
1

Improved Linear Convergence of Training CNNs
with Generalizability Guarantees: A

One-hidden-layer Case
Shuai Zhang, Student Member, IEEE, Meng Wang, Member, IEEE,

Jinjun Xiong, Member, IEEE, Sijia Liu, Member, IEEE, Pin-Yu Chen, Member, IEEE

Abstract—We analyze the learning problem of one-hidden-
layer non-overlapping convolutional neural networks with the
rectified linear unit (ReLU) activation function from the perspec-
tive of model estimation. The training outputs are assumed to
be generated by the neural network with the unknown ground-
truth parameters plus some additive noise, and the objective
is to estimate the model parameters by minimizing a non-
convex squared loss function of the training data. Assuming that
the training set contains a finite number of samples generated
from the Gaussian distribution, we prove that the accelerated
gradient descent algorithm with a proper initialization converges
to the ground-truth parameters (up to the noise level) with a
linear rate even though the learning problem is non-convex.
Moreover, the convergence rate is proved to be faster than the
vanilla gradient descent. The initialization can be achieved by the
existing tensor initialization method. In contrast to the existing
works that assume an infinite number of samples, we theoretically
establish the sample complexity of the required number of
training samples. Although the neural network considered here is
not deep, this is the first work to show that accelerated gradient
descent algorithms can find the global optimizer of the non-
convex learning problem of neural networks. This is also the first
work that characterizes the sample complexity of gradient-based
methods in learning convolutional neural networks with the non-
smooth ReLU activation function. This work also provides the
tightest bound so far of the estimation error with respect to the
output noise.

Index Terms—convolutional neural networks, generalizability,
global optimality, accelerated gradient descent, linear conver-
gence

I. INTRODUCTION

Neural networks, especially convolutional neural networks
(CNNs), have demonstrated superior performance in machine
learning for image classification [16] and recognition [19],
natural language processing [5], and strategic game program
[33]. Compared with fully connected neural networks, CNNs
require fewer coefficients and can better capture local features
[20], and thus perform well in applications like image and
video processing.

Learning a neural network needs to find appropriate pa-
rameters for the hidden layers using the training data and is
achieved by minimizing a non-convex empirical loss func-
tion over the choices of the model parameters. The non-
convex learning problem is usually solved by a first-order

The first two authors are with the Dept. of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy,
NY, 12180. Email: {zhangs21, wangm7}@rpi.edu. The other authors are with
IBM Thomas J. Watson Research Center, jinjun@us.ibm.com, {Sijia.Liu, Pin-
Yu.Chen}@ibm.com.

gradient descent (GD) algorithm. The convergence to the
global optimal, however, is not guaranteed naturally due
to the existence of spurious local minima. Another major
hurdle to the widespread acceptance of deep learning is the
lack of analytical performance guarantees about whether the
parameters learned from the training data perform well on the
testing data, i.e., the generalizability of the learned model. A
learned model generalizes well to the testing data provided
that it is a global minimizer of the population loss function,
which takes the expectation over the distribution of testing
samples. Since the distribution is unknown, one minimizes the
empirical loss function of the training data assuming that the
training data are drawn from the same distribution. Moreover,
a large number of training samples are required to obtain a
network model with powerful feature representation capability
[6], while the method may perform poorly when the number of
training samples is small [4]. The theoretical characterization
of the required size of the training data for a given network
architecture is vastly unavailable.

To analyze the learning performance, one line of research
focuses on the over-parameterized case that the number of
parameters in the neural network is larger than the number
of training samples [1], [2], [14], [15], [24], [27], [30],
[34]. In particular, the optimization problem has no spurious
local minima [24], [34], [43], and GD methods can indeed
find the global minimum of the empirical loss function.
Nevertheless, the over-parameterized models may experience
overfitting issues in practice [42], [43]. Moreover, when over-
parameterized, there is no guarantee by VC-dimension learn-
ing theory that the empirical loss function is close to the
population loss and thus, the generalizability of the learned
model to the testing data is unknown. Ref. [1] develops a
new analysis tool to explore the generalizability under over-
parameterization assumption. The convergence rate provided
by [1] is sub-linear, and the sizes of neural networks increase
as a polynomial function of the inverse of the desired testing
error, which implies a high computational cost. Moreover,
the training error and the generalization error are analyzed
separately, and it is not clear if both a small training error and
a small generalization error can be achieved simultaneously.

Refs. [18], [39] study the convergence to the global optimal
for shallow neural networks when the data is linearly separa-
ble. Assuming the Rectified Linear Unit (ReLU) activation
function and the hinge loss function, ref. [39] can detect
all the spurious local minima and saddle points, and the

2

generalization error of the learned model approaches zero
when the number of samples goes to infinite. However, if
the data are linearly separable, simple algorithms, such as
Perceptron [29], can find a classifier in finite steps. Moreover,
the detection method of the spurious local minima and saddle
points in [39] only apply the ReLU activation function and
hinge loss function, and the method does not extend to other
activation functions and loss functions.

One recent line of research assumes the existence of a
ground-truth model that maps the input data to the output
data. Then the set of the ground-truth model parameters is
a global minimizer of both the population and the empirical
risk functions. The learning problem can be viewed as a
model estimation problem. If the parameters are accurately
estimated, the generalizability to the testing data is guaranteed.
This paper follows this line of research.

To simplify the analysis, one standard trick in this line
of research is to assume that the number of input data is
infinite so that the empirical loss function is simplified to
the population loss function that is easier to analyze. Most
existing theoretical results are centered on one-hidden-layer
shallow neural networks as the analyses quickly become
intractable when the number of layers increases. The input
data are usually assumed to follow the Gaussian distribution
[32] or some distributions that are rationally invariant [7].
Refs. [3], [8], [36] analyze the landscape of the population
loss function of a simple one-hidden-layer neural network
with only one or two nodes and show that there exists a
considerably large convex region near the global optimum.
Then a random initial point lies in this region with a constant
probability, and gradient descent algorithms converge to the
global minimum. This result does not easily generalize to
general neural networks as spurious local minima are fairly
common for neural networks with even one hidden layer but
multiple nodes [31]. Some works [10], [22], [23] seek to obtain
a good optimization landscape through changing the neural
network structure. Ref. [22] adds an identity mapping after
the hidden layer to improve the convergence of GD algorithm.
An additional regularization term is added to the loss function
in [10] such that the ground-truth parameters are still close to
the global minimum, and spurious local minima are excluded.
An exponential node is added in each layer of an arbitrary
neural network such that all local minima are global minima
[23]. Another work [12] developed a new iterative algorithm
named Convotron, which applied a modified gradient desecnt
update in each iteration and does not require initialization.

In the practical case of a finite number of samples, the
nice properties of the population loss function do not directly
generalize to the empirical loss function. Some recent works
study the training performance with a finite number of samples
[9], [40], [44]–[46]. If the number of samples is greater than a
certain threshold, referred to the sample complexity, ref. [40]
shows that the iterates converge to the ground-truth parameters
for one-hidden-layer neural networks. However, the sample
complexity is sub-optimal as it is a high order polynomial
with respect to the dimension of the input data. With the
tensor initialization method [46], GD algorithms are proved
to converge to the ground-truth parameters linearly in one-

hidden-layer neural networks, and the sample complexity is
nearly linear in the dimension of the input data [9], [44]–[46].
However, the analyses in [9], [45], [46] are limited to smooth
activation functions and exclude the widely used non-smooth
activation function, ReLU. Among them, only ref. [44] studies
the ReLU activation function, but focuses on fully connected
neural networks. Ref. [44] can only guarantee the convergence
to the ground truth up to some nonzero estimation error, even
when the data are noiseless.

The majority of the above works assume that data are
noiseless, which may not be realistic in practice. Only [10] and
[44] consider the cases that the output data contain additive
noise that is independent of the input. The noise is assumed to
be zero mean in [10], and the authors analyze the stochastic
gradient descent through expectation. Thus, the noise does not
affect their analyses and results. The result in [44] guarantees
the convergence of GD provided that the initialization is suffi-
ciently close to the ground-truth parameters, but no discussion
is provided about whether the initialization in [44] satisfies this
assumption or not.

All the aforementioned works analyze standard GD al-
gorithms. It is well known that Accelerated Gradient De-
scent (AGD) methods such as Nesterov’s accelerated gradient
(NAG) method [26] and Heavy ball method [28] converge
faster than vanilla GD. However, the analyses for GD do
not generalize directly to AGD because of the additional
momentum term introduced in AGD. Only refs. [35] and
[41] explore the numerical performance of AGD in neural
networks. No theoretical analysis of AGD is reported in
[35]. Ref. [41] analyzes AGD from a general optimization
perspective, and it is not clear whether the neural network
learning problem satisfies the assumptions in [41].

This paper provides novel contributions to the theoretical
analyses of neural networks in three aspects. First, this paper
provides the first theoretical analysis of AGD methods in
learning neural networks. We prove analytically that the AGD
method can converge to the ground-truth parameters linearly,
and its convergence rate is faster than vanilla GD. Second, it
is the first work that explicitly proves the convergence of the
proposed learning algorithm to the ground-truth parameters
(or nearby) when the data contain noise. We characterize
the relationship between the learning accuracy and the noise
level quantitatively. Our error bound is much tighter than that
in [44], and [44] makes assumptions about the initialization
without any justification. In the special case of noiseless data,
our parameter estimation is exact, while the method in [44] is
not. Third, it provides the first tight generalizability analysis
of the widely used convolutional neural networks with the
nonsmooth ReLU activation functions. Specifically, we prove
that for one-hidden-layer non-overlapping convolutional neural
networks, if initialized using the tensor method, and the num-
ber of samples exceeds our characterized sample complexity,
both GD and ADG converge to a global minimum linearly
up to the noise level. Our sample complexity is order-wise
optimal with respect to the dimension of the node parameters.
Our estimation error bound of the ground-truth parameters is
much tighter than a direct application of the existing results
for fully connected neural networks such as [44] to CNN.

3

The rest of this paper is organized as follows. Section II
introduces the problem formulation. The algorithm and major
theorems are presented in Section III. Section IV shows the
simulation results, and Section V concludes the paper. All the
proofs are in the Appendix.

Notation: Vectors are bold lowercase, matrices and tensors
are bold uppercase, and scalars are in normal font. For
instance, Z is a matrix, and z is a vector. zi denotes the i-th
entry of z, and Zij denotes the (i, j)-th entry of Z. I and ei
denote the identity matrix and the i-th standard basis vector.
ZT denotes the transpose of Z, similarly for zT . ‖z‖ denotes
the `2-norm of a vector z, and ‖Z‖2 and ‖Z‖F denotes the
spectral norm and Frobenius norm of a matrix Z, respectively.
We use σi(Z) to denote the i-th largest singular value of Z.
The outer product of a group of vectors zi ∈ Rni , 1 ≤ i ≤ l
and l ∈ N+, is defined as T = z1 ⊗ · · · ⊗ zl ∈ Rn1×···×nl

with Tj1,··· ,jl = (z1)j1 · · · (zl)jl . Let Li be a linear operator
from Rni to Rdi with 1 ≤ i ≤ l, then T (L1, · · · ,Ll) =
L1(z1)⊗· · ·⊗Ll(zl) ∈ Rd1×···×dl . Moreover, f(d) = O(g(d))
means that if for some constant C > 0, f(d) ≤ Cg(d) holds
when d is sufficiently large. f(d) = Θ(g(d)) means that for
some constants c > 0 and C > 0, cg(d) ≤ f(d) ≤ Cg(d)
holds when d is sufficiently large. In the Appendix, we use
f(d) & (.)g(d) to denote there exists some positive constant
C such that f(d) ≥ (≤)C · g(d) when d is sufficiently large.

II. PROBLEM FORMULATION

Following [45], we consider the regression setup in this pa-
per as follows. Given N input data xn ∈ Rp, n = 1, 2, · · · , N ,
that are independent and identically distributed (i.i.d.) from the
standard Gaussian distribution N (0, Ip×p), the resulting out-
puts yn ∈ R, n = 1, 2, · · · , N , are generated from {xn}Nn=1

by a one-hidden-layer non-overlapping convolutional neural
network shown in Fig. 1. The hidden layer has K nodes. We
use the vector w∗j ∈ Rd to denote the weight parameters
for the j-th node in the hidden layer and define the weight
matrix W ∗ =

[
w∗1 , w∗2 , · · · , w∗K

]
∈ Rd×K . Followed

by the hidden layer, there is a pooling layer with ground-
truth parameters v∗ ∈ Rd. We assume K < d throughout
the paper because K is the constant, while d increases as
the dimension of the input data increases. σi = σi(W

∗)
denotes the i-th largest singular value of W ∗. We define
κ = σ1(W ∗)/σK(W ∗) as the conditional number of W ∗

and γ = ΠK
j=1

(
σj(W

∗)/σK(W ∗)
)
.

