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Abstract

Although graph neural networks (GNNs) have
made great progress recently on learning from
graph-structured data in practice, their theoret-
ical guarantee on generalizability remains elu-
sive in the literature. In this paper, we provide
a theoretically-grounded generalizability analy-
sis of GNNs with one hidden layer for both re-
gression and binary classification problems. Un-
der the assumption that there exists a ground-
truth GNN model (with zero generalization er-
ror), the objective of GNN learning is to estimate
the ground-truth GNN parameters from the train-
ing data. To achieve this objective, we propose
a learning algorithm that is built on tensor ini-
tialization and accelerated gradient descent. We
then show that the proposed learning algorithm
converges to the ground-truth GNN model for the
regression problem, and to a model sufficiently
close to the ground-truth for the binary classifi-
cation problem. Moreover, for both cases, the
convergence rate of the proposed learning algo-
rithm is proven to be linear and faster than the
vanilla gradient descent algorithm. We further
explore the relationship between the sample com-
plexity of GNNs and their underlying graph prop-
erties. Lastly, we provide numerical experiments
to demonstrate the validity of our analysis and the
effectiveness of the proposed learning algorithm
for GNNs.
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1. Introduction
Graph neural networks (GNNs) (Gilbert et al., 2005;
Scarselli et al., 2008) have demonstrated great practical per-
formance in learning with graph-structured data. Compared
with traditional (feed-forward) neural networks, GNNs intro-
duce an additional neighborhood aggregation layer, where
the features of each node are aggregated with the features of
the neighboring nodes (Gilmer et al., 2017; Xu et al., 2018).
GNNs have a better learning performance in applications
including physical reasoning (Battaglia et al., 2016), recom-
mendation systems (Ying et al., 2018), biological analysis
(Duvenaud et al., 2015), and compute vision (Monfardini
et al., 2006). Many variations of GNNs, such as Gated
Graph Neural Networks (GG-NNs) (Li et al., 2016), Graph
Convolutional Networks (GCNs) (Kipf & Welling, 2017)
and others (Hamilton et al., 2017; Veličković et al., 2018)
have recently been developed to enhance the learning per-
formance on graph-structured data.

Despite the numerical success, the theoretical understand-
ing of the generalizability of the learned GNN models to
the testing data is very limited. Some works (Xu et al.,
2018; 2019; Wu et al., 2019; Morris et al., 2019) analyze
the expressive power of GNNs but do not provide learning
algorithms that are guaranteed to return the desired GNN
model with proper parameters. Only few works (Du et al.,
2019; Verma & Zhang, 2019) explore the generalizabilty
of GNNs, under the one-hidden-layer setting, as even with
one hidden layer the models are already complex to analyze,
not to mention the multi-layer setting. Both works show
that for regression problems, the generalization gap of the
training error and the testing error decays with respect to the
number of training samples at a sub-linear rate. The analy-
sis in Ref. (Du et al., 2019) analyzes GNNs through Graph
Neural Tangent Kernels (GNTK) which is an extension of
Neural Tangent kernel (NTK) model (Jacot et al., 2018;
Chizat & Bach, 2018; Nitanda & Suzuki, 2019; Cao & Gu,
2020). When over-parameterized, this line of works shows
sub-linear convergence to the global optima of the learning
problem with assuming enough filters in the hidden layer
(Jacot et al., 2018; Chizat & Bach, 2018). Ref. (Verma &
Zhang, 2019) only applies to the case of one single filter
in the hidden layer, and the activation function needs to be
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smooth, excluding the popular ReLU activation function.
Moreover, refs. (Du et al., 2019; Verma & Zhang, 2019) do
not consider classification and do not discuss if a small train-
ing error and a small generalization error can be achieved
simultaneously.

One recent line of research analyzes the generalizability
of neural networks (NNs) from the perspective of model
estimation (Brutzkus & Globerson, 2017; Du et al., 2018;
2017; Fu et al., 2018; Ge et al., 2018; Safran & Shamir,
2018; Zhong et al., 2017b;a). These works assume the ex-
istence of a ground-truth NN model with some unknown
parameters that maps the input features to the output labels
for both training and testing samples. Then the learning
objective is to estimate the ground-truth model parameters
from the training data, and this ground-truth model is guar-
anteed to have a zero generalization error on the testing
data. The analyses are focused on one-hidden-layer NNs,
assuming the input features following the Gaussian distribu-
tion (Shamir, 2018). If one-hidden-layer NNs only have one
filter in the hidden layer, gradient descent (GD) methods can
learn the ground-truth parameters with a high probability
(Du et al., 2018; 2017; Brutzkus & Globerson, 2017). When
there are multiple filters in the hidden layer, the learning
problem is much more challenging to solve because of the
common spurious local minima (Safran & Shamir, 2018).
(Ge et al., 2018) revises the learning objective and shows
the global convergence of GD to the global optimum of the
new learning problem. The required number for training
samples, referred to as the sample complexity in this paper,
is a high-order polynomial function of the model size. A
few works (Zhong et al., 2017b;a; Fu et al., 2018) study a
learning algorithm that initializes using the tensor initializa-
tion method (Zhong et al., 2017b) and iterates using GD.
This algorithm is proved to converge to the ground-truth
model parameters with a zero generalization error for the
one-hidden-layer NNs with multiple filters, and the sample
complexity is shown to be linear in the model size. All these
works only consider NNs rather than GNNs.

Contributions. This paper provides the first algorithmic
design and theoretical analysis to learn a GNN model with
a zero generalization error, assuming the existence of such
a ground-truth model. We study GNNs in semi-supervised
learning, and the results apply to both regression and binary
classification problems. Different from NNs, each output
label on the graph depends on multiple neighboring features
in GNNs, and such dependence significantly complicates the
analysis of the learning problem. Our proposed algorithm
uses the tensor initialization (Zhong et al., 2017b) and up-
dates by accelerated gradient descent (AGD). We prove that
with a sufficient number of training samples, our algorithm
returns the ground-truth model with the zero generalization
error for regression problems. For binary classification prob-
lems, our algorithm returns a model sufficiently close to the

ground-truth model, and its distance to the ground-truth
model decays to zero as the number of samples increases.
Our algorithm converges linearly, with a rate that is proved
to be faster than that of vanilla GD. We quantifies the depen-
dence of the sample complexity on the model size and the
underlying graph structural properties. The required number
of samples is linear in the model size. It is also a polynomial
function of the graph degree and the largest singular value
of the normalized adjacency matrix. Such dependence of
the sample complexity on graph parameters is exclusive to
GNNs and does not exist in NNs.

The rest of the paper is organized as follows. Section 2
introduces the problem formulation. The algorithm is pre-
sented in Section 3, and Section 4 summarizes the major
theoretical results. Section 5 shows the numerical results,
and Section 6 concludes the paper. All the proofs are in the
supplementary materials.

Notation: Vectors are bold lowercase, matrices and tensors
are bold uppercase. Also, scalars are in normal font, and sets
are in calligraphy and blackboard bold font. For instance,
Z is a matrix, and z is a vector. zi denotes the i-th entry
of z, and Zij denotes the (i, j)-th entry of Z. Z stands for
a regular set. Special sets N (or N+), Z and R denote the
sets of all natural numbers (or positive natural numbers),
all integers and all real numbers, respectively. Typically,
[Z] stands for the set of {1, 2, · · · , Z} for any number N+.
I and ei denote the identity matrix and the i-th standard
basis vector. ZT denotes the transpose of Z, similarly for
zT . ‖z‖ denotes the `2-norm of a vector z, and ‖Z‖2
and ‖Z‖F denote the spectral norm and Frobenius norm
of matrix Z, respectively. We use σi(Z) to denote the i-th
largest singular value of Z. Moreover, the outer product of
a group of vectors zi ∈ Rni , i ∈ [l], is defined as T = z1⊗
· · · ⊗ zl ∈ Rn1×···×nl with Tj1,··· ,jl = (z1)j1 · · · (zl)jl .

2. Problem Formulation
Let G = {V, E} denote an un-directed graph, where V is the
set of nodes with size |V| = N and E is the set of edges. Let
δ and δave denote the maximum and average node degree
of G, respectively. Let Ã ∈ {0, 1}N×N be the adjacency
matrix of G with added self-connections. Then, Ãi,j = 1 if
and only if there exists an edge between node vi and node
vj , i, j ∈ [N ], and Ãi,i = 1 for all i ∈ [N ]. Let D be the
degree matrix with diagonal elements Di,i =

∑
j Ãi,j and

zero entries otherwise. A denotes the normalized adjacency
matrix withA = D−1/2ÃD−1/2, and σ1(A) is the largest
singular value ofA.

Each node vn in V (n = 1, 2, · · · , N) corresponds to an
input feature vector, denoted by xn ∈ Rd, and a label
yn ∈ R. yn depends on not only xn but also all xj where vj
is a neighbor of vn. LetX =

[
x1,x2, · · · ,xN

]T ∈ RN×d
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denote the feature matrix. Following the analyses of NNs
(Shamir, 2018), we assume xn’s are i.i.d. samples from
the standard Gaussian distribution N (0, Id). For GNNs,
we consider the typical semi-supervised learning problem
setup. Let Ω ⊂ [N ] denote the set of node indices with
known labels, and let Ωc be its complementary set. The
objective of the GNN is to predict yi for every i in Ωc.

Suppose there exists a one-hidden-layer GNN that maps
node features to labels, as shown in Figure 1. There are K
filters1 in the hidden layer, and the weight matrix is denoted
by W ∗ =

[
w∗1 w∗2 · · · w∗K

]
∈ Rd×K . The hidden

layer is followed by a pooling layer. Different from NNs,
GNNs have an additional aggregation layer with A as the
aggregation factor matrix (Kipf & Welling, 2017). For every
node vn ∈ V , the input to the hidden layer is aTnX , where
aTn denotes the n-th row ofA. When there is no edge in V ,
A is reduced to the identify matrix, and a GNN model is
reduced to an NN model.
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Figure 1. Structure of the graph neural network

The output zn of the node vn of the GNN is

zn = g(W ∗;aTnX) =
1

K

K∑
j=1

φ(aTnXw
∗
j ),∀n ∈ [N ],

(1)
where φ(·) is the activation function. We consider both
regression and binary classification in this paper. For regres-
sion, φ(·) is the ReLU function2 φ(x) = max{x, 0}, and
yn = zn. For binary classification, we consider the sigmoid
activation function where φ(x) = 1/(1 + e−x). Then yn is

1We assume K ≤ d to simplify the representation of the analy-
sis, while the result still holds for K > d with minor changes.

2Our result can be extended to the sigmoid activation function
with minor changes.

a binary variable generated from zn by Prob{yn = 1} = zn,
and Prob{yn = 0} = 1− zn.

Given X , A, and yi for all i ∈ Ω, the learning objective
is to estimate W ∗, which is assumed to have a zero gen-
eralization error. The training objective is to minimize the
empirical risk function,

min
W∈Rd×K

f̂Ω(W ) :=
1

|Ω|
∑
n∈Ω

`(W ;aTnX), (2)

where ` is the loss function. For regression, we use the
squared loss function , and (2) is written as

min
W

: f̂Ω(W ) =
1

2|Ω|
∑
n∈Ω

∣∣∣yn − g(W ;aTnX)
∣∣∣2. (3)

For classification, we use the cross entropy loss function,
and (2) is written as

min
W

: f̂Ω(W ) =
1

|Ω|
∑
n∈Ω

−yn log
(
g(W ;aTnX)

)
−(1− yn) log

(
1− g(W ;aTnX)

)
.

(4)

Both (3) and (4) are nonconvex due to the nonlinear function
φ. Moreover, while W ∗ is a global minimum of (3), W ∗

is not necessarily a global minimum of (4)3. Furthermore,
compared with NNs, the additional difficulty of analyzing
the generalization performance of GNNs lies in the fact that
each label yn is correlated with all the input features that
are connected to node vn, as shown in the risk functions in
(3) and (4).

