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Abstract—An unknown vector f in R™ can be recovered from [7] shows numerically that we can recovérby finding a
corrupted measurementsy = Af 4 e where A™*"(m > n) Jocal minimum of (3), and,-minimization outperformg;-
is the coding matrix if the unknown error vector e is sparse. minimization in terms of the sparsity restriction fer [9]
We investigate the relationship of the fraction of errors ard the S .
recovering ability of [,-minimization (0 < p < 1) which returns extends .RIP_ tdp-mlnlmlzatlpn and analyz.es the ability of
a vector = m|n|m|z|ng the “ lp_norm" of y— Ax. We give Sharp lp'm|n|m|za.t|0n to recover Slgna|S from I’IOIsy measurements.
thresholds of the fraction of errors that determine the sucessful [11] also provides a condition for the success recovery via
recovery of f. If e is an arbitrary unknown vector, the threshold l,-minimization, which can be generalized fg case. Both
strictly decreases from 0.5 to 0.239 ap increases from 0 fo 1. lfe o itions are sufficient but not necessary, and thus are too
has fixed support and fixed signs on the support, the thresholds S
2 forall pin (0, 1), while the threshold is 1 for i;-minimization, ~'estrictive in general.

Let e € R™ be an arbitrary and unknown vector of errors
on supportT” = {i : e; # 0}. We saye is pm-sparse if
l. INTRODUCTION |T| < pm for somep < 1 where|T| is the cardinality of

We consider recovering a vectgrin R™ from corrupted set7. Our main contribution is a sharp threshqiti(p) for
measurementg = Af +e, whereA™*"(m > n)is the coding all p < 1 such that forp < p*(p), if m > Cn for some
matrix ande is an arbitrary and unknown vector of errorsconstantC' and the entries ofd are i.i.d. Gaussian, thel-
Obviously, if the fraction of the corrupted entries is toagle, Minimization can recoveyf with overwhelming probability.
there is no hope of recoveringyfrom Af +e. However, if the We provide two thresholds: one*) is for the case when
fraction of corrupted measurements is small enough, one daran arbitrary unknown vector, and the othef,Y assumes
actually recoverf from y = Af + e. As the sparsity ok is thate has fixed support and fixed signs. In the latter case, the
represented by thig norm, |e||o := |{i : e; # 0}/, one natural condition of successful recovery with-minimization from
way is to find a vector such that the number of terms wherény possible error vector is the same, while the condition
y and Az differ is minimized. Mathematically, we solve theof successful recovery witl,-minimization ¢ < 1) from

following Io-minimization problem: different error vectors differs. Using worst-case perfanoe
. as criterion, we prove that though outperformsi, in the
SoRn ly = Az]lo. (1) former case, it is not comparable toin the latter case. Both

H i binatorial and tationally intedxe boundsp* andp}, are tight in the sense that once the fraction
owever, (1) is combinatorial and computationally in ' _of errors exceedp* (or p},), l,-minimization can be made to

?nd pr_le_co;nmonlyblljseq approach is to solve a closely re'aFS. with overwhelming probability. Our technique stemerfr
L-minimization problem. [12], which only focuses o -minimization and the case that

. e is arbitrary.
min [y — Azl 2)

_ Il. RECOVERY FROM ARBITRARY ERROR VECTOR
where|lz1 := >, |z:/. (2) can be recast as a linear program, |, i section, we shal give a functiop’(p) such that
thus can be solved efficiently. Conditions under which (2) 3o a qiven for' an < p*(p), when the entries ofd
successfully recovef have been extensively studied in the 9 b, yp p D),

. ) are i.i.d. Gaussian, thé,-minimization can recovey with
literature of compressed sensing ([1]-{6]). For exampB, [overwhelming probabili?;/ as long as the errois pm-n;parse.

gives a sufficient condition known as the Restricted Isoynetr The following theorem gives an equivalent condition for the

Property (RIP). T
Recently, there has been great research interest in re'ﬂtrgve?uCCeSS of, minimization ( [7], [8]).
f by l,-minimization forp < 1 ([7]-[11]) as follows, Theorem 1 ( [7], [8]). f is the unique solution td, min-

imization problem(0 < p < 1) for every f and for every

zlggln ly = Az, ®) pm-sparsee if and only if
Recall that||z||b := (3_, [«:|P) for p > 0. We sayf can be Z |(Az)]P < Z |(Az)q|P (4)
recovered byl,-minimization if and only if it is the unique ieT ieTe

solution to (3). Then the question is what is the relatiopshj n .
. < .
between the sparsity of the error vector and the success{zﬁjrl everyz € R", and every suppoff’ with [T’} < pm

recovery withl,-minimization? (3) is non-convex, and thus it One important property is that if the condition (4) is sadidfi
is generally hard to compute the global minimum. Howeveior some0 < p < 1, then it is also satisfied for all < ¢ < p



([20]). Now we define the threshold of successful recovery
as a function ofp.