𝜙𝜙

𝜙𝜙

𝜙𝜙

𝑦𝑦𝑥𝑥

𝑃𝑃1𝑥𝑥
𝑾𝑾

Hidden layer
with K nodes

…
…

𝑃𝑃𝑖𝑖𝑥𝑥

𝑃𝑃𝑀𝑀𝑥𝑥

…
… …

…

𝜉𝜉

+𝑔𝑔(𝑥𝑥)

Input Output

Noise

Non-overlapping CNN

Pooling layer

𝒗𝒗
𝑣𝑣1

𝑣𝑣𝑗𝑗

𝑣𝑣𝐾𝐾

Fig. 1: One-hidden-layer non-overlapping CNN

Each input data xn is partitioned into M non-overlapping
patches, denoted by Pixn ∈ Rd, i = 1, · · · ,M . Pi ∈ Rd×p,
i = 1, · · · ,M , are a series of matrices that satisfy the
following properties: (1) there exists one and only one non-
zero entry with value 1 in each row of Pi; (2) 〈Pi1 ,Pi2〉 = 0
for i1 6= i2. 1 A simple example of {Pi}Mi=1 is

Pi =
[

0d×d · · · 0d×d︸ ︷︷ ︸
(i− 1) submatrices

Id×d 0d×d · · · 0d×d︸ ︷︷ ︸
(M − i) submatrices

]
.

The output yn can be written as

yn = g(xn) + ξn =

K∑
j=1

M∑
i=1

v∗jφ(w∗j
TPixn) + ξn (1)

for 1 ≤ n ≤ N , where ξn is the additive stochastic noise.
Throughout this paper, we assume bounded noise with zero

mean and use |ξ| to denote the upper bound such that |ξn| ≤ |ξ|
for all n. In practice, the mapping from the input to output
data may not be modeled exactly by a neural network due to
the random fluctuations or measurement errors in the data. The
additive noise better characterizes the relations in real datasets.

The activation function φ(z) = max{z, 0} is the ReLU
function, which is widely used in various applications [11],
[13], [21], [25]. Note that if the activation function is homoge-
neous, such as ReLU, one can assume v∗j to be either +1 or −1

without loss of generality. That is because v∗jφ(w∗j
TPixn) =

sign(v∗j)φ(|v∗j |w∗j
TPixn) for a homogeneous φ. We can just

let w̃∗j = |v∗j |w∗j and ṽ∗j = sign(v∗j) and use {w̃∗j }Kj=1 and
{ṽ∗j }Kj=1 as ground-truth parameters equivalently. Therefore,
we assume v∗j ∈ {+1,−1} for any 1 ≤ j ≤ K throughout the
paper.

Given any estimatedW ∈ Rd×K and v ∈ RK of the weight
matrix W ∗ and v∗, the empirical squared loss function2 of the
training set D = {xn, yn}Nn=1 is defined as

f̂D(W ,v) =
1

2N

N∑
n=1

(K∑
j=1

vj

M∑
i=1

φ(wT
j Pixn)− yn

)2
. (2)

Our goal is to estimate the ground-truth weight matrix W ∗

and v∗ via solving the following problem:

min
W∈Rd×K ,v∈RK

: f̂D(W ,v). (3)

Clearly (W ∗, v∗) is a global minimizer to (3) when mea-
surements are noiseless, i.e., ξn = 0 for all n. However, (3) is
a non-convex optimization problem and is not easy to solve.

III. ALGORITHM AND THEORETICAL RESULTS

We propose to solve the non-convex problem (3) via the
Heavy Ball method [28]. The algorithm is initialized via
the tensor method [46]. Although the tensor initialization is
designed for fully connected neural networks in [46], we can
extend it to non-overlapping convolutional neural networks

1Such requirement on Pi guarantees the independence of each patches and
will be used in the proofs.

2Besides the mean squared error, another choice of the loss function,
especially in classification problems, is the cross entropy, see. e.g., [9].

4

with minor changes. v̂ is estimated through the tensor initial-
ization. During each iteration, we update W through the AGD
algorithm. Compared with the vanilla gradient descent, in the
(t + 1)-th iteration, an additional momentum term, denoted
by β(W (t) −W (t−1)), is added to the update, where W (t)

is the estimation in iteration t. The momentum represents the
direction of the previous iterations. Hence, besides moving
along the gradient descent direction with a step size of η,
W (t) is further moved along the direction of previous steps
with a parameter of β. During each iteration, a fresh subset
of data is applied to estimate the gradient descent. Such
disjoint subsets guarantee the independence of f̂Dt over the
iterations. This is a standard analysis technique [45], [46]
and not necessary in numerical experiments. The initialization
algorithm is summarized in Section III-A, and Algorithm 1
summarizes our proposed algorithm to solve (3).

Algorithm 1 Accelerated Gradient Descent Algorithm with
Tensor Initialization

1: Input: training data D = {(xn, yn)}Nn=1, gradient step
size η, momentum parameter β, and thresholding error
parameter ε;

2: Initialization: W (0), v̂ through Tensor Initialization via
Subroutine 1;

3: Partition D into T = log(1/ε) disjoint subsets, denoted
as {Di}Ti=1;

4: for t = 1, 2, · · · , T do
5: W (t+1) = W (t) − η∇f̂Dt(W (t), v̂)+β(W (t) −
W (t−1))

6: end for
7: Return: W (T) and v̂.

A. Initialization via tensor method

In this section, we first briefly introduce the tensor initial-
ization method that is built upon Algorithm 1 in [46]. We
then provide the first theoretical performance guarantee of the
tensor initialization method when the output contains noise in
Lemma 1, while the result in [46] only applies to noiseless
measurements.

The tensor initialization method in [46] is designed for the
fully connected neural networks. To handle the convolutional
neural networks, the definitions of the high-order moments
(see (5)-(7)) are modified by replacing x in Definition 5.1 in
[46] with Pix. All the other steps mainly follow [46].

Following [46], we define a special outer product, denoted
by ⊗̃. For any vector v ∈ Rd1 and Z ∈ Rd1×d2 ,

v⊗̃Z =

d2∑
i=1

(v ⊗ zi ⊗ zi + zi ⊗ v ⊗ zi + zi ⊗ zi ⊗ v), (4)

where ⊗ is the outer product and zi is the i-th column of Z.
Next, we pick any i ∈ {1, 2, · · · ,K} and define

Mi,1 = Ex{yx} ∈ Rd, (5)

Mi,2 = Ex
{
y
[
(Pix)⊗ (Pix)− I

]}
∈ Rd×d, (6)

Mi,3 = Ex
{
y
[
(Pix)⊗3 − (Pix)⊗̃I

]}
∈ Rd×d×d, (7)

where z⊗3 := z ⊗ z ⊗ z, and Ex is the expectation over x.
From Claim 5.2 in [46], there exist some known constants

ψi, i = 1, 2, 3, such that

Mi,1 =

K∑
j=1

ψ1 · v∗j ‖w∗j ‖ ·w∗j , (8)

Mi,2 =

K∑
j=1

ψ2 · v∗j ‖w∗j ‖ ·w∗jw∗Tj , (9)

Mi,3 =

K∑
j=1

ψ3 · v∗j ‖w∗j ‖ ·w∗⊗3j , (10)

where w∗j = w∗j /‖w∗j ‖2 in (5)-(7) is the normalization of w∗j .
Mi,1, Mi,2 and Mi,3 can be estimated through the sam-

ples
{

(xn, yn)
}N
n=1

, and let M̂i,1, M̂i,2, M̂i,3 denote the
corresponding estimates. First, we will decompose the rank-k
tensor Mi,3 and obtain the {w∗j}Kj=1. By applying the tensor
decomposition method [17] to M̂i,3, the outputs, denoted
by ŵ

∗
j , are the estimations of {sjw∗j}Kj=1, where sj is an

unknown sign. Second, we will estimate sj , v∗j and ‖w∗j ‖2
through Mi,1 and Mi,2. Note that Mi,2 does not contain
the information of sj because s2j is always 1. Then, through
solving the following two optimization problem:

α̂1 = arg min
α1∈RK

:
∣∣∣M̂i,1 −

K∑
j=1

ψ1α1,jŵ
∗
j

∣∣∣,
α̂2 = arg min

α2∈RK
:
∣∣∣M̂i,2 −

K∑
j=1

ψ2α2,jŵ
∗
j ŵ
∗T
j

∣∣∣, (11)

The estimation of sj can be given as ŝj = sign(α̂1,j/α̂2,j).
Also, we know that |α̂1,j | is the estimation of ‖w∗j ‖
and v̂j = sign(α̂1,j/sj). Thus, W (0) is given as[
sign(α̂2,1)α̂1,1ŵ

∗
1, · · · , sign(α̂2,K)α̂1,Kŵ

∗
K

]
.

To reduce the computational complexity of tensor decom-
position, one can project M̂i,3 to a lower-dimensional tensor
[46]. The idea is to first estimate the subspace spanned by
{w∗j }Kj=1, and let V̂ denote the estimated subspace. Then,
from (7) and (10), we know that Mi,3(V̂ , V̂ , V̂) ∈ RK×K×K
is represented by

Mi,3(V̂ , V̂ , V̂)

=Ex
{
y
[
(V̂ TPix)⊗3 − (V̂ TPix)⊗̃I

]}
=

K∑
j=1

ψ3(V̂ Tw∗j) · (V̂ Tw∗j)
⊗3

(12)

and can be estimated by training samples as well. Next, one
can decompose the estimate M̂i,3(V̂ , V̂ , V̂) to obtain unit
vectors {ûj}Kj=1 ∈ RK . Since w∗ lies in the subspace V , we
have V V Tw∗j = w∗j . Then, V̂ ûj is an estimate of sjw∗j . The
initialization process is summarized in Subroutine 1.

5

Subroutine 1 Tensor Initialization Method
1: Input: training data D = {(xn, yn)}Nn=1;
2: Partition D into three disjoint subsets D1, D2, D3;
3: Calculate M̂i,1, M̂i,2 following (5), (6) using D1, D2,

respectively;
4: Obtain the estimate subspace V̂ of M̂i,2;
5: Calculate M̂i,3(V̂ , V̂ , V̂) using (12) through D3;
6: Obtain {ûj}Kj=1 via tensor decomposition method [17];
7: Obtain α̂1, α̂2 by solving optimization problem (11);
8: Return: w(0)

j = sign(α̂2,j)α̂1,jV̂ ûj and v̂ = sign(α̂2),
j = 1, ...,K.

B. Parameter estimation through accelerated gradient descent

In this part, we provide the major theoretical results. Lemma
1 provides the first error bound of the initialization using the
tensor initialization method in the presence of noise. Based
on the tensor initialization method, Theorem 1 summarizes
the recovery accuracy of W ∗ using Algorithm 1.

Lemma 1. Assume the noise level |ξ| ≤ KMσ1 and the
number of samples N ≥ C1κ

8M2Kd log4 d for some large
positive constant C1, the tensor initialization method in Sub-
routine 1 outputs v̂, W (0) such that

v̂ = v∗, (13)

and

‖W (0) −W ∗‖2 ≤ C2κ
6

√
K4d log d

N
(KMσ1 + |ξ|) (14)

with probability at least 1− d−10.

Theorem 1. Let {W (t)}Tt=1 be the sequence generated in
Algorithm 1 with η = 1

12M2K . Suppose the noise level |ξ| ≤
KMσ1 and the number of samples satisfies

N ≥ C3ε
−2
0 κ9γ3M3K8d log4 d log(1/ε) (15)

for some constants C3 > 0 and ε0 ∈ (0, 12). Then {W (t)}Tt=1

converges linearly to W ∗ with probability at least 1 −
K2M2T · d−10 as

‖W (t) −W ∗‖2 ≤ν(β)t‖W (0) −W ∗‖2

+ C4

√
κ2γMK2d log d

N
· |ξ|,

(16)

and

‖W (T) −W ∗‖2 ≤ ε‖W ∗‖2 + C4

√
κ2γMK2d log d

N
· |ξ|,

(17)
where ν(β) is the convergence rate that depends on β, and
C4 is some positive constant. Moreover, we have

ν(β) < ν(0) for some small nonzero β, (18)

Specifically, let β∗ =
(

1−
√

1−ε0
132κ2γKM

)2
, we have

1− 1− ε0
132κ2γKM

≤ ν(0) ≤ 1− 1− 2ε0
132κ2γKM

,

ν(β∗) ≤ 1− 1− ε0√
132κ2γKM

.
(19)

Remark 1 (Zero generalization error of learned model):
Lemma 1 shows that the weight vector v∗ of the second
layer can be exactly recovered when the noise is bounded,
and there exist enough samples. Theorem 1 shows that the
iterates returned by Algorithm 1 converge to W ∗ exactly in
the noiseless case or approximately in noisy case. For the
convenience of presentation, we refer to the second term on
the right-hand side of (16) and (17) as the noise error term.
Specifically, when the relation of input x and the output y
can be exactly described by the CNN model, i.e., the noise
ξ = 0, then the noise error term vanishes, and the ground-
truth W ∗ can be estimated exactly with a finite number
of samples. When the noise is not zero, the noise error
term decreases as the number of samples N increases in
the order of

√
1/N . With a sufficiently large sample size,

the iterates can approach W ∗ for an arbitrarily small error.
With the number of samples satisfies (15), the second error
term on the right-hand side of (16) is proportional to the
noise magnitude |ξ|. From the definition of g(·), one can
check that κKMσ1 ≤ Ex|g(x)| ≤ KMσ1 when x follows
N (0, 1). Then the condition in Lemma 1 and Theorem 1 that
|ξ| ≤ KMσ1 means that the noise can be as high as the order
of the average energy of the noiseless output g(x).
Remark 2 (Faster linear convergence rate than GD in
learning neural networks): Theorem 1 indicates that the
Heavy Ball step can accelerate the rate of convergence as
shown in (18). Without the second momentum term, i.e.,
β = 0, the rate of convergence is 1−Θ

(
1

KM

)
for the vanilla

GD. If β is selected appropriately, the rate of convergence is
improved and upper bounded by 1−Θ

(
1√
KM

)
. This is the first

paper to provide theoretical guarantees for the convergence of
AGD methods in learning neural networks.
Remark 3 (Sample complexity analysis): Theorem 1 requires
O
(
M3K8d log4 d log(1

ε)
)

number of samples for the success-
ful estimation. K is the number of nodes in the hidden layer
and usually a fixed constant for a given neural network. d is
the dimension of patches and scales with the size of input
data. ε is the estimation error of W ∗. Note that the degree
of freedom of W ∗ is Kd. The required number of samples
in Theorem 1 depends on d log4 d and thus is nearly optimal
with respect to d.

