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Abstract
This paper develops a data collection and processing framework that achieves
individual users’ data privacy and the operator’s information accuracy simultaneously.
Data privacy is enhanced by adding noise and applying quantization to the data before
transmission, and the privacy of an individual user is measured by information-theoretic
analysis. This paper develops a data recovery and clustering method for the operator to
extract features from the privacy-preserving, partially corrupted, and partially observed
measurements of a large number of users. To prevent cyber intruders from accessing
the data of many users, it also develops a decentralized algorithm such that multiple
data owners can collaboratively recover and cluster the data without sharing the raw
measurements directly. The recovery accuracy is characterized analytically and showed
to be close to the fundamental limit of any recovery method. The proposed algorithm
is proved to converge to a critical point from any initial point. The method is evaluated
on recorded Irish smart meter data and UMass smart microgrid data.

Keywords: Subspace clustering, Quantization, Data recovery, Data privacy, Smart
meter

1 Introduction
Smart meters provide fine-grained measurements of power consumption of industrial
and residential customers and can enhance the distribution system visibility. Non-
intrusive load monitoring (NILM) approaches [1, 2] can identify individual appliances
from the high-time-resolution smart meter data of the aggregated power consumption.
Intruders can thus extract user behavior, and user privacy is an increasing concern.
One way to protect data privacy is by applying additive homomorphic encryption [3]. It
requires the network to have tree-like connections and can only decrypt the sum of the
load curves. The other way to enhance data privacy is data obfuscation whereby the actual
power consumption of each household is masked by adding noise to the smart meter
measurements either through signal processing approaches [4, 5] or by physically adding
rechargeable batteries to the households [6, 7]. Moreover, the aggregated consumption of
the load and the battery can be adjusted to a constant to obfuscate the information further
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[8, 9]. Then, applying the NILM to these noisy and quantized measurements, an intruder
can no longer accurately identify the patterns of individual appliances and, in turn, the
user behavior. The increase in user privacy is achieved, however, at a cost of data distor-
tion and reduced data accuracy for the operating center [10–12]. Although the operating
center does not need high-time-resolution information of every individual appliances in
each household, it still requires accurate estimation of the aggregated power consump-
tion and the common load patterns among households for forecasting, demand response,
and planning. For example, the center clusters customers with similar load patterns and
then employs the load pattern of each cluster to enhance the load forecasting accuracy
[13] and determine the incentives for demand response [14, 15]. If noise and quantization
are added to the data to enhance the privacy, the information accuracy for the operator is
effectively reduced.
This paper shows that the data privacy can be protected for each individual user1 and,

at the same time, the information accuracy at the operating center about user power con-
sumption and the major patterns among different users are maintained. To the best of
our knowledge, this is the first work that achieves data privacy and information accu-
racy simultaneously. In our proposed framework, each user’s actual power consumption
is masked by first adding noise to the measurements and then quantizing the output to
one of a few levels. The privacy of an individual user can be enhanced in this way, from
an information-theoretic perspective [16–19]. Once the data is quantized, the variation
information is blurred and hence NILM methods fail to identify individual appliances.
Although adding noise and quantization have been employed before to enhance privacy
(e.g., [6, 20]), this paper, for the first time, shows that such privacy enhancement does not
necessarily lead to a reduction in the information accuracy. The central technical contri-
bution of this paper is the development of a data recovery and clustering method, even
when the measurements are highly noisy and quantized, contain significant errors, and
are partially lost. Our method is proved to provide accurate data recovery and clustering
results, as long as the center has measurements from a sufficient number of users. In con-
trast, a cyber intruder with access to the measurements of a small number of users cannot
obtain accurate information even with the same approach. We develop a decentralized
algorithm that allows multiple data owners to cooperatively recover and cluster the data
without sharing their own raw measurements directly. Then, it is extremely difficult for
an intruder to access large amounts of data. Thus, the data privacy of an individual user
is enhanced while maintaining the information accuracy for the operating center.
Since the load profiles with similar load patterns can be represented by data points in

a low-dimensional subspace in the high-dimensional ambient space, all the load profiles
can be characterized by the Union of Subspaces (UoS) model [21], and the load clus-
tering problem can be formulated as a subspace clustering problem. Various subspace
clustering techniques have been developed, see e.g., [21–26]. None of these approaches,
however, considers the case that the measurements are highly quantized. To the best of
our knowledge, only one recent work considered subspace clustering and data recovery
from highly noisy and quantized data [27]. This paper follows the mathematical setup of
[27] but extends significantly in the following aspects. Ref. [27] does not consider data pri-
vacy, while this paper proposes a data collection framework to achieve data privacy and

1Throughout this paper, we refer to each household as one user.
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information accuracy simultaneously. We characterize the data privacy through mutual
information, and such analysis does not exist in [27]. Ref. [27] assumes that all the mea-
surements are available to the center, while this paper considers a more general setup that
partial measurements are lost during the transmission and do not arrive at the center.
This paper characterizes the data recovery error by our proposed method analytically as
a function of data loss percentage. Moreover, this paper characterizes the fundamental
limit of the recovery error by any possible recovery method and shows that our method
is nearly optimal in reducing the recovery error. All these fundamental analyses do not
exist in [27]. Furthermore, only a centralized algorithm Sparse-APA is discussed in [27].
This paper develops a Distributed Sparse Alternative Proximal Algorithm (DSAPA) for
multiple data owners to collaboratively solve the subspace clustering and data recovery
problem without sharing the measurements with others. Thus, the user data privacy can
be further protected. This paper is also related to the quantized matrix recovery prob-
lem [28–36], in which the data matrix is assumed to be low rank. The low-rank matrix
model is a special case of the UoS model by restricting to one subspace only. In fact, the
data matrix of the load profiles can be high rank or even full rank in our setup. Finally, we
remark that this paper considers smart meter measurements that measure the aggregated
energy consumption in a house, and does not consider applying NILM on the operator
side. Distributed smart metering can provide energy consumption of individual electrical
appliances in a house [20].
The rest of the paper is organized as follows. Section 2 introduces our proposed frame-

work, problem formulation, related works, and the data privacy enhancement analysis.
The theoretical analyses of our recovery and clustering method is presented in Section 3.
Section 4 introduces the details of the DSAPA with its convergence guarantee. Section 5
records the numerical experiments of our method on the real smart meter dataset.
Section 6 concludes the paper. All the proofs are deferred to Appendix 1, Appendix 2,
Appendix 3, Appendix 4, Appendix 5, Appendix 6, and Appendix 7.

2 Our proposed framework of privacy-preserving data collection and
information recovery

2.1 Our framework and problem formulation

Figure 1 visualizes our proposed framework of privacy-preserving smart meter data col-
lection and information recovery. To enhance the user data privacy, the actual power
consumption is mapped to a few fixed power levels at the output of the smart meter. One
can achieve this through signal processing in the smart meter or connecting a recharge-
able battery to each household. Thus, the actual consumption is masked in the noisy and
quantized smart meter measurements. As shown in Fig. 1, the measurements are col-
lected byW agents disjointly, and agents do not share measurements directly. The agents
recover the data and cluster the users with similar consumption patterns collaboratively
in a distributed fashion. WhenW = 1, it reduces to the case of one single center.
We defer the discussion of user privacy enhancement through the proposed frame-

work to Section 2.3. We first define the recovery and clustering problem from quantized
data mathematically as follows. L∗ ∈ R

m×n denotes the actual power usages of n users,
with each column containing the power usage of one user inm time instants. We assume
that users with similar consumption patterns belong to the same group and there are p
groups in total. The corresponding columns of the same group belong to a d-dimensional
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Fig. 1 The process of the quantization, measurement, collection, and transmission

subspace inR
m with d ≤ m. Let Si (i ∈[ p]) denote the ith subspace, and these p subspaces

are distinct2. Let r denote the rank of L∗, then r ≤ pd. Let L∗
i denote the submatrix of L∗

that contains points in Si, and let ni denote the number of columns in L∗
i , i.e., the number

of users in group i. We assumem ≤ ni ≤ ξn/p for all i and some positive constant ξ . We
further assume m = n/κp for some positive constant κ to simplify the representation of
main results.
There exists a coefficient matrix C∗ ∈ R

n×n such that L∗ = L∗C∗, C∗
i,i = 0 for all

i ∈[ n]. Moreover, C∗
i,j is zero if the ith and jth columns of L∗ do not belong to the

same subspace [21]. We summarize these two properties as self-expressive property and
subspace-preserving property in Definition 1. These properties have been exploited in the
literature of subspace clustering and are summarized as follows.

Definition 1 [27]Amatrix L ∈ R
m×n has the self-expressive property if L = LC for some

C ∈ R
n×n, and Ci,i = 0 for all i ∈[ n]. Moreover, C has the subspace-preserving property of

L if Ci,j = 0 for columns i and j of L belonging to different subspaces.

2Si ’s (i ∈[ p]) are distinct provided for any i, j, there always exists some β that belongs to Si but not Sj .
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Let matrix E∗ ∈ R
m×n denote the additive errors in the measurements. We assume the

number of nonzeros s in E∗ is much smaller than mn. The partially corrupted measure-
ments can be represented by X∗ = L∗ + E∗. We assume the energy consumption and the
errors are bounded, i.e., ‖L∗‖∞ ≤ α1 and ‖E∗‖∞ ≤ α2, for some positive constants α1,α2,
and the infinity norm ‖ · ‖∞ measures the maximum absolute value.
The quantization process in each household is modeled as follows. The measured

energy consumption at each time step is mapped to one ofK values in a probabilistic fash-
ion. Figure 2 shows the quantization process. It can be modeled as adding random noise
first and then quantizing to K levels. N ∈ R

m×n is independent from X∗. Entries of N are
i.i.d. generated from a fixed cumulative distribution function (c.d.f.) �(x). The quantiza-
tion boundaries ω0 < ω1 < ... < ωl−1 < ωl... < ωK and the quantized value Ql, l ∈[K]
for the bin [ωl−1,ωl) are given. Then, the probability of mapping X∗

i,j to Yi,j = Ql,∀i, j is
represented by

ϕl(X∗
i,j) = P

(
Yi,j = Ql|X∗

i,j

)

= �
(
ωl − X∗

i,j

)
− �

(
ωl−1 − X∗

i,j

)
,

(1)

and
∑K

l=1 ϕl
(
X∗
i,j

)
= 1. The noise N is introduced to hide the user information. One

choice of �(x) is the probit model with �(x) = �norm(x/σ), where �norm is the c.d.f. of
the standard Gaussian distribution N (0, 1), and σ > 0 is the standard deviation. Note
that �

(
ωl − X∗

i,j

)
≥ �

(
ωl−1 − X∗

i,j

)
+ β for some positive β . Then, 1 ≥ ϕl ≥ β > 0.