Lemma 1. Let X1, Xo,....X,, be i.i.d N(0,1) random vari-
ables and letYy, Y5,...)Y,, be the sorted ordering (in non-
increasing order) of X |?, | X2 ?,...| X, |P for somep € (0, 1].

[pm]
For a p > 0, defineS, as ) Y;. Let S denoteE[S:], the

expected value 0§;. Then fﬁére exists a constapit(p) such
that Tim =5l = 1.
Proof: Let X ~ N(0,1) and letZ = |X]|. Let f(2)

denote the p.d.f. oZ and F(z) be its c.d.f. Defingy(t) =
[ 2P f(2)dz. g is continuous and decreasing fin o], and
9(0) = E[Z?] = £, lim;_.o g(t) = 0. Then there exists*
such thaty(z*) = @, we claim thatp* = 1 — F(z*) has the
desired property.

Let T, = Y .y.5 Yi- Then E[T..] = mg(z*). Since
E[|T.« — S,|] is bounded byO(,/m), andS = mg(0), thus

1

. E[S «
lim,;,— 00 fs’) I _ 3

Proposition 1. The functionp*(p) is strictly decreasing irp
on (0,1].

Proof: From the definition o:* and p*(p), we have

H(z*,p):= /0 2P f(x)dx — /* 2P f(z)de =0, (5)

and

where f(-) and F(-) are the p.d.f. and c.d.f. ofiX|, X ~
N(0,1).
From the Implicit Function Theorem,

dz* %—Ig B foz* 2?(Inz)f(z)de — [ 2P (Inz) f(z)dx

dp 9 2277 f(2%)

From the chain rule, we know2 = 42 dz"  thys
7Y z 7Y

dp* foz* a?(Inz)f(z)de — [ aP(Inz) f(z)dx
dp ¥ (6)
P 22*p

Note the numerator of (6) is less than 0 from (5), tﬁﬁ;s <
0.

[ |

We plotp* againstp numerically in Fig. 1.0*(p) goes to%
asp tends to zero. Note that(1) = 0.239..., which coincides
with the result in [12].

Now we proceed to prove that* is the threshold of
successful recovery with, minimization forp in (0, 1]. First
we state the concentration property 8f in the following
lemma.

Lemma 2. For any p € (0,1], let X1,... X, Y1,...Y0, S,
and S be as above. For any > 0 and anys > 0, there exists
a constantc; > 0 such that whemn is large enough, with
probability at leastl — 2e=“", |S, — E[S,]| <5S.
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Fig. 1. Thresholdp* of successful recovery with,-minimization

Proof: Let X = [Xi,..., X,,]7. If two vectors X and
X'’ only differ in co-ordinates, then for anyp, |S,(X) —
S,(XN)] < || X;|P — | X/?|. Thus for anyX and X’,

1Sp(X)=S, (XN < > [IXalP=IX{1P] = Y [1XaP = X7 PP

Since || X;[P — | X/|P| < |X; — X[|P for all p € (0,1],
[Sp(X) = Sp(X)] < DX = X[, @)

From the isoperimetric inequality for the Gaussian measure

([13]), for any setA with measure at least a half, the set
Ay = {z € R™ : d(z, A) < t} has measure at least-¢~**/2,
whered(z, A) = inf,e 4 || —yl|2. Let M, be the median value
of S, = S,(X). Define setA = {x € R™ : S,(z) < M,},
then

Prid(z,A) <t >1—e /2

We claim thatd(z, A) < t implies thatS,(z) < M, +
mI=P/20 |f x € A, then S,(z) < M,, thus the claim
holds asm'~P/%t? is non-negative. If: ¢ A, then there exists
x' € A such that|z — 2’|z < t¢. Letu; = 1 for all ¢ and let
v; = |z; — 4|P. From Holder’s inequality