C. Comparisons with related works

We compare our results with all the exiting works to the best
of our knowledge that provide generalizability guarantees. We
focus on the following three aspects.

(1) Tensor initialization method and AGD algorithm:
Tensor initialization method is first introduced and analyzed
in [46] for fully connected neural networks with homogeneous
activation functions. Ref. [9] extends the analysis to the non-
homogeneous sigmoid activation. However, both works only
consider noiseless settings. When reduced to the case of fully
connected neural networks without noise, i.e., ξ = 0 and M =
1, the bound in (14) is as tight as that in [46].

Existing works only consider the convergence of GD instead
of AGD in neural networks. Due to the additional momentum
term, the analysis of GD does not directly generalize to AGD.

6

Specifically, the convergence of GD is based on establishing
‖W (t+1) −W ∗‖2 ≤ ν‖W (t) −W ∗‖2 for some |ν| < 1,
so this analysis does not directly apply to AGD. Instead,
our analysis of AGD is based on the augmented iteration as[
W (t+1) −W ∗

W (t) −W ∗

]
, and the convergence rate is calculated as

a function of β. Note our analysis also applies to the special
case that β = 0, i.e., the GD algorithm.

(2) Noisy outputs: Refs. [10], [44] consider noisy outputs in
fully connected neural networks. In [10], the authors analyze
stochastic gradient descent through expectation, and the noise
is assumed to be zero mean. Thus, the noise level does
not appear in the theoretical bounds. In [44], the authors
assume the existence of a proper initialization, but there is
no theoretical guarantee in [44] about whether their proposed
initialization method in the noisy setting can return a desirable
initialization. Moreover, our error bound (16) is tighter than
that in [44]. Specifically, the second term on the right-hand
side of (16) only depends on noise factor ξ. In contrast, eqn.
(4.1) in [44] shows that the GD algorithm converges to W ∗

up to an estimation error that depends on both ‖W ∗‖F and
the noise level. Even when there is no noise, the additional
error term in eqn. (4.1) of [44] is nonzero.

(3) Theoretical guarantees: As most existing works only
focus on GD algorithm with noiseless outputs, we compare
with these works by reducing to β = 0 and ξ = 0 in Theorem
1. Refs. [3], [8], [9], [45] consider one-hidden-layer non-
overlapping convolutional neural networks. Refs. [3] and [8]
show that the GD algorithm converges to the ground-truth with
a constant probability from one random initialization, but the
result only applies to the case of one node in the hidden layer,
i.e., K = 1. Moreover, the analyses assume an infinite number
of input samples and do not consider the sample complexity.
Based on the tensor initialization method [46], refs. [9] and
[45] show that the GD algorithm converges to the ground-
truth with a linear convergence rate, but the result only applies
to smooth activation functions, like sigmoid functions, and
excludes ReLU functions. Refs. [10], [44] provide the sample
complexity analysis with ReLU activation function but focus
on one-hidden-layer fully connected neural networks, which
can be viewed as a special case of the convolutional neural
network studied in this paper by selecting M = 1. The sample
complexity in [10] with respect to d is poly(d), but the power
of d is not provided explicitly. Moreover, the convergence rate
in [10] is sub-linear, while our theorem shows that both GD
and AGD enjoy linear convergence rates.

IV. SIMULATION

The input data {xn}Nn=1 are randomly selected from the
Gaussian distribution N (0, I). The number of patches M is
selected as a factor of the signal dimension p, and all the
patches have the same size d with d = p/M . Entries of
the weight matrix W ∗ are i.i.d generated from N (0, 12).
The noise {ξn}Nn=1 are i.i.d from N (0, σ2), and the noise
level is measured by σ/Ey , where Ey is the average energy
of the noiseless outputs {g(xn)}Nn=1 calculated as Ey =√

1
N

∑N
n=1 |g(xn)|2. The output data {yn}Nn=1 are generated

by (1). In the following numerical experiments, the whole
dataset {xn, yn}Nn=1 instead of a fresh subset is used to
calculate the gradient in each iteration. The initialization is
randomly selected from

{
W0

∣∣‖W0−W ∗‖F /‖W ∗‖F < 0.5
}

and v(0) = v∗ to reduce the computation. As shown in [9],
[44], random initialization and the tensor method have very
similar numerical performance.

If not otherwise specified, we use the following parameter
setup. p is chosen as 50, and M is selected as 5. Hence, d =
p/M is 10. The number of nodes in hidden layer K is chosen
as 5. The number of samples N is chosen as 200. The step
size of the gradient η is 2K

M2 , and β is selected as (1− 1√
KM

)2.
All the simulations are implemented in MATLAB 2015a on a
desktop with 3.4 GHz Intel Core i7.

A. Performance of AGD with different v∗

Figs. 2 and 3 show the performance of AGD with dif-
ferent v∗j , and the results are averaged over 100 inde-
pendent trials. In Fig. 2, the relative error is defined as
‖W (t) −W ∗‖F /‖W ∗‖F , where W (t) is the estimate in the
t-th iteration. In Fig. 3, each trial is called a success if the
relative error is less than 10−6. We generate two cases of v∗.
In Case 1, all the entries of v∗ are 1, while each entry is i.i.d.
selected from {+1,−1} with equal probability in Case 2. k is
set as 5, and d is set as 60 with p = 300. In both figures, the
results of Case 1 is shown by the lines marked as “vj = +1”,
and the second group is marked as “vj ∈ {+1,−1}”. We can
see that the performances of these two cases are almost the
same. In the following experiments, we fix v∗j as 1 for all j.

200 300 400
10-10

10-5

100
Performance of AGD

Fig. 2: Recovery error of AGD
under different v∗

150 200 250 300 350 400 450
0

0.5

1
Performance of AGD

Fig. 3: Success rate of AGD
under different v∗

B. Performance of AGD with noiseless output

Figs. 4 and 5 show the convergence of AGD by varying K
and M . In Fig. 4, η, β are calculated based the value of K,
and other parameters are fixed. For each K, we conducted
independent trials with random selected xn, W ∗ and the
corresponding yn. Given K, the convergence rates of different
trials vary slightly. Fig. 4 shows one example of these trials
for each K. We can see that the convergence rate decreases
as K increases. Similarly, Fig. 5 shows that the convergence
rate decreases as M increases.

Figs. 6 and 7 show the phrase transition where the number
of samples N , the dimension of patches d, and the number of
nodes in the hidden layer K change. All the other parameters
except N and d (or k) remain the same as the default values.

7

Number of iterations
0 500 1000 1500 2000

R
el

at
iv

e
er

ro
r

10-4

10-2

100
Convergence of AGD by varying K

K=2
K=5
K=10
K=20
K=50

Fig. 4: Convergence of AGD
with different K

Number of iterations
0 200 400 600 800 1000

R
el

at
iv

e
er

ro
r

10-4

10-2

100
Convergence of AGD by varying M

M=2
M=10
M=20
M=50
M=100

Fig. 5: Convergence of AGD
with different M

For each (N, d) or (N,K) pair, we conduct 100 independent
trials. Each trial is called a success if the relative error is less
than 10−6. A white block means all the trails are successful,
while a black one means all the trials fail.

Phase trainsition of N against d

20 40 60 80 100 120

100

300

500

700

900

Fig. 6: Phrase transition of N
against d

Phase trainsition of N against K

4 8 12 16 20 24

100

300

500

700

900

Fig. 7: Phrase transition of N
against K

C. Performance of AGD with noisy output

Fig. 8 shows the relative error of AGD algorithm by varying
the number of samples N in the noisy case. K is set as 5, and
d is set as 60 with p = 300. Hence, the degree of freedom
of W ∗ is 300. Y-axis stands for the relative error, and the
results are averaging over 100 independent trials. We can see
that the relative errors are high when N is less than the degree
of freedom as 300. Once the number of samples exceeds the
degree of freedom, the relative error decreases dramatically in
both noisy and noiseless settings. As N increases, the relative
error in the noisy setting converges fast to the noise level.

100 200 300 400 500 600 700 800

10-4

10-3

10-2

10-1
Performance of AGD in the noisy settings

/E
y
 = 10-3

/E
y
 = 10-4

/E
y
 = 0

Fig. 8: The performance of Alg. 1 with noisy measurements

Fig. 9 shows the phrase transition of N against d with
different noise levels. A trial is considered successful if the
returned W satisfies ‖W −W ∗‖2/‖W ∗‖2 ≤ σ/Ey (or 10−6

in noiseless settings). As d increases, the required number of
samples for all successful estimations increases as well. Also,

with a higher noise level, the success region becomes smaller.

20 40 60 80 100 120

100

300

500

700

900

20 40 60 80 100 120

100

300

500

700

900

20 40 60 80 100 120

100

300

500

700

900

Fig. 9: The phrase transition of AGD in noisy settings

D. Comparison of GD and AGD

Fig. 10 shows the progress of both GD and AGD methods
across iterations. We fix the same initialization for GD and
AGD in Fig. 10(a) and (b), respectively. In both cases, β and
other parameters except for η are fixed as the default values.
The only difference is that the step size η is 2K

M2 in Fig. 10(a)
and 3K

M2 in Fig. 10(b). One can see that starting from the same
initialization, GD sometimes diverges in (b) with a large step
size. By adding the heavy-ball term, the AGD method can
converge to the global minimum. Moreover, when both GD
and AGD converge, AGD converges faster than GD.

Number of iterations
0 500 1000 1500 2000

R
el

at
iv

e
er

ro
r

10-10

100
step size 2 = 2K

M 2

 GD
 AGD

(a)

Number of iterations
0 500 1000 1500 2000

R
el

at
iv

e
er

ro
r

10-10

100
step size 2 = 3K

M 2

 GD
 AGD

(b)
Fig. 10: Performance of AGD and GD under different η

Fig. 11 compares the convergence rates of AGD and GD.
The number of samples N is set as 500, and other parameters
are the default values. Each point means the smallest number
of iterations needed to reach the corresponding estimation
error, and the results are averaged over 100 independent trials.
AGD requires a smaller number of the iterations than GD to
achieve the same relative error.

Relative error
10-2 10-3 10-4 10-5 10-6 10-7 10-8

N
um

be
r

of
 it

er
at

io
ns

0

500

1000

1500

2000
GD
AGD

Fig. 11: Comparison of AGD and GD in number of iterations

Fig. 12 shows the phrase transition of GD and AGD by
varying N and d when the output is noiseless. AGD has

8

a larger successful region than GD so that AGD requires a
smaller number of samples to guarantee successful recovery
for a given d.

GD

20 40 60 80 100 120

100

300

500

700

900

AGD

20 40 60 80 100 120

100

300

500

700

900

Fig. 12: The phase transition of GD and AGD

V. CONCLUSION AND FUTURE WORKS

We have analyzed the performance of (accelerated) gradient
descent methods in learning one-hidden-layer non-overlapping
convolutional neural networks with multiple nodes and ReLU
activation function. We have shown that if the number of sam-
ples exceeds our provided sample complexity, gradient descent
methods with the tensor initialization find the ground-truth
parameters with a linear convergence rate. The parameters can
be estimated exactly when the data are noiseless. Moreover,
accelerated gradient descent is proved to converge faster than
vanilla gradient descent. One future direction is to extend the
analysis framework to multi-layer overlapping convolutional
neural networks.

ACKNOWLEDGEMENT

This work was supported by AFOSR FA9550-20-1-0122,
NSF 1932196, and the Rensselaer-IBM AI Research Col-
laboration (http://airc.rpi.edu), part of the IBM AI Horizons
Network (http://ibm.biz/AIHorizons).

REFERENCES

[1] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in over-
parameterized neural networks, going beyond two layers,” in Advances
in neural information processing systems, 2019, pp. 6155–6166.

[2] O. Bousquet and A. Elisseeff, “Stability and generalization,” Journal of
machine learning research, vol. 2, no. Mar, pp. 499–526, 2002.

[3] A. Brutzkus and A. Globerson, “Globally optimal gradient descent for a
convnet with gaussian inputs,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
605–614.

