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ABSTRACT
Social signal processing algorithms have become increasingly bet-
ter at solving well-defined prediction and estimation problems in
audiovisual recordings of group discussion. However, much human
behavior and communication is less structured and more subtle.
In this paper, we address the problem of generic question answer-
ing from diverse audiovisual recordings of human interaction. The
goal is to select the correct free-text answer to a free-text question
about human interaction in a video. We propose an RNN-based
model with two novel ideas: a temporal attention module that
highlights key words and phrases in the question and candidate
answers, and a consistency measurement module that scores the
similarity between the multimodal data, the question, and the can-
didate answers. This small set of consistency scores forms the input
to the final question-answering stage, resulting in a lightweight
model. We demonstrate that our model achieves state of the art
accuracy on the Social-IQ dataset containing hundreds of videos
and question/answer pairs.
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1 INTRODUCTION
Automatically understanding human activity in video has made
substantial progress, from detecting and classifying behaviors like
jumping and waving [3, 14] to automatically producing sentence-
level descriptions of clips such as “The man starts dancing after
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Figure 1: Example videos, questions, and answers in the
Social-IQ dataset [31]. Green answers are correct.

hearing the women playing piano” [5, 27]. This paper addresses
the problem of answering questions about the events in a video,
such as “Why the man is not happy when the woman brings him a
birthday cake?”. This is a challenging problem that involves fine-
grained actions and behavior, causal connections between events,
and multimodal data streams involving multiple people.

Making headway on this problem requires appropriate datasets
involving natural multi-human interaction. While several group
interaction datasets [22, 25, 33] have been constructed to study
and predict emotion [28, 33], intention [15], leadership style [16],
coordination patterns [24] or collaborative quality [8], most are
not suitable for the video question answering problem for several
reasons. The main one is that participants are usually seated in the
same configurations with a fixed, known camera perspective. Often
the number of participants is fixed in a meeting, and high-quality
per-participant video (e.g., from a frontal-facing camera) and audio
(e.g., from a dedicated microphone) are collected.

In contrast, here we work with a recently proposed human inter-
action dataset called Social-IQ [31] designed for research on video
question answering (VQA) tasks. Social-IQ features diverse topics
and environments, varying numbers of people and camera angles
in each clip, and unstructured human actions and conversations.
Each clip is accompanied by a set of questions relating to the causes
of events and intentions and mental states of the participants, as
well as corresponding candidate answers that are both true and
false. Figure 1 shows two examples of videos and question/answer
pairs (QA-pairs) in the dataset, which is discussed in more detail in
Section 3.

The Social-IQ VQA dataset presents several challenges compared
to existing social signal processing datasets, including:
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• The video recordings are not frontal-facing, nor are they
individually focused. This makes it difficult to apply facial
or body feature extraction algorithms for estimating the
Visual Focus of Attention (VFOAs) or expression of each
participant.
• Videos frequently cut between different camera perspectives
containing different people.
• The transcripts and the audio signals are single-channel, not
segmented for each visible participant, making it difficult to
extract features such as turn-taking patterns.
• The questions and answers relate not to apparent behaviors,
but to hidden signals such as mental states, emotions, and
intentions, which requires a fine understanding of the order
and timing of the interaction dynamics.
• Both the video clips and the text of the questions and answers
are longer than in typical VQA datasets.

In this paper, we present a novel neural network to attack the
VQA problem with two key contributions. The first is temporal
attention: our model processes the video, audio, and transcript
streams, as well as the questions and answers, to highlight moments
and words that are particularly relevant. The second is consistency
measuring: we quantify the feature similarity between the mul-
timodal streams, the question, and the candidate answers as the
evidence for making the final decision. Our approach is inspired by
the way humans approach reading comprehension tasks involving
long passages with irrelevant information, i.e., keeping the question
and candidate answers in mind and then skimming through the
reading material to find possible supporting evidence to get to the
right answer quickly and accurately. Figure 2 overviews our overall
approach.

Figure 2: An illustration of two key mechanisms in our ap-
proach. Darker colors indicate higher temporal weights au-
tomatically extracted by our model.