The quantized measurements Y are sent to the center. Data losses can happen dur-
ing the communication, visualized by the question marks in Fig. 2. Let set 
 denote the
indices of measurements that are not lost. In the general case that the measurements are
collected byW agents/nodes separately, we assume for simplicity that each node collects
the data from q = n/W users. Node 1 collects the data from the first q users; node 2 col-
lects the next q users and so on. Let�i = {q(i−1)+1, q(i−1)+2, ..., qi}, then L∗

�i
denotes

the submatrix of L∗ with column indices in �i. L∗ can also written as
[
L∗

�1
, L∗

�2
, ..., L∗

�W

]
.

Similarly, E∗ =
[
E∗

�1
,E∗

�2
, ...,E∗

�W

]
. Node i collects Y�i .

The data recovery and pattern extraction problem for one center can be stated as
follows.

Fig. 2 Quantization model (p = 4,W = 4)
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(P1) Given quantized measurement Y
, known boundaries ω0 < ω1 < ... < ωK and
noise distribution � , can we recover the real power usages L∗ and cluster the users through
estimating C∗ simultaneously?
Moreover, if measurements Yi,j’s are not shared among W nodes to protect the user

privacy,
(P2) Can we estimate L∗ and C∗ with W nodes in a decentralized fashion?
Some notations in this paper are summarized in Table 1.

2.2 Related work

When p = 1, i.e., all the users share the same pattern, L∗ is approximately a low-rank
matrix. Then, (P1) reduces to the problem of low-rank matrix recovery from quantized
measurements [28–37], with motivating applications in image processing [38], collabora-
tive filtering [31], and sensor networks [39]. Note that since there is only one subspace in
this case, these works do not consider data clustering and only focus on data recovery.
When the quantization process does not exist, the problem (P1) reduces to the con-

ventional subspace clustering problem [21–26, 40]. If the subspace preserving C∗ is
estimated, one can apply the spectral clustering [41] method to obtain the clustering of
the data points. For example, Sparse Subspace Clustering (SSC) [21] is a common choice
for subspace clustering, and SSC estimates C∗ by solving a convex optimization problem.
Other clustering methods exist that cluster data points based on the Euclidean distance.
For instance, refs. Lin et al. [42] and Keogh et al. [43] leverage a linear combination of box
basis functions to approximate the original data, yet still retain the features of interest.
Reference [27] is the first paper that studies the subspace clustering from quantized

measurements when p ≥ 1. Wang et al. [27] do not consider missing data and develop
a centralized data recovery method from full observations. This paper follows the same
problem formulation as [27] and extends to the general case of partial observations. We
provide both the recovery guarantee of our approach and the fundamental limit of the
recovery accuracy by any method. Moreover, a framework of privacy-preserving smart
meter data collection is proposed in this paper, and we further enhance the data privacy
by developing a decentralized data recovery method.
Our problem formulation andmethods apply to other domains such as image and video

processing and phasor measurement unit (PMU) data analytics for power systems. In
image recovery and image clustering [27], images of the same person with varying illumi-
nation belong to the same low-dimensional subspace [44]. Columns of L∗ correspond to

Table 1 Notations

Si The ith subspace

L∗i Columns of matrix L∗ belonging to the ith subspace

L∗�i The ith column of matrix L∗

L∗i� The ith row of matrix L∗

L∗i,j Entry on the ith row and jth column of matrix L∗

[ p] The set {1, ..., p}
�i Index set containing {q(i − 1) + 1, q(i − 1) + 2, ..., qi}
C�i Columns of matrix C belonging to the set �i

C�i� Rows of matrix C belonging to the set �i

(C�i )�j� Rows of matrix C�i belonging to the set �j

CT�i�
The transpose of C�i�
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images of multiple people. The goal is to enhance the image quality and cluster the data
using low-resolution images. Similarly, in motion segmentation, each column of L∗ rep-
resents the trajectory of a reference point. The reference points in the same rigid object
belong to the same subspace. The motion segmentation becomes a subspace clustering
problem from the observed measurements. In PMU data analytics, the time series of
PMUs affected by the same event belong to the same subspace [32, 45]. The event location
problem can be solved by subspace clustering.

2.3 Data privacy enhancement in the proposed framework

Various methods have been developed to enhance the privacy of power consumption
data. For example, one can use pre-processing techniques like temporal averaging, adding
additional noise, and quantization [4, 5, 20] to alter the data. However, directly altering
data might affect the accuracy of some applications, e.g., billing and profiling [46]. Alter-
natively, rechargeable batteries and PV converter can be leveraged to mask the actual
power consumption [6, 7, 47]. The noise addition and quantization process in this paper
can be achieved by either signal processing or rechargeable batteries.
In general, privacy guarantee can be achieved through either computational hardness

[48–50] or information-theoretic analysis [16–19]. The existing analytical results of data
privacy only work for specific or simple models and do not easily generalize. For instance,
under the setup of communication between two nodes, ref. [17] analyzes the trade-off
between data sharing and privacy. Under the assumptions of i.i.d. input load sequence
and an i.i.d. energy harvesting process, the minimum information leakage rate is provided
with a certain energy management policy in [51]. Some other methods try to analyze
data privacy numerically. In [52], the information leakage rate is measured by the rela-
tive entropy of the probability measures of the original load data and the modified load
data and is calculated by Monte-Carlo method. Refs. [7] and [12] consider measuring
the information leakage through mutual information of the original load data and the
modified load data. Following the existing work on smart meter data privacy, see, e.g.,
[19, 52–54], this paper analyzes the data privacy from an information-theoretic perspec-
tive. The data privacy of an individual user is analyzed by comparing the original data
and the data after privacy enhancement through quantities like the Kullback-Leibler (KL)
divergence [52], mutual information, and normalized mutual information [18]. In our
framework, the actual energy consumption of user i, denoted by L∗

�i, is masked by additive
Gaussian noise and quantization, resulting in Y�i. Let PL∗

�i
and PY�i denote the probabil-

ity distribution of L∗
�i and Y�i, respectively. The privacy can be measured through the

normalized mutual information (NI) between L∗
�i and Y�i [18], defined as follows:

Definition 2

NI
(
L∗

�i,Y�i
)

=
∑

x∈X
∑

y∈Y P(L∗
�i,Y�i)(x, y) log

P(L∗
�i ,Y�i)

(x,y)
PL∗

�i
(x)PY�i (y)∑

x∈X PL∗
�i
(x) log 1

PL∗
�i

(x)

(2)

where spaces X and Y are the feasible set of L∗
�i and Y�i, respectively. P(L∗

�i,Y�i) is the joint
distribution of L∗

�i and Y�i. PL∗
�i
and PY�i are the marginal distributions of L∗

�i and Y�i,
respectively.
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The numerator of (2) is the mutual information between L∗
�i and Y�i, and the denomi-

nator is the entropy of L∗
�i. When L∗

�i and Y�i are independent of each other, NI
(
L∗

�i,Y�i
)

reaches its minimum value 0. When Y�i is exactly the same as L∗
�i, NI

(
L∗

�i,Y�i
)
equals to

the maximum value 1. A smaller NI corresponds to a higher level of data privacy of L∗
�i

and also indicates more significant difference between L∗
�i and Y�i. Note that rigorously

speaking, L∗
�i belongs to the continuous space. However, since all measuring devices have

a finite resolution, L∗
�i can be viewed as a discrete random variable. When computing NI

in practice, one can divide the range of the values into small regions to compute sample
probability distribution.
The above information-theoretic measures show that when the data of individual users

are processed separately, a user’s data privacy is enhanced at the cost of reduced informa-
tion accuracy. We need to emphasize that the measures like NI or KL divergence focus
on an individual signal and do not characterize the information recovery when multiple
signals are processed together. In fact, when the data of multiple users are available, and
strong correlations exist among different users’ data, such correlation can be leveraged
to enhance the data accuracy. As stated in problems (P1) and (P2), the major technical
objective of this paper is to develop data recovery and clustering methods from quan-
tized measurements of multiple users, where the data correlations are characterized by
data points belonging to the same subspace. As we will show in Section 3 (Theorem 1 and
Proposition 1), the asymptotic information accuracy from quantized measurements can
be achieved when the number of users increases to the infinity.We need to emphasize that
this result does not contradict the data privacy enhancement by adding noise and apply-
ing quantization. This is because the asymptotic information accuracy is only achieved
when processing the correlated data of a large number of users, while a cyber intruder is
very unlikely to have access to the data of so many users. In our proposed decentralized
data collection and processing framework (Fig. 1), each agent collects the measurements
of a subset of users, and the measurements are not directly shared among the agents. A
cyber intruder needs to hack either all these agents or the smart meters of all users to be
able to access all the data. Since such attack is very unlikely to happen, the user’s data pri-
vacy is still protected. Privacy from the recovery perspective will be discussed in details
in Section 3.3.