Note that our model with K = 1 is equivalent to the one-
hidden-layer convolutional network (GCN) (Kipf & Welling,
2017) for binary classification. To study the multi-class clas-
sification problem, the GCN model in (Kipf & Welling,
2017) has M nodes for M classes in the second layer and
employs the softmax activation function at the output. Here,
our model has a pooling layer and uses the sigmoid function
for binary classification. Moreover, we consider both re-
gression and binary classification problems using the same
model architecture with different activation functions. We
consider one-hidden-layer networks following the state-of-
art works in NNs (Du et al., 2018; 2017; Brutzkus & Glober-
son, 2017; Zhong et al., 2017b;a; Fu et al., 2018) and GNNs
(Du et al., 2019; Verma & Zhang, 2019) because the theo-
retical analyses are extremely complex and still being devel-
oped for multiple hidden layers.

3. Proposed Learning Algorithm
In what follows, we illustrate the algorithm used for solving
problems (3) and (4), summarized in Algorithm 1. Algo-
rithm 1 has two components: a) accelerated gradient descent

3W ∗ is a global minimum if replacing all yn with zn in (4),
but zn’s are unknown in practice.
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and b) tensor initialization. We initializeW using the ten-
sor initialization method (Zhong et al., 2017b) with minor
modification for GNNs and update iterates by the Heavy
Ball method (Polyak, 1987).

Accelerated gradient descent. Compared with the vanilla
GD method, each iterate in the Heavy Ball method is up-
dated along the combined directions of both the gradient and
the moving direction of the previous iterates. Specifically,
one computes the difference of the estimates in the previous
two iterations, and the difference is scaled by a constant β.
This additional momentum term is added to the gradient
descent update. When β is 0, AGD reduces to GD.

During each iteration, a fresh subset of data is applied to
estimate the gradient. The assumption of disjoint subsets is
standard to simplify the analysis (Zhong et al., 2017a;b) but
not necessary in numerical experiments.

Algorithm 1 Accelerated Gradient Descent Algorithm with
Tensor Initialization

1: Input: X ,
{
yn
}
n∈Ω

, A, the step size η, the momen-
tum constant β, and the error tolerance ε;

2: Initialization: Tensor Initialization via Subroutine 1;
3: Partition Ω into T = log(1/ε) disjoint subsets, denoted

as {Ωt}Tt=1;
4: for t = 1, 2, · · · , T do
5: W (t+1) = W (t) − η∇f̂Ωt(W

(t)) + β(W (t) −
W (t−1))

6: end for

Tensor initialization. The main idea of the tensor initial-
ization method (Zhong et al., 2017b) is to utilize the homo-
geneous property of an activation function such as ReLU
to estimate the magnitude and direction separately for each
w∗j with j ∈ [K]. A non-homogeneous function can be
approximated by piece-wise linear functions, if the function
is strictly monotone with lower-bounded derivatives (Fu
et al., 2018), like the sigmoid function. Our initialization
is similar to those in (Zhong et al., 2017b; Fu et al., 2018)
for NNs with some definitions are changed to handle the
graph structure, and the initialization process is summarized
in Subroutine 1.

Specifically, following (Zhong et al., 2017b), we define a
special outer product, denoted by ⊗̃, such that for any vector
v ∈ Rd1 and Z ∈ Rd1×d2 ,

v⊗̃Z =

d2∑
i=1

(v⊗zi⊗zi+zi⊗v⊗zi+zi⊗zi⊗v), (5)

where ⊗ is the outer product and zi is the i-th column of Z.

Subroutine 1 Tensor Initialization Method

1: Input: X ,
{
yn
}
n∈Ω

andA;
2: Partition Ω into three disjoint subsets Ω1, Ω2, Ω3;
3: Calculate M̂1, M̂2 following (6), (7) using Ω1, Ω2,

respectively;
4: Estimate V̂ by orthogonalizing the eigenvectors with

respect to the K largest eigenvalues of M̂2;
5: Calculate M̂3(V̂ , V̂ , V̂ ) using (9) through Ω3;
6: Obtain {ûj}Kj=1 via tensor decomposition method

(Kuleshov et al., 2015);
7: Obtain α̂ by solving optimization problem (11);
8: Return: w(0)

j = α̂jV̂ ûj , j = 1, ...,K.

Next, we define 4

M1 = EX{yx} ∈ Rd, (6)

M2 = EX
{
y
[
(aTnX)⊗ (aTnX)− I

]}
∈ Rd×d, (7)

M3 = EX
{
y
[
(aTnX)⊗3 − (aTnX)⊗̃I

]}
∈ Rd×d×d,

(8)
where z⊗3 := z⊗ z⊗ z. The tensor M3 is used to identify
the directions of {w∗j }Kj=1. M1 depends on both the mag-
nitudes and directions of {w∗j }Kj=1. We will sequentially
estimate the directions and magnitudes of {w∗j }Kj=1 from
M3 andM1. The matrixM2 is used to identify the subspace
spanned by w∗j . We will project to this subspace to reduce
the computational complexity of decomposing M3.

Specifically, the values of M1, M2 and M3 are all es-
timated through samples, and let M̂1, M̂2, M̂3 denote
the corresponding estimates of these high-order momentum.
Tensor decomposition method (Kuleshov et al., 2015) pro-
vides the estimates of the vectorsw∗j/‖w∗j‖2 from M̂3, and

the estimates are denoted as ŵ
∗
j .

However, the computation complexity of estimate through
M̂3 depends on poly(d). To reduce the computational com-
plexity of tensor decomposition, M̂3 is in fact first projected
to a lower-dimensional tensor (Zhong et al., 2017b) through
a matrix V̂ ∈ Rd×K . V̂ is the estimation of matrix V and
can be computed from the right singular vectors of M̂2. The
column vectors of V form a basis for the subspace spanned
by {w∗j}Kj=1, which indicates that V V Tw∗j = w∗j for any
j ∈ [K]. Then, from (8), M3(V̂ , V̂ , V̂ ) ∈ RK×K×K is
defined as

M3(V̂ , V̂ , V̂ ) := EX
{
y
[
(aTnXV̂ )⊗3 − (aTnXV̂ )⊗̃I

]}
.

(9)

4EX stands for the expectation over the distribution of random
variable X .
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Similar to the case of M̂3, by applying the tensor decom-
position method in M̂3(V̂ , V̂ , V̂ ), one can obtain a series
of normalized vectors, denoted as {ûj}Kj=1 ∈ RK , which
are the estimates of {V Tw∗j}Kj=1. Then, V̂ ûj is an esti-
mate of w∗j since w∗j lies in the column space of V with
V V Tw∗j = w∗j .

From (Zhong et al., 2017b), (6) can be written as

M1 =

K∑
j=1

ψ1(w∗j )‖w∗j‖2w̄∗j , (10)

where ψ1 depends on the distribution of X . Since the dis-
tribution ofX is known, the values of ψ(ŵ

∗
j ) can be calcu-

lated exactly. Then, the magnitudes of w∗j ’s are estimated
through solving the following optimization problem:

α̂ = arg min
α∈RK

:
∣∣∣M̂1 −

K∑
j=1

ψ(ŵ
∗
j )αjŵ

∗
j

∣∣∣. (11)

Thus,W (0) is given as
[
α̂1ŵ

∗
1, · · · , α̂Kŵ

∗
K

]
.

4. Main Theoretical Results
Theorems 1 and 2 state our major results about the GNN
model for regression and binary classification, respectively.
Before formally presenting the results, we first summarize
the key findings as follows.

1. Zero generalization error of the learned model. Algo-
rithm 1 can returnW ∗ exactly for regression (see (14)) and
approximately for binary classification (see (19)). Specifi-
cally, since W ∗ is often not a solution to (4), Algorithm 1
returns a critical point Ŵ that is sufficiently close toW ∗,
and the distance decreases with respect to the number of
samples in the order of

√
1/|Ω|. Thus, with a sufficient

number of samples, Ŵ will be close toW ∗ and achieves a
zero generalization error approximately for binary classifica-
tion. Algorithm 1 always returnsW ∗ exactly for regression,
a zero generalization error is thus achieved.

2. Fast linear convergence of Algorithm 1. Algorithm 1
is proved to converge linearly toW ∗ for regression and Ŵ
for classification, as shown in (14) and (18). That means the
distance of the estimate during the iterations toW ∗ (or Ŵ )
decays exponentially. Moreover, Algorithm 1 converges
faster than the vanilla GD. The rate of convergence is 1−
Θ
(

1√
K

)
for regression 5 and 1 − Θ

(
1
K

)
for classification,

where K is the number of filters in the hidden layer. In
comparison, the convergence rates of GD are 1 − Θ

(
1
K

)
5f(d) = O(g(d)) means that if for some constant C > 0,

f(d) ≤ Cg(d) holds when d is sufficiently large. f(d) = Θ(g(d))
means that for some constants c > 0 and C > 0, cg(d) ≤ f(d) ≤
Cg(d) holds when d is sufficiently large.

and 1−Θ
(

1
K2

)
, respectively. Note that a smaller value of

the rate of convergence corresponds to faster convergence.
We remark that this is the first theoretical guarantee of AGD
methods for learning GNNs.

3. Sample complexity analysis. W ∗ can be estimated
exactly for regression and approximately for classification,
provided that the number of samples is in the order of (1 +
δ2)poly(σ1(A),K)d logN log(1/ε), as shown in (13) and
(17), where ε is the desired estimation error tolerance. W ∗

has Kd parameters, where K is the number of nodes in the
hidden layer, and d is the feature dimension. Our sample
complexity is order-wise optimal with respect to d and only
logarithmic with respect to the total number of features
N . We further show that the sample complexity is also
positively associated with σ1(A) and δ. That characterizes
the relationship between the sample complexity and graph
structural properties. From Lemma 1, we know that given δ,
σ1(A) is positively correlated with the average node degree
δave. Thus, the required number of samples increases when
the maximum and average degrees of the graph increase.
That coincides with the intuition that more edges in the
graph corresponds to the stronger dependence of the labels
on neighboring features, thus requiring more samples to
learn these dependencies. Our sample complexity quantifies
this intuition explicitly.

Note that the graph structure affects this bound only through
σ1(A) and δ. Different graph structures may require a
similar number of samples to estimateW ∗, as long as they
have similar σ1(A) and δ. We will verify this property on
different graphs numerically in Figure 7.
Lemma 1. Give an un-directed graph G = {V, E} and the
normalized adjacency matrixA as defined in Section 2, the
largest singular value σ1(A) ofA satisfies

1 + δave

1 + δmax
≤ σ1(A) ≤ 1, (12)

where δave and δ are the average and maximum node degree,
respectively.

