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Abstract—Phasor measurement units (PMUs) provide high
temporal-resolution synchrophasor measurements for power sys-
tem monitoring and control. The frequent data quality issues,
such as missing and bad data, prevent the incorporation of
synchrophasor data in real-time operations. Most existing data-
driven data recovery methods assume the power system dynamics
can be approximated by a linear dynamical system, and the
recovery performance degrades significantly when the power
system is experiencing nonlinear dynamics during significant
events. This paper proposes a data-driven Bayesian nonlinear
synchrophasor data recovery method (Ba-NSDR) that can re-
cover a consecutive time period of simultaneous data losses or
errors across all channels, even when the underlying system is
highly nonlinear. The idea is to lift the Hankel matrix of the
spatial-temporal synchrophasor data to a higher dimension such
that the lifted Hankel matrix is low-rank in that space and can be
processed with the kernel trick. Our proposed Bayesian method
then infers the probabilistic distributions of synchrophasor from
the partial observations. Some distinctive features of Ba-NSDR
include an uncertainty index to measure the accuracy of the
recovery result and the robustness to parameter selections. Our
method is verified on both synthetic and recorded event datasets.

Index Terms—PMU data recovery, high-rank matrix com-
pletion, Bayesian robust matrix completion, kernel method,
uncertainty modeling

I. INTRODUCTION

PHasor Measurement Units (PMUs) provide synchronized
voltage and current phasor measurements across different

locations in the electric power system. With a high sam-
pling rate of thirty or sixty samples per second per channel,
synchrophasor data provide great visibility of power system
dynamics, which is typically difficult to observe in the su-
pervisory control and data acquisition (SCADA) system. Syn-
chrophasor data have been employed for event classification
[1], [2], state estimation [3]–[5] and system identification [6],
[7]. Synchrophasor data, however, suffer from quality issues
such as missing and bad data, because of various reasons
like PMU malfunctions, communication failure, and false data
injections. Synchrophasor data usually have missing and bad
data issues. The quality issues prevent synchrophasor data
from being employed in real-time control operations.
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Various approaches have been developed to handle missing
and bad data. The model-based methods utilize a dynamic
model [8] to fill the missing data or estimate the dynamic states
based on the Kalman filter [9], [10]. The performance critically
depends on accurate model estimation. Refs. [11]–[13] train
deep neural networks to recover missing data. Refs. [14]–
[17] formulate the error correction as a hypothesis testing
problem. Ref. [18] exploits spatial-temporal similarities in the
synchrophasor measurements to correct bad data. Ref. [19]
employs the independent component analysis to obtain the
measurement structure and remove the errors. Refs. [20]–[23]
exploit the low-rank property of the spatial-temporal PMU
data matrix to correct missing and bad data. These data-
driven methods, however, cannot handle simultaneous and
consecutive data issues across all channels.

When the power system dynamics can be approximated
by a linear dynamical system, [24]–[27] exploit the resulting
low-rank property of the Hankel matrix of PMU data to
recover simultaneous and consecutive data issues. The linear
dynamical model, however, becomes inaccurate when the
power system is experiencing nonlinear dynamics. To the
best of our knowledge, only Ref. [28] considers missing
data recovery in nonlinear dynamical systems and proposes
a lifted low-rank Hankel property to characterize the data
dynamics without explicitly modeling the dynamical system.
This approach cannot handle bad data, and its performance is
very sensitive to parameter selection. Moreover, the recovery
performance drops significantly for long consecutive data loss.
One major limitation of most methods mentioned above is that
they only provide an estimation of the actual data without any
evaluation of the accuracy of the estimation. Only Ref. [27]
provides an uncertainty evaluation of the recovered data.

This paper proposes a Bayesian high-rank Hankel matrix
recovery method (Ba-NSDR) to recover missing data and
correct bad data when the power system exhibits significant
nonlinear dynamics. The main idea is to lift the original high-
rank Hankel matrix into a higher-dimensional space so that the
lifted matrix becomes low-rank. The nonlinear lifting function
can be characterized implicitly by the kernel function [29],
which has been exploited in high-rank matrix completion [30]–
[32]. [33] employs the kernel function to incorporate the prior
knowledge into the matrix completion, but it does not consider
the nonlinear dynamics. [34] uses the Gaussian process with
kernel functions to model the linear time-invariant (LTI)
systems and approximate the nonlinear dynamical systems by
LTI systems. [34] is not modeless and requires detailed system
information. A prior probabilistic distribution is imposed over
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the Hankel matrix, and Ba-NSDR computes the approximate
posterior distributions using variational inference based on
the observed data. Ba-NSDR has multiple distinctive features.
First, it can handle simultaneous and consecutive missing/bad
data across all PMU channels. When the system is expe-
riencing nonlinear dynamics, the recovery accuracy by Ba-
NSDR is much higher than the existing methods. Second, Ba-
NSDR returns an uncertainty index that reflects the accuracy
of recovered data, while the recovery accuracy of most existing
methods cannot be measured without the ground-truth value.
Third, Ba-NSDR does not require any prior knowledge of the
unknown ground-truth matrix rank and is robust to the initial
rank selection. It can effectively estimate the rank from the
observed data through pruning from a large rank.

The rest of the paper is organized as follows. The problem
formulation, low-rank Hankel property, and low-rank lifted
Hankel property of synchrophasor data are described in Sec-
tion II. The methodology is introduced in Section III. Section
IV reports the numerical results. Section V concludes the
paper. The derivation details of our method are shown in the
supplementary materials.

II. PROBLEM FORMULATION

Let a matrix Y denote the ground truth of PMU mea-
surements of m channels at different locations during n time
instants,

Y = [y1,y2, ...,yn] ∈ Rm×n, (1)

where yi ∈ Rm denotes the measurement of m channels at
time instant i. Let N ∈ Rm×n denote the measurement noise.
Let E ∈ Rm×n denote the additive bad data. The entries
in E can be arbitrarily large, modeling significant bad data.
We assume such bad data only happen at a small fraction of
measurements, i.e., E is sparse.

Let a matrix Y o ∈ Rm×n denote the observed measure-
ments. Each entry Y o

i,j in the set Ω of observed entries is
given by

Y o
i,j = Yi,j + Ei,j +Ni,j (i, j) ∈ Ω, (2)

where Ω denotes the set of observed entries. The unobserved
entries in Y o are irrelevant and set as zeroes for the complete-
ness of the definition.