[4] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction
and classification of hyperspectral images based on convolutional neural
networks,” IEEE Trans. Geosci. Remote., vol. 54, no. 10, pp. 6232–6251,
July 2016.

[5] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th International Conference on Machine Learning, ser.
ICML ’08, 2008, pp. 160–167.

[6] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[7] S. S. Du, J. D. Lee, and Y. Tian, “When is a convolutional filter easy
to learn?” arXiv preprint, http://arxiv.org/abs/1709.06129, 2017.

[8] S. S. Du, J. D. Lee, Y. Tian, A. Singh, and B. Poczos, “Gradient descent
learns one-hidden-layer cnn: Don’t be afraid of spurious local minima,”
in International Conference on Machine Learning, 2018, pp. 1338–1347.

[9] H. Fu, Y. Chi, and Y. Liang, “Guaranteed recovery of one-hidden-layer
neural networks via cross entropy,” arXiv preprint arXiv:1802.06463,
2018.

[10] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural
networks with landscape design,” in International Conference on
Learning Representations, 2018. [Online]. Available: https://openreview.
net/forum?id=BkwHObbRZ

[11] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315–323.

[12] S. Goel, A. Klivans, and R. Meka, “Learning one convolutional layer
with overlapping patches,” in ICML, 2018.

[13] R. H. Hahnloser and H. S. Seung, “Permitted and forbidden sets in
symmetric threshold-linear networks,” in Advances in Neural Informa-
tion Processing Systems, 2001, pp. 217–223.

[14] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better:
Stability of stochastic gradient descent,” in International Conference on
Machine Learning, 2016, pp. 1225–1234.

[15] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[17] V. Kuleshov, A. Chaganty, and P. Liang, “Tensor factorization via matrix
factorization,” in Artificial Intelligence and Statistics, 2015, pp. 507–516.

[18] T. Laurent and J. Brecht, “The multilinear structure of relu networks,” in
International Conference on Machine Learning, 2018, pp. 2908–2916.

[19] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition:
A convolutional neural-network approach,” IEEE transactions on neural
networks, vol. 8, no. 1, pp. 98–113, 1997.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[22] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with ReLU activation,” in Advances in Neural Information Processing
Systems, 2017, pp. 597–607.

[23] S. Liang, R. Sun, J. D. Lee, and R. Srikant, “Adding one neuron can
eliminate all bad local minima,” in Advances in Neural Information
Processing Systems, 2018, pp. 4355–4365.

[24] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational ef-
ficiency of training neural networks,” in Advances in neural information
processing systems, 2014, pp. 855–863.

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings of the 30 th
International Conference on Machine Learning, vol. 30, no. 1, 2013.

[26] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2013, vol. 87.

[27] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring
generalization in deep learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 5947–5956.

[28] B. T. Polyak, “Introduction to optimization,” New York: Optimization
Software, Inc, 1987.

[29] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[30] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning
representations by back-propagating errors,” Cognitive modeling, vol. 5,
no. 3, 1988.

[31] I. Safran and O. Shamir, “Spurious local minima are common in two-
layer relu neural networks,” in International Conference on Machine
Learning, 2018, pp. 4430–4438.

[32] O. Shamir, “Distribution-specific hardness of learning neural networks,”
The Journal of Machine Learning Research, vol. 19, no. 1, pp. 1135–
1163, 2018.

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[34] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights
into the optimization landscape of over-parameterized shallow neural
networks,” IEEE Transactions on Information Theory, vol. 65, no. 2,
pp. 742–769, 2018.

9

[35] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Int. Conf. Mach.
Learn., 2013, pp. 1139–1147.

[36] Y. Tian, “An analytical formula of population gradient for two-layered
relu network and its applications in convergence and critical point
analysis,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 3404–3413.

[37] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Foundations of computational mathematics, vol. 12, no. 4, pp. 389–434,
2012.

[38] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” arXiv preprint arXiv:1011.3027, 2010.

[39] G. Wang, G. B. Giannakis, and J. Chen, “Learning relu networks on
linearly separable data: Algorithm, optimality, and generalization,” IEEE
Transactions on Signal Processing, vol. 67, no. 9, pp. 2357–2370, 2019.

[40] S. Wu, A. G. Dimakis, and S. Sanghavi, “Learning distributions gen-
erated by one-layer relu networks,” in Advances in Neural Information
Processing Systems, 2019, pp. 8105–8115.

[41] T. Yang, Q. Lin, and Z. Li, “Unified convergence analysis of stochastic
momentum methods for convex and non-convex optimization,” arXiv
preprint arXiv:1604.03257, 2016.

[42] G. Yehudai and O. Shamir, “On the power and limitations of random
features for understanding neural networks,” in Advances in Neural
Information Processing Systems, 2019, pp. 6594–6604.

[43] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” arXiv preprint
arXiv:1611.03530, 2016.

[44] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer relu
networks via gradient descent,” in The 22nd International Conference
on Artificial Intelligence and Statistics, 2019, pp. 1524–1534.

[45] K. Zhong, Z. Song, and I. S. Dhillon, “Learning non-overlapping
convolutional neural networks with multiple kernels,” arXiv preprint
arXiv:1711.03440, 2017.

[46] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon, “Recovery
guarantees for one-hidden-layer neural networks,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, https://arxiv.org/abs/1706.03175, 2017, pp. 4140–4149.

APPENDIX

A. Proof of Theorem 1

We first summarize the high-level ideas in proving Theorem
1 before presenting the technical proof. Following the recent
line of research such as [45], [46], the idea is to initialize
the weights W near the ground-truth W ∗ and then gradually
converge to it. Our initialization is similar to [46], as discussed
in Section III-A. However, our proof is more involved than that
of [46] to handle the additional noise item, the non-smooth
ReLU functions, the additional momentum term in accelerated
gradient descent, and different neural network structures.

As for the convergence analysis, refs. [45], [46] apply the
intermediate value theorem over ∇f̂Dt at each iterate Wt as

∇f̂Dt(W (t)) ' 〈∇2f̂Dt(Ŵ
(t)),W (t) −W ∗〉

for some Ŵ (t) between W (t) and W ∗ and analyze ∇2f̂Dt
to obtain a recursive inequality of W (t) −W ∗ over t. The
intermediate value theorem only applies to the continuous
functions, and their analyses do not extend to our setup be-
cause with the ReLU activation function, the resulting ∇f̂D is
non-continuous. Instead, we will first prove that the population
loss function f , which is defined as

f(W) :=EDt f̂Dt(W)

=Ex
(

1

K

K∑
j=1

M∑
i=1

φ(wT
j Pix)− y

)2

,
(20)

is locally convex near W ∗, and the gradient of f̂Dt is close
enough to ∇f . We will then show that the iterates based on
∇f̂Dt converge to W ∗.

The following two lemmas are important for our proof. We
leave their proofs to Appendix-C and D.

Lemma 2. For any W that satisfies

‖W −W ∗‖2 ≤
ε0σK

44κ2γM
, (21)

we have

(1− ε0)M

11κ2γ
I ≤ ∇2f(W) ≤ 6M2KI. (22)

Lemma 3. Suppose a fixed point W satisfies (21). Then, for
a training set D with N > d log d samples, we have∥∥∥∇f(W)−∇f̂D(W)

∥∥∥
2

.MK

√
d log d

N

(
MK‖W −W ∗‖2 + |ξ|

)
,

(23)

with probability at least 1−K2M2 · d−10.

Lemma 2 shows that the population loss function f(W) is
locally convex near W ∗. Then, the analysis of AGD algorithm
over the empirical loss function f̂D(W) is based on the
analysis over f(W) and the error bound between ∇f̂D(W)
and ∇f(W) as shown in (26).

Lemma 3 describes the error bound between ∇f(W)
and ∇f̂D(W), and (23) shows that ∇f̂D(W) converges to
∇f(W) in a small neighborhood of W ∗ when N is large
enough. A similar result is stated in Lemma 5.3 of [44]
for fully connected neural networks with ReLU activation
function. Fully connected neural networks can be viewed as
a special kind of convolutional neural networks with M = 1.
Moreover, even when reducing our model to the case M = 1,
the error bound presented in (23) is much tighter than that in
Lemma 5.3 of [44].

Combining Lemmas 1, 2 and 3, we will show the con-
vergence of GD in solving (3) by mathematical induction.
Conditioned on the assumption that W (t) satisfies (21), we
show that ‖W (t+1) −W ∗‖2 is related to ‖W (t) −W ∗‖2 by
(38). The acceleration of Heavy-Ball steps is analyzed through
(32), and the result is summarized in (33). The next step is to
show (38) holds for all 0 ≤ t ≤ T − 1. By Lemma 1, we can
choose N to be large enough so that W (0) satisfies (21). Then
in the induction step, with a large enough N and a bounded
ξ, we will show that ‖W (t+1) −W ∗‖2 < ‖W (t) −W ∗‖2.
Then W (t) satisfies (21) naturally. The details are as follows.

Proof of Theorem 1. The update rule of W (t) is

W (t+1)

=W (t) − η∇f̂Dt(W (t)) + β(W (t) −W (t−1))

=W (t) − η∇f(W (t)) + β(W (t) −W (t−1))

+ η(∇f(W (t))−∇f̂Dt(W (t))).

(24)

10

Since ∇2f is a smooth function, by the intermediate value
theorem, we have

W (t+1) = W (t) − η∇2f(Ŵ (t))(W (t) −W ∗)

+ β(W (t) −W (t−1))

+ η
(
∇f(W (t))−∇f̂Dt(W (t))

)
,

(25)

where Ŵ (t) lies in the convex hull of W (t) and W ∗.
Next, we have[

W (t+1) −W ∗

W (t) −W ∗

]
=

[
I − η∇2f(Ŵ (t)) + βI βI

I 0

] [
W (t) −W ∗

W (t−1) −W ∗

]
+ η

[
∇f(W (t))−∇f̂Dt(W (t))

0

]
.

(26)

Let A(β) =

[
I − η∇2f(Ŵ (t)) + βI βI

I 0

]
, so we have∥∥∥∥[W (t+1) −W ∗

W (t) −W ∗

]∥∥∥∥
2

= ‖A(β)‖2

∥∥∥∥[W (t) −W ∗

W (t−1) −W ∗

]∥∥∥∥
2

+η

∥∥∥∥[∇f(W (t))−∇f̂Dt(W (t))
0

]∥∥∥∥
2

.

From Lemma 3, we know that

η
∥∥∥∇f(W (t))−∇f̂Dt(W (t))

∥∥∥
2

≤C5ηM
2

√
d log d

Nt

(
‖W −W ∗‖2 +

|ξ|
M

) (27)

for some constant C5 > 0. Then, we have

‖W (t+1) −W ∗‖2

≤
(
‖A(β)‖2 + C5ηM

2

√
d log d

Nt

)
‖W (t) −W ∗‖2

+ C5ηM

√
d log d

Nt
|ξ|

:=ν(β)‖W (t) −W ∗‖2 + C5ηM

√
d log d

Nt
|ξ|.

(28)

Let ∇2f(Ŵ (t)) = SΛST be the eigendecomposition of
∇2f(Ŵ (t)). Then, we define

Ã(β) :=

[
ST 0
0 ST

]
A(β)

[
S 0
0 S

]
=

[
I − ηΛ + βI βI

I 0

]
.

(29)

Since
[
S 0
0 S

] [
ST 0
0 ST

]
=

[
I 0
0 I

]
, we know A(β) and

Ã(β) share the same eigenvalues. Let λi be the i-th eigenvalue
of ∇2f(Ŵ (t)), then the corresponding i-th eigenvalue of
A(β), denoted by δi(β), satisfies

δ2i − (1− ηλi + β)δi + β = 0. (30)

Then, we have

δi(β) =
(1− ηλi + β) +

√
(1− ηλi + β)2 − 4β

2
, (31)

and

|δi(β)|

=

{√
β, if β ≥

(
1−
√
ηλi
)2
,

1
2

∣∣∣(1− ηλi + β) +
√

(1− ηλi + β)2 − 4β
∣∣∣ , otherwise.

(32)

Note that the other root of (30) is abandoned because the root
in (31) is always no less than the other root with |1−ηλi| < 1.
By simple calculations, we have

δi(0) > δi(β), for ∀β ∈
(
0, (1− ηλi)2

)
. (33)

Moreover, δi achieves the minimum δ∗i = |1 −
√
ηλi| when

β =
(
1−
√
ηλi
)2

.
Let us first assume W (t) satisfies (21), then from Lemma

2, we know that

0 <
(1− ε0)M

11κ2γ
≤ λi ≤ 6M2K.

Let γ1 = (1−ε0)M
11κ2γ and γ2 = 6KM2. If we choose β such that

β∗ = max
{

(1−√ηγ1)2, (1−√ηγ2)2
}
, (34)

then we have β ≥ (1−
√
ηλi)

2 and δi = max
{
|1−√ηγ1|, |1−√

ηγ2|
}

for any i.