3 Results: theoretical
Here, we consider solving (P1) at a single center and defer the discussion of solving (P2)
in a decentralized way through distributed nodes to Section 4. We propose to estimate
L∗, C∗, and E∗ by the solution

(
L̂, Ê, Ĉ

)
to the following optimization problem,

min
L,E∈Rm×n,C∈Rn×n

F(L,E) s.t.(L,E,C) ∈ Sf , (3)

where

F(L,E) = −
∑

(i,j)∈


K∑
l=1

1[Yi,j=Ql] log
(
ϕl
(
Li,j + Ei,j

))
, (4)

Sf = {(L,E,C) : ‖L‖∞ ≤ α1, ‖E‖∞ ≤ α2, ‖E‖0 ≤ s,

rank(L) ≤ r, L = LC, ‖C�i‖0 ≤ d,Ci,i = 0,∀i ∈[ n] }. (5)
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1[A] is the indicator function that takes value 1 ifA is true and value 0 otherwise. ‖·‖0 mea-
sures the number of nonzero entries in a vector or matrix. Data recovery and subspace
clustering are achieved simultaneously by solving (3)–(5).
Equations (3)–(5) are a constrained maximum log-likelihood estimation problem that

maximizes the likelihood of obtaining Y
 when the underlying data matrix is L̂, and the
error matrix is Ê. The formulation follows (8) of [27] by extending from full observations
to partial observations in 
. After obtaining Ĉ, spectral clustering [41] is applied to Ĉ to
obtain group labels.
Equations (3)–(5) are nonconvex due to the nonconvexity of the feasible set Sf in (5).

We first analyze the recovery and clustering performance, assuming that a solution exists.
We defer the algorithm to Section 4.

3.1 Data recovery guarantee

Two constants γα and Lα are needed for the recovery analysis,

γα = min
l∈[K ]

inf|x|≤α1+α2

{
ϕ̇2
l (x)

ϕ2
l (x)

− ϕ̈l(x)
ϕl(x)

}
, (6)

Lα = max
l∈[K ]

sup
|x|≤α1+α2

{|ϕ̇l(x)|/ϕl(x)}, (7)

where ϕ̇l(x) and ϕ̈l(x) are the first- and second-order derivatives with respect to x. Note
that ϕ̇l(x)2 − ϕ̈l(x)ϕl(x) > 0 if ϕl is strictly log-concave. One can check that ϕl is strictly
log-concave if � is log-concave, which holds true for Gaussian and logistic distributions
[28]. Lα and γα are bounded by some fixed constants when α1, α2, and ϕl are given.
Since the data recovery performance and the clustering performance are coupled

together, we first analyze the recovery performance, assuming that the clustering results
are not “arbitrarily bad.”We follow the same assumption as [27], which essentially requires
that in the estimated clustering results, every cluster contains data points belong to at
most a constant number out of p original subspaces. Formally, we have

Assumption 1 [27]: Columns of L̂ belong to p̂ subspaces, each of which has a dimension
smaller or equal to d. Columns in L̂ with indices corresponding to columns of L∗ in Si(i ∈
[ p] ) belong to at most (g − 1) subspaces, where g is a constant larger than 1.

We follow the assumption in [28] about the location of the observed entries. We make
a minor change to handle multiple subspaces instead of one subspace in [28]. Assump-
tion 2 is a generalization of the uniform sampling and includes the uniform sampling as
a special case. We define a binary matrix G with Gi,j = 1 if and only if (i, j) ∈ 
, i.e., Yi,j
is observed. Gi,j = 0 otherwise. Let Gi ∈ R

m×ni denote the submatrix of G with columns
corresponding to subspace i.

Assumption 2 Assume each column of Gi has h nonzero entries. Let σ1(Gi) and σ2(Gi)

denote the largest and the second largest singular values of Gi, respectively. Assume
σ1(Gi) ≥ h and σ2(Gi) ≤ C

√
h for i ∈[ p], where C is a positive constant.

Assumption 2 is similar to the sampling assumption in [28]. The difference is that we
make the assumption on columns belonging to each subspace instead of the whole matrix.
The above assumption is more general than the uniform sampling assumption [28].
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Theorem 1 Suppose that ϕl(x) is strictly log-concave in x, ∀l ∈[K]. Then, under
Assumptions 1 and 2, with probability at least 1− pC1e−C2ξn/p, any global minimizer L̂ to
(3)–(5) satisfies

∥∥∥L̂ − L∗
∥∥∥
F

/
√
mn ≤ min

(
2α1 + 2α2

√
s

mn
,U1

)
, (8)

where

U1 =C′
1
κd

√
d

f 2
√
m

+ C′
2

dκ3/4

f 3/2m1/4

( s
mn

)1/4

+ C′
3

√
κd
f

( s
mn

)1/2 (9)

for some positive constants C1, C2, C′
1(Lα , g, ξ), C′

2(Lα , g, ξ ,α2), and C′
3(Lα , g, ξ ,α2). f =

|
|
mn = h

m is the data loss rate.

Theorem 1 characterizes the recovery error from partially observed, partially cor-
rupted, and quantized measurements. It can be interpreted from the following aspects.
(1) Correction of corrupted measurements.We first fix the data loss rate f and consider

the recovery performance with corrupted measurements. Suppose f is a constant, i.e., a
constant fraction of the measurements are available. Then, (8) indicates that as long as
the number of corrupted measurements s is at most �

(
md2p

)
, we have3

∥∥∥L̂ − L∗
∥∥∥
F

/
√
mn ≤ O

⎛
⎝
√
d3
m

⎞
⎠ . (10)

Thus, the recovery method tolerates a constant number of corrupted per column without
degrading the recovery performance.

(2) Asymptotic recovery of the actual data. Since O
(√

d3
m

)
decreases to 0 when m

increases to infinity, and ‖L∗‖F is in the order of√mn, (10) indicates that the relative error
between L̂ and L∗ diminishes asymptotically. Moreover, as long as p is o(n), the failure
probability 1 − pC1e−C2ξn/p also decays to zero as n increases to infinity. The asymp-
totic recovery differentiates the operating center and cyber intruders. An operating center
with a sufficient number of measurements can recover L∗ accurately. In contrast, a cyber
intruder with access to a small number of users cannot recover the data even using the
same approach (3)–(5).
(3) Tolerance of the missing data. To the best of our knowledge, only refs. [28] and [31]

provided the theoretical analysis of low-rank matrix recovery from quantized observa-
tions with data losses. No corruptions are considered in [28, 31]. The relative recovery

error by [28] is O
(√

r3
m

)
under the partial observation case when f is a fixed constant,

where r is the rank of the matrix. The relative recovery error by [31] is O
(

r1/4
m1/4

)
under

the partial observation case. Our result in (10) indicates that when f is a constant, the

error is at most O
(√

d3
m

)
even with corrupted measurements. Note that the rank of L∗

can be as large as pd when the subspaces are all orthogonal to each other. If one directly
applies the approach in [37] to our setup, the relative recovery error can be as large as

3We use the notations u(n) ∈ O(v(n)), u(n) ∈ o(v(n)), or u(n) = �(v(n)) if as n goes to infinity, u(n) ≤ c · v(n),
u(n) ≥ c · v(n) or c1 · v(n) ≤ u(n) ≤ c2 · v(n) eventually holds for some positive constants c, c1 and c2 , respectively.
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O
(√

p3d3
m

)
, which is

√
p3 times our recovery error. Thus, our approach outperforms the

existing one by recovering and clustering data simultaneously even in the special case of
no corruptions.

When there is no missing data, the recovery error by [27] is O
(√

d
m

)
, which is

slightly tighter than our error bound in (10). This is due to our techniques to handle the
missing data.

3.2 Fundamental limit of any recovery method

The following theorem establishes the minimum possible error by any method from
unquantized measurements. We consider the case that the number of corruptions is at
most a constant fraction of the measurements. To simplify the analysis, we assume

s ≤ min
(
C0mn,mn − 64m

d

)
(11)

where C0 is a constant smaller than 1/2. Let

SfX = {
X : X = L + E, (L,E,C) ∈ Sf

}
. (12)

Theorem 2 Let N ∈ R
m×n contain i.i.d. entries from N

(
0, σ 2). Assume (11) holds.

Consider any algorithm that, for any X ∈ SfX , takes Mij = Xij + Nij, (i, j) ∈ 
 as the input
and returns an estimate X̂ of X. Then, there always exists some X ∈ SfX such that with
probability at least 3

4 ,
∥∥∥X̂ − X

∥∥∥
F√

mn
≥ min

⎛
⎜⎝C3,C4σ

√√√√d − d
n
⌊ s
m
⌋− 64

n
fm − s


n

⎞
⎟⎠ (13)

holds for some fixed constants C3 and C4, where C3 =
√

1−2C0
8 min(α1,α2) and C4 <√

1−2C0
256 . s
 is the number of errors in X
.

Note that C3 is a constant. When f is a constant, (13) indicates that

‖X̂ − X‖F/
√
mn ≥ �(

√
d/m). (14)

The recovery error from unquantized measurements is at least �

(√
d
m

)
. Comparing it

with our error bound
√

d3
m in (10), one can see that our method is close to optimal. If the

corrupted entries are randomly distributed, s
 is approximately �(fs). Then, the second

term inside the minimization of (13) scales as �

(
1√
f

√
d
m

)
.

3.3 Privacy from the recovery perspective

3.3.1 Recovery of a single user from its own data only

An intruder is often interested in the data of a certain user. If the adversary only has access
to one user’s data, then problems (3)–(5) are reduced to

min
L,E∈Rm

F(L,E)

s.t.‖L‖∞ ≤ α1, ‖E‖∞ ≤ α2, ‖E‖0 ≤ s.
(15)
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Note that since n = 1, there is no constraint on C. (15) maximizes the log-likelihood of
one user given the information about the quantized measurements. It can be viewed as
a special case of the low-rank matrix recovery from quantized measurements considered
in [37]. One can check that the average recovery error is upper bounded by O

(√
d3
)
by

setting n = 1 in Theorem 5 of [37]. Similarly, the relative recovery by any method is at
least in the order of �(

√
d) by setting n = 1 in Theorem 4 of [37]. This error bound does

not depend onm, the number of measurements of this user. Therefore, if an intruder only
has one user’s data, even ifm is very large, the average recovery error is nonzero and does
not diminish as m increases. Then, the privacy of the energy consumption behavior of
this user is protected.