The objective of this paper is to recover data Y with mea-
surable accuracy from measurements Y o that are corrupted
by missing data, bad data, and noise. This is particularly chal-
lenging when the power system is under nonlinear dynamics.

Our proposed Ba-NSDR method exploits the low-rank prop-
erty of the lifted Hankel matrix of the PMU data in nonlinear
dynamical systems. We first introduce the low-rank Hankel
property for linear dynamical systems in Section II-A and then
generalize to the lifted Hankel matrix for nonlinear dynamical
systems in Section II-B. Detailed analyses of low-rank Hankel
property can be found in Refs. [24] and [28], respectively.

A. Low-Rank Hankel Property of PMU Data

Let Hn2
(Y ) ∈ Rmn2×n1 (n1 + n2 = n + 1) denote the

Hankel matrix of Y , where the jth column of Hn2
(Y )

includes all the measurements in m channels from time j to
j + n2 − 1, i.e.,

Hn2
(Y ) =


y1 y2 ... yn1

y2 y3 ... yn1+1

...
... ...

...
yn2

yn2+1 ... yn

 ∈ Rmn2×n1 . (3)

As shown in [24], if the underlying system that produces
output y1 to yn can be approximated by an order-r (integer
r ≥ 1) linear dynamical system, then Hn2

(Y ) can be approx-
imated by a rank-r matrix. Hn2

(Y ) is low-rank because r can
be much smaller than m and n1. The rank-r approximation
Qr(Hn2(Y )) to Hn2(Y ) can be computed by

Qr(Hn2
(Y )) = A1S

r
1B1

T , (4)

where Hn2
(Y ) = A1S1B1

T is the singular value decom-
position of Hn2

(Y ). A1, B1, and S1 represent the left
singular vectors, right singular vectors, and singular values,
respectively. Sr

1 keeps the largest r singular values in S1

and sets all the others to zero. The corresponding normalized
approximation error is computed by

||Qr(Hn2
(Y ))−Hn2

(Y )||F
||Hn2(Y )||F

=
||Sr

1 − S1||F
||S1||F

. (5)

where ||.||F represents the Frobenious norm.

B. Low-Rank lifted Hankel Property in Nonlinear Dynamical
System

When the underlying system is highly nonlinear such as
immediately after a significant event, approximating a nonlin-
ear system using a linear dynamical model usually requires a
large order r. Thus, the corresponding Hn2(Y ) is no longer
low-rank. The idea is to lift the measurements yi to a higher di-
mensional space using a mapping function ϕ(·) : Rm → RM ,
where M is much larger than m and can be infinite. As
described in [28], there exists a mapping ϕ(·) such that the
nonlinear dynamical system can be a linear dynamical system
in the lifted space. Let Hn2(Z) be

Hn2
(Z) =


z1 z2 ... zn1

z2 z3 ... zn1+1

...
... ...

...
zn2 zn2+1 ... zn

 ∈ RMn2×n1 , (6)

where zi = ϕ(yi). The rank of Hn2
(Z) can be smaller than

that of Hn2
(Y ) for a proper ϕ.

The rank-r approximation of Hn2
(Z) can be written as

Qr(Hn2(Z)) = A2S
r
2B2

T , (7)

where Sr
2 contains the largest r singular values of Hn2(Z),

A2 and B2 contain left and right singular vectors, respec-
tively. The normalized approximation error of Qr(Hn2

(Z))
to Hn2

(Z) can be computed by

||Qr(Hn2
(Z))−Hn2

(Z)||F
||Hn2(Z)||F

=

√∑n1

i=r+1 σ
2
i∑n1

i=1 σ
2
i

, (8)
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where σi denotes the ith largest singular value of S2. σi

cannot be computed directly from the SVD of Hn2(Z)
because Hn2(Z) is unknown. Instead, one can compute
Hn2

(Z)THn2
(Z) explicitly using the kernel trick [28] with-

out knowing ϕ(·). The (i, j)th entry in Hn2
(Z)THn2

(Z) is
computed by

(
Hn2

(Z)THn2
(Z)

)
i,j

=
[
zi ... zi+n2−1

]  zj
...

zj+n2−1


(9)

=

p=n2−1∑
p=0

ϕ(yi)
Tϕ(yj) =

p=n2−1∑
p=0

KY Y (i+ p, j + p),

(10)

where KY Y is the kernel function. The most popular kernel
functions are the Gaussian kernel and the polynomial kernel.
Reference [32] reports that the matrix completion methods
with the Gaussian kernel perform better than the polynomial
kernel. The Gaussian kernel corresponds to an infinite dimen-
sional ϕ. We employ the Gaussian kernel as follows,

KY Y (i, j) = ϕ(yi)
Tϕ(yj) = exp(− 1

2c
||yi − yj ||22), (11)

where c is a pre-defined scalar. One then solves the eigen-
decomposition of Hn2(Z)THn2(Z). The eigenvalues of
Hn2

(Z)THn2
(Z) are σ2

i , i.e.,

Hn2
(Z)THn2

(Z) = B2S
2
2B

T
2 . (12)

Remark. When Y is obtained from a nonlinear dynamical
system, to achieve the same normalized low-rank approxi-
mation error, it often requires a smaller rank to approximate
the lifted Hankel matrix Hn2(Z) (with a properly selected
kernel function) than to approximate Hn2

(Y ) with the same
n2. Therefore, the low-rank lifted Hankel property is more
desirable in recovering PMU data in nonlinear dynamics.

Fig. 1: The measurements of voltage magnitude [24]

To illustrate the low-rank lifted Hankel property, we con-
sider a recorded generator trip event in New York State
[24]. Fig. 1 shows the 10 seconds of voltage magnitude
measurements in 11 channels at different locations. The data
rate is 30 samples per second per channel. Let Y ∈ R11×300

(a)

(b)

Fig. 2: (a)The normalized approximation errors of the original Han-
kel matrices Hn2(Y ) and the corresponding lifted Hankel matrices
Hn2(Z). (b) The normalized approximation errors of column-wise
permuted Hankel matrices Hn2(Ȳ ) and the corresponding lifted
Hankel matrices Hn2(Z̄)

contain all the measurements. Fig. 2 (a) shows the normal-
ized approximation errors of rank-r matrices to Hn2

(Z) and
Hn2

(Y ). c = 200 in (11). For example, the normalized error
of rank-5 approximation to H10(Z) is 0.0015. In comparison,
the matrix rank needs to be as least 10 to achieve a similar
approximation error to H10(Y ). Moreover, with a large n2, the
dimension of Hn2

(Z) is very large but could be approximated
by a matrix with a small rank. For instance, H20(Y ) is in
R220×281, and H20(Z) is even higher-dimensional due to the
lifting. Still, H20(Z) can be approximated by a rank-15 matrix
with a normalized error of 0.00083.