Let η = 1
2γ2

, then β∗ equals to
(

1 −
√

γ1
2γ2

)2
. Then, for

any ε0 ∈ (0, 1/2), we have

‖A(β∗)‖2 = max
i
δi(β

∗) = 1−
√

γ1
2γ2

=1−
√

1− ε0
132κ2γKM

≤1− 1− (3/4) · ε0√
132κ2γKM

.

(35)

Then, let

C5ηM
2

√
d log d

Nt
≤ ε0

4
√

132κ2γKM
, (36)

we need Nt & ε−20 κ2γMK3d log d. Combining (35) and (36),
we have

ν(β∗) ≤ 1− 1− ε0√
132κ2γKM

. (37)

Let β = 0, we have

ν(0) ≥ ‖A(0)‖2 = 1− 1− ε0
132κ2γKM

,

ν(0) ≤ ‖A(0)‖2 + C5ηM
2

√
d log d

Nt
≤ 1− 1− 2ε0

132κ2γKM

if Nt & ε−20 κ2γM2K4d log d.
Hence, with η = 1

2γ2
and β =

(
1− γ1

2γ2

)2
, we have

‖W (t+1) −W ∗‖2 ≤
(

1− 1− ε0√
132κ2γKM

)
‖W (t) −W ∗‖2

+ 2CηM

√
d log d

Nt
|ξ|,

(38)

11

provided that W (t) satisfies (21), and

Nt & ε−20 κ2γMK3d log d. (39)

Then, we can start mathematical induction of (38) over t.
Base case: According to Lemma 1, we know that (21) holds

for W (0) if

N & ε−20 κ9γ2K8M2d log4 d. (40)

According to (15) in Theorem 1, it is clear that the number
of samples N satisfies (40), then (21) indeed holds for t = 0.
Since (21) holds for t = 0 and N in (15) satisfies (39) as well,
we have (38) holds for t = 0.

Induction step: Assuming (38) holds for W (t), we need to
show that (38) holds for W (t+1). That is to say, we need (i)
N satisfies (39); (ii) (21) holds for W (t+1). The requirement
(i) holds naturally from (15). To guarantee (ii) holds, we need

ηM

√
d log d

Nt
.

1− ε0√
132κ2γKM

· ε0σK
44κ2γK2M

. (41)

That requires

Nt & ε−20 κ8γ3M3K6d log d. (42)

Therefore, when Nt & ε−20 κ9γ3M3K8d log4 d, we know that
(38) holds for all 0 ≤ t ≤ T − 1 with probability at least
1−K2M2T · d−10. By simple calculations, we can obtain

‖W (T) −W ∗‖2 ≤
(

1− 1− ε0√
132κ2γKM

)T
‖W (0) −W ∗‖2

+ C4

√
κ2γMK2d log d

Nt
· |ξ|

(43)

for some constant C4 > 0.

B. Proof of Lemma 1

The proof of Lemma 1 is divided into three major parts
to bound I1, I2 and I3 in (50). Lemmas 4, 5 and 6 provide
the error bounds for I1, I2 and I3, respectively. Compared
with the proof of Theorem 5.6 in [46] which considers
noiseless measurements, we need to handle additional items
corresponding with noise, and the error bounds for these items
are obtained by applying matrix concentration inequalities
shown in Lemma 7. The detailed proofs of Lemmas 4-6 can
be found in the supplementary materials.

Lemma 4. Suppose Mi,2 is defined as in (6) and M̂i,2 is the
estimation of Mi,2 by samples D = {xn, yn}Nn=1. Then, with
probability 1− d−10, we have

‖M̂i,2 −Mi,2‖ .
√
d log d

N
(KMσ1 + |ξ|), (44)

provided that N & d log4 d.

Lemma 5. Let V̂ be generated by step 4 in Subrou-
tine 1. Suppose Mi,3(V̂ , V̂ , V̂) is defined as in (12) and
M̂i,3(V̂ , V̂ , V̂) is the estimation of Mi,3(V̂ , V̂ , V̂) by sam-
ples D = {xn, yn}Nn=1. Further, we assume V ∈ Rd×K is an
orthogonal basis of W ∗ and satisfies ‖V V T−V̂ V̂ T ‖ ≤ 1/4.

Then, provided that N & K5 log6 d, with probability at least
1− d−10, we have

‖M̂i,3(V̂ , V̂ , V̂)−Mi,3(V̂ , V̂ , V̂)‖

.(KMσ1 + |ξ|)
√
K3 log d

N
.

(45)

Lemma 6. Suppose Mi,1 is defined as in (5) and M̂i,1 is the
estimation of Mi,1 by samples D = {xn, yn}Nn=1. Then, with
probability 1− d−10, we have

‖M̂i,1 −Mi,1‖ . (KMσ1 + |ξ|)
√
d log d

N
(46)

provided that N & d log4 d.

Lemma 7 ([37], Theorem 1.6). Consider a finite sequence
{Zk} of independent, random matrices with dimensions d1 ×
d2. Assume that such random matrix satisfies

E(Zk) = 0 and ‖Zk‖ ≤ R almost surely.

Define

δ2 := max
{∥∥∥∑

k

E(ZkZ
∗
k)
∥∥∥,∥∥∥∑

k

E(Z∗kZk)
∥∥∥}.

Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t
}
≤ (d1 + d2) exp

(−t2/2
δ2 +Rt/3

)
.

Lemma 8 ([46], Lemma E.6). Let V ∈ Rd×K be an
orthogonal basis of W ∗ and V̂ be generated by step 4 in
Subroutine 1. Assume ‖M̂i,2−Mi,2‖2 ≤ σK(Mi,2)/10. Then,
for some small ε0, we have

‖V V T − V̂ V̂ T ‖2 ≤
‖Mi,2 − M̂i,2‖
σK(Mi,2)

. (47)

Lemma 9 ([46], Lemmas E.13 and E.14). Let V ∈ Rd×K
be an orthogonal basis of W ∗ and V̂ be generated by step
4 in Subroutine 1. Assume Mi,1 can be written in the form
of (8) with some constant φ1, and let M̂i,1 be the estimation
of Mi,1 by samples D = {xn, yn}Nn=1. Let α̂1 and α̂2 be
the optimal solutions of (11) with ŵj = V̂ ûj . Then, for each
j ∈ {1, 2, · · · ,K}, if

T1 := ‖V V T − V̂ V̂ T ‖2 ≤
1

κ2
√
K
,

T2 := ‖ûj − sjV̂ Twj‖2 ≤
1

κ2
√
K
,

T3 := ‖M̂i,1 −Mi,1‖2 ≤
1

4
‖Mi,1‖2,

(48)

then we have∣∣∣α∗1,j − α̂1,j

∣∣∣ ≤ (κ4K 3
2

(
T1 + T2

)
+ κ2K

1
2T3

)
|α∗1,j |,∣∣∣α∗2,j − α̂2,j

∣∣∣ ≤ (κ8K3T2 + κ2K2T3

)
|α∗2,j |,

(49)

where α∗1,j = sjv
∗
j ‖w∗j ‖2 and α∗2,j = v∗j ‖w∗j ‖2.

12

Proof of Lemma 1. we have

‖w∗j − sj |α̂1,j |V̂ ûj‖2
≤
∥∥∥w∗j − sj‖wj‖2V̂ ûj + sj‖wj‖2V̂ ûj − sj |α̂1,j |V̂ ûj

∥∥∥
2

≤
∥∥∥w∗j − sj‖wj‖2V̂ ûj∥∥∥

2
+
∥∥∥‖wj‖2V̂ ûj − |α̂1,j |V̂ ûj

∥∥∥
2

≤‖w∗j ‖2‖w∗j − sjV̂ ûj‖2 +
∣∣∣‖wj‖2 − |α̂1,j |

∣∣∣‖V̂ ûj‖2
≤σ1

(
‖w∗j − V̂ V̂ Tw∗j‖2 + ‖V̂ Tw∗j − sjûj‖2

)
+
∣∣∣‖wj‖2 − |α̂1,j |

∣∣∣
:=σ1

(
I1 + I2

)
+ I3.

(50)

From Lemma 8, we have

I1 = ‖w∗j − V̂ V̂ Tw∗j‖2 ≤‖V V T − V̂ V̂ T ‖2

≤‖M̂i,2 −Mi,2‖2
σK(Mi,2)

,
(51)

where the last inequality comes from Lemma 4. Then, from
(9), we know that

σK(Mi,2) . min
1≤j≤K

‖wj‖2 . σK . (52)

From Theorem 3 in [17], we have

I2 =‖V̂ Tw∗j − sjûj‖2
.
κ

σK
‖M̂i,3(V̂ , V̂ , V̂)−Mi,3(V̂ , V̂ , V̂)‖2.

(53)

To guarantee the condition (48) in Lemma 9 hold, according
to Lemmas 4 and 5, we need N & κ3M2Kd log d. Then, from
Lemma 9, we have

I3 =
(
κ4K3/2(I1 + I2) + κ2K1/2‖M̂i,1 −Mi,1‖

)
σ1. (54)

Since d� K, according to Lemmas 4, 5 and 6, we have

∥∥w∗j − |α̂1,j |V̂ ûj
∥∥
2
. ε0κ

6

√
K3d log d

N
(Mσ1 + |ξ|) (55)

provided that N & d log4 d.
When N & ε−20 κ8K4Md log d for ε0 ∈ (0, 1), we have

|α̂1,j − α∗1,j | < ε0|α∗1,j |, and |α̂2,j − α∗2,j | < ε0|α∗2,j |. (56)

Hence, α̂1,j and α̂2,j share the same signs of α∗1,j and α∗2,j ,
and v̂j = v∗j .

C. Proof of Lemma 2

In this section, we provide the proof of Lemma 2 which
shows the local convexity of f in a small neighborhood of
W ∗. The roadmap is to first bound the smallest eigenvalue of
∇2f in the ground truth as shown in (59), then show that the
difference of ∇2f between any fixed point W in this region
and the ground truth W ∗ is bounded in terms of ‖W −W ∗‖2
by Lemma 10 the proof of which is in the supplementary
materials.

Lemma 10. Suppose W satisfies (21), with any 1 ≤ j ≤ K
and 1 ≤ i ≤M , we have

Ex|φ′(wT
j Pix)− φ′(w∗j

TPix)| ≤ 2

π

‖w∗j −wj‖
‖w∗j ‖

, (57)

‖∇2f(W ∗)−∇2f(W)‖ ≤ 4M2K2 ‖W ∗ −W ‖2
σK

. (58)

Proof of Lemma 2. By the triangle inequality, we have∣∣∣ ∥∥∇2f(W)
∥∥
2
−
∥∥∇2f(W ∗)

∥∥
2

∣∣∣ ≤ ‖∇2f(W ∗)−∇2f(W)‖2,

and∥∥∇2f(W)
∥∥
2
≤
∥∥∇2f(W ∗)

∥∥
2

+ ‖∇2f(W ∗)−∇2f(W)‖2,∥∥∇2f(W)
∥∥
2
≥
∥∥∇2f(W ∗)

∥∥
2
− ‖∇2f(W ∗)−∇2f(W)‖2.

The error bound of ‖∇2f(W ∗) − ∇2f(W)‖2 can be de-
rived from Lemma 10, and the remaining part is to bound
∇2f(W ∗). The second order derivative of f at W is written
as

∂2f(W)

∂wj1∂wj2

=Ex

[
v∗i v
∗
j

(M∑
i=1

φ′(wT
j1Pix)Pix

)(M∑
i=1

φ′(wT
j2Pix)Pix

)T]
.

Then, denote Pix by xi. For any vector a ∈ RKM , the lower
bound of ∇2f(W ∗) is derived from

aT∇2f(W ∗)a

=Ex
(K∑
j=1

M∑
i=1

v∗ja
T
j xiφ

′(w∗j
Txi)

)2
:= Ex

(M∑
i=1

h(xi)
)2

=

M∑
i=1

Exh2(xi) +
1

K2

∑
i1 6=i2

Exh(xi1)h(xi2)

=

M∑
i=1

Exh2(xi) +
∑
i1 6=i2

Exi1h(xi1)Exi2h(xi2)

(a)

≥
M∑
i=1

Exh2(xi) ≥
M

11κ2γ
‖a‖22,

(59)

where (a) holds since xi1 and xi2 share the same distribution,
and the last inequality comes from Lemma D.6 [46].

Next, the upper bound of ∇2f(W ∗) is derived from

aT∇2f(W ∗)a

=Ex
(K∑
j=1

M∑
i=1

v∗ja
T
j xiφ

′(wT
j xi)

)2
≤

K∑
j1=1

K∑
j2=1

M∑
i1=1

M∑
i2=1

(
Ex|aTj1xi1 |

4 · Ex|φ′(wT
j1xi1)|4

· Ex|aTj2xi2 |
4 · Ex|φ′(wT

j2xi2)|4
) 1

4

≤
K∑
j1=1

K∑
j2=1

M∑
i1=1

M∑
i2=1

(
Ex|aTj1xi1 |

4 · Ex|aTj2xi2 |
4
) 1

4

≤5M2K‖a‖2.

(60)

13

Since both (59) and (60) hold for any a ∈ RKd, then

M

11κ2γ
I ≤ ∇2f(W ∗) ≤ 5M2KI. (61)

From the assumption in (21) and Lemma 10, we have∥∥∇2f(W)−∇2f(W ∗)
∥∥
2
≤ ε0M

11κ2γ
. (62)

Combining (61) and (62) completes the whole proof.