Since a large intermediate feature map is reduced to a small
set of consistency scores before input to the final network, our

model is computationally extremely lightweight, and is extensible
to general video question answering. We demonstrate state-of-the-
art accuracy on the Social-IQ dataset, taking a step towards correctly
answering challenging “why” and “how” questions in social signal
processing.

2 RELATEDWORK
2.1 Multimodal social signal estimation
A considerable body of literature exists on social signal estimation
using multimodal machine learning. For example, the ELEA cor-
pus [22] was used to train a Support Vector Machine (SVM) for
personality trait [20] and emergent leadership [2] prediction, in
which hand-crafted multimodal features such as visual focus of
attention and speaking turns are used as behavior cues. Zhang et al.
[34] proposed a Long-Short Term Memory (LSTM)-based temporal
fusion mechanism to model group interactions to capture the co-
occurrent and successive behaviors in multimodal recordings for
dynamic social status classification. Zadeh et al. [32] constructed a
tensor fusion network to explicitly aggregate unimodal, bimodal
and trimodal dynamics for sentiment analysis in online videos.

2.2 Video captioning
Several algorithms have been proposed for video captioning, the
automatic textual description of events in video. Xu et al. [29] de-
signed a joint event detection and description network to generate
sentences from video. Video features are extracted using 3D con-
volutional layers. Candidate video segments for event proposals
are generated, followed by an LSTM-based language-text fusion
and captioning module. Wang et al. [27] proposed a deep reinforce-
ment learning model for video captioning with fine-grained action
description. Video frames are first processed by a convolutional
neural network (CNN) for feature extraction and then fed into a set
of LSTM layers for context encoding. A manager-worker module
is designed to do video captioning at both a higher-level for goal-
setting and a lower-level for actual word generation. Rohrbach et al.
[21] constructed a description generation model that jointly local-
izes the subjects in the video clip based on the relationship between
the visual appearance and the text description in a semi-supervised
way.

2.3 Video question answering
Several algorithms for VQA tasks have recently been proposed.
Zhao et al. [35] proposed an encoder-decoder based framework
that learns temporal features via gated recurrent units [4]. A hierar-
chical reasoning process was applied for progressive understanding
of the video content. The algorithm was evaluated using questions
and answers built from the TGIF dataset [19] consisting of 200K
GIFs and corresponding descriptions. Lei et al. constructed the
TVQA dataset [18] from multiple TV shows and proposed a multi-
stream Recurrent Neural Network (RNN) with a context matching
module to jointly model the question, answer and data. Wang et
al. [26] constructed frame-level representations using regional fea-
tures extracted by CNNs and generated clip-level content on top
of the frame representations. Ye et al. [30] learned video features
with an LSTM and augmented them using detected key objects
appearing in each frame such as “dog” or “plate” to obtain a finer



video content representation for answering questions constructed
on the YouTube2Text dataset [10].

3 THE SOCIAL-IQ DATASET
Zadeh et al. [31] constructed the Social-IQ dataset from Youtube
videos. The dataset contains 1250 videos with durations of 30 to
60 seconds. 1015 videos have been publicly released with 888 des-
ignated as a training set and the remaining 127 designated as the
testing set. The additional 235 videos have been retained by the
original authors for future use and are not publicly available.

The topics and environmental settings of Social-IQ include po-
litical debates, outdoor entertainment, video blogs about daily life,
talk shows, and movie clips. The videos, audio sound signals, and
subtitles (transcripts) are provided in the dataset. For each video,
6 different questions are given with lengths ranging from 5 to 25
words, asking about topics including the feelings of the people in-
volved, their attitudes towards a person or an event and the manner
of expression for such attitudes, the personalities of the partici-
pants, and the relationships and social statuses in a group of people.
Most questions start with “Why”, “How”, “What”, or “Does”; several
example questions in different categories are shown in Table 1.

Table 1: Example of the questions in different categories in
the Social-IQ dataset [31].

Categories Example question

Reaction interpretation Why doesn’t the woman want
to eat any more food?

Attitude What is the woman’s attitude
towards her grandmother?