To illustrate that the low-rank (lifted) Hankel property
is special for data from dynamical systems rather than an
arbitrary matrix, we permute the columns in Y randomly
and let Ȳ be the resulting matrix. Then Y and Ȳ have the
same rank, but each row of Ȳ is no longer a time series.
Fig. 2 (b) shows the normalized approximation errors of
Hn2

(Ȳ ) and Hn2
(Z̄), which are Hankel and lifted Hankel

matrices constructed from Ȳ . In contrast to Fig. 2 (a), the
approximation errors in Fig. 2 (b) remain significant even
when the rank is very large, because the low-rank (lifted)
Hankel property does not hold for Ȳ , which is not obtained
from a dynamical system.

III. BAYESIAN HIGH-RANK HANKEL MATRIX RECOVERY
(BA-NSDR) METHOD

The main idea of our proposed Ba-NSDR method is to
estimate a matrix Y from partial observations Y o such that the



4

Fig. 3: An overall framework of the proposed method. The method maps the estimated data Y into a Hankel matrix X and then lifts X
into higher dimensional space Φ(X). Φ(X) is decomposed with a lifted factor Φ(U), and the coefficient matrix V .

lifted Hankel matrix of Y is low-rank. To simplify represen-
tation, given n2, we use X and Φ(X) to denote Hn2

(Y ) and
Hn2

(Z), respectively. With a bit of abuse of notation, Φ(A)
means dividing each column of the matrix A into multiple
vectors in Rm and lifting each vector to RM by the lifting
function ϕ. Assuming Φ(X) is rank K, we view Φ(X) as
the product of two matrix factors, Φ(U) in RMn2×K and V
in RK×n1 , where Φ(U) is a lifted matrix to RMn2×K from a
matrix U in Rmn2×K . Because the rank K is small, the degree
of freedom K(mn2 +n1) is much less than mn, the ambient
dimension of Y . Therefore, we could accurately recover U ,
V , and thus Y from partial observations that contain bad
data. Note that every column of Φ(X) includes all data from
m channels in n2 consecutive steps. Then as long as there
exist K reliable measurements in all channels in a length-
n2 window, all the remaining measurements in that window
can be accurately recovered. Thus, by exploiting the low-rank
lifted Hankel property, one can recover data losses/errors in
all m channels consecutively.

As a Bayesian approach, Ba-NSDR first imposes a prior dis-
tribution on Y and Φ(X) (Section III-A) and then computes
the posterior distribution based on partial observations Y o

(Section III-B). Ba-NSDR then uses the posterior distribution
of Y to estimate the data and compute the uncertainty index
that reflects the estimation accuracy (Section III-C). Section
III-D discusses the parameter selection.

A. Proposed Probabilistic Model

Equations (13) to (20) show our hierarchical probabilistic
model of the prior distributions. Readers can refer to [35] for
prerequisites of the proposed Bayesian model. The latent vari-
ables are inferred using observations based on this probabilistic
model. Equation (13) is a probabilistic version of equation (2),
where Yi,j can be written as the Hankel inverse (H†X)i,j ,
where the Hankel inverse operator H† is defined in equation
(35) in the supplementary materials. Φ(X).q ∈ RMn2 is the

qth column of Φ(X). The prior knowledge of rank K might
be unavailable. Ba-NSDR sets the initial K as a relatively
large number and gradually prunes the basis based on learned
coefficients V .

Fig. 4: The Graphical model of the proposed Bayesian high-rank
Hankel matrix completion method

The prior distributions of U.k, X.q , and V.q are
drawn from multivariate Gaussian distributions N (0, γ−1

u IK),
N (0, γ−1

x IK), and N (0, γ−1
v IK), respectively. Imn2

is an
mn2 by mn2 identity matrix. γu, γx, and γv are three pre-
defined scalars. Each element in the error matrix E is drawn
from a Gaussian distribution N (0, β−1

i,j ). Each element in
the noise matrix N is drawn from a Gaussian distribution
N (0, γ−1

y ). The Gamma prior distribution is placed on γy and
βi,j , following parameters (e0, f0) and (g0, h0), respectively.
The mathematical definition of the Gamma distribution is
shown in the supplementary material. The conjugate priors are
placed on V.q , γy , Ei,j , and βi,j to derive analytical solutions
of posterior distributions. The graphical representation of the
proposed probabilistic model is shown in Fig. 4.
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For all q = 1, 2, 3, ..., n1, and k = 1, 2, 3, ...,K,

Y o
i,j ∼ N ((H†X)i,j + Ei,j ,

1

γy
) (i, j) ∈ Ω (13)

Φ(X).q ∼ N (Φ(U)V.q,
1

γϵ
Imn2

) (14)

U.k ∼ N (0,
1

γu
Imn2

) (15)

X.q ∼ N (0,
1

γx
Imn2

) (16)

V.q ∼ N (0,
1

γv
IK) (17)

γy ∼ Γ(e0, f0) (18)

Ei,j ∼ N (0,
1

βi,j
) (i, j) ∈ Ω (19)

βi,j ∼ Γ(g0, h0) (20)

B. Variational Inference for Approximating the Posterior Dis-
tributions

To simplify representation, we denote Θ =
{U.k,V.q,X.q, γy, Ei,j , βi,j , q = 1, 2, 3, ..., n1, k =
1, 2, 3, ...,K, (i, j) ∈ Ω} as the set of all the latent
variables. Let Θi denote one arbitrary variable in Θ. Given
partial observation Y o

Ω , the goal is to compute the posterior
distribution p(Θ,Y |Y o

Ω ) . Based on Bayes’ theorem,

p(Θ,Y |Y o
Ω ) =

p(Θ,Y ,Y o
Ω )

p(Y o
Ω )

. (21)

Computing (21) requires marginalizing out all the latent vari-
ables, which is usually intractable.