3.3.2 Recovery of a single user by leveraging other users in the same group

One can exploit the measurements from other users to increase the estimation accuracy
of one target user. Suppose one can access n users’ data in m time steps, and these users
all share similar load patterns as the target user, then from either Theorem 1 of this paper

or Theorem 5 of [37], the average recovery error is at most O
(√

d3
min(m,n)

)
. Compared

with the previous case of accessing the data of one single user only, the recovery error is
significantly reduced. We emphasize that the decrease of the recovery error results from
exploiting correlations among users.
The number of quantization levels K also affects privacy. Intuitively, a smaller value of

K corresponds to a higher level of privacy. However, the privacy level also depends on the
selection of bin boundaries, and decreasing K does not necessarily increase privacy. For
instance, if a pair of boundaries are chosen very close to each other so that no measure-
ments located within the interval, then K = 3 could reach the same privacy and recovery
error as K = 2. Therefore, K does not directly appear in Theorem 1 but rather affects the
privacy indirectly through γα and Lα . The bin boundaries usually tend to be closer in the
region where the measurements concentrate.
For smart meter data, the bin boundaries can be selected in the range of a typical house-

hold consumption level. If a certain house has some electrical appliances with an energy
consumption level significantly higher than normal households, this abnormal pattern of
high energy consumption can in fact bemasked in the noisy and quantizedmeasurements
due to the way how bin boundaries are selected. However, since this house has a different
load pattern from other households, one cannot exploit other users’ data to enhance the
recovery accuracy of this user. The recovered data of this user will have a nonzero error
as discussed in the first paragraph of Section 3.3.

3.4 Clustering guarantee

The clustering performance is evaluated through the subspace-preserving property of Ĉ.
A sufficient condition for Ĉ to be subspace-preserving is stated as follows.

Proposition 1 Suppose columns of L̂ are i.i.d. drawn from certain unknown continuous
distribution supported on p̂ distinct d-dimensional subspaces, then the global minimizer Ĉ
of (3) has the subspace-preserving property for L̂.

Ref. [27] also provides a sufficient condition for Ĉ to be subspace-preserving. The
subspaces are required to be independent with each other in [27]. Two independent
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subspaces intersect only at zero. Here, we require subspaces to be distinct from each other.
Two subspaces are distinct if for each subspace, there exists one point that belongs to
this subspace but not the other. The data points are generated based on some continuous
distribution supported on these distinct subspaces.

4 Distributed sparse alternative proximal algorithm for data recovery and
clustering

We next propose a distributed algorithm to solve (3) byW nodes collaboratively such that
node i can estimate L∗

�i
from its acquired measurements Y�i , while it does not know Y�j

or L∗
�j

for all other j’s nodes. This further enhances user privacy.
We first follow [27] and move some constraints to the objective function to simplify the

algorithm design. Since the rank of L is at most r, we factorize L as L = UVT , where V ∈
R
n×r andU ∈ R

m×r . We replace the equality constraints L = LC and L = UVT by adding
λ1
2
∥∥VT − VTC

∥∥2
F and λ2

2
∥∥UVT − L

∥∥2
F to the objective function. The parameters λ1 and

λ2 affect the tightness of the original constraints. Note that VT = VTC is a sufficient but
not necessary condition for L = LC. Then, (3) is changed into

(
Û , V̂ , L̂, Ê, Ĉ

)

= argmin
U∈Rm×r ,V∈Rn×r

L,E,C∈Rm×n

H(U ,V , L,E,C) s.t.(L,E,C) ∈ SF , (16)

where

H(U ,V , L,E,C) =F(L,E) + λ1
2

∥∥∥VT − VTC
∥∥∥
2

F

+ λ2
2

∥∥∥UVT − L
∥∥∥
2

F
,

(17)

SF ={(L,E,C) : ‖L‖∞ ≤ α1, ‖E‖∞ ≤ α2,

‖E‖0 ≤ s, ‖C�i‖0 ≤ d,Ci,i = 0,∀i ∈[ n] }, (18)

The solution of (16) is the same as that of (3) when λ1 and λ2 approach the infinity.
We next decompose V intoW parts, and let V�i� ∈ R

q×r , i ∈[W ] denote the rows of V
with row indices �i. Then, the objective in (17) can be decomposed as follows:

H(U ,V , L,E,C) =
W∑
i=1

H
(
U ,V , L�i ,E�i ,C�i

)
(19)

where

H
(
U ,V , L�i ,E�i ,C�i

)

= F
(
L�i ,E�i

)+ λ1
2

∥∥∥VT
�i� − VTC�i

∥∥∥
2

F

+ λ2
2

∥∥∥UVT
�i� − L�i

∥∥∥
2

F
,

(20)

F
(
L�i ,E�i

) = −
∑

(k,j+iq−q)
∈
,

∀k∈[m],j∈[q]

K∑
l=1

1[(Y�i )k,j=l] log
(
ϕl
(
(L�i)k,j +

(
E�i

)
k,j

))
.

(21)
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and V contains V�1� to V�W �, i.e., V =

⎡
⎢⎢⎢⎢⎣

V�1�

V�2�

...
V�W �

⎤
⎥⎥⎥⎥⎦
. The constraint set SF in (18) is

equivalent to the intersection of SF i’s (∀j ∈[ q]), with4

SF i =
{(
L�i ,E�i ,C�i

)
:
∥∥L�i

∥∥∞ ≤ α1,
∥∥E�i

∥∥∞ ≤
α2,
∥∥E�i

∥∥
0 ≤ s

W
,
∥∥(C�i)�j

∥∥
0 ≤ d, (C�i)iq−q+j,j = 0

}
.

(22)

Then, (16) can be equivalently written as
(
Û , V̂�i�, L̂�i , Ê�i , Ĉ�i

)

= argmin
C�i∈Rn×q ,U∈Rm×r

V�i�∈Rq×r

L�i ,E�i∈Rm×q ,∀i∈[W ]

W∑
i=1

H
(
U ,V , L�i ,E�i ,C�i

)

s.t.
(
L�i ,E�i ,C�i

) ∈ SF i,∀i ∈[W ] .

(23)

where the estimated variables are U andW components of L,E,C, and V .
The constraints in (23) can be decomposed for W nodes, while the objective function

cannot, due to the coupling of U and V. Here, we develop a synchronized Distributed
Sparse Alternative Proximal Algorithm (DSAPA) to solve (23) with the convergence guar-
antee. The node i owns Y�i and estimates V�i�, L�i , E�i , C�i , and U. Since all nodes have
the estimates of U, and L�i = UV�i�, the key to protect user privacy of node i is not to
share the estimate of V�i�, as well as Y�i , to any other nodes.
In the (t + 1)th iteration, node i sequentially updates Ct+1

�i
, Vt+1

�i�
, Lt+1

�i
, Et+1

�i
, Ut+1 in

Subroutines 1–5. Each subroutine essentially follows the projected gradient. The gradient
of H with respect to V�i�, L�i , E�i , U, and C�i are

∇C�i
H = −λ1V

(
VT

�i� − VTC�i

)

= −λ1V

⎛
⎝VT

�i� − VT
�i�

(
C�i

)
�i�

−
W∑

j=1,j �=i
VT

�j�

(
C�i

)
�j�

⎞
⎠

:= −λ1VM�i ,

(24)

∇V�i�
H = λ2

(
V�i�UT − LT�i

)
U

+ λ1

⎡
⎣
(
V�i� − CT

�iV
)

−
W∑
j=1

(
C�j

)
�i�

(
V�j� − CT

�jV
)⎤
⎦

= λ1

⎛
⎝MT

�i −
W∑
j=1

(
C�j

)
�i�

MT
�j

⎞
⎠+ λ2

(
V�i�UT − LT�i

)
U ,

(25)

∇L�i
H = ∇F

(
L�i ,E�i

)− λ2
(
UVT

�i� − L�i

)
, (26)

∇E�i
H = ∇F

(
L�i ,E�i

)
, (27)

4We assume for simplicity that the corruptions are distributed evenly such that the number of nonzero entries in E�i is
at most s

W . The algorithm can be easily extended to cases that the numbers of corruptions are different as long as a
reasonable accurate upper bound of the number of corruptions is available.
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∇UH = λ2
(
UVT − L

)
V := λ2

(
U

W∑
i=1

ιi −
W∑
i=1

ζi

)
, (28)

whereM = VT − VTC, ιi = VT
�i�

V�i�, ζi = L�iV�i�, and

[∇F(L�i ,E�i)]k,j =
�̇
(
ω(Y�i

)
k,j

− (
X�i

)
k,j

)
− �̇

(
ω(Y�i

)
k,j−1 − (

X�i

)
k,j

)

�
(
ω(Y�i

)
k,j

− (
X�i

)
k,j

)
− �

(
ω(Y�i

)
k,j−1 − (

X�i

)
k,j

) ,

∀k ∈[m] , j ∈[ q] .

(29)

The step sizes in the (t + 1)th iteration are selected as

τC = 1
λ1
∥∥Vt(Vt)T

∥∥
F

= 1

λ1

∥∥∥∑W
i=1 ι�i

∥∥∥
F

, (30)

τV�i�
= 1

etU + λ1 maxi∈[W ]�
t
i
, (31)

τL�i
= 1

1
σ 2β2 + λ2

, (32)

τE�i
= σ 2β2, (33)

and

τU = 1

λ2

∥∥∥(Vt+1)T V t+1
∥∥∥
F

= 1

λ2

∥∥∥∑W
i=1 ι�i

∥∥∥
F

, (34)

where eU =λ2

∥∥∥(Ut)T Ut
∥∥∥
F
,�t

i =
∥∥∥∥Iq×q +

(
Ct+1

�i�

)
·
(
Ct+1

�i�

)T− (
C�i

)t+1
�i�

−
(
(C�i)

t+1
�i�

)T∥∥∥∥
F
.