1-p/2 p/2
Shaar < (Swf)  (Smee)

< mUP/ D (2)p/2 = gy (1P 2pp (8)

From (7) and (8),/S,(z) — S,(2’)| < m(=P/2)¢P. Since
x ¢ Aandz’ € A, thenS,(z) > M, > S,(z’). ThusS,(z) <
M, +mU =P/ which verifies our claim. Then

IN

Pr(S,(x) < My+m=P/217] > Prid(w, A) <] > 1-e~" /2,
©)

Similarly,
Pr(S,(z) > M, — m—P/ 2] > 1 — e /2, (10)
Combining (9) and (10),
Pr(|S,(z) — M,| > mO—P/2p] < 27%/2 (11)



The difference of“[S,] and M, can be bounded as follows,and

1—€)S < S1(AvF) < (1+¢)S 13
[B[S,] = M,| < BIIS, - M| (1=a5 < Siav) < 1 +e) 13)
> hold for a vector® in K. Takingm = c4n for large enough
= Prl|S - M,| > yld .
/0 1Sy (z) ol = vy c4, from union bound we get that (12) and (13) hold for all the
AR TR JCES 3 points in K at the same time with probability at ledst e~<"
< /0 2e” dy for somecs > 0.
a 00 L2 For anyz such that|z||» = 1, there exist3y, in K such that
/O 2e" 2 ds HZ—’U()HQ £ 1 < 7. Letz; denotez—vo, then||z1—v1vl|\2 £

2 < 117 < 42 for somew; in K. Repeating this process, we

Note thatc := [ 2e —25"" 45 is a finite constant for all have
2= 2%

p € (0,1]. Asp > 0 and .S = mE][|z;|?], thus for anys > 0,
em(1~%) < £S whenm is large enough.

Lett = (13Sm(5- ) = (L6E[ja,|P))7 /m, from (11) Whereyo =1, v; <97 andv; € K.

. . Y Thus f R, h = , ;.
with probabily atleast(—2¢+ (19500 ) [, —ag, < [0S ol € B0 BAVES el 2z
158. Thus|S, — E[S,]| < |S, — M,| +|M, — E[S,]| < 65 =7
with probability at leastt — 2e— <" for some constant;. B

. p v )
Corollary 1. For any p < p*, there exists a > 0 and a Z |(A2)q]? HZ”?ZKZ 75405l
constantc, > 0 such that whenmn is large enough, with et €T 320

(2/p)

§>0

probability 1 — 2e=2™, 5, < (3 — §)S. < (12180 AP (Al
€T >0
Proof: Whenp < p*, .
[pom] = (128D D 1(Avy)l?
E[SP] = E[Sp*]_ Z E[|X1|p] .7>0 21§T
i=lpm]+1 < Szl ( 7
< E[Sp*] — ([p*m] = [pm]) B[ X;|"] -7

ThenE[S,]/S < 5 — 20 for a suitables as S = mE[| X;|?].
The result foIIows by combining the above with Lemmam. Z |(Az);

1215 1O v Av; )il

i >0

Corollary 2. For any e > 0, there exists a constan > 0 » P|(
such that whem: is large enough, with probability—2e 3™, z =l Z (I(Avo)il” = > 71(Avy)il
it holds that(1 —€)S < S1 < (1 +¢)S. iz1
> p Jp P
The above two corollaries indicate that with overwhelming = K Z' (Avo); ;7 Z' Av;)il”)
probability the sum of the large$pm| terms ofY;’s is less . =
than half of the total suns; if p < p*. The following lemma > 251 =S =D _+P(1+6)S)

extends the result to every vectde where matrixA™*" has j21

i.i.d. Gaussian entries andis any vector inR". S||z|\”1 — 27" —€
2

1—~P

Y

Lemma 3. For any 0 < p < 1, given anyp < p*(p), there
exist constantsy, cs, § > 0 such that whenn > cyn andn Thus 3 |(Az)ifP — Z [(Az);|P > S||z||p22=2C =< For

1—~P
. ; ad—csm i €Te
's large enough, with probability — ¢ ; @nm X n matrix a given 5 we can pleV and ¢ small enough such that

A with i.i.d. N(0,1) entries has the following property: for v » »

everyz € R™ and every subsét C {1,...,m} with |T| < pm, Z |(42)il ZT |(A2)i" 2 85]|zll2- "

ST (Az) P - Z |(Az); [P > 65| z||5. We can now establish one main result regarding the thresh-
i€Te old of successful recovery with,-minimization.