D. Proof of Lemma 3

The main steps in this proof is to bound the three items
in (67). Lemma 11 provides the bound for case that when
i1 = i2, where X̃1(or X̂1) and X̃2 are correlated with each
other. When i1 6= i2, X̃1(or X̂1) and X̃2 are independent,
and the corresponding results are summarized in Lemma 12.
Both Lemmas 11 and 12 use the fact that X̃1, X̃2 and X̂1

are sub-Gaussian random variables, and the definition of sub-
Gaussian is summarized in Definition 1. Additionally, the sub-
exponential random variable is defined in Definition 2. The
multiplication of two sub-Gaussian random variables belongs
to the sub-exponential distribution, and this property is used
in the proofs of Lemmas 11 and 12.

Lemma 5.3 in [44] provides the error bound between ∇f
and ∇f̂D for the fully connected neural networks. However,
there are two major differences from our proof. First, the error
bound provided in [44] is much looser than ours. Second, ref.
[44] only needs to consider the case that i1 = i2 = 1 due to the
fully connected neural network structures. The error bound of
Lemma 5.3 in [44] is O

(√
d logN
N

)
(‖W ∗‖2 + |ξ|), while the

error bound in Lemma 3 is O
(√

d log d
N

)
(M‖W ∗ −W ‖2 +

|ξ|), and M = 1 for fully connected neural networks. Since
all the analyses are based on the fact that the iterates lie in a
small neighborhood of W ∗, that is ‖W (t)−W ∗‖2 � ‖W ∗‖2
especially for large t. Hence, it is obvious the error bound
provided in Lemma 3 is tighter.

Definition 1 (Definition 5.7, [38]). A random variable X is
called a sub-Gaussian random variable if it satisfies

(E|X|p)1/p ≤ c1
√
p (63)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2‖X‖
2
ψ2
s2 (64)

for all s ∈ R and some constant c2 > 0, where ‖X‖φ2

is the sub-Gaussian norm of X defined as ‖X‖ψ2 =
supp≥1 p

−1/2(E|X|p)1/p.
Moreover, a random vector X ∈ Rd belongs to the sub-

Gaussian distribution if one-dimensional marginal αTX is
sub-Gaussian for any α ∈ Rd, and the sub-Gaussian norm of
X is defined as ‖X‖ψ2 = sup‖α‖2=1 ‖αTX‖ψ2 .

Definition 2 (Definition 5.13, [38]). A random variable X is
called a sub-exponential random variable if it satisfies

(E|X|p)1/p ≤ c3p (65)

for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4‖X‖
2
ψ1
s2 (66)

for s ≤ 1/‖X‖ψ1 and some constant c4 > 0, where ‖X‖ψ1

is the sub-exponential norm of X defined as ‖X‖ψ1
=

supp≥1 p
−1(E|X|p)1/p.

Lemma 11. Assume X , Xh1(X) and Xh2(X) all are sub-
Gaussian random vectors in Rd, where h1 and h2 are some
fixed functions from Rd to R. Let {Xn}Nn=1 be N independent
samples of X . Then, the following holds with probability at
least 1− d−10:∥∥∥ 1

N

N∑
n=1

XnX
T
n h1(Xn)h2(Xn)− EXXTh1(X)h2(X)

∥∥∥
2

.

√
d log d

N
‖Xh1(X)‖ψ2

‖Xh2(X)‖ψ2
.

Lemma 12. Assume X1 and X2 are two independent
sub-Gaussian random vectors in Rd. Let {X1,n}Nn=1 and
{X2,n}Nn=1 be N independent samples of X1 and X2, respec-
tively. Then, provided that N & d log d, the following holds
with probability at least 1− d−10:∥∥∥ 1

N

N∑
i=1

X1,nX2,n − EX1X2

∥∥∥
2
.

√
d log d

N
‖X1‖ψ2

‖X2‖ψ2
.

Proof of Lemma 3. We have[
∇f̂D(W)

]
k

=

K∑
j=1

M∑
i1=1

M∑
i2=1

v∗j v
∗
k

N

N∑
n=1(

(Pi1xn)(Pi2xn)Tφ′(wj
TPi1xn)φ′(wT

k Pi2xn)wj

− (Pi1xn)(Pi2xn)Tφ′(w∗j
TPi1xn)φ′(wT

k Pi2xn)w∗j

)
+

M∑
i=1

v∗j v
∗
k

N

N∑
n=1

ξn(Pixn)Tφ′(wT
k Pixn)

=

K∑
j=1

M∑
i1=1

M∑
i2=1

v∗j v
∗
k

N

N∑
n=1

[
(Pi1xn)(Pi2xn)T

· φ′(w∗j
TPi1xn)φ′(wT

k Pi2xn)(wj −w∗j)

+ (Pi1xn)(Pi2xn)T

·
(
φ′(wj

TPi1xn)− φ′(w∗j
TPi1xn)

)
φ′(wT

k Pi2xn)w∗j

]
+

M∑
i=1

v∗j v
∗
k

N

N∑
n=1

ξn(Pixn)Tφ′(wT
k Pixn).

For simplification, let X̃1,n = v∗j v
∗
k(Pi1xn)φ′(w∗j

TPi1xn)

and X̃2,n = v∗j v
∗
k(Pi2xn)φ′(w∗j

TPi2xn). Also, let X̂1,n =

v∗j v
∗
k(Pi1xn)

(
φ′(wj

TPi1xn) − φ′(w∗j
TPi1xn)

)
. Then, we

have [
∇f̂D(W)

]
k

=
1

N

∑
j,i1,i2,n

[
X̃1,nX̃

T
2,n(wj −w∗j)− X̂1,nX̃

T
2,nw

∗
j

]
+

M∑
i1=1

1

N

N∑
n=1

ξnX̃
T
1,n.

14

Hence, we have[
∇f(W)

]
k
−
[
∇f̂D(W)

]
k

=
1

N

∑
j,i1,i2,n

[
(X̃1,nX̃

T
2,n − EX̃1X̃

T
2)(wj −w∗j)

− (X̂1,nX̃
T
2,n − EX̂1X̃

T
2)w∗j

]
+

M∑
i1=1

1

N

N∑
n=1

ξnX̃
T
1,n.

(67)

We claim that X̃1 and X̂1 belong to the sub-Gaussian distri-
bution. According to Definition 1, for any α ∈ Rd, we have(

Ex|αT X̃1|p
)1/p

≤
(
Ex|αTPix|p · Ex|φ′(wT

j Pix)|p
)1/p

≤
(
Ex|αTPix|p

)1/p
≤ √p,

(68)

where the last inequality holds since Pix is a Gaussian random
vector with covariance matrix Id.

For X̂1, we have(
Ex|αT X̂1|p

)1/p
≤
(
Ex|αTPix|p · Ex|φ′(wjTPi1xn)− φ′(w∗j

TPi1xn)|p
)1/p

≤ 2

π

‖w∗j2 −wj2‖
‖w∗j2‖

√
p,

where the last inequality comes from Lemma 10.
When i1 = i2, by Lemma 11, we have

‖X̃1,nX̃
T
2,n − EX̃1X̃

T
2 ‖2 .

√
d log d

N
,

‖X̂1,nX̃
T
2,n − EX̂1X̃

T
2 ‖2 .

√
d log d

N
·
‖w∗j −wj‖
‖w∗j ‖

(69)

with probability at least 1− 1
d10 .

When i1 6= i2, from Lemma 12, we also have

‖X̃1,nX̃
T
2,n − EX̃1X̃

T
2 ‖2 .

√
d log d

N
,

‖X̂1,nX̃
T
2,n − EX̂1X̃

T
2 ‖2 .

√
d log d

N
·
‖w∗j −wj‖
‖w∗j ‖

.

(70)

with probability at least 1− d−10.
For

∑N
n=1 ξnX̃

T
1,n, we have

‖ 1

N

N∑
n=1

ξnX̃1,n‖2 ≤|ξ| · ‖
1

N

N∑
n=1

Pi1xnφ
′(wT

j Pi1xn)‖2

≤|ξ| · ‖ 1

N

N∑
n=1

Pi1xn‖2

.

√
d log d

N
|ξ|

with probability at least 1− d−10.

In conclusion, with probability at least 1−K2M2d−10,

‖∇f(W)−∇f̂D(W)‖F

≤
K,K,M,M∑
k=1,j=1
i1=1,i2=1

∥∥ 1

N

N∑
n=1

X̃1,nX̃
T
2,n − EX̃1X̃

T
2

∥∥
2
‖wj −w∗j ‖2

+

K,K,M,M∑
k=1,j=1
i1=1,i2=1

∥∥ 1

N

N∑
n=1

X̂1,nX̃
T
2,n − EX̂1X̃

T
2

∥∥
2
‖w∗j ‖2

+

K,M∑
k=1,i1=1

|ξ| ·
∥∥∥ 1

N

N∑
n=1

X̃1,n

∥∥∥
2

.M2K2

√
d log d

N
‖W −W ∗‖2 +MK

√
d log d

N
|ξ|.

Shuai Zhang received the B.E. degree from Uni-
versity of Science and Technology of China, Hefei,
China, in 2016.

He is pursuing the Ph.D. degree in electrical en-
gineering at Rensselaer Polytechnic Institute, Troy,
NY. His research interests include signal processing
and high dimensional data analysis.

Meng Wang (M’12) received the Ph.D. degree from
Cornell University, Ithaca, NY, USA, in 2012.

She is an Associate Professor in the department
of Electrical, Computer, and Systems Engineering
at Rensselaer Polytechnic Institute. Her research
interests include high dimensional data analysis and
their applications in power systems monitoring and
network inference.

Jinjun Xiong (M’06) received the Ph.D. degree
from the University of California, Los Angeles, CA,
USA, in 2006. He is a Research Staff Member and
Program Director for cognitive computing systems
research with the IBM T.J. Watson Research Center.
He also co-directs the IBM-Illinois Center for Cog-
nitive Computing Systems Research. His research
interests include AI, Machine Learning and Systems.
His research was recognized with six best paper
awards and eight nominations for best paper awards
at various international conferences.

Sijia Liu received the Ph.D. degree (with the All-
University Doctoral Prize) in Electrical and Com-
puter Engineering from Syracuse University, Syra-
cuse, NY, USA, in 2016. He was a Postdoctoral
Research Fellow at the University of Michigan, Ann
Arbor prior to joining IBM Research, USA. He is
currently a Research Staff Member at the MIT-IBM
Watson AI Lab. His recent research interests include
optimization for deep learning and adversarial ma-
chine learning. He received the Best Student Paper
Award (Third Place) at ICASSP’17 and was among

the seven finalists of the Best Student Paper Award at Asilomar’13.

15

Pin-Yu Chen (M’16) Dr. Pin-Yu Chen is a research
staff member at IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA. He is also
the chief scientist of RPI-IBM AI Research Col-
laboration and PI of ongoing MIT-IBM Watson AI
Lab projects. Dr. Chen received his Ph.D. degree
in electrical engineering and computer science from
the University of Michigan, Ann Arbor, USA, in
2016. Dr. Chen’s recent research is on adversarial
machine learning and robustness of neural networks.
His long-term research vision is building trustworthy

machine learning system. He received the NeurIPS 2017 Best Reviewer Award
and the IEEE GLOBECOM 2010 GOLD Best Paper Award.

1

Supplementary Material

I. ADDITIONAL PROOFS OF LEMMAS IN APPENDIX B

A. Error bound for the second-order moment

Proof of Lemma 4. For M̂i,2 −Mi,2, we have

M̂i,2 −Mi,2

=
1

N

∑
(xn,yn)∈D

yn(Pixn ⊗ Pixn − I)− Ex y(Pix⊗ Pix− I)

=
1

N

N∑
n=1

(K∑
j=1

v∗j

M∑
i′=1

φ(w∗j
TPi′xn) + ξn

)
(Pixn ⊗ Pixn − I)

− Ex v∗j
K∑
j=1

M∑
i′=1

φ(w∗j
TPi′x)(Pix⊗ Pix− I)

=

K∑
j=1

v∗j

(1

N

N∑
n=1

M∑
i′=1

φ(w∗j
TPi′xn)(Pixn ⊗ Pixn − I)

− Ex φ(w∗j
TPix)(Pix⊗ Pix− I)

)
+

1

N

N∑
n=1

ξn(Pixn ⊗ Pixn − I).