As a popular approach to approximate the complicated
posterior distribution, the mean field variational inference
[35] employs a simple distribution q(Θ) to approximate
p(Θ,Y |Y o

Ω ). The mean field assumption assumes that each
element in Θ is mutually independent. Then q(Θ) can be
factorized as the product of each element, i.e.,

q(Θ) =
∏K

k=1 q(U.k)
∏n1

q=1 q(V.q)q(X.q)
∏

(i,j)∈Ω q(Ei,j)q(βi,j)q(γy).

(22)

The best q(Θ) to approximate p(Θ,YΩ|Y o
Ω ) is found by mini-

mizing the Kullback–Leibler (KL) divergence, which measures
the similarity of two probabilistic distributions. Specifically,

q(Θ) = argmin
q(Θ)

KL(q(Θ)||p(Θ,Y |Y o
Ω ))

= argmax
q(Θ)

E[ln p(Θ,Y ,Y o
Ω )]− E[ln q(Θ)].

(23)

where KL(x||y) denotes the KL divergence of distribution x
and y, and E is the expectation over q(Θ). The second equality
follows from the definition of KL divergence and removes the
term unrelated to q(Θ).

Because it is intractable to solve (23), a typical approach
is to optimize each variable Θi in Θ via solving (23) while

keeping all other variables fixed using the most recent distri-
butions.
q(Θi)

= arg max
q(Θi)

( ∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω )]d(Θi)

−
∫

q(Θi)ln q(Θi)dΘi

) (24)

where Eq(Θ\Θi) represents that the expectation is taken with
respect to all the latent variables excluding Θi. These approx-
imate distributions of variational inference finally converge to
a local optimum of (23) [35], [36].

Because the conjugate priors are placed on latent variables
V.q , Ei,j , βi,j and γy , (24) has analytical solutions for these
variables. Please refer to steps (I), (IV), (V), and (VI) in
supplementary materials for the respective updating equations.
Because U.k and X.q are lifted to a higher dimensional space
via the kernel method, (24) does not have analytical forms for
these variables. To solve (24), we assume U.k and X.q are
drawn from Gaussian distributions, and then the problem is
simplified to find the corresponding mean and the variance
of each variable. Then the reparameterization trick [37] is
employed to differentiate and optimize the objective in (24)
with respect to the mean and variance, respectively. Please
refer to steps (II) and (III) in supplementary materials for the
updating equations of U.k and X.q .

Computing the objective function in (24) for V.q , U.k

and X.q requires computing the inner product of the lifting
function. We employ three Gaussian kernels KXX , KXU

and KUU in (25)-(27) when updating V.q , X.q , and U.k,
respectively.

KXX(p, q) = Φ(X)T.pΦ(X).q = exp(− 1
2c1

||X.p −X.q||22), (25)

KXU (q, k) = Φ(X)T.qΦ(U).k = exp(− 1
2c2

||X.q −U.k||22), (26)

KUU (i, j) = Φ(U)T.iΦ(U).j = exp(− 1
2c3

||U.i −U.j ||22), (27)

where c1, c2 and c3 are pre-defined scalars.
Initialization. Each entry in U is initialized from a Gaussian
distribution N (0, 1). V is initialized as an all-zero matrix. All
the elements in initial variances for U.k and X.q are set as
exp(−2). The initialization X̄0 of X is initialized as the rank-
r approximation to Hn2

(Y o), where the missing entries are
set as zero. The initial E is set as Y o −PΩ(H†X̄0). The γy
is initialized as 106.
Estimating the rank of the lifted Hankel matrix. Because
the actual rank of Φ(X) is unknown, one selects K that is
guaranteed to be larger than the actual rank. The deterministic
methods such as [32] require K to be an accurate estimation
of the rank and often overfit when K is larger than the actual
rank. Here we propose to estimate the rank and remove the
redundant factor by thresholding the entries in E[V ]. If the
sum of absolute values of E[Vkq] for all q is less than a
threshold (e.g., 10−2), the algorithm removes the kth column
in E[U ], the kth row in E[V ], and reduces the rank K by
one. That is because the kth column in E[U ] is not selected
to represent Φ(X) and is no longer needed. Therefore, our
method is robust to the initial rank and can effectively infer
the actual rank.
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Estimating the sparsity of the error matrix E. Reference
[38] shows that the Gaussian distribution with Gamma priors
promotes the sparsity of E. We can make E[E] sparser
through thresholding, because significant errors do not happen
frequently. When entries in E[E] are very small (e.g., 10−1 ),
the corresponding entries are set as zeroes.
Convergence criteria. Let X̄t and X̄t−1 denote the estima-
tion of X at the tth and t − 1th iteration, respectively. The
algorithm terminates if ∥X̄t−X̄t−1∥F

∥X̄t−1∥F
< ξ where ξ is a pre-

determined threshold, or if the maximum iterations Tmax is
reached.
Missing data recovery only. The algorithm can be simplified
when the objective is to recover missing data only, assuming
the observations do not contain bad data. Equations (19) and
(20) in the prior model characterize the bad data distribution
and can be removed. One can also skip steps (IV) and (V) (in
the supplementary materials) that update Ei,j and βi,j .
Computational complexity. The computational complexity
per iteration is O(Lmn2n1Ktmax), where L and tmax are
the Monte-Carlo samples and maximum iterations of inner
loops, respectively, when computing U and X . Thus, the
computational complexity scales at most linearly in the size
of the Hankel matrix. The details of derivation are provided in
Section F in the supplementary materials. Our algorithm is a
block processing method and is most suitable for offline data
recovery. It could possibly be used for online processing with
sufficient computational power.

C. Data Recovery and Uncertainty Index

With the computed posterior distributions, we use the mean
of the distribution of Yi,j as an estimate of the corresponding
entry in Y for every i = 1, ...,m, and j = 1, ..., n. The
variance of Yi,j is employed to estimate the accuracy of
data recovery. Because the mean and variance do not have
closed-form solutions, the Monte Carlo integration [39] is
employed to compute them approximately. The predictive
mean is derived as follows:

E[Yi,j ] ≈
1

J

J∑
l=1

(H†X(l))i,j X(l) ∼ q(X|Y o
Ω ), (28)

where J is the number of Monte-Carlo samples. Each X(l)

is sampled from learned posterior distributions. The predictive
variance is computed by:

Var[Yi,j ] = E[Y 2
i,j ]− E[Yi,j ]

2

≈ 1

J

J∑
l=1

1

γ
(l)
y

+
1

J

J∑
l=1

(H†X(l))2i,j − (
1

J

J∑
l=1

(H†X(l))i,j)
2,

(29)

where each γ
(l)
y is sampled from learned posterior distribution

q(γy|Y o
Ω ). We use the average variance as an uncertainty index

of the data estimation, i.e.,

Uindex = (

m∑
i=1

n∑
j=1

Var[Yi,j ])/(mn). (30)

A higher average variance leads to a larger uncertainty index.
That means the algorithm is less confident about the recovery
results.