4.1. Formal theoretical guarantees

To formally present the results, some parameters in the
results are defined as follows. σj(W

∗) (j ∈ [N ]) is
the j-th singular value of W ∗. κ = σ1(W ∗)/σK(W ∗)
is the conditional number of W ∗. γ is defined as∏K
j=1 σj(W

∗)/σK(W ∗). For a fixed W ∗, both γ and κ
can be viewed as constants and do not affect the order-wise
analysis.
Theorem 1. (Regression) Let {W (t)}Tt=1 be the se-
quence generated by Algorithm 1 to solve (3) with η =
K/(8σ2

1(A)). Suppose the number of samples satisfies

|Ω| ≥ C1ε
−2
0 κ9γ2(1 + δ2)σ4

1(A)K8d logN log(1/ε)
(13)
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for some constants C1 > 0 and ε0 ∈ (0, 1
2 ). Then

{W (t)}Tt=1 converges linearly to W ∗ with probability at
least 1−K2T ·N−10 as

‖W (t) −W ∗‖2 ≤ ν(β)t‖W (0) −W ∗‖2, and

‖W (T ) −W ∗‖2 ≤ ε‖W ∗‖2
(14)

where ν(β) is the rate of convergence that depends on β.
Moreover, we have

ν(β) < ν(0) for some small nonzero β. (15)

Specifically, let β∗ =
(

1−
√

1−ε0
88κ2γ

)2

, we have

ν(0) ≥ 1− 1− ε0

88κ2γK
, ν(β∗) = 1− 1− ε0√

88κ2γK
. (16)

Theorem 2. (Classification) Let {W (t)}Tt=1 be the se-
quence generated by Algorithm 1 to solve (4) with η =
1/(2σ2

1(A)). Suppose the number of samples satisfies

|Ω| ≥ C2ε
−2
0 (1 + δ2)κ8γ2σ4

1(A)K8d logN log(1/ε)
(17)

for some positive constants C2 and ε0 ∈ (0, 1). Then, let
Ŵ be the nearest critical point of (4) to W ∗, we have
that {W (t)}Tt=1 converges linearly to Ŵ with probability
at least 1−K2T ·N−10 as

‖W (t) − Ŵ ‖2 ≤ ν(β)t‖W (0) − Ŵ ‖2, and

‖W (T ) − Ŵ ‖2 ≤ ε‖W (0) − Ŵ ‖2.
(18)

The distance between Ŵ andW ∗ is bounded by

‖Ŵ −W ∗‖2 ≤ C3(1− ε0)−1κ2γK

√
(1 + δ2)d logN

|Ω|
,

(19)
where ν(β) is the rate of convergence that depends on β,
and C3 is some positive constant. Moreover, we have

ν(β) < ν(0) for some small nonzero β, (20)

Specifically, let β∗ =
(

1−
√

1−ε0
11κ2γK2

)2

, we have

ν(0) = 1− 1− ε0

11κ2γK2
, ν(β∗) = 1−

√
1− ε0

11κ2γK2
. (21)

4.2. Comparison with existing works

Only (Verma & Zhang, 2019; Du et al., 2019) analyze the
generalization error of one-hidden-layer GNNs in regression
problems, while there is no existing work about the general-
ization error in classification problems. (Verma & Zhang,
2019; Du et al., 2019) show that the difference between

the risks in the testing data and the training data decreases
in the order of 1/

√
|Ω| as the sample size increases. The

GNN model in (Verma & Zhang, 2019) only has one filter
in the hidden layer, i.e., K = 1, and the loss function is
required to be a smooth function, excluding ReLU. Ref. (Du
et al., 2019) only considers infinitely wide GNNs. In con-
trast,W ∗ returned by Algorithm1 can achieve zero risks for
both training data and testing data in regression problems.
Our results apply to an arbitrary number of filters and the
ReLU activation function. Moreover, this paper is the first
work that characterizes the generalization error of GNNs for
binary classification.

When δ is zero, our model reduces to one-hidden-
layer NNs, and the corresponding sample complexity is
O
(

poly(K)d logN log(1/ε)
)

. Our results are at least com-
parable to, if not better than, the state-of-art theoretical
guarantees that from the prespective of model estimation
for NNs. For example, (Zhong et al., 2017b) considers
one-hidden-layer NNs for regression and proves the linear
convergence of their algorithm to the ground-truth model pa-
rameters. The sample complexity of (Zhong et al., 2017b) is
also linear in d, but the activation function must be smooth.
(Zhang et al., 2019) considers one-hidden-layer NNs with
the ReLU activation function for regression, but the algo-
rithm cannot converge to the ground-truth parameters ex-
actly but up to a statistical error. Our result in Theorem 1
applies to the nonsmooth ReLU function and can recover
W ∗ exactly. (Fu et al., 2018) considers one-hidden-layer
NNs for classification and proves linear convergence of their
algorithm to a critical point sufficiently close to W ∗ with
the distance bounded by O(

√
1/|Ω|). The convergence rate

in (Fu et al., 2018) is 1−Θ(1/K2), while Algorithm 1 has
a faster convergence rate of 1−Θ(1/K).

5. Numerical Results
We verify our results on synthetic graph-structured data. We
consider four types of graph structures as shown in Figure
2: (a) a connected-cycle graph having each node connect-
ing to its δ closet neighbors; (b) a two-dimensional grid
having each node connecting to its nearest neighbors in
axis-aligned directions; (c) a random δ-regular graph having
each node connecting to δ other nodes randomly; (d) a ran-
dom graph with bounded degree having each node degree
selected from 0 with probability 1 − p and δ with proba-
bility p for some p ∈ [0, 1]. The feature vectors {xn}Nn=1

are randomly generated from the standard Gaussian distri-
bution N (0, Id×d). Each entry of W ∗ is generated from
N (0, 52) independently. {zn}Nn=1 are computed based on
(1). The labels {yn}Nn=1 are generated by yn = zn and
Prob{yn = 1} = zn for regression and classification prob-
lems, respectively.
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(a) (b) (c) (d)

Figure 2. Different graph structures: (a) a connected-cycle graph,
(b) a two-dimensional grid, (c) a random regular graph, (d) a
random graph with a bounded degree.

During each iteration of Algorithm 1, we use the whole train-
ing data to calculate the gradient. The initialization is ran-
domly selected from

{
W (0)

∣∣‖W (0) −W ∗‖F /‖W ∗‖F <
0.5
}

to reduce the computation. As shown in (Fu et al.,
2018; Zhang et al., 2019), the random initialization and
the tensor initialization have very similar numerical per-
formance. We consider the learning algorithm to be
successful in estimation if the relative error, defined as
‖W (t) −W ∗‖F /‖W ∗‖F , is less than 10−3, where W (t)

is the weight matrix returned by Algorithm 1 when it termi-
nates.

5.1. Convergence rate

We first verify the linear convergence of Algorithm 1, as
shown in (14) and (18). Figure 3 (a) and (b) show the
convergence rate of Algorithm 1 when varying the number
of nodes in the hidden layer K. The dimension d of the
feature vectors is chosen as 10, and the sample size |Ω| is
chosen as 2000. We consider the connected-cycle graph
in Figure 2 (a) with δ = 4. All cases converge to W ∗

with the exponential decay. Moreover, from Figure 3, we
can also see that the rate of convergence is almost a linear
function of 1/

√
K. That verifies our theoretical result of

the convergence rate of 1−O(1/
√
K) in (16).
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Figure 3. Convergence rate with different K for a connected-circle
graph

Figure 4 compares the rates of convergence of AGD and
GD in regression problems. We consider a connected-cycle
graph with δ = 4. The number of samples |Ω| = 500,
d = 10, and K = 5. Starting with the same initialization,
we show the smallest number of iterations needed to reach
a certain estimation error, and the results are averaged over

100 independent trials. Both AGD and GD converge linearly.
AGD requires a smaller number of the iterations than GD to
achieve the same relative error.
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Figure 4. Convergence rates of AGD and GD

5.2. Sample complexity

We next study the influence of d, δ, δave, and different graph
structures on the estimation performance of Algorithm 1.
These relationships are summarized in the sample complex-
ity analyses in (13) and (17) of section 4.1. We have similar
numerical results for both regression and classification, and
here we only present the regression case.

Figures 5 (a) and (b) show the successful estimation rates
when the degree of graph δ and the feature dimension d
changes. We consider the connected-cycle graph in Figure 2
(a), and K is kept as 5. d is 40 in Figure 5 (a), and δ is 4 in
Figure 5 (b). The results are averaged over 100 independent
trials. White block means all trials are successful while
black block means all trials fail. We can see that the required
number of samples for successful estimation increases as d
and δ increases.
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Figure 5. Successful estimation rate for varying the required num-
ber of samples, δ, and d in a connected-circle graphs

Figure 6 shows the success rate against the sample size |Ω|
for the random graph in Figure 2(d) with different average
node degrees. We vary p to change the average node degree
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δave. K and d are fixed as 5 and 40, respectively. The
successful rate is calculated based on 100 independent trials.
We can see that more samples are needed for successful
recovery for a larger δave when the maximum degree δ is
fixed.
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Figure 6. The success rate against the number of samples for dif-
ferent δave/δ

Figure 7 shows the success rate against |Ω| for three dif-
ferent graph structures, including a connected cycle, a two-
dimensional grid, and a random regular graph in Figure 2
(a), (b), and (c). The maximum degrees of these graphs are
all fixed with δ = 4. The average degrees of the connected-
circle and the random δ-regular graphs are also δave = 4.
δave is very close to 4 for the two-dimensional grid when the
graph size is large enough, because only the boundary nodes
have smaller degrees, and the percentage of boundary nodes
decays as the graph size increases. Then from Lemma 1, we
have σ1(A) is 1 for all these graphs. Although these graphs
have different structures, the required numbers of samples
to estimate W ∗ accurately are the same, because both δ
and σ1(A) are the same. One can verify this property from
Figure 7 where all three curves almost coincide.
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Figure 7. The success rate with respect to sample complexity for
various graph structures

5.3. Accuracy in learningW ∗

We study the learning accuracy ofW ∗, characterized in (14)
for regression and (19) for classification. For regression
problems, we simulate the general cases when the labels
are noisy, i.e., yn = zn + ξn. The noise {ξn}Nn=1 are
i.i.d. from N (0, σ2), and the noise level is measured by
σ/Ez , where Ez is the average energy of the noiseless

labels {zn}Nn=1, calculated as Ez =
√

1
N

∑N
n=1 |zn|2. The

number of hidden nodes K is 5, and the dimension of each
feature d is as 60. We consider a connected-circle graph
with δ = 2. Figure 8 shows the performance of Algorithm
1 in the noisy case. We can see that when the number of
samples exceedsKd = 300, which is the degree of freedom
of W ∗, the relative error decreases dramatically. Also, as
N increases, the relative error converges to the noise level.
When there is no noise, the estimation ofW ∗ is accurate.
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Figure 8. Learning accuracy of Algorithm 1 with noisy measure-
ments for regression

For binary classification problems, Algorithm 1 returns the
nearest critical point Ŵ to W ∗. We show the distance
between the returned model and the ground-truth model
W ∗ against the number of samples in Figure 9. We consider
a connected-cycle graph with the degree δ = 2. K = 3

and d = 20. The relative error ‖Ŵ −W ∗‖F /‖W ∗‖F is
averaged over 100 independent trials. We can see that the
distance between the returned model and the ground-truth
model indeed decreases as the number of samples increases.
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Figure 9. Distance between the returned model by Algorithm1 and
the ground-truth model for binary classification
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6. Conclusion
Despite the practical success of graph neural networks in
learning graph-structured data, the theoretical guarantee of
the generalizability of graph neural networks is still elu-
sive. Assuming the existence of a ground-truth model, this
paper shows theoretically, for the first time, learning a one-
hidden-layer graph neural network with a generation error
that is zero for regression or approximately zero for binary
classification. With the tensor initialization, we prove that
the accelerated gradient descent method converges to the
ground-truth model exactly for regression or approximately
for binary classification at a linear rate. We also characterize
the required number of training samples as a function of the
feature dimension, the model size, and the graph structural
properties. One future direction is to extend the analysis to
multi-hidden-layer neural networks.
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A. Proof of Theorem 1
In this section, before presenting the proof of Theorem 1, we start with defining some useful notations. Recall that in (3),
the empirical risk function for linear regression problem is defined as

min
W

: f̂Ω(W ) =
1

2|Ω|
∑
n∈Ω

∣∣∣yn − g(W ;aTnX)
∣∣∣2. (22)

Population risk function, which is the expectation of the empirical risk function, is defined as

min
W

: fΩ(W ) = EX
1

2|Ω|
∑
n∈Ω

∣∣∣yn − g(W ;aTnX)
∣∣∣2. (23)

Then, the road-map of the proof can be summarized in the following three steps.

First, we show the Hessian matrix of the population risk function fΩt is positive-definite at ground-truth parametersW ∗

and then characterize the local convexity region of fΩt nearW ∗, which is summarized in Lemma 2.