Agreement Are the two men in agreement?

Feeling How confident was the woman in
the mint suit during her speech?

Manner of expression
How did the people seated on the
blue chairs react to the questions
the woman in the mint suit asked?

Atmosphere Do the men appear to get along?

For each question, there are 4 correct answers and 3 incorrect
answers. These can be combined into 12 different correct/incorrect
answer pairs resulting in 72 different question/candidate answer
sets for each video. During the experiment, given a video, a question,
and an answer pair with a correct and incorrect response in an
arbitrary order, the objective is to select the correct answer by
predicting the position of it in the given answer pair.

4 APPROACH
Selecting the correct answer to the challenging questions requires
a fine understanding of the details in the question and candidate
answers, the comprehensive fusion of the multimodal data features,
and the accurate extraction of the critical information without
producing a huge model. We call the algorithm we propose and

describe in this section TACO-Net, which stands for Temporal
Attention and COnsistency.

The whole framework is shown in Figure 3. It consists of (1) a
sequence preprocessingmodule for extracting features from the raw
video, audio, and transcript data, (2) a temporal encoding module
using an LSTM to reveal temporal dependencies of information
at different positions in the sequence, (3) a temporal highlighting
module to apply more weight to more important positions in the
sequence, (4) a multi-level consistency measuring module to reduce
the large feature map to a small number of similarity values, and
(5) a multi-step reasoning module for final comprehension and
decision making. The details of the specific modules in our network
are described in the following sections.

4.1 Sequence preprocessing module
4.1.1 Feature extraction and alignment. We use the same prepro-
cessed multimodal features that are provided in the Social-QA
dataset [31]. In particular, the feature set includes the visual, audio
and transcript components extracted by the following processes:

Visual features: The video frames are sampled at 1 frame per
second and fed into a pre-trained DenseNet161 [13] model to obtain
a 2208-dimensional feature vector representing the visual content
of the image frame.

Audio non-verbal features: The audio signals are processed
using the COVAREP toolbox [6] sampled in roughly 10ms win-
dows to produce 74-dimensional feature vectors including rhythm
features such as MFCCs and parabolic spectral parameters.

Transcript features: The transcript of each video is divided
into multiple segments of around 4 seconds, and the transcript of
each segment is projected to a 768-dimensional vector using the
BERT word embedding model [7].

The visual and audio features are aligned to the transcript fea-
tures based on averaging. For example, if 𝐿 is the total number of
subtitle segments, the transcript feature is a vector of dimension
𝐿× 768. Given one such segment extending from time 𝑡0 to 𝑡1, there
are (𝑡1 − 𝑡0) video frames extracted during this period that are av-
eraged to produce the final visual feature. Similarly, the final audio
feature is calculated as the average of all the original audio features
during this time period. Therefore, after the alignment, the final
visual, audio, and transcript features have the dimensions 𝐿 × 2208,
𝐿 × 74, and 𝐿 × 768 respectively.

Question and answer features: Similarly, the question and
the candidate answers are processed using the BERT model [7] to
represent the word strings as 768-dimensional vectors.

4.1.2 Temporal encoding. The input visual, audio, and transcript
sequences are fed into a bi-directional LSTM [12, 23] with𝑛0 hidden
nodes to learn the temporal dependencies in the data stream. The
contextual information between the past time step (𝑡 − 1) (or the
future time step (𝑡 + 1) in the backward direction) and the current
time step 𝑡 are then fused in the output hidden state

−→
ℎ 𝑡 (or

←−
ℎ 𝑡 in

the backward direction). By concatenating the hidden states in the
last layer of the LSTM along two directions, we obtain the encoded
sequence 𝑅 = [−→ℎ 1:𝐿,

←−
ℎ 1:𝐿]. We also extract the hidden states at

the last timestamp as 𝑀ℎ = [−→ℎ 𝐿,
←−
ℎ 𝐿]. Similarly, a bi-directional

LSTM with 𝑛1 hidden nodes is designed for contextual information



Figure 3: The framework of the proposed TACO-Net algorithm.

understanding in the question and the candidate answers. In all the
experiments reported here, we used 𝑛0 = 150 and 𝑛1 = 75.

