annotated results.

that only discriminates between normal flow and counterflow using the d1182

feature (i.e., not taking into account scene features). We also compared the183

results against the algorithms of LPD [1] and LCSS [9]. The results are shown184

in Figure 7. Several examples are shown in Figure 6. Normal trajectories are185

displayed in green while counterflow trajectories are displayed in red.186

Since LCSS is based on a similar feature tracking approach, its perfor-187

mance is similar to the 2-class baseline approach; its false alarm rate is188
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Figure 7: Results of the counterflow experiment on CAVIAR. (a) LPD[1]. (b) LCSS[9].

(c) 2-class classifier. (d) 3-class classifier. (e) 3-class classifier plus SFHM.

slightly better since the trajectory clustering in LCSS can bypass some mix-189

of-track trajectories. The LPD algorithm is based on a flow field that does190

not rely on trajectories. Its true positive rate is significantly higher than191

LCSS and the 2-class baseline approach. On the other hand, it is more sen-192

sitive to noise, resulting in a higher false positive rate. From the results we193

can see that with the 3-way classifier, the detection rate has been improved194

over the 2-class baseline from 79% to 99%, while the false positive rate has195

been reduced from 19% to 8%. The performance of the 3-way classifier sur-196

passes LPD and LCSS on both the true positive rate and false alarm rate.197

When adding the SFHM, the detection rate reaches 100% without any false198

positives.199
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Table 1: Results of the counterflow experiment on the short airport videos. GT denotes

the number of ground truth counterflows, TP the number of true positives and FA the

number of false alarms.

Len GT LPD[1] LCSS[9] 2-Class 3-Class +SFHM
Video min TP FA TP FA TP FA TP FA TP FA

TA Eg.In 40 1 1 2 1 2 1 2 1 0 1 0
TA Eg.Out 32 2 2 6 2 6 2 6 2 1 2 0
TB Eg.In 40 10 8 4 9 4 8 4 10 1 10 0

TB Eg.Out 32 10 10 12 7 10 6 12 10 6 10 0
TC Eg.In 5 0 0 5 0 3 0 3 0 0 0 0

TC Eg.Out 5 2 2 6 0 5 0 5 2 3 2 0
Total 154 25 23 35 19 30 18 32 25 11 25 0

7.2. Shorter Airport Videos200

We next tested the counterflow detection algorithm on six video sequences201

from cameras overlooking exit lanes at an airport. Figure 8(a) illustrates the202

configuration of the cameras and sample images. The classifier is first trained203

with a one-minute portion of the video and tested with the rest. The results204

for the six sequences are collected in Table 1, and several examples of normal205

flow and counterflow are shown in Figure 9. A bounding box corresponding206

to each suspicious target is also created.207

These videos are all at low resolution (320×240) and contain periodic208

jitter. It can be seen that with the help of the 3-way classifier, the detection209

rate improved from 72% to 100% while the false positive rate was reduced210

from 64% to 30%. The performance of LPD and LCSS reflects the same211

conclusions from the CAVIAR experiment. Again, the performance of 3-212

way classifier surpasses both LPD and LCSS. When adding the SFHM, the213

algorithm achieved a 100% detection rate without any false alarms. No214
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Figure 8: Floor plans and sample frames from each camera.
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(a) (b)

Figure 8: Sample flow classification results. (a) Normal flow. (b) Counterflow is detected
and the target is located.

1%, which should be operationally acceptable. No counterflow events were
missed using the 3-way classifier.

8. Conclusion

As desired, the algorithms successfully detected all the counterflow oc-
currences in all the sequences without error. More importantly, the number
of false alarms has been significantly reduced by successive refinements to
the algorithm. Most of the false alarms are due to noise, jitter or mixing
point tracks. Since false alarms are easy to correct and clear, this number
seems acceptable in practical applications given the lengths of the videos
involved. Some videos with false alarms are particularly challenging due to
unusual walking pattern of passengers, “acceptable” counterflow caused by
TSA officers, mixing feature tracks, a complex background, and passengers
coming from an exit far from the camera. Both the false alarm rate and true

16

Figure 9: Sample flow classification results. (a) Normal flow. (b) Counterflow is detected

and the target is located.

counterflow events were missed using the 3-way classifier.215

7.3. Long Airport Videos216

Finally, we conducted a long-term experiment at the airport with a cam-217

era network consisting of 4 cameras, as illustrated in Figure 8(b).218

These cameras are at higher resolution (640×480). However, flicker and219

artifacts due to compression and illumination problems still make the task220

challenging, especially for 24/7 continuous processing. We trained the clas-221

sifier for each camera for 10 minutes. For this experiment, we also evaluated222
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Figure 10: False alarms for the counterflow experiments on the long airport videos. There

were 249 ground truth events, 234 of which were detected by the 2-class classifier, and all

of which were detected by the other variants of the algorithm.

the method of relating results from multiple cameras mentioned in Section 6.223

We consider a counterflow event to be detected only if detections are found224

in both camera 1 and 2 or in both camera 1 and 3 within a 30 second time225

span (without requiring the detections to be found at exactly the same time).226

This time span can be set by the expected or statistically longest time for a227

person to walk from the FOV of camera 2 to the FOV of camera 3. How-228

ever, a detection found in camera 1 with high confidence (i.e., more than 3229

counterflow point tracks are found) is directly considered as a true detection230

since this viewpoint is most reliable. We processed video from 22 straight231

days from these 4 cameras in real time. Each day, about 10 counterflow232

events were generated by airport security officers to test the algorithm. The233

results are summarized in Figure 10.234

From the results we can see that with the help of the 3-way classifier, the235
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detection rate improved from 93% to 100% while the false positive rate was236

reduced from 96% to 83%. The addition of the SFHM further reduces the237

false positive rate to 71%, which is still much too high. By jointly relating238

the results from three cameras, the false positive rate was reduced to about239

1%, which is considered to be operationally acceptable from the perspective240

of airport security officers (less than 1 false alarm per day). No counterflow241

events were missed using the 3-way classifier.242

7.4. Failure Cases243

The proposed algorithms may fail when processing videos with a highly244

dynamic background, or that contain serious ghosting or compression arti-245

facts. In our experiments, most of the false alarms are due to noise, jitter246

or mixing point tracks. Since false alarms are easy to assess and discard,247

the level of performance seems acceptable in practical applications given the248

lengths of the videos involved. Some videos with false alarms are partic-249

ularly challenging due to unusual walking patterns of passengers, “accept-250

able” counterflow caused by security officers, mixing feature tracks, a com-251

plex background, and passengers coming from an exit far from the camera.252

8. Conclusion253

As desired, the algorithms successfully detected all the counterflow oc-254

currences in all the sequences without error. More importantly, the number255

of false alarms has been significantly reduced by successive refinements to256

the algorithm.257

Both the false alarm rate and true positive rate are improved by the258

proposed scene-feature-based algorithms. Experimental results show that the259
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proposed algorithms outperform LPD [1] and LCSS [9] on both a standard260

dataset and real-world video sequences, suggesting that with the help of scene261

features, trajectory-based counterflow detection approach can be significantly262

improved. Future work includes improving the 3-way classifier so that it can263

be trained without supervision, adding robust broken tracklet re-connection264

to the algorithm, and identifying security officers and ignoring counterflows265

caused by them.266
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