Second, f̂Ωt is non-smooth because of ReLU activation, but fΩt is smooth. Hence, we characterize the gradient descent

term as ∇f̂Ωt(W
(t)) = 〈∇2fΩt(Ŵ

(t)
),W (t) −W ∗〉+

(
f̂Ωt(W

(t))− fΩt(W
(t))
)
. During this step, we need to apply

concentration theorem to bound ∇f̂Ωt to its expectation∇fΩt , which is summarized in Lemma 3.

Third, we take the momentum term of β(W (t) −W (t−1)) into consideration and obtain the following recursive rule:[
W (t+1) −W ∗

W (t) −W ∗

]
= L(β)

[
W (t) −W ∗

W (t−1) −W ∗

]
. (24)

Then, we know iterates W (t) converge to the ground-truth with a linear rate which is the largest singlar value of matrix
L(β). Recall that AGD reduces to GD with β = 0, so our analysis applies to GD method as well. We are able to show the
convergence rate of AGD is faster than GD by proving the largest singluar value of L(β) is smaller than L(0) for some
β > 0. Lemma 4 provides the estimation error of W (0) and sample complexity to guarantee ‖L(β)‖2 is less than 1 for
t = 0.
Lemma 2. Let fΩt be the population risk function in (23) for regression problems, then for anyW that satisfies

‖W ∗ −W ‖2 ≤
ε0σK

44κ2γK2
, (25)

the second-order derivative of fΩt is bounded as

(1− ε0)σ2
1(A)

11κ2γK2
I � ∇2fΩt(W ) � 4σ2

1(A)

K
I. (26)

Lemma 3. Let f̂Ωt and fΩt be the empirical and population risk functions in (22) and (23) for regression problems,
respectively. Then, for any fixed pointW satisfies (25), we have 6

∥∥∥∇fΩt(W )−∇f̂Ωt(W )
∥∥∥

2
. σ2

1(A)

√
(1 + δ2)d logN

|Ωt|
‖W −W ∗‖2, (27)

with probability at least 1−K2 ·N−10.

Lemma 4. Assume the number of samples |Ωt| & κ3(1 + δ2)σ4
1(A)Kd log4N , the tensor initialization method via

Subroutine 1 outputsW (0) such that

‖W (0) −W ∗‖2 . κ6σ2
1(A)

√
K4(1 + δ2)d logN

|Ωt|
‖W ∗‖2 (28)

with probability at least 1−N−10.

6We use f(d) & ( or .,h)g(d) to denote there exists some positive constant C such that f(d) ≥ ( or ≤,=)C · g(d) when d is
sufficiently large.
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The proofs of Lemmas 2 and 3 are included in Appendix A.1 and A.2, respectively, while the proof of Lemma 4 can be
found in Appendix D. With these three preliminary lemmas on hand, the proof of Theorem 1 is formally summarized in the
following contents.

Proof of Theorem 1. The update rule ofW (t) is

W (t+1) =W (t) − η∇f̂Ωt(W
(t)) + β(W (t) −W (t−1))

=W (t) − η∇fΩt(W
(t)) + β(W (t) −W (t−1)) + η(∇fΩt(W

(t))−∇f̂Ωt(W
(t))).

(29)

Since∇2
Ωt

is a smooth function, by the intermediate value theorem, we have

W (t+1) = W (t) − η∇2fΩt(Ŵ
(t)

)(W (t) −W ∗)

+ β(W (t) −W (t−1))

+ η
(
∇fΩt(W

(t))−∇f̂Ωt(W
(t))
)
,

(30)

where Ŵ
(t)

lies in the convex hull ofW (t) andW ∗.

Next, we have[
W (t+1) −W ∗

W (t) −W ∗

]
=

[
I − η∇2fΩt(Ŵ

(t)
) + βI βI

I 0

][
W (t) −W ∗

W (t−1) −W ∗

]
+ η

[
∇fΩt(W

(t))−∇f̂Ωt(W
(t))

0

]
. (31)

Let L(β) =

[
I − η∇2fΩt(Ŵ

(t)
) + βI βI

I 0

]
, so we have

∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
2

= ‖L(β)‖2

∥∥∥∥[ W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
2

+ η

∥∥∥∥[∇fΩt(W
(t))−∇f̂Ωt(W

(t))
0

]∥∥∥∥
2

.

From Lemma 3, we know that

η
∥∥∥∇fΩt(W

(t))−∇f̂Ωt(W
(t))
∥∥∥

2
. ησ2

1(A)

√
(1 + δ2)d logN

|Ωt|
‖W −W ∗‖2. (32)

Then, we have

‖W (t+1) −W ∗‖2 .

(
‖L(β)‖2 + ησ2

1(A)

√
(1 + δ2)d logN

|Ωt|

)
‖W (t) −W ∗‖2

:hν(β)‖W (t) −W ∗‖2.

(33)

Let ∇2f(Ŵ
(t)

) = SΛST be the eigen-decomposition of∇2f(Ŵ
(t)

). Then, we define

L̃(β) :=

[
ST 0

0 ST

]
L(β)

[
S 0
0 S

]
=

[
I − ηΛ + βI βI

I 0

]
. (34)

Since
[
S 0
0 S

] [
ST 0

0 ST

]
=

[
I 0
0 I

]
, we know L(β) and L̃(β) share the same eigenvalues. Let λi be the i-th eigenvalue

of ∇2fΩt(Ŵ
(t)

), then the corresponding i-th eigenvalue of L(β), denoted by δi(β), satisfies

δ2
i − (1− ηλi + β)δi + β = 0. (35)

Then, we have

δi(β) =
(1− ηλi + β) +

√
(1− ηλi + β)2 − 4β

2
, (36)
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and

|δi(β)| =

{√
β, if β ≥

(
1−
√
ηλi
)2
,

1
2

∣∣∣(1− ηλi + β) +
√

(1− ηλi + β)2 − 4β
∣∣∣ , otherwise.

(37)

Note that the other root of (35) is abandoned because the root in (36) is always no less than the other root with |1− ηλi| < 1.
By simple calculations, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
. (38)

Moreover, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.

Let us first assumeW (t) satisfies (25), then from Lemma 2, we know that

0 <
(1− ε0)σ2

1(A)

11κ2γK2
≤ λi ≤

4σ2
1(A)

K
.

Let γ1 =
(1−ε0)σ2

1(A)
11κ2γK2 and γ2 =

4σ2
1(A)
K . If we choose β such that

β∗ = max
{

(1−√ηγ1)2, (1−√ηγ2)2
}
, (39)

then we have β ≥ (1−
√
ηλi)

2 and δi = max
{
|1−√ηγ1|, |1−

√
ηγ2|

}
for any i.

Let η = 1
2γ2

, then β∗ equals to
(

1−
√

γ1

2γ2

)2

. Then, for any ε0 ∈ (0, 1/2), we have

‖L(β∗)‖2 = max
i
δi(β

∗) = 1−
√

γ1

2γ2
= 1−

√
1− ε0

88κ2γK
≤ 1− 1− (3/4) · ε0√

88κ2γK
. (40)

Then, let

ησ2
1(A)

√
(1 + δ2)d logN

|Ωt|
.

ε0

4
√

88κ2γK
, (41)

we need |Ωt| & ε−2
0 κ2γM(1 + δ2)σ2

1(A)K3d logN . Combining (40) and (41), we have

ν(β∗) ≤ 1− 1− ε0√
88κ2γK

. (42)

Let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1− 1− ε0

88κ2γK
,

ν(0) . ‖A(0)‖2 + ησ2
1(A)

√
(1 + δ2)d logN

|Ωt|
≤ 1− 1− 2ε0

88κ2γK

if |Ωt| & ε−2
0 κ2γM(1 + δ2)σ2

1(A)K3d logN .

Hence, with η = 1
2γ2

and β =
(
1− γ1

2γ2

)2
, we have

‖W (t+1) −W ∗‖2 ≤
(

1− 1− ε0√
88κ2γK

)
‖W (t) −W ∗‖2, (43)

providedW (t) satisfies (25), and
|Ωt| & ε−2

0 κ2γ(1 + δ2)σ4
1(A)K3d logN. (44)

Then, we can start mathematical induction of (43) over t.

Base case: According to Lemma 4, we know that (25) holds forW (0) if

|Ωt| & ε−2
0 κ9γ2(1 + δ2)σ4

1(A)K8d logN. (45)
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According to Theorem 1, it is clear that the number of samples |Ωt| satisfies (45), then (25) indeed holds for t = 0. Since
(25) holds for t = 0 and |Ωt| in Theorem 1 satisfies (44) as well, we have (43) holds for t = 0.

Induction step: Assuming (43) holds forW (t), we need to show that (43) holds forW (t+1). That is to say, we need |Ωt|
satisfies (44), which holds naturally from Theorem 1.

Therefore, when |Ωt| & ε−2
0 κ9γ2(1 + δ2)σ4

1(A)K8d logN , we know that (43) holds for all 0 ≤ t ≤ T − 1 with probability
at least 1−K2T ·N−10. By simple calculations, we can obtain

‖W (T ) −W ∗‖2 ≤
(

1− 1− ε0√
88κ2γK

)T
‖W (0) −W ∗‖2 (46)

A.1. Proof of Lemma 2

In this section, we provide the proof of Lemma 2 which shows the local convexity of fΩt in a small neighborhood of
W ∗. The roadmap is to first bound the smallest eigenvalue of ∇2fΩt in the ground truth as shown in Lemma 5, then show
that the difference of ∇2fΩt between any fixed point W in this region and the ground truth W ∗ is bounded in terms of
‖W −W ∗‖2 by Lemma 6.
Lemma 5. The second-order derivative of fΩt at the ground truthW ∗ satisfies

σ2
1(A)

11κ2γK2
� ∇2fΩt(W

∗) � 3σ2
1(A)

K
. (47)

Lemma 6. SupposeW satisfies (25), we have∥∥∇2fΩt(W )−∇2fΩt(W
∗)
∥∥

2
≤ 4σ2

1(A)
‖W ∗ −W ‖2

σK
. (48)

The proofs of Lemmas 5 and 6 can be found in Sec. A.3. With these two preliminary lemmas on hand, the proof of Lemma
2 is formally summarized in the following contents.

Proof of Lemma 2. By the triangle inequality, we have∣∣∣ ∥∥∇2fΩt(W )
∥∥

2
−
∥∥∇2fΩt(W

∗)
∥∥

2

∣∣∣ ≤ ‖∇2fΩt(W
∗)−∇2fΩt(W )‖2,

and ∥∥∇2fΩt(W )
∥∥

2
≤
∥∥∇2fΩt(W

∗)
∥∥

2
+ ‖∇2fΩt(W

∗)−∇2fΩt(W )‖2,∥∥∇2fΩt(W )
∥∥

2
≥
∥∥∇2fΩt(W

∗)
∥∥

2
− ‖∇2fΩt(W

∗)−∇2fΩt(W )‖2.

The error bound of ‖∇2fΩt(W
∗)−∇2fΩt(W )‖2 can be derived from Lemma 6, and the error bound of∇2fΩt(W

∗) is
provided in Lemma 5.