D. Parameter Selection

The prior distributions (18) and (20) require setting pa-
rameters (e0, f0) and (g0, h0). When e0 is fixed, a larger
f0 corresponds to a smaller γy , which in turn increases the
variance 1/γy of the noise N . When h0 is fixed, a larger
g0 corresponds to a larger βi,j , which in turn decreases the
value of Ei,j . Note that (e0, f0) and (g0, h0) have a minor
impact on the recovery results. Another important parameter
is the Hankel size n2. With a larger n2, the method can recover
consecutive data losses and errors for all channels for a longer
time window (close to n2 time steps). On the other hand,
increasing n2 leads to a higher computational cost. In our
experiments, setting n2 as at most 80 is sufficient to obtain
accurate recovery performance. In Section IV-C3, we show
that Ba-NSDR is not sensitive to these parameter selections.

IV. NUMERICAL EXPERIMENTS

A. Experimental Setup

We compare our proposed Ba-NSDR approach with the
following nine methods: the Bayesian robust Hankel matrix
completion method (BRHMC) in [27], the Bayesian robust
Hankel matrix completion method employing the sliding win-
dow (BRHMC-S), the Bayesian Hankel matrix completion
method (BHMC) in [27], the Bayesian Hankel matrix com-
pletion method employing the sliding window (BHMC-S), the
deterministic kernel-based matrix completion method (KMC)
in [32], the deterministic Hankel matrix completion method
(AM-FIHT) in [25], the deterministic robust Hankel matrix
completion method (SAP) in [26], the deterministic streaming
data recovery method (SDR) in [40], the deterministic stream-
ing data recovery method considering the nonlinear dynamics
(SDR-K) in [28], The streaming methods “SDR” and “SDR-
K” require that the observations in the first time window
contain no missing and bad data, which is one disadvantage
compared with offline methods. In the following experiments,
we do not include missing and bad data in the first time
window of these two methods to make a fair comparison.

Some parameters of Ba-NSDR are set as follows for all
experiments if not otherwise stated: γϵ = 105, γv = 102,
J = 50, L = 1, γx = γu = 1, e0 = 10−6, f0 = 10−4,
g0 = 1, h0 = 10−6, ξ = 10−4. λ1 = 10, λ2 = λ4 = 0.1,
λ3 = 1. Tmax = 100. tmax

1 = tmax
2 = tmax

3 = tmax
4 = 100.

The experiments are conducted on Matlab 2019 with a desktop
with 3.1 GHz Intel i9-9900 and 32 GB memory.

Fig. 5 shows three modes of missing/bad data considered
in this experiment. For example, M3 represents Mode 3 of
missing data. B2 represents Mode 2 of bad data.

• Mode 1: Missing/bad entries independently and randomly
distribute across all channels and time instants.

• Mode 2: Missing/bad entries distribute across all chan-
nels, and the time instants are randomly selected.
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Fig. 5: Three modes of missing/bad data generation. “M” stands for
missing data. “B” stands for bad data.

• Mode 3: Missing/bad entries distribute across all chan-
nels. The time instants are consecutive instants and the
starting instant is randomly selected.

Evaluation Metrics: The Normalized Estimation Error (NEE)
is employed to evaluate the data recovery performance. The
NEE is defined as

NEE = ∥Ŷ − Y ∥F /∥Y ∥F , (31)

where Ŷ in Rm×n is the estimate and Y in Rm×n is the
ground-truth data. Note that the computation of NEE requires
ground-truth data and can only be used for evaluation. When
there is no ground-truth data provided, the uncertainty index
reflects the estimation accuracy. We will report both the
uncertainty index and NEE in the following experiments.

B. Performance on Synthetic Datasets

1) Dataset generation: We first evaluated the data recovery
performance on synthetic data where each row of Y is a
weighted sum of r time-varying damping noisy sinusoids.
Each entry Yi,j in Y is generated by

Yi,j =

r∑
k=1

bk,je
−aitj sin(2πfk,jtj) i = 1, ...,m, j = 1, ..., n,

(32)
where fk,j is the time-varying frequency, bk,j is the time-
varying amplitude of the kth sinusoid. The general form
of time-varying frequency and amplitude can characterize
the dynamic transitions during a significant disturbance in
power systems. The frequency fk,j is randomly selected from
(100, 102). The amplitude bj,k is randomly selected from
(1, 1.3). r = 2, a1 = 30, a2 = 40, a3 = 35. The generated
matrix Y has three rows and 300 columns. Fig. 7 shows
the normalized approximation errors of rank-r matrices to
the Hankel matrix Hn2

(Y ) and the lifted Hankel matrix
Hn2(Z). c = 200 in (11). One can see that it requires a much
smaller rank to approximate Hn2(Z) than Hn2(Y ) with the
same normalized approximation error. For example, a rank-2
approximation to H10(Z) is 0.019, while it requires at least
rank-27 to achieve a similar error to approximate H10(Y ).

Table I: The recovery error and the uncertainty index by Ba-NSDR
on M2 missing data of synthetic data

Missing rate % 5 15 25 35
NEE 0.028 0.044 0.057 0.071
Uindex 1.2 ×10−3 1.6×10−3 2.0×10−3 2.9×10−3

Missing rate % 45 55 65
NEE 0.10 0.28 0.54
Uindex 3.8×10−3 7.2×10−3 8.3×10−2

We used a simple signal with nonlinear dynamics in (32) to
verify the performance of our algorithm. The signals in (32)
simulate the nonlinear dynamics from a nonlinear dynamical
system. As stated in reference [41], a linear dynamical system
should hold homogeneity property and additive property at
the same time. Therefore, if an input is a sinusoidal signal
x(t) = sin(2πft), where f is the frequency and t is the time
instant, the output of a linear dynamical system should be
y(t) = Asin(2πft + α), where A is a scaling amplitude and
A is a scalar, and α is the time-shifting phase. Because the
amplitude in (32) is time-varying, the resulting signals are not
generated from a linear dynamical system but from a nonlinear
system.