Proof: For any giveny > 0, there exists ay-net K of
cardinality less thar{l + %)”([13]). A ~v-net K is a set of
points such thaffv*||, = 1 for all v* in K and for anyz with
||z]]2 = 1, there exists some* such that]|z — v*||s < 7.

Since A has i.i.d N(0,1) entries, thenAv* hasm i.i.d.
N(0,1) entries. Applying a union bound to Corollary 1 an
2, we know that for somé > 0 and for everye > 0, with
probability 1 — 2¢=¢™ for somec > 0, we have

Theorem 2. For any 0 < p < 1, given anyp < p*(p), there
exist constantsy, c5 > 0 such that whenn > ¢4n andn is
large enough, with probability — e=°"™, an m x n matrix
A with i.i.d. N(0,1) entries has the following property: for
very f € R™ and every errore with its supportT” satisfying
T| < pm, f is the unique solution to thé,-minimization
problem (3).

. 1 Proof: Lemma 3 indicates that) , ;. [(Az):|" —
Sp(Av”) < (5 = 9)8 (12) 5. 1 [(Az2)i|P > 65]|z||5 > 0 for every non-zera, then from



Theorem 1,f is the unique solution to thé,-minimization Lete, = 0 for everyi in T¢, lete; = —(Az); for everyi in
problem (3). B T .Foreveryiin T :=T-T7, lete; satisfy(A4z);e; > 0.

We remark here thap* is a sharp bound for successfulAs p € (0,1), we can picke; (: € TT) with |e;| large enough
recovery. For any > p*, from Lemma 2, with overwhelming such thaty", ;. |e; + (Az)i|? — X ,cp lesP < 5. Then
probability the sum of the largesipm| terms of |(Az);|P's

is more than the half of the total suy, then Theorem 1 [le + Az|b = Z 0+ Z le; + (Az);|P + Z [(Az);|P
indicates that thd,-recovery fails in this case. In fact, for €T~ €T+ i€Te

any vectorf’ # f, let z = f' — f, and letT be the support p, 0 »

of the largest[pm] terms of|(Az);[P’s. If the error vectore < Z Jeal” + 2 + Z |(A2)il

) . : + icTe
agrees with/(Az);|? on the supporf” and is zero elsewhere, er ‘

then with large probabilityle — Az} is no greater than that

0
S ledr 5+ D 1A -8

of |le||2, which implies that,,-minimization cannot correctly ieT+ ieT—
return f. Proposition 1 thus implies that the threshold strictly , 0
decreases gsincreases. The performancelgf-minimization = ellp - 9"

is better thari,,-minimization forp; < p, < 1 in the sense
that the sparsity requirement for the arbitrary error vedto
less strict for smallep.

Thus|ly — A(f = 2)[Ip = lle + Az} < llell} = ly — AfIS, f
is not a solution to (3), which is a contradiction.
Second part. For any on supportl” with fixed signs and

[1l. RECOVERY FROM ERRORVECTORWITH FIXED for any f, lety = Af +e. For anyz # f, letz = f — 2, and
SUPPORT ANDSIGNS so
In Section I, for somep > 0, we call [,-minimization
successful if and only if it can recovef from any errore ly — Az|p = |[(y — Af) + Az|]}
whose support size is at mogtn. Here we only requiré,- - Z lei + (A2); P + Z lei + (Az); P + Z |(Az); [P
minimization to recoveyf from errors with fixed but unknown Tt el - ieTe

support and signs. We will provide a sharp threshpjg 1 1 1P 1P
of the proportion of errors below whick,-minimization is 2 Z ledl” + Z (eal” = [(A2)[") + Z |(Az)s]
successful.