(1)

Following the notations in Lemma E.2 of [40], we denote

B2,j(x) :=

K∑
j=1

v∗j

M∑
i′=1

φ(w∗j
TPi′x)(Pix⊗ Pix− I). (2)

Following the similar calculations of (I) - (III) in Lemma E.2
[40], we know that

‖B2,j(x)‖2 .MK‖w∗j ‖2d log
3
2 d,

‖ExB2,j(x)‖2 .MK‖w∗j ‖2,
‖ExB2

2,j(x)‖2 .M2K2‖w∗j ‖2d
(3)

hold with probability at least 1− d−10.
Define Z2,n = 1

N

(
B2,j(xn) − ExB2,j(x)

)
for n =

1, 2, · · · , N , and it is obvious Zn is zero mean. Also, we
have

R2 =‖Z2,n‖2 ≤
1

N

(
‖B2,j(xn)‖2 + ‖ExB2,j(x)‖2

)
.N−1MK‖w∗j ‖2d log

3
2 d,

(4)

and

δ22 =
∥∥∥ N∑
n=1

EZ2
2,n

∥∥∥2
2

≤
∥∥∥ N∑
n=1

1

N2

(
EB2

2,j(xn)−
(
EB2,j(xn)

)2)∥∥∥
2

≤ 1

N

(
‖EB2

2,j(xn)‖2 + ‖EB2,j(xn)‖22
)

.N−1M2K2‖w∗j ‖2d.

(5)

Next, let t = Θ(M‖w∗j ‖2
√

d log d
N). To make sure δ22 ≥

R2t/3, we need N & d log4 d. Then, by Lemma 7, we have

Prob
{∥∥∥∑

n

Z2,n

∥∥∥
2
≥ t
}
≤2d exp

(−t2/2
δ2 +Rt/3

)
≤2d exp

(−t2
4δ2

)
.

(6)

That is ∥∥∥ N∑
n=1

Z2,n

∥∥∥
2
. KM‖w∗j ‖2

√
d log d

N
(7)

with probability at least 1−d−10. From Lemma 11, we know
that ∥∥∥ 1

N

N∑
n=1

Pixn ⊗ Pixn − I
∥∥∥
2
.

√
d log d

N
(8)

with probability at least 1− d−10.
In conclusion, we have

‖M̂i,2 −Mi,2‖ . (KMσ1 + |ν|)
√
d log d

N
(9)

with probability at least 1− d−C provided that N & d log4 d.

B. Error bound for the third-order moment

Proof of Lemma 5. For M̂i,3(V̂ , V̂ , V̂) − Mi,3(V̂ , V̂ , V̂),
we have

M̂i,3(V̂ , V̂ , V̂)−Mi,3(V̂ , V̂ , V̂)

=
1

N

∑
(xn,yn)∈D

yn
[
(V̂ TPixn)⊗3 − (V̂ TPixn)⊗̃I

]
− Ex y

[
(V̂ TPix)⊗3 − (V̂ TPix)⊗̃I

]
=

1

N

N∑
n=1

(K∑
j=1

v∗j

M∑
i′=1

φ(w∗j
TPi′xn) + ξn

)
·
[
(V̂ TPixn)⊗3 − (V̂ TPixn)⊗̃I

]
− Ex

K∑
j=1

M∑
i′=1

v∗jφ(w∗j
TPi′x)

[
(V̂ TPix)⊗3 − (V̂ TPix)⊗̃I

]
=

K∑
j=1

v∗j

(1

N

N∑
n=1

M∑
i′=1

φ(w∗j
TPi′xn)

·
[
(V̂ TPixn)⊗3 − (V̂ TPixn)⊗̃I

]
− Ex φ(w∗j

TPix)
[
(V̂ TPixn)⊗3 − (V̂ TPix)⊗̃I

])
+

1

N

N∑
n=1

ξn

([
(V̂ TPix)⊗3 − (V̂ TPixn)⊗̃I

])
.

(10)

2

Following the notations in Lemma E.8 of [40], we define

Tj(x) :=

K∑
j=1

v∗j

M∑
i′=1

φ(w∗j
TPi′x)

[
(V̂ TPix)⊗3−(V̂ TPix)⊗̃I

]
.

(11)
Then, B3,j(x) ∈ RK×K2

is defined as flattening the tensor
Tj(x) along the first dimension. Hence, we have

‖B3,j(x)‖2
.M · |w∗jx| ·

(
‖V̂ TPix‖32 + 3K‖V̂ TPix‖2

)
.M‖w∗j ‖2K

5
2 log

5
2 d

(12)

with probability at least 1− d−10.
Following the similar calculations of (II) and (III) in Lemma

E.8 of [40], we know that

‖ExB3,j(x)‖2 .MK‖w∗j ‖2,

max

{∥∥Ex[B3,j(x)TB3,j(x)]
∥∥
2
,
∥∥Ex[B3,j(x)TB3,j(x)]

∥∥
2

}
.M2K4‖w∗j ‖2.

(13)
Define Z3,n = 1

N

(
B3,j(xn) − ExB3,j(x)

)
for n =

1, 2, · · · , N , and it is obvious Z3,n is zero mean. Also, we
have

R3 = ‖Z3,n‖2 ≤
1

N

(
‖B3,j(xn)‖2 + ‖ExB3,j(x)‖2

)
.N−1M‖w∗j ‖2K

5
2 log

5
2 d,

(14)

and

δ23 =

{∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2
,
∥∥∥ N∑
n=1

EZ3,nZ
T
3,n

∥∥∥
2

}
≤ 1

N

(
‖EB2

3,j(xn)‖2 + ‖EB3,j(xn)‖22
)

. N−1M2K4‖w∗j ‖2.

(15)

Similar to (6), by applying Lemma 7, we have∥∥∥ N∑
n=1

Z3,n

∥∥∥
2
. KM‖w∗j ‖2

√
K2 log d

N
(16)

with probability at least 1−d−10 provided that N & K5 log6 d.
Similar to (12), we define B̃ by flattening the tensor∑N
n=1

[
(V̂ TPixn)⊗3−(V̂ TPixn)⊗̃I

]
along the first dimen-

sion. Then, we know that

‖B̃‖2 ≤
∥∥∥ N∑
n=1

V̂ TPixn

∥∥∥3
2

+ 3K
∥∥∥ N∑
n=1

V̂ TPixn

∥∥∥
2

.

(
K log d

N

) 3
2

+ 3K

(
K log d

N

) 1
2

.

(
K log d

N

) 1
2

+

(
K3 log d

N

) 1
2

.

√
K3 log d

N
,

(17)

provided that N & K log d.

In conclusion, we have∥∥∥M̂i,3(V̂ , V̂ , V̂)−Mi,3(V̂ , V̂ , V̂)
∥∥∥

.(KMσ1 + |ξ|)
√
K3 log d

N

(18)

with probability at least 1−d−C provided that N & K5 log6 d.

C. Error bound for the first-order moment

Proof of Lemma 6. For M̂i,1 −Mi,1, we have

M̂i,1 −Mi,1

=
1

N

∑
(xn,yn)∈D

yn(Pixn)− Ex y(Pix)

=
1

N

N∑
n=1

(K∑
j=1

v∗j

M∑
i′=1

φ(w∗j
TPi′xn) + ξn

)
Pixn

− Ex
K∑
j=1

v∗j

M∑
i′=1

φ(w∗j
TPi′x)Pix

=

K∑
j=1

v∗j

(1

N

N∑
n=1

M∑
i′=1

φ(w∗j
TPi′xn)Pixn

− Ex φ(w∗j
TPix)Pix

)
+

1

N

N∑
n=1

ξn(Pixn).

(19)

Define B1,j(x) :=
∑M
i′=1 φ(w∗j

TPi′xn)Pixn, then we have

‖B1,j(x)‖2 .M‖w∗j ‖2d log
3
2 d;

‖ExB1,j(x)‖2 .M‖w∗j ‖2;{∥∥Ex[B1,j(x)B1,j(x)T]
∥∥
2
,
∥∥Ex[B1,j(x)TB1,j(x)]

∥∥
2

}
.M2‖w∗j ‖22.

(20)
Next, define Z1,n = 1

N

(
B1,j(xn) − ExBj(x)

)
for n =

1, 2, · · · , N , by calculation, we can obtain

R1 = ‖Z1,n‖2 . N−1M‖w∗j ‖2d log
3
2 d, (21)

and

δ22 = max

{∥∥∥ N∑
n=1

EZ1,nZ
T
1,n

∥∥∥2
2
, |

N∑
n=1

ZT1,nZ1,n|
}

.N−1M2‖w∗j ‖2d.
(22)

By applying Lemma 7, we have∥∥∥∥∥
N∑
n=1

Z1,n

∥∥∥∥∥
2

.M‖w∗j ‖2

√
d log d

N
(23)

with probability at least 1− d−10 provided that N & d log4 d.
Since Pix ∈ Rd belongs to the Gaussian distribution, we have∥∥∥ 1

N

N∑
n=1

Pixn

∥∥∥
2
.

√
d log d

N
(24)

with probability at least 1− d−10.

3

In conclusion, we have

‖M̂i,1 −Mi,1‖ . (Mσ1 + |ξ|)
√
d log d

N
(25)

with probability at least 1−d−C , provided that N & d log4 d.

II. ADDITIONAL PROOFS OF LEMMA IN APPENDIX C

A. Proof of Lemma 10

In this section, we present the proof of Lemma 10 which
provides the error bound of the difference between ∇2f(W ∗)
and ∇2f(W) for some W near the ground-truth W ∗. The
proof borrows some techniques from [46] in proving Lemma
D.15 which provides the bound of ‖∇2f̂D(W)−∇2f(W ∗)‖2
for fully connected neural networks. Our proof differs from
that of Lemma D.15 in [46] mainly in two aspects. On the
one hand, due to the different proof roadmaps of the main
theorems, we do not need to directly bound the second deriva-
tive between the population loss function f and empirical loss
function f̂D. Then some steps in Lemma D.15 in [46] are
simplified and modified to fit our proof. On the other hand, we
need to modify steps to handle convolutional neural networks.

Proof of Lemma 10. We first bound one block of∇2f(W ∗)−
∇2f(W), and its mathematical expression is written as[

∇2f(W)−∇2f(W ∗)
]
j1,j2

=Ex

[
M∑
i1=1

M∑
i2=1

φ′(wT
j1xi1)φ′(wT

j2xi2)xi1x
T
i2

−
M∑
i1=1

M∑
i2=1

φ′(w∗j1
Txi1)φ′(w∗j2

Txi2)xi1x
T
i2

]
.

(26)

Hence, we have∣∣∣∣aT [∇2f(W ∗)−∇2f(W)
]
j1,j2

a

∣∣∣∣
=

∣∣∣∣∣Ex
[

M∑
i1=1

M∑
i2=1

(
φ′(wT

j1xi1)φ′(wT
j2xi2)

− φ′(w∗j1
Txi1)φ′(w∗j2

Txi2)

)
· (aTxi1)(aTxi2)

]∣∣∣∣∣
≤

M∑
i1=1

M∑
i2=1

Ex

[∣∣∣φ′(wT
j1xi1)φ′(wT

j2xi2)

− φ′(w∗j1
Txi1)φ′(w∗j2

Txi2)
∣∣∣ · |aTxi1 | · |aTxi2 |

]
≤
∑
i1,i2

Ex
[
|φ′(wT

j1xi1)| · |φ′(wT
j2xi2)− φ′(w∗j2

Txi2)|

· |aTxi1 | · |aTxi2 |
]

+
∑
i1,i2

Ex
[
|φ′(w∗j1

Txi1)− φ′(wj1Txi1)|

· |φ′(w∗j2
Txi2)| · |aTxi1 | · |aTxi2 |

]

≤
∑
i1,i2

Ex
[
|φ′(wT

j2xi2)− φ′(w∗j2
Txi2)||aTxi2 |

]
+
∑
i1,i2

Ex
[
|φ′(wT

j1xi1)− φ′(w∗j1
Txi1)||aTxi1 ||

]
:=
∑
i1,i2

I(i2, j2) + I(i1, j1).

It is easy to verify there exists an orthogonal basis such
that B = {a1,a2,a3,a4, · · · ,ad} with {a1,a2,a3} spans a
subspace that contains a1,wj2 and w∗j2 . Then, for any xi2 ,
we have a unique z =

[
z1 z2 · · · zd

]T
such that

xi2 = z1a1 + z2a2 + z3a3 + · · ·+ zdad.

Also, since xi2 ∼ N (0, Id), we have z ∼ N (0, Id). Then,
we have

I(i2, j2)

=Ez1,z2,z3 |φ′
(
wT
j2 x̃
)
− φ′

(
w∗j2

T x̃
)
| · |aT x̃|

=

∫
|φ′
(
wT
j2 x̃
)
− φ′

(
w∗j2

T x̃
)
| · |aT x̃|

· fZ(z1, z2, z3)dz1dz2dz3,

where x̃ = z1a+z2a2+z3a3 and fZ(z1, z2, z3) is probability
density function of (z1, z2, z3). Next, we consider spherical
coordinates with z1 = r cosφ1, z2 = r sinφ1 sinφ2, z3 =
z2 = r sinφ1 cosφ2. Hence,

I(i2, j2) =

∫
|φ′
(
wT
j2 x̃
)
− φ′

(
w∗j2

T x̃
)
| · |r cosφ1|

· fZ(r, φ1, φ2)r2 sinφ1drdφ1dφ2.