2) Recovery performance: Some parameters of Ba-NSDR
are: c2 = c3 = 200, ξ = 10−4, K = 50, Tmax = 150. n2 = 20
for all cases except that n2 = 30 for M3 missing mode (Figs. 6
(c)(f)). The results are averaged over 10 trails. Figs. 6 (a)-
(c) compare the missing data recovery performance of Ba-
NSDR with KMC, SDR-K, AM-FIHT, BHMC-S, and BHMC
on three missing data modes. Ba-NSDR achieves the lowest
recovery error among all the methods. Specifically, the conven-
tional kernel-based method KMC does not consider the Hankel
structure and, thus, performs poorly on M2 and M3 modes.
Deterministic Hankel-based method AM-FIHT and Bayesian
Hankel-based methods BHMC, BHMC-S, approximate the
data generated from nonlinear dynamical systems using linear
dynamical systems and, thus, cannot accurately recover the
highly nonlinear components. SDR-K employs the low-rank
lifted Hankel property to characterize nonlinear dynamics and
performs better than all other methods except our method
Ba-NSDR. SDR-K does not provide any uncertainty index
and cannot handle bad data. Moreover, SDR-K is sensitive
to parameter selections, especially the selection of rank. Table
I shows the NEE and the corresponding uncertainty indices
when the missing data follow M2 mode. The uncertain index
increases when the recovery error increases. This indicates
that the uncertainty index is able to differentiate reliable
estimations from unreliable estimations.

Figs. 6 (d)-(f) compare the data recovery performance of Ba-
NSDR with SAP, BRHMC-S and BRHMC when data contain
both missing and bad data. Except for Ba-NSDR, all other
methods do not characterize nonlinear dynamics. One can see
from Fig. 6 (d)-(f) that Ba-NSDR performs the best among
all the methods. Note that the signal in (32) does not include
the phase for simplicity. We also tested the performance of
our algorithm on a sinusoid with a time-varying phase, and
the recovery results are shown in Fig. 11 in supplementary
materials. Our method achieves similar performance as the
results in Fig. 6.
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(a) M1 only (b) M2 only (c) M3 only

(d) M2 B1 (e) M1 B2 (f) M3 B1

Fig. 6: Comparison of Ba-NSDR with other methods. (a)-(c) show the missing data recovery results with three missing modes. (d)-(f) show
the recovery results with both missing and bad data.

Fig. 7: Low-rank approximations to Hankel matrices Hn2(Y ) and
the corresponding lifted Hankel matrices Hn2(Z) for synthetic data.

Table II: The recovery performance of recorded PMU data on 6.7%
M3 mode

Method Ba-NSDR BHMC BHMC-S AM-FIHT SDR-K
NEE 8.3 ×10−4 5.6 ×10−3 3.0 ×10−3 6.0 ×10−3 2.1 ×10−3

NEE2−4 1.9 ×10−3 1.2 ×10−2 6.6 ×10−3 1.3 ×10−2 4.7 ×10−3

Time(sec.) 28.5 13.1 281.5 0.30 0.45

Table III: The recovery performance of recorded PMU data on 5%
M1 and 3.7% B3 mode

Method Ba-NSDR BRHMC BRHMC-S SAP SDR
NEE 9.8 ×10−4 7.1 ×10−3 3.6 ×10−3 6.0 ×10−3 5.6 ×10−3

NEE2−4 1.9 ×10−3 1.5 ×10−2 7.9 ×10−3 1.3 ×10−2 1.2 ×10−2

Time(sec.) 19.5 2.2 276.8 0.054 0.13

C. Performance on practical PMU dataset

We then conducted the experiments on the recorded dataset
as shown in Fig. 1 in Central New York Power System1.
The PMU data type is voltage in rectangular coordinates.
The proposed method can also be easily extended to other
data types such as current and frequency. Observations in
all channels are available in this 10-second window and are
treated as ground-truth data. We remove some data points and

1We provide an additional case study on the recorded PMU data of a
transformer failure event in Central New York in the supplementary materials.

add bad data following different patterns. The recovered data
are evaluated by comparing them with the ground-truth data.

1) Recovery performance: We first evaluated our method
on two case studies.

• Case 1: 6.7% data are removed following Mode M3. The
length of M3 missing data is 20 consecutive time instants,
which correspond to 0.67 seconds.

• Case 2: 5% data are removed following Mode M1 and
3.7% bad data following Mode B3 are added. The length
of B3 bad data is 10 consecutive time instants, which
correspond to 0.33 seconds. The bad data is randomly
sampled from (0.1, 0.4).

The parameter setting of Ba-NSDR is as follows. The initial
rank is set as 10. n2 = 30, c2 = c3 = 40, f0 = 10−6 in Case
1. n2 = 80, n2 = 5, c2 = c3 = 7, f0 = 10−4 in Case 2.

Figs. 8 and 9 compare the recovery performance of Ba-
NSDR with other methods on Case 1 and Case 2, respectively.
Ba-NSDR can accurately recover the nonlinear dynamics dur-
ing the event and clearly outperform all the existing methods.
Tables II and III report the NEE over the whole ten-second
window, the NEE of a window between 2-4 seconds where
missing data occur, denoted by NEE2−4, and the computa-
tional time of these methods over the whole ten-second win-
dow. Ba-NSDR achieves a great balance of recovery accuracy
and computational cost. AM-FIHT, SAP, SDR, and SDR-K
are computationally efficient, but their recovery performances
are worse than our method. BHMC-S and BRHMC-S truncate
the data into small windows and approximate each window
using low-rank Hankel matrices and thus are much more
computationally expensive than other methods.

The major disadvantage of our method is that it is more
computationally expensive than the deterministic low-rank
Hankel methods. However, we can see from Tables II and III
that the proposed Ba-NSDR method achieves a great balance
of recovery accuracy and computational cost. Moreover, the
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(a) (b) (c)

(d) (e) (f)

Fig. 8: The recovery performance on 6.7% M3 missing data. (a) the observed data, (b) the estimated data by the proposed Ba-NSDR
method, (c) the estimated data by the BHMC method, (d) the estimated data by the BHMC-S method, (e) the estimated data by the AM-FIHT
method, (f) the estimated data by the SDR-K method.