4.2 Temporal highlighting module
The next module consists of two pieces. The first is a temporal high-
lighting piece to make the model pay more attention to key regions
in the multimodal sequences. The second is a content comprehen-
sion piece for finer understanding of the weighted multimodal
sequence. The network details are illustrated in Figure 4.

To make the network focus more on critical moments during
the interaction and key words in the question and answer text,
we apply a dot-product attention mechanism, in which weights
are calculated indicating the importance level of different parts.
We first merge the hidden states in the forward direction and the
backward direction and then calculate the weight as the similarity
between the encoded sequence after LSTM and the merged hidden
states. Specifically, the weights of different time steps in the input
sequences are calculated as:

𝑊 = softmax(𝑅𝑇𝑀ℎ) (1)

where 𝑅 denotes the output of the bi-directional LSTM,𝑀ℎ repre-
sents the concatenated hidden states, and the softmax function is
used to normalize the weights.

We then apply the weights to different positions of the encoded
sequence, and calculate the highlighted sequence as

𝑆ℎ =
[
𝑅0𝑊 0 𝑅1𝑊 1 ... 𝑅𝐿𝑊 𝐿

]
(2)

An example of this automatic highlighting of the QA pair and
the multimodal sequences is illustrated in Figure 5 in Section 5.4.

The highlighted multimodal data streams are fed into an additive-
aggregation layer for dimension reduction resulting in amultimodal
context vector with dimension 300 and a QA context vector with
dimension 150. As multimodal material contains more complicated
information that is hidden and requires deeper understanding, the
multimodal context vectors are then fed into an extra set of fully
connected layers to generate a final representation with dimension
150. A ReLU activation function is applied at each layer to increase
the nonlinearity of the network.

4.3 Multi-level consistency measuring module
The second key innovation of our algorithm is a consistency mea-
suring module that considers three aspects:
• M1. Are the question and the candidate answer consistent
with each other?

• M2. Are the multimodal features consistent with the ques-
tion/answer pair?
• M3. Are the multimodal features self-consistent?

In thismodule, wemeasure the consistency scores for the QA pair
and between the multimodal feature sets. We denote the intermedi-
ate encoded feature vectors from the visual, audio, and transcript
data streams as 𝜅𝑣𝑖𝑠 , 𝜅𝑎𝑢𝑑 , 𝜅𝑡𝑟𝑠 , respectively, and the feature vectors
from the question and the candidate answer as 𝜅𝑞 and 𝜅𝑎 . Then
Table 2 maps the three consistency measures to pairs of features.
We use 𝜙 to denote the function for consistency score measurement.

Table 2: Three-level consistency measuring.

M1 M2 M3

𝜙 (𝜅𝑞, 𝜅𝑎)
𝜙 (𝜅𝑞, 𝜅𝑣𝑖𝑠 ) 𝜙 (𝜅𝑞, 𝜅𝑡𝑟𝑠 ) 𝜙 (𝜅𝑞, 𝜅𝑎𝑢𝑑 )
𝜙 (𝜅𝑎, 𝜅𝑣𝑖𝑠 ) 𝜙 (𝜅𝑎, 𝜅𝑡𝑟𝑠 ) 𝜙 (𝜅𝑎, 𝜅𝑎𝑢𝑑 )

𝜙 (𝜅𝑡𝑟𝑠 , 𝜅𝑣𝑖𝑠 )
𝜙 (𝜅𝑎𝑢𝑑 , 𝜅𝑣𝑖𝑠 )

In our approach, we select 𝜙 to be the cosine similarity score:

𝜙 (𝛼, 𝛽) = sim(𝛼, 𝛽) = 𝛼 · 𝛽
∥𝛼 ∥ · ∥𝛽 ∥ (3)

In this way, the large intermediate feature maps from the multi-
modal data are reduced to a vector 𝜑 of 9 consistency scores that
capture the relationships between themultimodal data, the question,
and the candidate answer, which is the input to the final reasoning
stage discussed next. We note that whileM3 could also include the
similarity between the audio data and the transcript data, we found
this not to improve performance in our experiments.