Therefore, for anyW satisfies (25), we have

(1− ε0)σ2
1(A)

11κ2γK2
≤
∥∥∇2fΩt(W )

∥∥
2
≤ 4σ2

1(A)

K
. (49)

A.2. Proof of Lemma 3

The proof of Lemma 3 is mainly to bound the concentration error of random variables zn(j, k) as shown in (60). We
first show that zn(j, k) is a sub-exponential random variable, and the definitions of sub-Gaussian and sub-exponential
random variables are provided in Definitions 1 and 2. Though Hoeffding’s inequality provides the concentration error
for sum of independent random variables, random variables zn(j, k) with different j, k are not independent. Hence, we
introduce Lemma 7 to provide the upper bound for the moment generation function of the sum of partly dependent random
variables and then apply standard Chernoff inequality. Lemmas 8 and 9 are standard tools in analyzing spectral norms of
high-demensional random matrices.
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Definition 1 (Definition 5.7, (Vershynin, 2010)). A random variable X is called a sub-Gaussian random variable if it
satisfies

(E|X|p)1/p ≤ c1
√
p (50)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖
2
ψ2
s2 (51)

for all s ∈ R and some constant c2 > 0, where ‖X‖ψ2
is the sub-Gaussian norm of X defined as ‖X‖ψ2

=
supp≥1 p

−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional marginal αTX is
sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm ofX is defined as ‖X‖ψ2 = sup‖α‖2=1 ‖αTX‖ψ2 .

Definition 2 (Definition 5.13, (Vershynin, 2010)). A random variable X is called a sub-exponential random variable if it
satisfies

(E|X|p)1/p ≤ c3p (52)

for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖
2
ψ1
s2 (53)

for s ≤ 1/‖X‖ψ1 and some constant c4 > 0, where ‖X‖ψ1 is the sub-exponential norm of X defined as ‖X‖ψ1 =
supp≥1 p

−1(E|X|p)1/p.

Lemma 7. Given a sampling set X = {xn}Nn=1 that contains N partly dependent random variables, for each n ∈ [N ],
suppose xn is dependent with at most dX random variables in X (including xn itself), and the moment generate function
of xn satisfies Exnesxn ≤ eCs

2

for some constant C that may depend on xn. Then, the moment generation function of∑N
n=1 xn is bounded as

EX es
∑N
n=1 xn ≤ eCdXNs

2

. (54)

Lemma 8 (Lemma 5.2, (Vershynin, 2010)). Let B(0, 1) ∈ {α
∣∣‖α‖2 = 1,α ∈ Rd} denote a unit ball in Rd. Then, a subset

Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to within ξ by some point α ∈ B(0, 1), i.e.
‖z −α‖2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ satisfies

|Sξ| ≤ (1 + 2/ξ)d. (55)

Lemma 9 (Lemma 5.3, (Vershynin, 2010)). Let A be an N × d matrix, and let Sξ be a ξ-net of B(0, 1) in Rd for some
ξ ∈ (0, 1). Then

‖A‖2 ≤ (1− ξ)−1 max
α∈Sξ

|αTAα|. (56)

The proof of Lemma 7 can be found in Appendex A.3. With these preliminary Lemmas and definition on hand, the proof of
Lemma 3 is formally summarized in the following contents.

Proof of Lemma 3 . We have

f̂Ωt(W ) =
1

2|Ωt|
∑
n∈Ωt

∣∣∣yn − g(W ;aTnX)
∣∣∣2 =

1

2|Ωt|
∑
n∈Ωt

∣∣∣yn − K∑
j=1

φ(aTnXwj)
∣∣∣2, (57)

and

fΩt(W ) = EX f̂Ωt(W ) =
1

2|Ωt|
∑
n∈Ωt

Ex
∣∣∣yn − K∑

j=1

φ(aTnXwj)
∣∣∣2. (58)
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The gradients of f̂Ωt are

∂f̂Ωt

∂wk
(W ) =

1

K2|Ωt|
∑
n∈Ωt

(
yn −

K∑
j=1

φ(aTnXwj)
)
XTanφ

′(aTnXwk)

=
1

K2|Ωt|
∑
n∈Ωt

( K∑
j=1

φ(aTnXw
∗
j )−

K∑
j=1

φ(aTnXwj)
)
XTanφ

′(aTnXwk)

=

K∑
j=1

1

K2|Ωt|
∑
n∈Ωt

(
φ(aTnXw

∗
j )− φ(aTnXwj)

)
XTanφ

′(aTnXwk).

(59)

Let us define
zn(k, j) = XTanφ

′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)
, (60)

then for any normalized α ∈ Rd, we have

p−1
(
EX
∣∣αTXTanφ

′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)∣∣p)1/p

≤p−1
(
EX
∣∣αTXTan

∣∣2p · EX ∣∣φ′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)∣∣2p)1/2p

≤p−1
(
EX
∣∣αTXTan

∣∣2p)1/2p

·
(
EX
∣∣aTnX(w∗j −wj)

∣∣2p)1/2p

(61)

where the first inequality comes from the Cauchy-Schwarz inequality. Furthermore, aTnX belongs to the Gaussian
distribution and thus is a sub-Gaussian random vector as well. Then, from Definition 1, we have(

EX
∣∣αTXTan

∣∣2p)1/2p

≤ (2p)1/2‖XTan‖ψ2
≤ (2p)1/2‖an‖2,

and
(
EX
∣∣aTnX(w∗j −wj)

∣∣2p)1/2p

≤ (2p)1/2‖an‖2 · ‖w∗j −wj‖2.
(62)

Then, we have

p−1
(
EX
∣∣αTXTanφ

′(aTnXwk)
(
φ(aTnXw

∗
j )− φ(aTnXwj)

)∣∣p)1/p

≤p−1 · 2p‖an‖22 · ‖w∗j −wj‖2
≤2σ2

1(A) · ‖w∗j −wj‖2.

(63)

Therefore, from Definition 2, zn(k, j) belongs to the sub-exponential distribution with

‖zn‖φ1 ≤ 2σ2
1(A) · ‖w∗j −wj‖2. (64)

Recall that each node is connected with at most δ other nodes. Hence, for any fixed zn, there are at most (1 + δ2)
(including zn itself) elements in

{
zl
∣∣l ∈ Ωt

}
are dependant with zn. From Lemma 7, the moment generation function of∑

n∈Ωt
(zn − EXzn) satisfies

EXes
∑
n∈Ωt

(zn−EXzn) ≤ eC(1+δ2)|Ωt|s2 . (65)

By Chernoff inequality, we have

Prob
{∥∥∥ 1

|Ωt|
∑
n∈Ωt

(
zn(k, j)− EXzn(k, j)

)∥∥∥
2
> t

}
≤ eC(1+δ2)|Ωt|s2

e|Ωt|ts
(66)

for any s > 0.
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Let s = t/
(
C(1 + δ2)‖zn‖2φ1

)
and t =

√
(1+δ2)d logN

|Ωt| ‖zn‖φ1 , we have

∥∥∥ 1

|Ωt|
∑
n∈Ωt

(
zn(k, j)− EXzn(k, j)

)∥∥∥
2
≤C

√
(1 + δ2)d logN

|Ωt|
σ2

1(A) · ‖w∗j −wj‖2

≤Cσ2
1(A)

√
(1 + δ2)d logN

|Ωt|
· ‖W ∗ −W ‖2

(67)

with probability at least 1−N−d.

In conclusion, by selecting ξ = 1
2 in Lemmas 8 and 9, we have

∥∥∥∂f̂Ωt

∂wk
(W )− ∂fΩt

∂wk
(W )

∥∥∥
2
≤

K∑
k=1

K∑
j=1

1

K2

∥∥∥ 1

|Ωt|
∑
n∈Ωt

zn(k, j)− EXzn(k, j)
∥∥∥

2

≤Cσ2
1(A)

√
(1 + δ2)d logN

|Ωt|
· ‖W ∗ −W ‖2

(68)

with probability at least 1−
(

5
N

)d
.

A.3. Proof of auxiliary lemmas for regression problems

A.3.1. PROOF OF LEMMA 5

Proof of Lemma 5 . For any normalized α ∈ RKd, the lower bound of∇2fΩt(W
∗) is derived from

αT∇2f(W ∗)α =
1

K2|Ωt|
∑
n∈Ωt

EX
[( K∑

j=1

αTj X
Tanφ

′(aTnXw
∗
j )
)2
]

≥ 1

K2|Ωt|
∑
n∈Ωt

‖an‖22
11κ2γ

‖α‖22 =
σ2

1(A)

11κ2γK2
,

(69)

where the last inequality can be derived from Lemma D.6 in (Zhong et al., 2017c). In spite that the error bound in (Zhong
et al., 2017c) is given in terms of xn instead ofXTan, both xn andXTan belong to Gaussian distribution. Hence, we can
follow the similar steps in (Zhong et al., 2017c) to derive the results for Gaussian random variableXTan with 0 mean and
‖an‖22 variance.

Next, the upper bound of ∇2fΩt(W
∗) is derived from

αT∇2f(W ∗)α

=
1

K2|Ωt|
∑
n∈Ωt

EX
[( K∑

j=1

αTj X
Tanφ

′(aTnXw
∗
j )
)2
]

=
1

K2|Ωt|
∑
n∈Ωt

K∑
j1=1

K∑
j2=1

EX
[
αTj1X

Tanφ
′(aTnXw

∗
j1)αTj2X

Tanφ
′(aTnXw

∗
j2)

]

≤ 1

K2|Ωt|
∑
n∈Ωt

K∑
j1=1

K∑
j2=1

[
EX |αTj1X

Tan|4 · EX |φ′(aTnXw∗j1)|4 · EX |αTj2X
Tan|4 · EX |φ′(aTnXw∗j2)|4

] 1
4

≤ 1

K2|Ωt|
∑
n∈Ωt

K∑
j1=1

K∑
j2=1

3σ2
1(A)‖αj1‖2‖αj2‖2

≤3σ2
1(A)

‖α‖22
K

,

(70)

which completes the proof.
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A.3.2. PROOF OF LEMMA 6

Proof of Lemma 6 . The second-order derivative of fΩt is written as

∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)

=
1

K2|Ωt|
∑
n∈Ωt

EX(XTan)(XTan)T
[
φ′(aTnXwj1)φ′(aTnXwj2)− φ′(aTnXw∗j1)φ′(aTnXw

∗
j2)
]

=
1

K2|Ωt|
∑
n∈Ωt

EX(XTan)(XTan)T
(
φ′(aTnXwj1)− φ′(aTnXw∗j1)

)
φ′(aTnXwj2)

− 1

K2|Ωt|
∑
n∈Ωt

EX(XTan)(XTan)Tφ′(aTnXw
∗
j1)
(
φ′(aTnXw

∗
j2)− φ′(aTnXwj2)

)
.

(71)

For any normalized α ∈ Rd, we have∣∣∣αT [ ∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)
]
α
∣∣∣

≤
∣∣∣ 1

K2|Ωt|
∑
n∈Ωt

EX(αTXTan)2
(
φ′(aTnXwj1)− φ′(aTnXw∗j1)

)
φ′(aTnXwj2)

∣∣∣
+
∣∣∣ 1

K2|Ωt|
∑
n∈Ωt

EX(αTXTan)2φ′(aTnXw
∗
j1)
(
φ′(aTnXw

∗
j2)− φ′(aTnXwj2)

)∣∣∣
≤ 1

K2|Ωt|
∑
n∈Ωt

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

+
1

K2|Ωt|
∑
n∈Ωt

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXw∗j2)− φ′(aTnXwj2)
∣∣∣.

(72)

It is easy to verify there exists a basis such that B = {α,β,γ,α⊥4 , · · · ,α⊥d } with {α,β,γ} spanning a subspace that
contains α,wj1 and w∗j1 . Then, for anyXTan ∈ Rd, we have a unique z =

[
z1 z2 · · · zd

]T
such that

XTan = z1α+ z2β + z3γ + · · ·+ zdα
⊥
d .

Also, sinceXTan ∼ N (0, ‖an‖22Id), we have z ∼ N (0, ‖an‖22Id). Then, we have

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=Ez1,z2,z3 |φ′
(
wT
j1 x̃
)
− φ′

(
w∗j1

T x̃
)
| · |aT x̃|2

=

∫
|φ′
(
wT
j1 x̃
)
− φ′

(
w∗j1

T x̃
)
| · |aT x̃|2 · fZ(z1, z2, z3)dz1dz2dz3,

where x̃ = z1α + z2β + z3γ and fZ(z1, z2, z3) is the probability density function of (z1, z2, z3). Next, we consider
spherical coordinates with z1 = r cosφ1, z2 = r sinφ1 sinφ2, z3 = z2 = r sinφ1 cosφ2. Hence,

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=

∫ ∫ ∫
|φ′
(
wT
j1 x̃
)
− φ′

(
w∗j1

T x̃
)
| · |r cosφ1|2 · fZ(r, φ1, φ2)r2 sinφ1drdφ1dφ2.