(a) (b) (c)

(d) (e) (f)

Fig. 9: The recovery performance on 5% M1 missing data and 3.7%B3 bad data. (a) the observed data, (b) the estimated data by the
proposed Ba-NSDR method, (c) the estimated data by the BRHMC method, (d) the estimated data by the BRHMC-S method, (e) the estimated
data by the SAP method, (f) the estimated data by the SDR method.

proposed probabilistic framework is able to model the uncer-
tainty of the recovery results, while other works cannot provide
such an uncertainty index.

2) Uncertainty modeling: One major advantage of Ba-
NSDR over existing PMU data recovery methods is that it
provides an uncertainty index, which can be employed to
evaluate the reliability of the recovery results. Table IV shows
the recovery performance and the corresponding uncertainty
index on 5% B1 with varying missing data percentages of
mode M2. Table V shows the recovery performance and
the corresponding uncertainty index on 5% M2 with varying
bad data percentages of B1. One can see that the recovery
error and uncertainty index increase when the missing/bad
data percentage increases. In Table IV, the recovery error
is large when the missing data percentage is 45%, and the

Table IV: The recovery error and the uncertainty index on 5% B1
with varying missing data percentage of M2

Missing rate 5 15 25 35 45
NEE 0.0019 0.0037 0.0057 0.0060 0.18
Uindex 2.6×10−5 4.8×10−5 1.5×10−4 4.5×10−4 1.1×10−2

Table V: The recovery error and the uncertainty index on 5% M2
with varying bad data percentage of B1

Bad rate 5 15 25 35 45
NEE 0.0019 0.0091 0.016 0.017 0.032
Uindex 2.6×10−5 5.8×10−5 7.0×10−5 8.3×10−4 6.2×10−3

corresponding uncertainty index is significantly larger than the
values at other missing data percentages when the recovery
errors are small. This verifies the effectiveness of our proposed
uncertainty index.
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3) The impact of parameter selections: We evaluated the
impact of parameter selections in recovering 5% M2 missing
and 5%B2 bad data. The bad data are randomly selected from
(0.3, 0.5). As discussed in Section III-D, we fixed e0 and vary
f0 to show the impact of (e0, f0). One can see from Table VI
that Ba-NSDR maintains a very small recovery error with a
wide range of f0. We also fixed h0 and varied g0 to show
the impact of (g0, h0). Table VII shows that Ba-NSDR is not
sensitive to the selection of g0.

Table VIII shows the recovery performance when the initial
rank varies. The recovery error NEE of Ba-NSDR remains
very small with different ranks. Moreover, the estimated final
ranks are consistent and much smaller than the initial rank,
indicating that Ba-NSDR prunes the rank effectively.

The Hankel parameter n2 is increased from 1 to 25 and
the results are shown in Table IX. When n2 = 1, the Hankel
matrix reduces to the original data matrix. One can see from
Table IX that increasing n2 indeed leads to more accurate
recovery results.

Table X shows the performance when the Gaussian kernel
parameters c2 and c3 increase. The numerical results indicate
that the proposed method is not sensitive to the Gaussian
kernel parameters c2 and c3.

Table VI: The impact of f0 (e0 is fixed and e0 = 10−6)

f0 10−6 10−5 10−3 10−3 10−2 10−1

NEE 9.4×10−4 1.3×10−3 1.1×10−3 1.7×10−3 2.3 ×10−3 3.9×10−3

Table VII: The impact of g0 (h0 is fixed and h0 = 10−3)

g0 10−6 10−5 10−3 10−3 10−2 10−1

NEE 1.4×10−3 1.7×10−3 1.4×10−3 1.1×10−3 1.4 ×10−3 1.1×10−3

Table VIII: The impact of the initial K

Initial rank K 10 15 20 25 30
NEE 1.1×10−3 1.1×10−3 1.1×10−3 1.4×10−3 1.1×10−3

estimated rank 8 9 11 12 13

Table IX: The impact of Hankel parameter n2

n2 1 5 10 15 20 25
NEE 0.075 6.5×10−3 3.0×10−3 1.4×10−3 1.1×10−3 1.2×10−3

Table X: The impact of Gaussian kernel parameter c2 = c3

c2 = c3 40 50 60 70 80
NEE 1.3×10−3 1.2×10−3 1.1×10−3 1.4×10−3 1.4×10−3

V. CONCLUSIONS

This paper proposes a Bayesian high-rank Hankel matrix
recovery (Ba-NSDR) method to recover the synchrophasor
measurements with missing and bad data. The proposed
method maps the constructed Hankel matrix into a higher
dimensional space by employing the kernel method and
exploits the lifted low-rank Hankel property in recovering
synchrophasor data under significant nonlinear dynamics. Ba-
NSDR clearly outperforms the existing methods, especially
when the data contain long consecutive missing or bad data.
The distinctive features of Ba-NSDR include an uncertainty

index that reflects the reliability of recovery results and the
robustness to the initial rank selection. One future direction is
to explore the effect of different kernels so that the method
can pick the best kernel automatically for different scenarios.

REFERENCES

[1] W. Li, M. Wang, and J. H. Chow, “Real-time event identification
through low-dimensional subspace characterization of high-dimensional
synchrophasor data,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4937–
4947, Jan. 2018.

[2] W. Li and M. Wang, “Identifying overlapping successive events using a
shallow convolutional neural network,” IEEE Trans. Power Syst., vol. 34,
no. 6, pp. 4762–4772, Nov. 2019.

[3] J. Zhao, G. Zhang, K. Das, G. N. Korres, N. M. Manousakis, A. K.
Sinha, and Z. He, “Power system real-time monitoring by using pmu-
based robust state estimation method,” IEEE Transactions on Smart
Grid, vol. 7, no. 1, pp. 300–309, 2015.

[4] F. Aminifar, M. Shahidehpour, M. Fotuhi-Firuzabad, and S. Kamalinia,
“Power system dynamic state estimation with synchronized phasor mea-
surements,” IEEE Transactions on Instrumentation and Measurement,
vol. 63, no. 2, pp. 352–363, 2013.