(27)

It is easy to verify that φ′
(
wT
j2
x̃
)

only depends on the direction
of x̃ and

fZ(r, φ1, φ2) =
1

(2π)
3
2

e
x21+x22+x23

2 =
1

(2π)
3
2

e
r2

2

only depends on r. Then, we have

I(i2, j2)

=

∫
|φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|

· |r cosφ1| · fZ(r)r2 sinφ1drdφ1dφ2

=

∫ ∞
0

r3fz(r)dr

∫ π

0

∫ 2π

0

| cosφ1| · sinφ1

· |φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|dφ1dφ2

≤
√

8

π

∫ ∞
0

r2fz(r)dr

∫ π

0

∫ 2π

0

sinφ1

· |φ′
(
wT
j2(x̃/r)

)
− φ′

(
w∗j2

T (x̃/r)
)
|dφ1dφ2

=

√
8

π
Ez1,z2,z3

∣∣φ′(wT
j2 x̃
)
− φ′

(
w∗j2

T x̃
)
|

=

√
8

π
Ex
∣∣φ′(wT

j2x
)
− φ′

(
w∗j2

Tx
)
|.

(28)

Define a set A1 = {x|(w∗j2
Txi2)(wj2

Txi2) < 0}. If x ∈
A1, then w∗j2

Txi2 and wj2
Txi2 have different signs, which

4

means the value of φ′(wT
j2
xi2) and φ′(w∗j2

Txi2) are different.
This is equivalent to say that

|φ′(wT
j2xi2)− φ′(w∗j2

Txi2)| =

{
1, if x ∈ A1

0, if x ∈ Ac1
. (29)

Moreover, if x ∈ A1, then we have

|w∗j2
Txi2 | ≤|w∗j2

Txi2 −wj2Txi2 |
≤‖w∗j2 −wj2‖ · ‖xi2‖.

(30)

Define a set A2 such that

A2 =
{
x
∣∣∣ |w∗j2Tx|‖w∗j2‖‖x‖

≤
‖w∗j2 −wj2‖
‖w∗j2‖

}
=
{
θx,w∗j2

∣∣∣| cos θx,w∗j2
| ≤
‖w∗j2 −wj2‖
‖w∗j2‖

}
.

(31)

Hence, we have that

Ex|φ′(wT
j2xi2)− φ′(w∗j2

Txi2)|2

=Ex|φ′(wT
j2xi2)− φ′(w∗j2

Txi2)|
=Prob(xi2 ∈ A1)

≤Prob(xi2 ∈ A2).

(32)

Since xi2 ∼ N (0, I), θxi2 ,w∗j2 belongs to the uniform distri-
bution on [−π, π], we have

Prob(xi2 ∈ A2) =
π − arccos

‖w∗j2−wj2‖
‖w∗j2‖

π

≤ 1

π
tan(π − arccos

‖w∗j2 −wj2‖
‖w∗j2‖

)

=
1

π
cot(arccos

‖w∗j2 −wj2‖
‖w∗j2‖

)

≤ 2

π

‖w∗j2 −wj2‖
‖w∗j2‖

.

(33)

Hence, (28) and (33) suggest that

I1(i1, i2) ≤ 6

π

‖w∗j2 −wj2‖
‖w∗j2‖

‖a‖2. (34)

The same bound that shown in (34) holds for I2(i1, i2) as
well. Therefore, we have the error bound between ∇2f(W ∗)
and ∇2f(W) as

‖∇2f(W ∗)−∇2f(W)‖

≤
K∑
j1=1

K∑
j2=1

max
j1,j2

∥∥∥(∇2f(W ∗)−∇2f(W)
)
j1,j2

∥∥∥
≤

K∑
j1=1

K∑
j2=1

12M2

π
max
j1,j2

‖w∗j2 −wj2‖
‖w∗j2‖

≤4M2K2 ‖W ∗ −W ‖2
σK

.

(35)

III. ADDITIONAL PROOFS OF LEMMAS IN APPENDIX D

The proofs of Lemmas 11 and 12 are based on the moment
generation function (MGF) and the Chernoff bound. The major
difficulty is to obtain the tight bound for the MGF. Lemmas
1 and 2 are standard techniques in evaluating the bounds for
the matrix norms.

Lemma 1 (Lemma 5.2, [38]). Let B(0, 1) ∈ {α
∣∣‖α‖2 =

1,α ∈ Rd} denote a unit ball in Rd. Then, a subset Sξ is
called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be
approximated to within ξ by some point α ∈ B(0, 1), i.e.
‖z − α‖2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ
satisfies

|Sξ| ≤ (1 + 2/ξ)d. (36)

Lemma 2 (Lemma 5.3, [38]). Let A be an N×d matrix, and
let Sξ be a ξ-net of B(0, 1) in Rd for some ξ ∈ (0, 1). Then

‖A‖2 ≤ (1− ξ)−1 max
α∈Sξ

|αTAα|. (37)

A. Proof of Lemma 11

Proof of Lemma 11. From Lemmas 1 and 2, we know there
exists a subset S ⊂ {α

∣∣‖α‖2 = 1,α ∈ Rd} with |S| ≤ 5d

such that∥∥∥EXXh1(X)h2(X)− 1

N

N∑
n=1

XnXnh1(X)h2(Xn)
∥∥∥
2

≤2 ·max
α∈S

∣∣∣αT(EXXTh1(X)h2(X)

− 1

N

N∑
n=1

XnX
T
n h1(X)h2(Xn)

)
α
∣∣∣.

For simplification, let Z = (αTX)2h1(X)h2(X). Since
Xh1(X) and Xh2(X) belong to the sub-Gaussian distribu-
tion, we have

sup
p≥1

(E|Z|p)1/p ≤‖Xh1(X)‖ψ2

√
p · ‖Xh2(X)‖ψ2

√
p

≤‖Xh1(X)‖ψ2
‖Xh2(X)‖ψ2

p.
(38)

Hence, Z belongs to the sub-exponential distribution from
Definition 2. Then, by applying the Chernoff bound, we have

Prob
(1

N

N∑
i=1

(Zn − EZ) > t
)

≤Prob
(N∑
i=1

(Zn − EZ) > Nt
)

≤eC‖Z‖
2
ψ1
Ns2/esNt = e−Nt

2/(C‖Z‖2ψ1
),

(39)

where the last equality holds by choosing s = t/(C‖Z‖ψ1
).

Then, by choosing t =
√

Cd log d
N ‖Z‖ψ1

, for any α ∈ S, we
have ∣∣∣ N∑

n=1

Zn − EZ
∣∣∣ ≤√Cd log d

N
‖Z‖ψ1

≤
√
Cd log d

N
‖Xh1(X)‖ψ2

‖Xh2(X)‖ψ2

(40)

5

with probability at least 1− d−d. Since |S| ≤ 5d, we have

∥∥∥EXXh1(X)h2(X)− 1

N

N∑
n=1

XnXnh1(X)h2(Xn)
∥∥∥
2

.

√
d log d

N
‖Xh1(X)‖ψ2

‖Xh2(X)‖ψ2

with probability at least 1 − (5/d)d. Since d is greater than
any constant number, 1− (5/d)d is greater than 1−d−10. We
use 1 − d−10 as the probability to be consistent with other
contents throughout this paper.

1) Proof of Lemma 12:

Proof of Lemma 12. From Lemmas 1 and 2, we know there
exists a subset S ⊂ {α

∣∣‖α‖2 = 1,α ∈ Rd} with |S| ≤ 5d

such that∥∥∥EX1X2 −
1

N

N∑
n=1

X1,nX2,n

∥∥∥
2

≤2 ·max
α∈S

∣∣∣∣αT (EX1X2 −
N∑
n=1

X1,nX2,n

)
α

∣∣∣∣.
(41)

For simplification, let X̃1 and X̃2 denote the random variable
αTX1 and αTX2, respectively. Then, We have

αT
(
EX1X2 −

N∑
n=1

X1,nX2,n

)
α

=
1

N

N∑
n=1

X̃1,nX̃2,n − EX̃1,X̃2
X̃1X̃2

=
1

N

N∑
n=1

(X̃1,n − EX̃1)(X̃2,n − EX̃2)

+
1

N

N∑
n=1

(X̃1,n − EX̃1)EX̃2

+
1

N

N∑
n=1

(X̃2,n − EX̃2)EX̃1,

(42)

where the last equality holds because X̃1 and X̃2 are inde-
pendent. For 1

N

∑N
n=1(X̃1,n − EX̃1), since X̃1,n follows the

sub-Gaussian distribution, we know that

Ee(X̃1−EX̃1)s ≤ eC‖X1,n‖2ψ2
s2 for all s ∈ R (43)

with some constant C > 0. By applying the Chernoff bound,
we have

Prob
(1

N

N∑
i=1

(X̃1,n − EX̃1) > t
)

≤Prob
(N∑
i=1

(X̃1,n − EX̃1) > Nt
)

≤eC‖X1,n‖2ψ2
Ns2/esNt = e−Nt

2/(C‖X1,n‖2ψ2
),

(44)

where the last equality holds by choosing s =

t/(C‖X1,n‖2ψ2
). Then, by choosing t =

√
Cd log d
N ‖X1,n‖ψ2

in (44), we have∣∣∣ 1

N

N∑
n=1

(X̃1,n − EX̃1)
∣∣∣ .√d log d

N
‖X1,n‖ψ2

(45)

with probability at least 1 − 2 · d−d. A similar result to (45)
holds for 1

N

∑N
n=1(X̃2,n − EX̃2) as well.

Next, we have

EX̃1,X̃2
e(X̃1−EX̃1)(X̃2−EX̃2)s

≤EX̃2
EX̃1

e(X̃1−EX̃1)
(
(X̃2−EX̃2)s

)
≤EX̃2

eC‖X1,n‖2ψ2
(X̃2−EX̃2)

2s2 .

(a)

≤1/
√

1− C2‖X1,n‖2ψ2
‖X2,n‖2ψ2

s2,

(46)

for all |s| ≤ (C‖X1,n‖ψ2
‖X2,n‖ψ2

)−1, where the details of
(a) can be found in following contents.

Since X̃2 belongs to sub-Gaussian distribution, we have
Ees(X̃2−EX̃2) ≤ eC‖X2,n‖2ψ2

s2 for any s ∈ R. Then, for any
λ ∈ (0, 1),

Ees(X̃2−EX̃2)−
C‖X2,n‖

2
ψ2
s2

λ ≤ eC‖X2,n‖2ψ2
s2(1− 1

λ) (47)

holds as well for any s ∈ R. Next, we integrate over s on the
both sides of (47),∫

Ees(X̃2−EX̃2)−
C‖X2,n‖

2
ψ2
s2

λ ds

≤
∫
eC‖X2,n‖2ψ2

s2(1− 1
λ)ds.

(48)

That is

e
λ

C‖X2,n‖2ψ2

(X̃2−EX̃2)
2

≤ 1√
1− λ

for any λ ∈ (0, 1). (49)

It is clear that we can find some λ ∈ (0, 1) such that λ = C2
7s

2

for any s ∈ (−1/C7, 1/C7). That is to say,

EX̃2
eC‖X1,n‖2ψ2

(X̃2−EX̃2)
2s2

≤ 1√
1− C2‖X1,n‖2ψ2

‖X2,n‖2ψ2
s2
, (50)

for all |s| ≤ (C‖X1,n‖ψ2‖X2,n‖ψ2)−1.
By applying the Chernoff bound and choosing s =

(2C‖X1,n‖ψ2
‖X2,n‖ψ2

)−1, we have

Prob
(1

N

N∑
i=1

(X̃1,n − EX̃1)(X̃2,n − EX̃2) > t
)

≤2e−Nt/(2C‖X1,n‖ψ2
‖X2,n‖ψ2

).

(51)

Then, let t = 2Cd log d
N ‖X1,n‖ψ2

‖X2,n‖ψ2
, we have∣∣∣ 1

N

N∑
i=1

(X̃1,n − EX̃1)(X̃2,n − EX̃2)
∣∣∣

≤2Cd log d

N
‖X1,n‖ψ2‖X2,n‖ψ2

(52)

6

with probability at least 1− 4 · d−d.
Hence, for any α ∈ S, with probability at least 1− 8 · d−d,∣∣∣αT(Σ

(
EX1X2 −

1

N

N∑
n=1

X1,nX2,n

))
α
∣∣∣

≤

∣∣∣∣∣ 1

N

N∑
n=1

(X̃1,n − EX̃1)(X̃2,n − EX̃2)

∣∣∣∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

(X̃1,n − EX̃1)

∣∣∣∣∣ · ∣∣EX̃2

∣∣
+

∣∣∣∣∣ 1

N

N∑
n=1

(X̃2,n − EX̃2)

∣∣∣∣∣ · ∣∣EX̃1

∣∣
.

(
d log d

N
+

√
d log d

N
+

√
d log d

N

)
‖X1,n‖ψ2

‖X2,n‖ψ2

.

√
d log d

N
‖X1,n‖ψ2

‖X2,n‖ψ2
.

Since |S| ≤ 5d, we have∥∥∥EX1X2 −
1

N

N∑
n=1

X1,nX2,n

∥∥∥
2

.

√
d log d

N
‖X1,n‖ψ2

‖X2,n‖ψ2

(53)

with probability at least 1− 8 · (5/d)d. Since d is greater than
any constant number, 1− (5/d)d is greater than 1− 8 · d−10.
We use 1−d−10 as the probability to be consistent with other
contents throughout this paper.

	TNNLS-2019-P-12087
	TNNLS-2019-P-12087-Supplementary