4.4 Multi-level reasoning module
We then feed the similarity scores 𝜑 into a multi-level reasoning
module that consists of a set of fully connected layers. A ReLU
layer is applied after each fully connected layer for increased non-
linearity. In the experiments, we found that 4 fully connected layers
with 30 nodes at each layer followed by a ReLU activation function
and a dropout layer achieved the best performance. This module
generates a scalar regression value representing the final joint
consistency measurement of the input candidate answer with the
given question and the multimodal materials. The final decision is
made by comparing the regressed values corresponding to the two
candidate answers fed into the network.



Figure 4: The network details of the proposed TACO-Net.

4.5 Training process
For each training sample, we are given the question 𝑄 , candidate
answers 𝐴1 and 𝐴2, and the multimodal data 𝑋 . Following the
procedure in [31], we perform two-step training. Assuming 𝐴1 is
the ground-truth correct answer:

𝑌1 = Θ(𝑄,𝐴1, 𝑋 )
𝑌2 = Θ(𝑄,𝐴2, 𝑋 )

(4)

where Θ represents the TACO-Net model, and 𝑌1, 𝑌2 denote the
predictions. Since 𝐴1 is correct, the ground truth values are𝐺1 =
1,𝐺2 = 0, and we use the mean-squared loss during the training
process:

L =
1
𝑁

𝑁∑
𝑖=1

(
(𝜎 (𝑌 𝑖

1 ) −𝐺
𝑖
1)

2 + (𝜎 (𝑌 𝑖
2 ) −𝐺

𝑖
2)

2
)

(5)

where 𝑁 is the batch size, 𝑖 represents the index of the training
sample and 𝜎 represents the sigmoid function.

After training, for each testing sample {𝑄,𝐴1, 𝐴2, 𝑋 }, the final
prediction value 𝑌 is

𝑌 =

{
1 if 𝑌1 > 𝑌2
0 otherwise

(6)

where 𝑌1 and 𝑌2 are outputs from the model in (4).

5 EXPERIMENTS AND DISCUSSION
5.1 Implementation details
We used the Adam optimizer [17] for training the algorithm. Dur-
ing training, we set the initial learning rate to be 0.001, the batch
size to be 32, and the maximum number of epochs to be 60. It
takes about 1 hour for the network to converge when using an
Nvidia Quadro M4000 to train. During the two-step training, after

alternately feeding one correct candidate answer and one incorrect
candidate answer, the network only performs one update using
one joint loss function. During testing, the network has no prior
knowledge about the position of the correct answer.

5.2 Qualitative analysis
To verify that the trained model can correctly highlight the im-
portant parts in the QA pair as well as in the multimodal data, we
extracted the highlighting weights of the trained model and visual-
ize one example in Figure 5. The lightness of the colors in the cell
and the numbers adjacent to the text/images indicate the weight at
each position (darker cells = higher weights).

In this example, the video content is a conversation about trying
a makeup product, where the camera switches between closeup
and wide views of several pairs of people. As shown in Figure 5, in
the question, the key phrases related to the main subjects “woman
wearing a denim shirt” and “blond woman” are automatically high-
lighted with largest weights. Additionally, the words related to the
critical moment “starts feeling pain” are marked as important by
the highlighting module. In the two candidate answers, the key
distinctive words “shocked” and “unconcerned” are highlighted
with the largest weights, making the model emphasize the different
attitudes in the two answers. Additionally, in the transcript, we can
see that the critical moments in which the two women are talking
about pain-related feelings such as “starting to itch me”, “cause my
skin...” and “I’ll be fine” are highlighted.

In the visual information, the temporal windows that contains
the “shocked” and “worried” facial expressions of the woman in
denim are correctly highlighted.We can see that there aremore than
two people shown in the video and TACO-Net correctly identifies
the querying subjectwoman in denim among the multiple people,
demonstrating the effectiveness of the model.



Figure 5: An example visualization of automatic temporal highlighting results for both a QA pair and a video.