These step sizes are no greater than the reciprocals of the smallest Lipschitz constants
of ∇C�i

H , ∇V�i�
H , ∇L�i

H , ∇E�i
H , and ∇UH in the tth iteration, respectively. Details of

the calculations are shown in Appendix 6. This property is useful for the convergence
analysis of the DSAPA.
The constraints in (22) are met by projecting the updated estimates to SF i. For the

constraints onC�i , in steps 10–15 of Subroutine 1, we first set diagonal entries of (C�i)
t+1
�i�

to zero. Then, we keep the d entries with the largest absolute value of (C�i)
t+1
�j and set

all other entries to zero for any j ∈[ q]. The infinity norm on L�i is met by setting all
entries larger than α1 to be α1 and setting all entries smaller than −α1 to be −α1 (step 4 in
Subroutine 3). A similar approach applies to E�i . We also keep s

W entries with the largest
absolute values and set other nonzero entries to zero (steps 3–6 in Subroutine 4).
Note that L�i and E�i can be updated by node i independently and are not shared with

other nodes. Updating C�i , V�i , and U needs communication from other nodes due to
the coupling in the objective function. V�i cannot be shared with other nodes, since oth-
erwise other nodes can estimate L�i by multiplying U and V�i . Thus, node i computes
the intermediate terms that depend on V�i and send to other nodes instead of sending
V�i , as illustrated in Fig. 3.
The algorithm is initialized as follows. L0�i

in node i is defined as,

(L0�i)k,j =

⎧⎪⎨
⎪⎩

ωl−ωl−1
2 if (Y�i)k,j = l, 0 < l < K

α1−ωK−1
2 if (Y�i)k,j = K

α1−ω1
2 if (Y�i)k,j = 0

(35)
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Fig. 3 Computation and communication in DSAPA (W = 2)

Then, node i performs the truncated singular value decomposition on L0�i
and let

U(r)
i �

(r)
i (V (r)

�i�
)T denote the rank-r approximation to L0�i

. Then, node i transmits U(r)
i to

all other nodes. Each node initializes at

U0 = 1
W

W∑
i=1

U(r)
i

(
�

(r)
i

)1/2
, (36)

V 0
�i� = (

L0�i

)T U0
((
U0)T U0

)−1
, and (37)

E0�i = C0
�i = 0. (38)

The convergence of DSAPA is summarized as follows.

Theorem 3 From any initial point, DSAPA always converges to a critical point of (23).

The computational complexities of Subroutines 1–5 are O(nqr), O(mqr), O(mq),
O(mq), and O(mqr), respectively. The per-node per-iteration complexity of DSAPA is
O(nqr). In contrast, the complexity of the centralized algorithm in [27] is O(nmr).
The communication cost of Subroutines 1, 2, and 5 are O(n2), O(nWr), and O(mWr),
respectively.
For data clustering, a central node collects Ĉ�i from all the nodes and applies spectral

clustering [41] to obtain the clustering results.
When λ1 and λ2 are large enough, (23) approximates (3), but the step sizes in (30)–

(32) and (34) are small and that reduces the convergence rate. One practical solution is
to dynamically increase λ1 and λ2 [55]. We suggest the following practical selection. Ini-
tialize with small λ1 and λ2, and replace λ2 with ρλ2 (ρ > 1) for the first T0 iterations.
Then, reset λ2 to the initial value and update them with ρλ1 and ρλ2 simultaneously in
each iteration. The algorithm terminates after T iterations.
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Subroutine 1 Iterate C�i in the i-th distributed node

1: Compute
(
Vt

�i�

)T (
C�j

)t
�i�

,∀j ∈[W ].

2: Send
(
Vt

�i�

)T (
C�j

)t
�i�

to the j-th node ∀j ∈[W ] , j �= i.

3: ComputeM�i =
(
Vt

�i�

)T −
(
Vt

�i�

)T (
C�i

)t
�i�

−∑W
j=1,j �=i

(
Vt

�j�

)T
(C�i)

t
�j�

.
4: SendM�i to the j-th node ∀j ∈[W ] , j �= i.
5: Compute Vt

�i�
M�j , ∀j ∈[W ].

6: Send Vt
�i�

M�j to the j-th node, ∀j ∈[W ] , j �= i.
7: Compute ∇C�i

H according to (24).
8: Compute τCt

�i
according to (30).

9: Compute Ct+1
�i

= Ct
�i

− τCt
�i

∇C�i
H .

10: Set
(
C�i

)t+1
iq−q+j,j = 0, ∀j ∈[ q]

11: for every j = 1, 2, ..., q do
12: if

∑
k 1[(C�i

)t+1
k,j �=0

] > d, then

13:
(
C�i

)t+1
�j only keeps d entries with the largest absolute values. Other nonzero

entries are set to be zero.
14: end if
15: end for
16: Send

(
C�i

)t+1
�j�

to the j-th node, ∀j ∈[W ] , j �= i.

Subroutine 2 Iterate V�i� in the i-th distributed node

1: Compute
(
Vt

�i�

)T (
C�j

)t+1
�i�

,∀j ∈[W ].

2: Send
(
Vt

�i�

)T (
C�j

)t+1
�i�

to the j-th node ∀j ∈[W ] , j �= i.

3: Compute M̄�i =
(
Vt

�i�

)T −
(
Vt

�i�

)T (
C�i

)t+1
�i�

−∑W
j=1,j �=i

(
Vt

�j�

)T (
C�i

)t+1
�j�

, and�
t
i .

4: Send M̄�i ,�t
i to the j-th node ∀j ∈[W ] , j �= i.

5: Compute ∇V�i�
H according to (25).

6: Compute τVt
�i�

by (31).

7: Compute Vt+1
�i�

= Vt
�i�

− τVt
�i�

∇V�i�
H .

Subroutine 3 Iterate L�i in the i-th distributed node
1: Compute τL�i

by (32).
2: Compute ∇L�i

H according to (26).
3: Compute Lt+1

�i
= Lt�i

− τL�i
∇L�i

H .
4: If

(
L�i

)t+1
k,j > α1, set

(
L�i

)t+1
k,j = α1. If

(
L�i

)t+1
k,j < −α1, set

(
L�i

)t+1
k,j = −α1. ∀k ∈

[m] , j ∈[ q].

5 Results: numerical experiments
We evaluate the performance on the Irish smartmeter dataset (ISMD) [56] and theUMass
smart∗ microgrid dataset (USMD) [57]. The ISMD consists of more than 5000 residen-
tial customers. The measurements are obtained every 30 min and have a unit of kilowatt
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Subroutine 4 Iterate E�i in the i-th distributed node
1: Compute ∇E�i

H according to (27).
2: Compute Et+1

�i
= Et�i

− τE�i
∇E�i

H .
3: If

(
E�i

)t+1
k,j > α2, set

(
E�i

)t+1
k,j = α2. If

(
E�i

)t+1
k,j < −α2, set

(
E�i

)t+1
k,j = −α2. ∀k ∈

[m] , j ∈[ q].
4: if

∑
j
∑

k 1[(E�i
)t+1
k,j �=0] > s/W , ∀k ∈[m] ,∀j ∈[ q] then

5: Et+1
�i

only keeps s/W entries with the largest absolute values. Other nonzero entries
are set to be zero.

6: end if

Subroutine 5 Iterate U in the i-th distributed node

1: Compute ιti =
(
Vt+1

�i�

)T
V t+1

�i�
and send to all other nodes.

2: Compute ζ t
i = Lt+1

�i
V t+1

�i�
and send to all other nodes.

3: Compute ∇UH according to (28).
4: Compute τUt by (34).
5: Ut+1 = Ut − τUt∇UH .

(kW). The UMSD contains 443 users in 24 h, and the power consumption is measured
every minute. Some users have long sequences of zero power consumption, and some
users have significantly high power consumption occasionally.We suspect thesemeasure-
ments have data quality issues resulting from devices or communication and remove these
users from the datasets. We use 4780 customers in 30 days for ISMD and 438 customers
in 6 h for USMD. Thus, the size of the data matrix L is 1440×4780 for ISND and 360×438
for USMD. The power consumption is at most 6 kW and 99 kW, respectively. Since the
raw measurements are noisy, L is approximated by a rank-rmatrix L∗

rank-r by keeping only
the largest r singular values. The recovery error is measured by ‖L∗

rank-r − L̃‖2F/‖L∗
rank-r‖2F ,

where L̃ is the recovered matrix. We choose r to be about 10% of the total number of
the singular values. Then, r is set to 150 for ISMD and 40 for USMD. The following
experiments are tested on ISMD, if not otherwise specified.
As described in Section 2.3, normalized mutual information is used to measure the

data privacy. We now calculate the average normalized mutual information of 4780 users
N̂I = 1

4780
∑4780

i=1 NI(L�i,Y�i). As a comparison, we also calculate the normalized mutual
information between the noisy data (before quantization) and the actual data. The quan-
tization level K is chosen as 2 or 5. The quantization boundaries and quantized values
are summarized in Table 2 (K = 2, 5). We place more boundaries in the region where
data concentrate. Selecting the optimal quantized boundaries is beyond the scope of this
paper and will be left for the future work. We believe these parameters can be optimized
if a small portion of ground-truth data are available for training. The noise level σ varies
from 0.1 to 0.4 with a step size of 0.02. To compute the probabilistic distribution of L�i,
we divide the range 0–6 kW into 100 or 300 equal intervals and compute the empirical
distributions. As shown in Fig. 4, the normalized mutual information between the power
after quantization and the actual power consumption is always smaller than that between
the noisy value before quantization and the actual power consumption. This indicates
the proposed quantization process enhances the data privacy. In addition, the norma-
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Table 2 Quantization boundaries and quantized values