Once the support and the signs of an error vector is fixed,”
the condrlluon of suc;:es;fljtlhrecovery Vﬁiﬁhmlmmﬁ]atlon f:thm The first inequality holds as for eactin T+, (Az); has the
any such error vector is the same, however, the condition of .\ sign as that af, if not zero; and forp € (0, 1), |e; +

successful recovery with,-minimization from different error EPAZMP > |e; [P — |(A2):|? holds. The second inequality comes

vectors differs even the support and the signs of the err 5m the assumption thats™ [(Az)i < 3 |(Az):|P. Thus
is fixed. Here we consider the worst case scenario in the T ieTe

i€T
sense that the recovery with-minimization is defined to be |y — Ax|[b>|ly — Af|[ for all z # f. [ |

successful” if f can be recovered from any such error Lemma 4. Let Xy, Xa,...X» be i.i.d. N(0,1) random vari-

We characterize this case in Theorem 3. Note that if ther% o . .
, . . ables andl" be a set of indices with siZ&"| = pm for some
is further constraint ore, then the condition of successful

m o
recovery withl,-minimization may be different from the one”. = 0. Lete € R™ be any* Ve°§°r on suppoff’ with fixed

. signs for each entry. Ip < pi = %, for everye > 0, whenm
stated in Theorem 3. w3

is large enough, with probability — e—¢™ for some constant
Theorem 3. Given anyp € (0,1), for everyf € R™ and ¢g > 0, the following two properties hold:
T s it oo o * 3770=0 < Tl X1 < bomli+
ci,i €T, y q P e (L= pmlp =€) < Y ieqe |1XilP < (U= p)mlp + o).

problem (3), then where — E[[X[7], X ~ N(0.1).

ieT+ i€T— i€Te
llellp-

Az)i|P < Az)i|P . . .

2 (Az)il” = Z (4z)i] Proof: Define a random variable; for eachi in T' that
€T i€Te . . .

or all R" whereT— T (A 0 is equal to 1 ifX;e; < 0 and equal to O otherwise. Then

orall ze R™ whereT~ = {i € T : (Az);e; < 0}. S ierixiesco | Xil? = Sicr | XilPsi. E[|Xi|Ps;] = Lu for

Conversely, f is always the unique solution td,-

AR ) everyi in T as X; ~ N(0,1). From Chernoff bound, for
minimization problem (3) provided that

any e > 0, there existd; > 0 andd, > 0 such that

D (A2)ilP < D (Az)l? Pr(Sicr |XilPsi < gom(u—q)] < e,
ieT- ieTe Priycr|XilPsi = spm(p+ €)] < emd2m,
for all non-zeroz € R™. Again from Chernoff bound, there exist some constaijts-
Proof: First part. Suppose there exists such 0 da >0 such that
that > .o [(A2)il” > 3 icqe [(A2)ilP, let 6 = PrYiere |Xil? < (1= p)m(u —€)] < em%m,

<e
Yier— [(A2)ilP =3 e [(A2)iP > 0. Priyicre 1 XilP > (1 = p)m(p+¢€)] < emdam,



By union bound, there exists some constant- 0 such that ~ Thus) . ;. [(A2)[" — >, [(A2)i|P > [|2] ’Q’IT’W‘p (1-

the two properties stated in the lemma hold with probability, — 2,7(1 — p) — (1- £)). For anyp < 2, we can pick
at leastl — e ™. ~ ande small enough such that the righthand side is positive.
B The result follows by applying Theorem 3.
Lemma 4 implies thad ;. ... o [Xil? < D e [ XilP n

holds with large probability whefil’| = pm < $m. Applying  We remark here thap?, is a sharp bound for successful
the similar net argument in Section I, we can extend thelteskecovery in this setup. For any > p*, from Lemma 4,
to every vectorAz where matrixA™*" has i.i.d. Gaussian with overwhelming probability thatd", ..o, <0 | XG[P >
entries and: is any vector inR™. Then we can establish thezieTc |X;|?, then Theorem 3 indicates that 'tlilllerecovery
main result regarding the threshold of successful recowéty fails for some error vectog in this case.

l,-minimization from errors with fixed support and signs. Surprisingly, the successful recovery threshetd when

Theorem 4. For any p € (0,1), given anyp < 2, there fixing the support and the signs of an error vector%isfor
exist constants;, cs > 0 such that whenn > con azl))ndn is allpin (0,1) and is strictly less than the threshold for= 1,
large enough, with probability — e—s" an m x n matrix Whichis 1 ([14]). Thus in this casé,-minimization has better

A with i.i.d. N(0,1) entries has the following property: for €covery performance than that hfminimization ( < 1) in
everyf € R™ and every erro with fixed support satisfying terms of the sparsity requirement for the error vector. The

IT| < pm and fixed signs of, f is the unique solution to result seems counterintuitive, however, it largely degeod
the L..-minimization problem (3) the definition of successful recovery in terms of worse case
. .