We then consider the consistency measurements corresponding
to the two different candidate answers generated by the trained
model. According to Table 3, we can see that the consistency scores
between candidate answer𝐴1 and the question and the multimodal
data are higher than those for candidate answer 𝐴2, demonstrating
the effectiveness of the consistency measuring module.

Table 3: An example visualization of consistency measuring
results.

Candidate answer A-Q A-Vis A-Trs A-Aud
A1 0.1644 -0.0185 -0.3852 -0.0210
A2 0.0054 -0.0461 -0.4555 -0.0355

5.2.1 Case Analysis. Figure 6 shows an example of a success case
where TACO-Netmakes the right decisions on all 12 correct/incorrect
answer pairs for the given video and question. The video contains
three people being interviewed about a movie. The question in-
volves the attitude of the man in white towards the costumes. There
is a large portion of the video that shows a closeup of the query
subject (man in white), providing visual cues including the facial
expression (smile) and the action (laughter). Additionally, phrases
in the transcript such as “I’ll go with it” convey the consistent mean-
ing of the answers 𝐴1, 𝐴2, 𝐴3, 𝐴4 as well as the opposite meaning
of the answers 𝐴5, 𝐴6, making it easier for the network to sense
the correct signals from the multimodal input. In contrast, Figure 7

Figure 6: A success case in which all 12 correct/incorrect
pairs were decided correctly.

gives an example where TACO-Net makes 6 correct decisions out
of the 12 possible answer pairs, which is no better than random
guessing. The video contains a discussion between hosts of a TV
show talking about the reconciliation of a couple, opining that com-
munication and honesty are important. The goal of the question is
to select the correct description of the conversation. Some impor-
tant clues can be read from the multimodal data streams including
facial expression (smile) and audio tone feature (quiet) that don’t
match with a debate, and actions (head nodding) and gaze activ-
ity (looking at each other) that show signs of agreement. In this

case, the model selects the correct answer when it is paired with
𝐴5, which is understandable since 𝐴5 contains the words “arguing”
and “debate” that are not consistent with the meaning conveyed by
the multimodal data. On the other hand, 𝐴7 can be hard to judge
since the conversation shows signs of an “open” and “friendly” at-
mosphere and the two people stay in one place without anyone
else involved, which is prone to misinterpretation as a “private”
discussion.

Figure 7: A failure case where the algorithm decides 6 of 12
answer pairs correctly.

5.3 Quantitative performance
We compare our model with the state-of-the-art VQA model on the
Social-QA dataset proposed by Zadeh et al. [31]. We note that [31]
already compares itself against 4 other high-performing algorithms
on the same dataset as ours and achieves the best performance, so
we do not duplicate those figures here.

As discussed in Section 3, we report experimental results on the
888 training videos and 127 testing videos designated as the split
in [31]. Thus, the training set and the testing set are exactly the
same for direct comparison. Table 4 reports the testing performance
figures, which are the average of the 127×6×12 possible videos and
QA pairs. Our approach surpasses Tensor-MFN by nearly 3 percent,
demonstrating the effectiveness of our method.

Table 4: Accuracy on the testing set of Social-IQ.

Model Testing accuracy (%)
Tensor-MFN [31] 65.73
TACO-Net (Ours) 68.19

We further ran our best-performing model on a multiple-choice
task. In particular, the goal is to select the single correct answer
from among 3 additional incorrect answers. Assuming𝐴1 is correct
and 𝐴2, 𝐴3, 𝐴4 are incorrect, the method discussed in Section 4.5
can be straightforwardly extended to the 4-way case, computing

𝑌𝑖 = Θ(𝑄,𝐴𝑖 , 𝑋 ) (7)



and selecting the correct answer as the index

𝑖∗ = argmax
𝑖

𝑌𝑖 (8)

Our model achieves 49.08% accuracy on the multiple-choice task
over the 127-video Social-IQ testing dataset, much better than ran-
dom chance. Unfortunately, no published work reports compari-
son figures on exactly this task and dataset. However, Zadeh et
al. reported performance of 34.14% on the same task over their
sequestered 235-video portion of the Social-IQ dataset, which we
assume has similar characteristics to the publicly available training
and testing data. In this case, our model substantially outperforms
the state of the art.