ω(K = 2): ω∗
0 = −∞, ω∗

1 = 1 kW, ω∗
2 = ∞

Q(K = 2): Q1 = 0.5 kW, Q2 = 3 kW

ω(K = 5): ω∗
0 = −∞, ω∗

1 = 0.25 kW, ω∗
2 = 0.5 kW, ω∗

3 = 1 kW, ω∗
4 = 3 kW, ω∗

5 = ∞
Q(K = 5): Q1 = 0.2 kW, Q2 = 0.4 kW, Q3 = 0.85 kW, Q4 = 2.5 kW, Q5 = 4.5 kW

ω(K = 7): ω∗
0 = −∞, ω∗

1 = 0.5 kW, ω∗
2 = 1 kW, ω∗

3 = 3 kW, ω∗
4 = 5 kW, ω∗

5 = 10 kW, ω∗
6 = 20 kW, ω∗

7 = ∞
Q(K = 7): Q1 = 0.2 kW, Q2 = 0.7 kW, Q3 = 2 kW, Q4 = 4 kW, Q5 = 7 kW, Q6 = 15 kW, Q7 = 35 kW

lized mutual information N̂I decreases when either K decreases or σ increases. That is
consistent with the intuition.
Since no ground-truth clustering result exists for this dataset, we define an index CI

to evaluate the clustering performance. Let aj denote the maximum angle of all the data
points in group j to the estimated subspace of this group. Let bj denote the minimum
angle of any point in group j to the other subspaces. The clustering index CI measures the
clustering accuracy and is defined as

CI = 1
N

N∑
j=1

bj − aj
max{aj, bj} . (39)

CI is large if aj’s are small and bj’s are large, which means that points in the same group
are close to the subspace of that group and away from other groups. A larger CI corre-
sponds to a better clustering result. We apply Sparse Subspace Clustering (SSC) [21] to
this dataset with different cluster numbers and compare the resulting CI ’s. We use the
Alternating DirectionMethod of Multipliers (ADMM) [58] to solve SSC. When the num-
ber of clusters is p = 4, we obtain the maximum CI = 0.085. Thus, we set the number of
clusters to be 4 in the following experiments.
We generate corruptions E∗ and noise N randomly. The nonzero entries of E∗ are

selected from [−4,−0.5] and [ 0.5, 4] uniformly. Every entry of N is drawn from the
N (0, 0.32). The quantization level K is set to 5. The locations of the missing data are
selected randomly. The simulations run in MATLAB on a computer with 3.4 GHz Intel
Core i7.
We evaluate DSAPA on the quantized measurements. We choose W = 5 agents. We

assume the upper bound of the magnitudes of the sparse error and the power consump-
tion are known. For simplicity, we use the largest value of the given error and set α2 = 4.

Fig. 4 Normalized mutual information between the original power usage and the quantized measurements.
a 0.06 kW per interval. b 0.02 kW per interval
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Similarly, we set α1 = 6. We set d = 50. λ1 and λ2 are initialized to be 0.5, and ρ = 1.05.
The maximum iteration number T is set to be 200. T0 is set to be 40.
Here, d is selected to be approximately r/(p − 1). We use p − 1 considering the overlap

between subspaces. We remark that varying d around the selected value does not affect
the result. λ1 and λ2 are self-adjusted in our algorithm as discussed in the last paragraph
of Section 4.
Figure 5 shows the energy consumption of a single user in 24 h. It compares the actual

data, the rank-150 approximation of the actual data, the quantized observations, the
recovered data by DSAPA, and the average quantized data of the users in the same group.
One can see that the rank-150 approximation of the actual data has a similar pattern to
the actual data. Clearly, the details of power consumption are hidden in the quantized
measurements. For instance, the two peak consumptions are no longer visible in quan-
tized measurements. Thus, an intruder does not know the user pattern if only accessing
the quantized measurements of that user only. On the other hand, DSAPA recovers the
power consumption trend accurately from the quantized data. The two peak loads are
accurately identified in the recovered data as shown in Fig. 5. The recovered data can be
used for grid planning.
After obtaining Ĉ using DSAPA, we implemented spectral clustering [41] to cluster the

data points. To visualize the recovered consumption pattern of users in each group, we
normalize the power consumptions and compute the average of users in the same group.
Figure 6 shows the average profile obtained by our method in 1 day (no missing data and
with 15% missing data). For comparison, the mean daily profile of the ground-truth data
clustered by SSC is also shown in Fig. 6. One can see that the data losses do not affect
the recovery performance of DSAPA. The recovered patterns are close to the actual pat-
terns obtained by SSC, considering that themeasurements are highly noisy and quantized.
Now we pick some users in the same group and average the quantized value (K = 5) of
these users. We calculate the normalized mutual information between one user and the
averaged quantized value of the selected users. Figure 7 shows the normalized mutual
information when the number of selected users varies. The value does not decrease

Fig. 5 Comparison of actual data, rank-150 approximation, recovered data, quantized data, and average
quantized data in the same group
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Fig. 6 Average consumptions of four different groups in 1 day (actual and recovered by DSAPA)

much when the number of users increases. Compared with Fig. 4b, one can see that the
averaged quantized value of the same group does not provide much information to the
single user.
We compare DSAPA with Approximate Projected Gradient Method (APGM) [28] and

Quantized Robust Principal Component Analysis (QRPCA) [35] for data recovery in
Fig. 8a. We apply SSC on the recovered data by APGM (or QRPCA) to obtain the clus-
tering result, labeled by “APGM + SSC” (“QRPCA + SSC”) in Fig. 8b. If we simply use the
quantized value Q1,Q2, · · · ,Q5 to estimate the actual power consumption, the relative
recovery error is 0.869, which is much larger than the results in Fig. 8a. When the missing
data rate changes from 0 to 0.4, our method always outperform the other methods both
in data recovery and data clustering. For comparison, CI = 0.085 for SSC on the ground-
truth data, and CI = 0.05 for a random clustering. Our method achieves CI = 0.08 using
quantized measurements with 5% corruptions and no data losses.

Fig. 7 Normalized mutual information between one user and the averaged quantized value of users in the
same group (0.02 kW per interval)
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Fig. 8 Relative recovery error and clustering accuracy when the missing rate changes (s/mn = 5%)

We vary the number of users by randomly selecting a subset of the 4780 users. Under
the 15%missing rate and no corruption, Fig. 9 shows the recovery error when the number
of users varies. The recovery error is 0.35 when the user number is to 500 and decreases
to 0.2 when there are 2500 users.
We test the case when no additional noise is added before quantization. We vary the

estimated noise level when implementingDSAPA since themeasurements usually contain
observation noise. As shown in Fig. 10, DSAPA can recover the data with no additional
noise. However, adding no noise can lead to a low privacy level. The normalized mutual
information when K = 2 and K = 5 are 0.2862 and 0.9579, respectively (0.02 kW per
interval). These values are much higher than those shown in Fig. 4, indicating a lower
level of privacy when no noise is added.
In Fig. 11, we compare the relative recovery error and the clustering index CI of DSAPA

and the centralized algorithm Sparse-APA in [27]. Since Sparse-APA does not consider
missing data, we study the case with full observations. The corruption rate is set as

Fig. 9 Relative recovery error when the number of users increases
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Fig. 10 Relative recovery error when noise level in the recovery process increases (without adding additional
noise)

s/mn = 5%. The recovery error of Sparse-APA is small than our method when the algo-
rithm initializes, because Sparse-APA can compute a better initialization in a centralized
fashion. However, the difference decreases as the iteration number increases. After 200
iterations, both algorithms perform similarly.
We next show the performance of DSAPA on USMD. Since the measurements vary

from 0 to 100 kW, we set K = 7, and α1 = 50. The quantization boundaries and
quantized values are in Table 2 (K = 7). p and d are set to be 4 and 15, respec-
tively, using the same technique as discussed in the previous experiments. We gen-
erate the corruptions E∗ and the noise N randomly. The nonzero entries of E∗ are
selected from [−10, 10] uniformly, and the corruption rate is 5%. Every entry of N is
drawn from the N (0, 0.32). Similar to Figs. 5 and 8a, we show the results on USMD
in Fig. 12.

Fig. 11 Comparisons between DSAPA and Sparse-APA (centralized) [27]
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Fig. 12 a Comparison of actual data, rank-50 approximation, recovered data, and quantized data (USMD). b
Relative recovery error when the missing rate changes

6 Conclusion and discussions
This paper for the first time shows that the two seemingly contradicting objectives of data
privacy and information accuracy of smart meter data can be achieved simultaneously.
The central technical contribution is the development of a decentralized data recovery
and clustering method from highly quantized, partially lost, and partially corrupted mea-
surements. Distributed nodes do not share raw data with each other and cannot estimate
the actual data of other nodes. We propose a Distributed Sparse Alternative Proximal
Algorithm (DSAPA) with a convergence guarantee to solve the nonconvex problem. The
recovery error of our method is nearly optimal. The method is evaluated on actual smart
meter datasets. Future works include leveraging the time correlation within each user to
further improve the method and developing unsynchronized decentralized data recovery
algorithms.

Appendix 1
Supporting lemmas used in the Proof of Theorem 1

Lemma 1 Under Assumptions 1 and 2, the following inequalities hold
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Proof From Assumptions 1 and 2,
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where (a) holds from Lemma 8 and Lemma 9 in [28], and the assumption ni ≤ ξn/p. (b)
holds because of σ1(Gi) ≥ h and σ2(Gi) ≤ C

√
h.
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where (c) follows from (40) (or (42)). (d) holds from
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Lemma 2 Let θ̂ = vec(X̂), θ∗ = vec(X∗), F(θ∗) = F(θ∗), and X̂, X∗ ∈ SfX . Follow the
same assumptions as those of Theorem 1. Then, with probability at least 1− pC1e−C2ξn/p,
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holds for the positive constants C1 and C2. 〈., .〉 denotes the inner product of two matrices,
i.e., the sum of entry-wise products.