performance. The condition of successful recovery Mia
Proof: From lemma 4, applying similar arguments in theninimization from any error vector on the fixed support with
proof of lemma 3, we get that when > c7n andn is large  fixed signs is the same, while the condition/giminimization
enough, with probability — e~=" for somecs > 0, from different error vectors differs.

e Tomu—e€) <S> . . Av);|P < Lom(u +
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hold for all the vectorsv in a y-net K at the same time. ?g;e(l)%fgé%rgments. The researchis supported by NSF under
Moreover, for anyz € R", we havez = [|z[l2> ;5475 ) '

wherevyy =1, v; € K for all j and~; < ~7. REFERENCES
LetT— ={ieT: (Az);e; < 0}. For anyi in T,

[1] D. L. Donoho and J. Tanner, “Sparse nonnegative solutbanderde-

o p ] NP termined linear equations by linear programming,’Proc. Natl. Acad.
[(Az)ilP = HZ”2|(Z 7540 )i] Sci. U.S.A.vol. 102, no. 27, 2005, pp. 9446-9451.
j=0 [2] D. Donoho, “Compressed sensindEEE Trans. Inf. Theoryvol. 52,
P ) NP no. 4, pp. 1289-1306, April 2006.
< HZ”Z ’( Z %AUJM [3] E. Candeés and T. Tao, “Decoding by linear programmingEE Trans.
j:(Av;)ie; <0 Inf. Theory vol. 51, no. 12, pp. 4203-4215, Dec. 2005.
: [4] ——, “Near-optimal signal recovery from random projects: Universal
< HZ”ZQ) Z ’Yjp|(AUj)z‘|p encoding strategies?EEE Trans. Inf. Theoryol. 52, no. 12, pp. 5406—
§:(Av;)ie;<0 5425, Dec. 2006.
. . . ! [5] M. Stojnic, W. Xu, and B. Hassibi, “Compressed sensingobabilistic
where the first inequality holds dslz);e; < 0. Then analysis of a null-space characterization,” Rroc. ICASSP 2008, pp.
) 3377-3380.
Z |(A2)i|p < HZ||5 Z Z 'Yjp|(AUj)i|p [6] J. Wright and Y. Ma, “Dense error correction vid minimization,”
€T~ €T~ j:(Av;)ie; <0 Preprint, 2008. , o
) [7] R. Chartrand, “Exact reconstruction of sparse signa#s nonconvex
< =I5 Z Z 7P| (Av;)ilP minimization,” Signal Process.Leftvol. 14, no. 10, pp. 707-710, 2007.
SeT (A <0 [8] ——, “Nonconvex compressed sensing and error corregtion Proc.
J:(Avy)iei< ICASSP 2007.
— p J 9] R. Saab, R. Chartrand, and O. Yil , “Stabl opati
= |zI? Z,Y]p Z |(Av;)i|P [9] R. Saa artrand, and O. Yilmaz, "Stable sparsecapations
¢ ) via nonconvex optimization,” ifProc. ICASSP2008.
J20 1€T:(Av; )ie; <0 [10] M. E. Davies and R. Gribonval, “Restricted isometry stamts where
» 1 lp sparse recovery can fail f@r < p < 1, IEEE Trans. Inf. Theory
< lellagg=myrmn+e) vol. 55, no. 5, pp. 2203-2214, 2009.
( -7 ) [11] S. Foucart and M.-J. Lai, “Sparsest solutions of undeninined linear
systems vialy-minimization for0 < ¢ < 1,” Applied and Computa-
P P _ NI tional Harmonic Analysisvol. 26, no. 3, pp. 395 — 407, 2009.
Z [(Az)il” = [|zI Z |(Z 5 Av; )il [12] C. Dwork, F. McSherry, and K. Talwar, “The price of priyaand the
ieTe i€Te j§>0 limits of Ip decoding,” inProc. STOC 2007, pp. 85-94.
p j [13] M. Ledoux, Ed. The Concentration of Measure Phenomendmerican
> HZ”z( Z |(Avo)i|” — Z'V]p Z |(Avj)i|p) Mathematical Society.
ieTe §>1 ieTe [14] D. Donoho, “High-dimensional centrally symmetric pmpes with
. neighborliness proportional to dimensioriscrete Comput. Geom.
P
> 2l5((1 = pym(n—e) = > AP(1 = pym(p + ) 2006.
Jj=1
p— 2P — €
> 2501 = ppm—————

1—~P