(73)

It is easy to verify that φ′
(
wT
j1
x̃
)

only depends on the direction of x̃ and

fZ(r, φ1, φ2) =
1

(2π‖an‖22)
3
2

e
− x

2
1+x2

2+x2
3

2‖an‖22 =
1

(2π‖an‖22)
3
2

e
− r2

2‖an‖22
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only depends on r. Then, we have

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=

∫ ∫ ∫
|φ′
(
wT
j1(x̃/r)

)
− φ′

(
w∗j1

T (x̃/r)
)
| · |r cosφ1|2 · fZ(r)r2 sinφ1drdφ1dφ2

=

∫ ∞
0

r4fz(r)dr

∫ π

0

∫ 2π

0

| cosφ1|2 · sinφ1 · |φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|dφ1dφ2

≤3‖an‖22 ·
∫ ∞

0

r2fz(r)dr

∫ π

0

∫ 2π

0

sinφ1 · |φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|dφ1dφ2

=3‖an‖22 · Ez1,z2,z3
∣∣φ′(wT

j1 x̃
)
− φ′

(
w∗j1

T x̃
)
|

=3‖an‖22 · EX
∣∣φ′(aTnXwj1

)
− φ′

(
aTnXw

∗
j1

)∣∣

(74)

Define a set A1 = {x|(w∗j1
Tx)(wj1

Tx) < 0}. If x ∈ A1, then w∗j1
Tx and wj1

Tx have different signs, which means the
value of φ′(wT

j1
x) and φ′(w∗j1

Tx) are different. This is equivalent to say that

|φ′(wT
j1x)− φ′(w∗j1

Tx)| =

{
1, if x ∈ A1

0, if x ∈ Ac1
. (75)

Moreover, if x ∈ A1, then we have

|w∗j1
Tx| ≤|w∗j1

Tx−wj1
Tx| ≤ ‖w∗j1 −wj1‖ · ‖x‖. (76)

Define a set A2 such that

A2 =
{
x
∣∣∣ |w∗j1Tx|‖w∗j1‖‖x‖

≤
‖w∗j1 −wj1‖
‖w∗j1‖

}
=
{
θx,w∗j1

∣∣∣| cos θx,w∗j1
| ≤
‖w∗j1 −wj1‖
‖w∗j1‖

}
. (77)

Hence, we have that

Ex|φ′(wT
j1x)− φ′(w∗j1

Txi2)| = Prob(x ∈ A1) ≤ Prob(x ∈ A2). (78)

Since x ∼ N (0, I), θx,w∗j1 belongs to the uniform distribution on [−π, π], we have

Prob(x ∈ A2) =
π − arccos

‖w∗j1−wj1‖
‖w∗j1‖

π

≤ 1

π
tan(π − arccos

‖w∗j1 −wj1‖
‖w∗j1‖

)

=
1

π
cot(arccos

‖w∗j1 −wj1‖
‖w∗j1‖

)

≤ 2

π

‖w∗j1 −wj1‖
‖w∗j1‖

.

(79)

Hence, (81) and (79) suggest that

EX
∣∣φ′(aTnXwj1

)
− φ′

(
aTnXw

∗
j1

)∣∣ ≤ 6

π

‖w∗j1 −wj1‖
‖w∗j1‖

. (80)

Then, we have

EX
∣∣αTXTan

∣∣2 · ∣∣∣φ′(aTnXwj1)− φ′(aTnXw∗j1)
∣∣∣

=3‖an‖22 · EX
∣∣φ′(aTnXwj1

)
− φ′

(
aTnXw

∗
j1

)∣∣
≤6‖an‖22

π
·
‖wj1 −w∗j1‖2
‖w∗j1‖2

,

(81)
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All in all, we have

∥∥∇2fΩt(W )−∇2fΩt(W
∗)
∥∥

2
≤

K∑
j1

K∑
j2

∥∥∥ ∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)
∥∥∥

2

≤K2 max
j1,j2

∥∥∥ ∂2fΩt

∂wj1∂wj2

(W )− ∂2fΩt

∂wj1∂wj2

(W ∗)
∥∥∥

2

≤K2 · 12‖an‖22
π

max
j

‖wj −w∗j‖2
‖w∗j‖2

≤4σ2
1(A)

‖W ∗ −W ‖2
σK

.

(82)

A.3.3. PROOF OF LEMMA 7

Proof of Lemma 7 . According to the Definitions in (Janson, 2004), there exists a family of {(Xj , wj)}j , where Xj ⊆ X
and wj ∈ [0, 1], such that

∑
j wj

∑
xnj∈Xj

xnj =
∑N
n=1 xn, and

∑
j wj ≤ dX by equations (2.1) and (2.2) in (Janson,

2004). Then, let pj be any positive numbers with
∑
j pj = 1. By Jensen’s inequality, for any s ∈ R, we have

es
∑N
n=1 xn = e

∑
j pj

swj
pj

Xj ≤
∑
j

pje
swj
pj

Xj
, (83)

where Xj =
∑
xnj∈Xj

xnj .

Then, we have

EX es
∑N
n=1 xn ≤EX

∑
j

pje
swj
pj

Xj
=
∑
j

pj
∏
Xj

EX e
swj
pj

xnj

≤
∑
j

pj
∏
Xj

e

Cw2
j

p2
j

s2

≤
∑
j

pje

C|Xj |w
2
j

p2
j

s2

.

(84)

Let pj =
wj |Xj |1/2∑
j wj |Xj |1/2 , then we have

EX es
∑N
n=1 xn ≤

∑
j

pje
C
(∑

j wj |Xj |
1/2
)2
s2 = eC

(∑
j wj |Xj |

1/2
)2
s2 . (85)

By Cauchy-Schwarz inequality, we have(∑
j

wj |Xj |1/2
)2 ≤∑

j

wj
∑
j

wj |Xj | ≤ dXN. (86)

Hence, we have
EX es

∑N
n=1 xn ≤ eCdXNs

2

. (87)
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B. Proof of Theorem 2
Recall that the empirical risk function in (4) is defined as

min
W

: f̂Ω(W ) =
1

|Ω|
∑
n∈Ω

−yn log
(
g(W ;aTnX)

)
− (1− yn) log

(
1− g(W ;aTnX)

)
. (88)

The population risk function is defined as

fΩ(W ) :=EX,yn f̂Ω(W )

=EXEyn|X
[ 1

|Ω|
∑
n∈Ω

−yn log
(
g(W ;aTnX)

)
− (1− yn) log

(
1− g(W ;aTnX)

)]
=EX

1

|Ω|
∑
n∈Ω

−g(W ∗;aTnX) log
(
g(W ;aTnX)

)
− (1− g(W ∗;aTnX)) log

(
1− g(W ;aTnX)

)
.

(89)

The road-map of proof for Theorem 2 follows the similar three steps as those for Theorem 1. The major differences lie
in three aspects: (i) in the second step, the objective function f̂Ωt is smooth since the activation function φ(·) is sigmoid.

Hence, we can directly apply the mean value theorem as ∇f̂Ωt(W
(t)) = 〈∇2f̂Ωt(Ŵ

(t)
),W (t) −W ∗〉 to characterize

the effects of the gradient descent term in each iteration, and the error bound of ∇2f̂Ωt is provided in Lemma 10; (ii) the
objective function is the sum of cross-entry loss functions, which have more complex structure of derivatives than those
of square loss functions; (iii) as the convergent point may not be the critical point of empirical loss function, we need to
provide the distance from the convergent point to the ground-truth parameters additionally, where Lemma 11 is used.

Lemmas 10 and 11 are summarized in the following contents. Also, the notations . and & follow the same definitions as in
(27). The proofs of Lemmas 10 and 11 can be found in Appendix B.1 and B.2, respectively.

Lemma 10. For anyW that satisfies

‖W −W ∗‖ ≤ 2σ2
1(A)

11κ2γK2
(90)

then the second-order derivative of the empirical risk function in (88) for binary classification problems is bounded as

2(1− ε0)

11κ2γK2
σ2

1(A) � ∇2f̂Ωt(W ) � σ2
1(A). (91)

provided the number of samples satisfies

|Ωt| & ε−2
0 (1 + δ2)κ2γσ4

1(A)K6d logN. (92)

Lemma 11. Let f̂Ωt and fΩt be the empirical and population risk function in (88) and (89) for binary classification
problems, respectively, then the first-order derivative of f̂Ωt is close to its expectation fΩt with an upper bound as

‖∇fΩt(W )−∇f̂Ωt(W )‖2 . K2σ2
1(A)

√
(1 + δ2)d log d

|Ωt|
(93)

with probability at least 1−K2N−10.

With these preliminary lemmas, the proof of Theorem 2 is formally summarized in the following contents.

Proof of Theorem 2. The update rule ofW (t) is

W (t+1) =W (t) − η∇f̂Ωt(W
(t)) + β(W (t) −W (t−1)) (94)

Since Ŵ is a critical point, then we have∇f̂Ωt(Ŵ ) = 0. By the intermediate value theorem, we have

W (t+1) = W (t) − η∇2f̂Ωt(Ŵ
(t)

)(W (t) − Ŵ )

+ β(W (t) −W (t−1))
(95)



Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

where Ŵ
(t)

lies in the convex hull ofW (t) and Ŵ .

Next, we have [
W (t+1) −W ∗

W (t) −W ∗

]
=

[
I − η∇2f̂Ωt(Ŵ

(t)
) + βI βI

I 0

] [
W (t) −W ∗

W (t−1) −W ∗

]
. (96)

Let P (β) =

[
I − η∇2f̂Ωt(Ŵ

(t)
) + βI βI

I 0

]
, so we have

∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
2

= ‖P (β)‖2

∥∥∥∥[ W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
2

.

Then, we have

‖W (t+1) −W ∗‖2 .‖P (β)‖2‖W (t) −W ∗‖2 (97)

Let λi be the i-th eigenvalue of∇2f̂Ωt(Ŵ
(t)

), and δi be the i-th eigenvalue of matrix P (β). Following the similar analysis
in proof of Theorem 1, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
. (98)

Moreover, δi achieves the minimum δ∗i = |1−
√
ηλi| when β =

(
1−
√
ηλi
)2

.

Let us first assumeW (t) satisfies (90) and the number of samples satisfies (92), then from Lemma 10, we know that

0 <
2(1− ε0)σ2

1(A)

11κ2γK2
≤ λi ≤ σ2

1(A).

We define γ1 =
2(1−ε0)σ2

1(A)
11κ2γK2 and γ2 = σ2

1(A). Also, for any ε0 ∈ (0, 1), we have

ν(β∗) = ‖P (β∗)‖2 = 1−
√

γ1

2γ2
= 1−

√
1− ε0

11κ2γK
(99)

Let β = 0, we have

ν(0) = ‖A(0)‖2 = 1− 1− ε0

11κ2γK
.

Hence, with probability at least 1−K2 ·N−10, we have

‖W (t+1) −W ∗‖2 ≤
(

1−
√

1− ε0

11κ2γK

)
‖W (t) −W ∗‖2, (100)

provided thatW (t) satisfies (25), and

|Ωt| & ε−2
0 κ2γ(1 + δ2)σ4

1(A)K6d logN. (101)

According to Lemma 4, we know that (90) holds forW (0) if

|Ωt| & ε−2
0 κ8γ2(1 + δ2)K8d logN. (102)

Combining (101) and (102), we need |Ωt| & ε−2
0 κ8γ2(1 + δ2)σ4

1(A)K8d logN .