Proof The proof is generalized from the proof of Lemma 2 in [27] which does not
consider missing data. Here we extend the analysis to handle missing data. According
to the definition, there exists a permutation matrix �∗ such that L∗ can be written as
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holds with probability at least 1 − C1e−C2ξn/p. X∗
i is the same ith group as L∗

i under the
permutation �∗. Then
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holds with probability at least 1 − pC1e−C2ξn/p.
(a) holds from the linearity of the inner product. The first term of (b) holds from

| 〈A,B〉 | ≤ ‖A‖2‖B‖∗. The second term of (b) holds from the fact that both Ê,E∗ have at
most s nonzero entries and |∇XF(X∗)i,j| ≤ 1. (c) holds from (45) and the fact
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Appendix 2
Proof of Theorem 1

Proof The proof follows and extends the proofs of Theorem 1 in [28] and Theorem 5 in
[37]. We extend from the low-rank matrices in [28, 37] to matrices with columns in p low-
dimensional subspaces. Moreover, ref. [28] does not consider corruptions, and ref. [37]
does not consider missing data. Here we consider both missing data and corruptions.
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The first bound 2α1 + 2α2
√

s
mn in (8) follows from the fact that L̂, L∗, Ê, E∗ ∈ Sf . We

discuss the second bound in (8) as follows. We denote (4) to be F(X) when we treat X to
be the variable. Note that SfX is a compact set, and the objective function is continuous
in X. F(X) then achieves a minimum in SfX . Suppose that X̂ ∈ SfX minimizes F(X).
Let θ = vec(X) ∈ R

mn and F
,Y (θ) = F(X). By the second-order Taylor’s theorem, we
have
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where θ̃ = θ∗ + η̄(θ − θ∗) for some η̄ ∈[ 0, 1], with corresponding matrices X̃ = X∗ +
η̄(X − X∗).
From (46), Lemma 2, and Lemma A.3 in [38], we have
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where M1–M5 are constants. (a) holds because of (41). (b) holds according to (48).
(c) holds because of the Cauchy-Schwarz inequality. (d) holds because f = h/m,
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Appendix 3
Supporting lemmas for Theorem 2

Lemma 3 There exists a set X ⊂ SfX with

|X | ≥ exp(
dn − d� s

m�
16

) (50)

such that the following properties hold for any γ ∈ (0, 1] :
1. For all X ∈ X , Xi,j = ±αγ or 0, ∀(i, j), where α = min(α1,α2).
2. For all X(i), X(j) ∈ X , i �= j,

‖X(i) − X(j)‖2F > α2γ 2
(mn

2
− s
)
. (51)

Proof Now we independently generate a set X of
⌈
exp

(dn−d� s
m �

16

)⌉
random matrices

from the following distribution. According to columns’ indices, X is first been divided
into X1,X2, · · · ,Xp, which correspond to indices {1, ..., �n

p�}, {�n
p� + 1, ..., 2�n

p�}, {2�n
p� +

1, ..., 3�n
p�}, · · · , {(p− 1)�n

p�+ 1, ..., n}, respectively. For the first d rows of X1, fix the loca-
tions of � s

pm� entries in each row and set the values to zero. The remaining d�n
p�−d� s

pm�
entries take values ±αγ with equal probabilities. For all i ∈ {d + 1, ...,m}, j ∈[ �n

p�],
Xi,j := Xk,j, wherek = i(modd) + 1. (52)

The same process is applied to X2,X3, · · · ,Xp. Then, one can see that X can be written as
X = L + E, where L can span subspaces with dimension smaller or equal to d, and E is a
sparse matrix. We further have

‖L‖∞ = αγ ≤ α1, ‖E‖∞ = αγ ≤ α2, and‖E‖0 ≤ s. (53)

Each column of L can be represented by at most d other columns. Thus, X ∈ SfX .
Note that the locations of the zero entries are the same for all matrices drawn from the

above distribution. Consider two different matrices X and X̂ drawn as above, we have

‖X − X̂‖2F =
∑
i,j

(Xij − X̂ij)
2

≥ �m
d

�
d∑

i=1

⎛
⎜⎝

� n
p �∑

j=1
(Xij − X̂ij)

2 +
2� n

p �∑
j=� n

p �+1
(Xij − X̂ij)

2

+ · · · +
n∑

j=(p−1)� n
p �+1

(Xij − X̂ij)
2

⎞
⎟⎠

≥ 4α2γ 2�m
d

�
dn−d� s

m �∑
i=1

δi,

(54)

where δi’s are independent 0/1 Bernoulli random variables and the means are all 1
2 . Fol-

lowing the same proof technique of Lemma 4 in [37], one can show that X satisfies the
property 2.

Let Y = X + N , where the entries in matrix N are i.i.d. and generated from Gaussian
distribution N (0, σ 2). Suppose that X ∈ X is chosen uniformly at random. Lemma 4
bounds the mutual information I(X
,Y
).
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Lemma 4

I(X
,Y
) ≤ |
| − s

2

log
(
1 +

(αγ

σ

)2)
(55)

Proof The proof is similar to the proof of Lemma 5 in [31], but [31] does not consider
corruptions. We modify the proof to handle corruptions. From Lemma 5 in [31], one can
obtain

I(X
,Y
) ≤ H(X̃
 + N
) − H(N
). (56)

where ℵ denotes a matrix with all entries are i.i.d. generated from {+1,−1}. X̃ = X · ℵ
denotes the entry-wise product of X and ℵ.
The vectorization of X̃
 + N
 is denoted by vec(X̃
 + N
) ∈ R

|
|. We compute the
covariance matrix as

� := E[ vec(X̃
 + N
)vec(X̃
 + N
)T ] . (57)

Then, by Theorem 8.6.5 in [59], we have

H(X̃
 + N
) ≤ 1
2
log((2πe)|
|det(�))

= 1
2
log((2πe)|
|(α2γ 2 + σ 2)|
|−s
σ 2s
),

(58)

The equality holds since X̃ has s
 zero entries.
We have H(N
) = 1

2 log((2πe)
|
|σ 2|
|) and thus

I(X
,Y
) ≤ 1
2
log
(

(α2γ 2 + σ 2)|
|−s
σ 2s


σ 2|
|

)
, (59)

which establishes the lemma.

Appendix 4
Proof of Theorem 2

Proof The proof follows Theorem 4 in [31] which does not consider the corruptions.
Our proof is more involved due to the corruptions. Choose ε so that

ε2 = min{ (1 − 2C0)α2

8
,C2

4σ
2 dn − d� s

m� − 64
|
| − s


} (60)

where C4 is a constant to be determined later. The set X is defined in Lemma 3. γ is set
to be

2ε
α

√
2mn

mn − 2s
≤ γ ≤ 2ε

α

√
2

1 − 2C0
≤ 1. (61)

Suppose for the sake of a contradiction that there exists an efficient algorithm such that
for any X ∈ SfX , given the measurements Y, returns an X̂, and

‖X − X̂‖2F/mn ≤ ε2 (62)

holds with probability at least 1/4. Let

X∗ = arg min
X′∈X

‖X′ − X̂‖2F . (63)

Following the proof of Theorem 4 in [31], one can find that if (62) holds, then X∗ = X. By
the assumption of (62),

P(X �= X∗) ≤ 3/4. (64)
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Let X be a matrix chosen uniformly at random from X . Considering running the
algorithm on X, then by Fano’s inequality, the probability that X �= X∗ is at least

P(X �= X∗) ≥ H(X|Y
) − 1
log |X |

= H(X) − I(X,Y
) − 1
log |X | ≥ 1 − I(X
,Y
) + 1

log |X | .
(65)

We have obtained |X | from Lemma 3 and I(X
,Y
) from Lemma 4. Then, using the
inequality log(1 + z) ≤ z, we obtain

P(X �= X̂) ≥ 1 − 16
dn − d� s

m�
( |
| − s


2

(αγ

σ

)2 + 1
)
. (66)

Combining (66) with (61) and (64), we obtain

16
dn − d� s

m�
(

(|
| − s
)
4

1 − 2C0

( ε

σ

)2 + 1
)

≥ 1
4
, (67)

which implies that

ε2 ≥ (1 − 2C0)σ 2

256
dn − d� s

m� − 64
|
| − s


. (68)

Setting C2
4 < 1−2C0

256 leads to a contradiction, hence (62) must fail to hold with probability
at least 3/4. Using the definition f = |
|

mn , we obtain the desired result.

Appendix 5
Proof of Proposition 1

Proof Given any i, from (5), we know that L̂�i = L̂Ĉ�i. Without loss of generality, we
assume L̂�i ∈ Ŝ1, where the p̂ subspaces are denoted by Ŝi (i ∈[ p̂]). Then, from the con-

straint Ĉi,i = 0,∀i ∈[ n], we have L̂�i =[ L̂1\�i L̂−1]
[
Ĉ(1\�i)

�i
Ĉ(−1)

�i

]
, where L̂1\�i denotes all data

points belonging to Ŝ1 except L̂�i. L̂−1 denotes all data points belonging to {Ŝj}p̂j=2. Ĉ
(1\�i)
�i

and Ĉ(−1)
�i are sparse coefficients corresponding to L̂1\�i and L̂−1, respectively. Now we

only need to prove that Ĉ(−1)
�i = 0.