5.4 Ablation study
To investigate the effectiveness of our key network mechanisms, we
compare our full model with several baseline models with different
pieces removed or replaced. These models include:

TA-Net: The network without consistency measuring. We re-
move all the consistency measuring parts and directly concatenate
the intermediate feature vectors into the final reasoning module.
The number of nodes in the fully connected layers of the final rea-
soning module is slightly adjusted according to the different input
size.

CO-Net: The network without temporal attention. We remove
the temporal attention weighting on the multimodal data and the
question/answer pair to check whether this mechanism is essential
for successfully modeling the interactive behaviors. All the data se-
quences after the bi-directional LSTM temporal encoder are directly
fed into the consistency measuring module for a final prediction.

TACO-M1/M3: TACO-Net with M2 and one of either M1 or M3.
The goal is to determine whether both self-consistency measures
are required or if only one is necessary.

TACO-P1: The network without the content comprehension
part in the consistency measuring module (Section 4.2.2).

TACO-RS: TACO-Net with single-step reasoning for the final
prediction. Only a single layer is present in the final reasoning
module to check the effectiveness of the progressive reasoning
from the multiple layers.

TACO-CLASS: Instead of two-step training using a regression-
based framework with mean-squared loss, we investigate the per-
formance of the classification-based VQA framework used in [1, 9].
We slightly modify the network structure to take two candidate
answers at once. Specifically, we construct two branches for the
two candidate answers 𝐴1 and 𝐴2. Denoting 𝑐1 and 𝑐2 as the in-
termediate vector before the last layer of the original multi-step
reasoning module for 𝐴1 and 𝐴2, we merge 𝑐1 and 𝑐2 and add a
fully connected layer 𝑝 for the final binary prediction.

𝑌̃ = 𝑝 (𝑐1, 𝑐2) (9)

Denoting 𝐺̃ as the ground truth, we use the cross-entropy loss
during training:

L̃ =
1
𝑁

𝑁∑
𝑖=1

(
−𝐺̃𝑖 log𝜎 (𝑌̃ 𝑖 ) + (1 − 𝐺̃𝑖 ) log(1 − 𝜎 (𝑌̃ 𝑖 ))

)
(10)

Table 5 reports the comparison results of the various baseline
models on the Social-IQ testing set. We can see that the two key

pieces (temporal attention and consistency measuring) are essential
to the model’s success, and that the other mechanisms improve
performance to a lesser degree.

Table 5: Comparing the full model against the baselinemod-
els with key mechanisms removed.

Model Accuracy on testing dataset
TA-Net 54.08%
CO-Net 53.54%
TACO-P1 65.10%
TACO-RS 67.20%
TACO-MS3 67.05%
TACO-MS1 66.61%
TACO-CLASS 66.89%
Full model 68.19%

6 CONCLUSIONS AND FUTUREWORK
We demonstrated the success of combining temporal attention and
consistencymeasuring for the visual question answering task on the
challenging Social-IQ dataset. Currently, the pre-processed visual
feature set is directly extracted from the intermediate feature map
in a pre-trained CNN without any semantic information about peo-
ple or objects. One possible future direction is to process the image
frame with models such as Mask-RCNN [11] to include semantic
labels for the interacting subjects. In this way, the environmental
context could be captured and used to distinguish different sce-
narios. For example, the mood, relationship and atmosphere of a
group of people are very different depending on whether the sce-
nario is a happy hour in a bar or a formal meeting in a conference
room. This environmental context could aid in social signal pro-
cessing algorithms by providing additional evidence for the final
judgement.

We currently measure consistency between the question and the
multimodal feature set based on the entire video. In the future, we
plan to measure dynamic consistency scores across the timeline
during the interaction and use the changes in the consistency scores
to locate the key moments that are used to answer the question.
In this way, the model can not only select the correct answer but
also automatically demonstrate its reasoning process and the cor-
responding supporting materials for why it chooses the specific
answer.
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