Finally, by the mean value theorem, we have

f̂Ωt(Ŵ ) ≤ f̂Ωt(W
∗) +∇f̂Ωt(W

∗)
T

(Ŵ −W ∗) +
1

2
(Ŵ −W ∗)T∇2f̂Ωt(W̃ )(Ŵ −W ∗) (103)



Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case

for some W̃ between Ŵ andW ∗. Since Ŵ is the local minima, we have f̂Ωt(Ŵ ) ≤ f̂Ωt(W
∗). That is to say

∇f̂Ωt(W
∗)
T

(Ŵ −W ∗) +
1

2
(Ŵ −W ∗)T∇2f̂Ωt(W̃ )(Ŵ −W ∗) ≤ 0 (104)

which implies
1

2
‖∇2f̂Ωt(W̃ )‖2‖Ŵ −W ∗‖22 ≤ ‖∇f̂Ωt(W

∗)‖2‖Ŵ −W ∗‖2. (105)

From Lemma 10, we know that

‖∇2f̂Ωt(W̃ )‖2 ≥
2(1− ε0)

11κ2γK2
σ2(A). (106)

From Lemma 11, we know that

‖∇f̂Ωt(W
∗)‖2 = ‖∇f̂Ωt(W

∗)−∇fΩt(W
∗)‖2 . K2σ2

1(A)

√
(1 + δ2)d logN

|Ωt|
. (107)

Plugging inequalities (106) and (107) back into (105), we have

‖Ŵ −W ∗‖2 . (1− ε0)−1κ2γK4

√
(1 + δ2)d log d

|Ωt|
. (108)

B.1. Proof of Lemma 10

The roadmap of proof for Lemma 10 follows the similar steps as those of Lemma 2 for regression problems. Lemmas 12, 13
and 14 are the preliminary lemmas, and their proofs can be found in Appendix B.2. The proof of Lemma 10 is summarized
after these preliminary lemmas.

Lemma 12. The second-order derivative of fΩt at the ground truthW ∗ satisfies

4σ2
1(A)

11κ2γK2
I � ∇2fΩt(W

∗) � σ2
1(A)

4
I. (109)

Lemma 13. Suppose fΩt is the population loss function with respect to binary classification problems, then we have

‖∇2fΩt(W )−∇2fΩt(W
∗)‖2 . ‖W −W ∗‖2. (110)

Lemma 14. Suppose f̂Ωt is the empirical loss function with respect to binary classification problems, then the second-order
derivative of f̂Ωt is close to its expectation with an upper bound as

‖∇2fΩt(W )−∇2f̂Ωt(W )‖2 . K2σ2
1(A)

√
(1 + δ2)d log d

|Ωt|
(111)

with probability at least 1−K2N−10.

Proof of Lemma 10 . For anyW , we have∣∣∣‖∇2fΩt(W )‖2 − ‖∇2fΩt(W
∗)‖2

∣∣∣ ≤ ‖∇2fΩt(W )−∇2fΩt(W
∗)‖2. (112)

That is

‖∇2fΩt(W )‖2 ≤ ‖∇2fΩt(W
∗)‖2 + ‖∇2fΩt(W )−∇2fΩt(W

∗)‖2
and ‖∇2fΩt(W )‖2 ≥ ‖∇2fΩt(W

∗)‖2 − ‖∇2fΩt(W )−∇2fΩt(W
∗)‖2

(113)
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Then, for anyW that satisfies ‖W −W ∗‖ ≤ 2σ2
1(A)

11κ2γK2 , from Lemmas 12 and 13, we have

2

11κ2γK2
σ2

1(A) � ∇2fΩt(W ) � 1

2
σ2

1(A). (114)

Next, we have

‖∇2f̂Ωt(W )‖2 ≤ ‖∇2fΩt(W )‖2 + ‖∇2f̂Ωt(W )−∇2fΩt(W )‖2
and ‖∇2f̂Ωt(W )‖2 ≥ ‖∇2fΩt(W )‖2 − ‖∇2f̂Ωt(W )−∇2fΩt(W )‖2

(115)

Then, from (114) and Lemma 14, we have

2(1− ε0)

11κ2γK2
σ2

1(A) � ∇2f̂Ωt(W ) � σ2
1(A) (116)

provided that the sample size |Ωt| & ε−2
0 (1 + δ2)κ2γσ4

1(A)K6d logN .

B.2. Proof of auxiliary lemmas for binary classification problems

B.2.1. PROOF OF LEMMA 12

Proof of Lemma 12 . Since EXyn = gn(W ∗;an), then we have

∂2fΩt(W
∗)

∂w∗j∂w
∗
k

=EX
∂2f̂Ωt(W

∗)

∂w∗j∂w
∗
k

=EX
1

K2|Ωt|
∑
n∈Ωt

1

g(W ;an)
(
1− g(W ;an)

)φ′(wT
j X

Tan)φ′(wT
kX

Tan)(XTan)(XTan)T ,

(117)

for any j, k ∈ [K].

Then, for any α =
[
αT1 , αT2 , · · · , αTK

]T ∈ Rdk with αj ∈ Rd, the lower bound can be obtained from

αT∇2fΩt(W
∗)α =EX

1

K2|Ωt|
∑
n∈Ωt

(∑K
j=1α

T
j X

Tanφ
′(w∗j

TXTan)
)2

g(W ∗;an)
(
1− g(W ∗;an)

)
≥EX

4

K2|Ωt|
∑
n∈Ωt

( K∑
j=1

αTj X
Tanφ

′(w∗j
TXTan)

)2

≥ 4σ2
1(A)

11κ2γK2
.

(118)

Also, for the upper bound, we have

αT∇2fΩt(W
∗)α =EX

1

K2|Ωt|
∑
n∈Ωt

(∑K
j=1α

T
j X

Tanφ
′(w∗j

TXTan)
)2

g(W ∗;an)
(
1− g(W ∗;an)

)
=EX

1

|Ωt|
∑
n∈Ωt

(∑K
j=1α

T
j X

Tanφ
′(w∗j

TXTan)
)2

∑K
j1=1 φ(w∗j1

TXTan)
∑K
j2=1

(
1− φ(w∗j2

TXTan)
)

≤EX
1

|Ωt|
∑
n∈Ωt

∑K
j=1

(
αTj X

Tan
)2∑K

j=1

(
φ′(w∗j

TXTan)
)2∑K

j1=1 φ(w∗j1
TXTan)

∑K
j2=1

(
1− φ(w∗j2

TXTan)
) .

(119)
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For the denominator item, we have

K∑
j1=1

φ(w∗j1
TXTan)

K∑
j2=1

(
1− φ(w∗j2

TXTan)
)
≥

K∑
j=1

φ(w∗j
TXTan)

(
1− φ(w∗j

TXTan)
)

=

K∑
j=1

φ′(w∗j
TXTan)

≥4

K∑
j=1

φ′(w∗j
TXTan)2.

(120)

Hence, we have

αT∇2fΩt(W
∗)α ≤ EX

1

4|Ωt|
∑
n∈Ωt

K∑
j=1

(αTj X
Tan)2 ≤ 1

4
σ2

1(A). (121)

B.2.2. PROOF OF LEMMA 13

Proof of Lemma 13 . Recall that

∂2fΩt(W )

∂wj∂wk

=EX
1

K2|Ωt|
∑
n∈Ωt

(
g(W ∗;an)

g2(W ;an)
+

1− g(W ∗;an)

(1− g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)(XTan)(XTan)T ,

(122)

and

∂2fΩt(W )

∂w2
j

=EX
1

K2|Ωt|
∑
n∈Ωt

(
g(W ∗;an)

g2(W ;an)
+

1− g(W ∗;an)

(1− g(W ;an))2

)
φ′(wT

j X
Tan)2(XTan)(XTan)T

− EX
1

K|Ωt|
∑
n∈Ωt

(
− g(W ∗;an)

g(W ;an)
+

1− g(W ∗;an)

1− g(W ;an)

)
φ′′(wT

j X
Tan)(XTan)(XTan)T .

(123)

Let us denote Aj,k(W ;an) as

Aj,k(W ;an) =


1
K2

( g(W ∗;an)
g2(W ;an) + 1−g(W ∗;an)

(1−g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)

− 1
K

(
− g(W ∗;an)

g(W ;an) + 1−g(W ∗;an)
1−g(W ;an)

)
φ′′(wT

j X
Tan), when j = k;

1
K2

( g(W ∗;an)
g2(W ;an) + 1−g(W ∗;an)

(1−g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan), when j 6= k.

(124)

Further, let us define M(W ;an) = max
{

2
K3

1
g3(W ;an) ,

2
K3

1
(1−g(W ;an))3 ,

1
K2

1
g2(W ;an) ,

1
K2

1
((1−g(W ;an))2

}
.

Then, by the mean value theorem, we have

Aj,k(W ;an)−Aj,k(W ;an) =

K∑
l=1

〈∂Aj,k
∂wl

(W̃ ;an),wl −w∗l 〉. (125)

For ∂Aj,k∂wl
, we have

∂Aj,k
∂wl

(W̃ ;an) = Bj,k,l(W̃ ;an)XTan (126)
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with

|Bj,k,l(W̃ ;an)| ≤ 2

K3

1

g3(W̃ ;an)
+

2

K3

1

(1− g(W̃ ;an))3
+

1

K2

1

g(W̃ ;an)
+

1

K2

1

(1− g(W̃ ;an))2

≤4M(W̃ ;an).

(127)

for all j ∈ [K], k ∈ [K], l ∈ [K].

Therefore, for any α ∈ RKd, we have

αT∇2fΩt(W )α

≤ 1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

EX
∣∣∣αTj ∂fΩt

∂wj∂wk
(W )αk

∣∣∣
=

1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

EX
∣∣∣ K∑
l=1

|Bj,k,l(W̃ ;an)|〈wl −w∗l ,X
Tan〉〈αj ,XTan〉〈αk,XTan〉

∣∣∣
=

1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

( K∑
l=1

EX |Bj,k,l(W̃ ;an)|2
) 1

2
( K∑
l=1

EX
∣∣〈wl −w∗l ,X

Tan〉〈αj ,XTan〉〈αk,XTan〉
∣∣2) 1

2

≤ 1

|Ωt|
∑
n∈|Ωt|

K∑
j=1

K∑
k=1

36K
1
2

(
EXM2(Ŵ ;an)

) 1
2 ·
( K∑
l=1

‖wl −w∗l ‖22
) 1

2 ‖aj‖2‖ak‖2

≤ 1

|Ωt|
∑
n∈|Ωt|

36K3
(
EXM2(Ŵ ;an)

) 1
2 ‖W −W ∗‖2

(a)

. eσ
2
1(A)‖W −W ∗‖2

.‖W −W ∗‖2,
(128)

where (a) comes from Lemma 5 in (Fu et al., 2018).

B.2.3. PROOF OF LEMMA 14

Proof of Lemma 14 . Recall that

∂2f̂Ωt(W )

∂wj∂wk

=
1

K2|Ωt|
∑
n∈Ωt

(
yn

g2(W ;an)
+

1− yn
(1− g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)(XTan)(XTan)T ,

(129)

and

∂2f̂Ωt(W )

∂w2
j

=
1

K2|Ωt|
∑
n∈Ωt

(
yn

g2(W ;an)
+

1− yn
(1− g(W ;an))2

)
φ′(wT

j X
Tan)2(XTan)(XTan)T

− 1

K|Ωt|
∑
n∈Ωt

(
− yn
g(W ;an)

+
1− yn

1− g(W ;an)

)
φ′′(wT

j X
Tan)(XTan)(XTan)T .