If Ĉ(−1)
�i �= 0, then L̂�i belongs to a subspace Ŝ′

1 which is different from Ŝ1, and spanned

by data points corresponding to nonzero entries of
[
Ĉ(1\�i)

�i
Ĉ(−1)

�i

]
. Moreover, the dimension

of Ŝ′
1 must be smaller or equal to d since ‖

[
Ĉ(1\�i)

�i
Ĉ(−1)

�i

]
‖0 ≤ d. Therefore, L̂�i ∈ Ŝ′′

1 =

Ŝ′
1
⋂

Ŝ1, where
⋂

denotes the intersection of two subspaces. We first consider the case
when the dimension of Ŝ′′

1 is smaller than d. Since the data points of L̂� are sampled from
a continuous distribution of p̂ subspaces, the probability that the data point L̂�i lying in
a data-point-spanned hyperplane in Ŝ1 that has dimension smaller than d is 0 (to see
this, consider the probability of a data point lying in a pre-fix line within a plane). Next
we show that the number of such hyperplanes is finite. Because the data points are fixed
beforehand, there is only a finite number of combinations of data points that can span
Ŝ′
1 and further intersect with Ŝ1 to form Ŝ′′

1 . Then, the probability of the union of a finite
of combinations is still zero. Therefore, the dimension of Ŝ′′

1 equals to d, which indicates
that the dimensions of Ŝ′

1 and Ŝ1 are both d. This leads to Ŝ′′
1 = Ŝ′

1 = Ŝ1. This results in



Wang et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:22 Page 31 of 36

a contradiction, since the data points corresponding to Ĉ(−1)
�i �= 0 do not belong to Ŝ1.

Thus, Ĉ(−1)
�i = 0, and the claim holds.

Appendix 6
DSAPA: proof of the Lipschitz differential property and calculation of Lipschitz constants

A function is Lipschitz differentiable if and only if all its partial gradients are Lipschitz
continuous. The definition is shown in Definition 3.

Definition 3 [60] For any fixed matrices z1, z2, .., zn, matrix variable y, and a func-
tion y → ϒ(y, z1, z2, ..., zn), the partial gradient ∇yϒ(y, z1, z2, ..., zn) is said to be Lipschitz
continuous with Lipschitz constant Lp(z1, z2, ..., zn), if the following holds

‖∇yϒ(y, z1, z2, ..., zn) − ∇yϒ(y′, z1, z2, ..., zn)‖F
≤ Lp(z1, z2, ..., zn)‖y − y′‖F , ∀y, y′.

We provide the Lipschitz differential property of H and compute the corresponding
Lipschitz constants of its partial gradients with respect to C�i ,V�i�, L�i ,E�i , ∀i ∈[W ].
Let Lt+1

p1 , Lt+1
p2 , Lt+1

p3 , Lt+1
p4 , and Lt+1

p5 denote the smallest Lipschitz constants of ∇C�i
H ,

∇V�i�
H , ∇L�i

H , ∇E�i
H , and ∇UH in the (t + 1)th iteration. We have

‖∇C�i
H(C�i) − ∇C�i

H(C′
�i)‖F

= ‖λ1Vt(Vt)T (C�i − C′
�i)‖F

≤ ‖λ1Vt(Vt)T‖F‖C�i − C′
�i‖F

= ‖λ1
W∑
i=1

ιti‖F‖C�i − C′
�i‖F

(a)= 1
τC(Vt)

‖C�i − C′
�i‖F ,

(69)

where (a) follows from (30). Equation (69) implies that

Lt+1
p1 ≤ ‖λ1

W∑
i=1

ιti‖F , and τC(Vt) ≤ 1/Lt+1
p1 . (70)

‖∇V�i�
H(V�i�) − ∇V�i�

H(V ′
�i�)‖F

= ‖λ2(V�i� − V ′
�i�)(U

t)TUt + λ1(V�i� − V ′
�i�)·

(Iq×q − (C�i)
t+1
�i�

− ((C�i)
t+1
�i�

)T + (Ct+1
�i�

)(Ct+1
�i�

)T )‖F
(b)≤ ‖V�i� − V ′

�i�‖F · (‖λ2(Ut)TUt‖F + λ1·
‖Iq×q + (Ct+1

�i�
)(Ct+1

�i�
)T − (C�i)

t+1
�i�

− ((C�i)
t+1
�i�

)T‖F)

(c)≤ 1
τV (Ut ,Ct+1)

‖V�i� − V ′
�i�‖F ,

(71)

where (b) follows from the triangle inequality, and (c) follows from (31). Equation (71)
implies that

Lt+1
p2 ≤ max

i∈[W ]
λ1‖Iq×q + (Ct+1

�i�
)(Ct+1

�i�
)T − (C�i)

t+1
�i�

−

((C�i)
t+1
�i�

)T‖F + etU , and τV (Ut ,Ct+1) ≤ 1/Lt+1
p2 .

(72)
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‖∇L�i
H(L�i) − ∇L�i

H(L′
�i)‖F =

‖∇F(L�i ,Et�i) − ∇F(L′
�i ,E

t
�i) + λ2(L�i − L′

�i)‖F
(d)= ‖diag(∇2F(L̄�i))vec(L�i − L′

�i)‖2
+ λ2‖L�i − L′

�i‖F
≤ (‖diag(∇2F(L̄�i))‖2 + λ2)‖L�i − L′

�i‖F
(e)= (‖∇2F(L̄�i)‖∞ + λ2)‖L�i − L′

�i‖F
(f)≤ (

1
σ 2β2 + λ2)‖L�i − L′

�i‖F
(g)= 1

τL(Et�i
)
‖L�i − L′

�i‖F ,

(73)

where (d) comes from the differential mean value theorem. ∇2F(L̄�i) ∈ R
m×q has the

(k, j)th entry equaling to ∂2F
∂2(L�i )k,j

|
(L̄�i )k,j

, and diag(∇2F(L̄�i)) ∈ R
mq×mq is a diagonal

matrix with the diagonal vector equaling to vec(∇2F(L̄�i)). (e) follows from the fact that
the l2 norm of a diagonal matrix is equal to its entry-wise infinity norm. Note that (1) is
lower bounded by β , and the probability density function of the normal distribution and
its derivative are upper bounded by 1√

2πσ
and e−1/2√

2πσ 2 , respectively. Then, one can easily
check that ‖∇2F(L̄�i)‖∞ is bounded by 1

σ 2β2 . (f ) is thus obtained by upper bounding
‖∇2F(L̄�i)‖∞. (g) follows from (32). Thus, τL(Et�i

) ≤ 1
Lt+1
p3

.

‖∇E�i
H
(
E�i

)− ∇E�i
H(E′

�i)‖F
= ‖∇F(Lt+1

�i
,E�i) − ∇F(Lt+1

�i
,E′

�i)‖F
(h)= ‖diag(∇2F(Ē�i))vec(E�i − E′

�i)‖F
≤ ‖∇2F(Ē�i)‖∞‖E�i − E′

�i‖F
(i)≤ 1

σ 2β2 ‖E�i − E′
�i‖F

(j)= 1
τE(Lt+1

�i
)
‖E�i − E′

�i‖F ,

(74)

where (h) follows from the differential mean value theorem. (i) is obtained by upper
bounding ‖∇2F(Ē�i)‖∞ by 1

σ 2β2 . (j) follows from (33). (74) implies that τE(Lt+1
�i

) =
σ 2β2 ≤ 1

Lt+1
p4

.

‖∇UH(U) − ∇UH(U ′)‖F
= ‖λ2(U − U ′)(Vt)TV t+1‖F
≤ ‖λ2(Vt+1)TV t+1‖2‖U − U ′‖F
(k)≤ ‖λ2(Vt+1)TV t+1‖F‖U − U ′‖F
(l)= ‖λ2

W∑
i=1

ιt+1
i ‖F‖U − U ′‖F

(m)= 1
τU(Vt+1)

‖U − U ′‖F ,

(75)
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where (k) follows from the inequality ‖ · ‖2 ≤ ‖ · ‖F . (l) follows from (Vt+1)TV t+1 =∑W
i=1 ιt+1

�i
. Since ‖λ2∑W

i=1 ιt+1
�i

‖F ≥ Lt+1
p5 , (m) follows from (34). (75) implies that Lt+1

p5 ≤
‖λ2∑W

i=1 ιt+1
i ‖F , andτU(Vt+1) ≤ 1/Lt+1

p5 .
Based on Definition 3, (69)–(75) guarantee the Lipschitz differentiability of H and

provide the Lipschitz constants and the step sizes of the DSAPA.

Appendix 7
Proof of Theorem 3

Proof The constraints in (22) can be transferred to the following indicator functions.

K1(C�i) =

⎧
⎪⎨
⎪⎩

∞ if there exists a
(C�i)iq−q+j,j �= 0,∀j ∈[ q]

0 otherwise
(76)

K2(C�i) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if there exists a
(C�i)�j s.t. ‖(C�i)�j‖0 > d,

j ∈[ q]
0 otherwise

(77)

B(L�i) =
{

∞ if ‖L�i‖∞ > α1
0 otherwise

(78)

J1
(
E�i

) =
{

∞ if ‖E�i‖∞ > α2
0 otherwise

(79)

J2
(
E�i

) =
{

∞ if ‖E�i‖0 > s/W
0 otherwise

(80)

(76)–(80) correspond to the operations of projection in DSAPA.
Similar to the proof of Theorem 3 in [27], DSAPA globally converges to a critical point

of (16) from any initial point, provided that H is Lipschitz differentiable, and

H +
W∑
i=1

(K1(C�i) + K2(C�i)+

B(L�i) + J1
(
E�i

)+ J2
(
E�i

)
)

(81)

satisfies the Kurdyka-Lojasiewicz (KL) property.
The proof of the Lipschitz differentiable property of H is shown in Appendix 6. B(L�i),

J1
(
E�i

)
, J2

(
E�i

)
, K1(C�i), and K2(C�i) are indicator functions of semi-algebraic sets.

Therefore, they are KL functions according to [60]. Since H is differentiable everywhere,
or equivalently, real analytic, H also has the KL property according to the examples in
session 2.2 of [61]. Thus, (81) satisfies the KL property.
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