(130)

When yn = 1 and j 6= k, we have

∂2f̂Ωt(W )

∂wj∂wk
=

1

K2|Ωt|
∑
n∈Ωt

φ′(wT
j X

Tan)φ′(wT
kX

Tan)

g2(W ;an)
(XTan)(XTan)T , (131)
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and

φ′(wT
j X

Tan)φ′(wT
kX

Tan)

g2(W ;an)
=
φ(wT

j X
Tan)(1− φ(wT

j X
Tan))φ(wT

kX
Tan)(1− φ(wT

kX
Tan))(

1
K

∑K
l=1 φ(wT

l X
Tan)

)2
≤K2

φ(wT
j X

Tan)(1− φ(wT
j X

Tan))φ(wT
kX

Tan)(1− φ(wT
kX

Tan))

φ(wT
j X

Tan)φ(wT
kX

Tan)

=K2(1− φ(wT
j X

Tan))(1− φ(wT
kX

Tan)) ≤ K2.

(132)

When yn = 1 and j = k, we have

∂2f̂Ωt(W )

∂wj∂wk
=

1

|Ωt|
∑
n∈Ωt

[ 1

K2

φ′(wT
j X

Tan)φ′(wT
kX

Tan)

g2(W ;an)
+

1

K

φ′′(wT
j X

Tan)

g(W ;an)

]
(XTan)(XTan)T , (133)

and ∣∣∣φ′′(wT
j X

Tan)

g(W ;an)

∣∣∣ =
φ(wT

kX
Tan)(1− φ(wT

kX
Tan)) ·

∣∣1− 2φ(wT
kX

Tan)
∣∣

1
K

∑K
l=1 φ(wT

l X
Tan)

≤ K. (134)

Similar to (132) and (134), we can obtain the following inequality for yn = 0.

φ′(wT
j X

Tan)φ′(wT
kX

Tan)(
1− g(W ;an)

)2 ≤ K2, and
∣∣∣φ′′(wT

j X
Tan)

1− g(W ;an)

∣∣∣ ≤ K. (135)

Then, for any α ∈ Rd, we have

αT
∂2f̂Ωt(W )

∂wj∂wk
α =

1

|Ωt|
∑
n∈Ωt

[
1

K2

(
yn

g2(W ;an)
+

1− yn
(1− g(W ;an))2

)
φ′(wT

j X
Tan)φ′(wT

kX
Tan)

−
1{j=k}

K

(
− yn
g(W ;an)

+
1− yn

1− g(W ;an)

)
φ′′(wT

j X
Tan)

]
(αTXTan)2

:=
1

|Ωt|
∑
n∈Ωt

Hj,k(an) · (αTXTan)2.

(136)

Next, we show that Hj,k(an) · (αTXTan)2 belongs to the sub-exponential distribution. For any p ∈ N+, we have(
EX,yn

[∣∣Hj,k(an) · (αTXTan)2
∣∣p])1/p

≤
(
EX
[∣∣4(αTXTan)2

∣∣p])1/p

≤8‖an‖22p ≤ 8σ2
1(A)p

(137)

Hence, Hj,k(an) · (αTXTan)2 belongs to the sub-exponential distribution with ‖Hj,k(an)(αTXTan)2‖ψ1 = 8σ2
1(A).

Then, the moment generation function of Hj,k(an) · (αTXTan)2 can be bounded as

EesHj,k(an)·(αTXTan)2

≤ eCσ
2
1(A)s2 (138)

for some positive constant C and any s ∈ R. From Lemma 7 and Chernoff bound, we have

αT
(∂2f̂Ωt(W )

∂wj∂wk
− ∂2fΩt(W )

∂wj∂wk

)
α ≤ Cσ2

1(A)

√
(1 + δ2)d logN

|Ωt|
(139)

with probability at least 1−N−d. By selecting ξ = 1
2 in Lemmas 8 and 9, we have∥∥∥∥∥∂2f̂Ωt(W )

∂wj∂wk
− ∂2fΩt(W )

∂wj∂wk

∥∥∥∥∥
2

≤ Cσ2
1(A)

√
(1 + δ2)d logN

|Ωt|
(140)
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with probability at least 1−
(

5
N

)d
.

In conclusion, we have

‖∇2fΩt(W )−∇2f̂Ωt(W )‖2 ≤
K∑
j=1

K∑
k=1

∥∥∥∥∥∂2f̂Ωt(W )

∂wj∂wk
− ∂2fΩt(W )

∂wj∂wk

∥∥∥∥∥
2

≤CK2σ2
1(A)

√
(1 + δ2)d log d

|Ωt|

(141)

with probability at least 1−
(

5
d

)d
.

B.2.4. PROOF OF LEMMA 11

Proof of Lemma 11. Recall that the first-order derivative of f̂Ωt(W ) is calculated from

∂f̂Ωt(W )

∂wj
= − 1

K|Ωt|
∑
n∈Ω

yn − g(W ;an)

g(W ;an)
(
1− g(W ;an)

)φ′(wT
j X

Tan)XTan. (142)

Similar to (134), we have ∣∣∣φ′(wT
j X

Tan)

g(W ;an)

∣∣∣ =
φ(wT

kX
Tan)(1− φ(wT

kX
Tan))

1
K

∑K
l=1 φ(wT

l X
Tan)

≤ K. (143)

Similar to (137), for any fixed α ∈ RdK , we can show that random variable αT ∂f̂Ωt (W )

∂wj
belongs to sub-exponential

distribution with the same bounded norm up to a constant. Hence, by applying Lemma 7 and the Chernoff bound, we have

∥∥∥∇fΩt(W )−∇f̂Ωt(W )
∥∥∥

2
. K2σ2

1(A)

√
(1 + δ2)d logN

|Ωt|
(144)

with probability at least 1−
(

5
N

)d
.

C. Proof of Lemma 1
Proof of Lemma 1. Let Ã denote the adjacency matrix, then we have

σ1(Ã) = max
z

zT Ãz

zTz
≥ 1T Ã1

1T1
= 1 +

∑N
n=1 δn
N

, (145)

where δn denotes the degree of node vn. Let z be the eigenvetor of the maximum eigenvalue σ1(A). Since σ1(A) =

D−1/2ÃD−1/2 andD is diagonal matrix, then z is the eigenvector to σ1(Ã) as well. Then, let n ∈ [N ] be the index of
the largest value of vector zn as zn = ‖z‖∞, we have

σ1(Ã) =
(Ãz)n
zn

=
ãTnz

zn
≤ ‖an‖1‖z‖∞

zn
= 1 + δ. (146)

where ãn is the n-th row of Ã.

SinceD is a diagonal matrix with ‖D‖2 ≤ 1 + δ, then we can conclude the inequality in this lemma.

D. Proof of Lemma 4
The proof of Lemma 4 is divided into three major parts to bound I1, I2 and I3 in (153). Lemmas 15, 16 and 17 provide the
error bounds for I1, I2 and I3, respectively. The proofs of these preliminary lemmas are similar to those of Theorem 5.6 in
(Zhong et al., 2017b), the difference is to apply Lemma 7 plus Chernoff inequality instead of standard Hoeffding inequality,
and we skip the details of the proofs of Lemmas 15, 16 and 17 here.
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Lemma 15. SupposeM2 is defined as in (7) and M̂2 is the estimation ofM2 by samples. Then, with probability 1−N−10,
we have

‖M̂2 −M2‖ . σ2
1(A)

√
(1 + δ2)d logN

|Ω|
, (147)

provided that |Ω| & (1 + δ2)d log4N .

Lemma 16. Let V̂ be generated by step 4 in Subroutine 1. SupposeM3(V̂ , V̂ , V̂ ) is defined as in (9) and M̂3(V̂ , V̂ , V̂ )

is the estimation ofM3(V̂ , V̂ , V̂ ) by samples. Further, we assume V ∈ Rd×K is an orthogonal basis ofW ∗ and satisfies

‖V V T − V̂ V̂
T
‖ ≤ 1/4. Then, provided that N & K5 log6 d, with probability at least 1−N−10, we have

‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖ . σ2
1(A)

√
(1 + δ2)K3 logN

|Ω|
. (148)

Lemma 17. SupposeM1 is defined as in (6) and M̂1 is the estimation ofM1 by samples. Then, with probability 1−N−10,
we have

‖M̂1 −M1‖ . σ2
1(A)

√
(1 + δ2)d logN

|Ω|
(149)

provided that |Ω| & (1 + δ2)d log4N .

Lemma 18 ((Zhong et al., 2017b), Lemma E.6). Let V ∈ Rd×K be an orthogonal basis of W ∗ and V̂ be generated by
step 4 in Subroutine 1. Assume ‖M̂2 −M2‖2 ≤ σK(M2)/10. Then, for some small ε0, we have

‖V V T − V̂ V̂
T
‖2 ≤

‖M2 − M̂2‖
σK(M2)

. (150)

Lemma 19 ((Zhong et al., 2017b), Lemma E.13). Let V ∈ Rd×K be an orthogonal basis ofW ∗ and V̂ be generated by
step 4 in Subroutine 1. AssumeM1 can be written in the form of (6) with some homogeneous function φ1, and let M̂1 be
the estimation ofM1 by samples. Let α̂ be the optimal solution of (11) with ŵj = V̂ ûj . Then, for each j ∈ [K], if

T1 := ‖V V T − V̂ V̂
T
‖2 ≤

1

κ2
√
K
,

T2 := ‖ûj − V̂
T
wj‖2 ≤

1

κ2
√
K
,

T3 := ‖M̂1 −M1‖2 ≤
1

4
‖M1‖2,

(151)

then we have ∣∣∣‖wj‖2 − α̂j
∣∣∣ ≤ (κ4K

3
2

(
T1 + T2

)
+ κ2K

1
2T3

)
‖W ∗‖2. (152)

Proof of Lemma 4. we have

‖w∗j − α̂jV̂ ûj‖2 ≤
∥∥∥w∗j − ‖wj‖2V̂ ûj + ‖wj‖2V̂ ûj − α̂jV̂ ûj

∥∥∥
2

≤
∥∥∥w∗j − ‖wj‖2V̂ ûj‖2

∥∥∥
2

∥∥∥‖wj‖2V̂ ûj − α̂jV̂ ûj
∥∥∥

2

≤‖w∗j‖2‖w∗j − V̂ ûj‖2 +
∣∣∣‖wj‖2 − α̂j

∥∥∥
2
‖V̂ ûj‖2

≤σ1

(
‖w∗j − V̂ V̂

T
w∗j‖2 + ‖V̂

T
w∗j − ûj‖2

)
+
∣∣∣‖wj‖2 − α̂j

∣∣∣
:=σ1

(
I1 + I2

)
+ I3.

(153)

From Lemma 18, we have

I1 = ‖w∗j − V̂ V̂
T
w∗j‖2 ≤ ‖V V

T − V̂ V̂
T
‖2 ≤

‖M̂2 −M2‖2
σK(M2)

, (154)
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where the last inequality comes from Lemma 15. Then, from (7), we know that

σK(M2) . min
1≤j≤K

‖w∗j‖2 . σK(W ∗). (155)

From Theorem 3 in (Kuleshov et al., 2015), we have

I2 = ‖V̂
T
w∗j − ûj‖2 .

κ

σK(W ∗)
‖M̂3(V̂ , V̂ , V̂ )−M3(V̂ , V̂ , V̂ )‖2. (156)

To guarantee the condition (151) in Lemma 19 hold, according to Lemmas 15 and 16, we need |Ω| & κ3(1 + δ2)Kd logN .
Then, from Lemma 19, we have

I3 =
(
κ4K3/2(I1 + I2) + κ2K1/2‖M̂1 −M1‖

)
‖W ∗‖2. (157)

Since d� K, according to Lemmas 15, 16 and 17, we have

‖w∗j − α̂jV̂ ûj‖2 . κ6σ2
1(A)

√
K3(1 + δ2)d logN

|Ω|
‖W ∗‖2 (158)

provided |Ω| & (1 + δ2)d log4N .