[5] A. S. Dobakhshari, M. Abdolmaleki, V. Terzija, and S. Azizi, “Robust
hybrid linear state estimator utilizing scada and pmu measurements,”
IEEE Transactions on Power Systems, vol. 36, no. 2, pp. 1264–1273,
2020.

[6] I. Kamwa and L. Gerin-Lajoie, “State-space system identification-toward
mimo models for modal analysis and optimization of bulk power
systems,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 326–
335, 2000.

[7] N. Zhou, J. W. Pierre, and J. F. Hauer, “Initial results in power system
identification from injected probing signals using a subspace method,”
IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1296–1302,
2006.

[8] B. Foggo and N. Yu, “Online pmu missing value replacement via event-
participation decomposition,” IEEE Transactions on Power Systems, pp.
1–1, 2021.

[9] N. Zhou, D. Meng, Z. Huang, and G. Welch, “Dynamic state estimation
of a synchronous machine using pmu data: A comparative study,” IEEE
Transactions on Smart Grid, vol. 6, no. 1, pp. 450–460, 2014.

[10] K. D. Jones, A. Pal, and J. S. Thorp, “Methodology for performing
synchrophasor data conditioning and validation,” IEEE Transactions on
Power Systems, vol. 30, no. 3, pp. 1121–1130, 2014.

[11] J. James, A. Y. Lam, D. J. Hill, Y. Hou, and V. O. Li, “Delay aware
power system synchrophasor recovery and prediction framework,” IEEE
Transactions on Smart Grid, vol. 10, no. 4, pp. 3732–3742, 2018.

[12] J. James, D. J. Hill, V. O. Li, and Y. Hou, “Synchrophasor recovery
and prediction: A graph-based deep learning approach,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 7348–7359, 2019.

[13] C. Ren and Y. Xu, “A fully data-driven method based on generative
adversarial networks for power system dynamic security assessment with
missing data,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp.
5044–5052, 2019.

[14] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks
on the smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp.
645–658, 2011.

[15] K. R. Mestav, J. Luengo-Rozas, and L. Tong, “Bayesian state estimation
for unobservable distribution systems via deep learning,” IEEE Trans-
actions on Power Systems, vol. 34, no. 6, pp. 4910–4920, 2019.

[16] K. R. Mestav and L. Tong, “Universal data anomaly detection via inverse
generative adversary network,” IEEE Signal Processing Letters, vol. 27,
pp. 511–515, 2020.

[17] T. Huang, B. Satchidanandan, P. Kumar, and L. Xie, “An online detection
framework for cyber attacks on automatic generation control,” IEEE
Transactions on Power Systems, vol. 33, no. 6, pp. 6816–6827, 2018.

[18] M. Wu and L. Xie, “Online detection of low-quality synchrophasor
measurements: A data-driven approach,” IEEE Transactions on Power
Systems, vol. 32, no. 4, pp. 2817–2827, 2016.

[19] M. Esmalifalak, H. Nguyen, R. Zheng, L. Xie, L. Song, and Z. Han, “A
stealthy attack against electricity market using independent component
analysis,” IEEE Systems Journal, vol. 12, no. 1, pp. 297–307, 2015.

[20] P. Gao, M. Wang, S. G. Ghiocel, J. H. Chow, B. Fardanesh, and
G. Stefopoulos, “Missing data recovery by exploiting low-dimensionality
in power system synchrophasor measurements,” IEEE Transactions on
Power Systems, vol. 31, no. 2, pp. 1006–1013, March 2016.



11

[21] P. Gao, M. Wang, J. H. Chow, S. G. Ghiocel, B. Fardanesh, G. Stefopou-
los, and M. P. Razanousky, “Identification of successive “unobservable”
cyber data attacks in power systems.” IEEE Transactions on Signal
Processing, vol. 64, no. 21, pp. 5557–5570, Nov. 2016.

[22] M. Liao, D. Shi, Z. Yu, Z. Yi, Z. Wang, and Y. Xiang, “An alternating
direction method of multipliers based approach for pmu data recovery,”
IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4554–4565, 2018.

[23] C. Genes, I. Esnaola, S. M. Perlaza, L. F. Ochoa, and D. Coca, “Robust
recovery of missing data in electricity distribution systems,” IEEE
Transactions on Smart Grid, vol. 10, no. 4, pp. 4057–4067, 2018.

[24] Y. Hao, M. Wang, J. H. Chow, E. Farantatos, and M. Patel, “Model-less
data quality improvement of streaming synchrophasor measurements by
exploiting the low-rank Hankel structure,” IEEE Transactions on Power
Systems, vol. 33, no. 6, pp. 6966–6977, June 2018.

[25] S. Zhang, Y. Hao, M. Wang, and J. H. Chow, “Multichannel hankel
matrix completion through nonconvex optimization,” IEEE Journal of
Selected Topics in Signal Processing, vol. 12, no. 4, pp. 617–632, 2018.

[26] S. Zhang and M. Wang, “Correction of corrupted columns through
fast robust hankel matrix completion,” IEEE Transactions on Signal
Processing, vol. 67, no. 10, pp. 2580–2594, 2019.

[27] M. Yi, M. Wang, E. Farantatos, and T. Barik, “Bayesian robust hankel
matrix completion with uncertainty modeling for synchrophasor data
recovery,” ACM SIGENERGY Energy Informatics Review, vol. 2, no. 1,
pp. 1–19, 2022.

[28] Y. Hao, M. Wang, and J. H. Chow, “Modeless streaming synchrophasor
data recovery in nonlinear systems,” IEEE Transactions on Power
Systems, vol. 35, no. 2, pp. 1166–1177, 2019.

[29] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, vol. 36, no. 3, pp. 1171–1220, 2008.

[30] G. Ongie, R. Willett, R. D. Nowak, and L. Balzano, “Algebraic variety
models for high-rank matrix completion,” in International Conference
on Machine Learning. PMLR, 2017, pp. 2691–2700.

[31] J. Fan and T. W. Chow, “Non-linear matrix completion,” Pattern
Recognition, vol. 77, pp. 378–394, 2018.

[32] J. Fan and M. Udell, “Online high rank matrix completion,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8690–8698.

[33] J. A. Bazerque and G. B. Giannakis, “Nonparametric basis pursuit via
sparse kernel-based learning: A unifying view with advances in blind
methods,” IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 112–
125, 2013.

[34] M. Jalali, V. Kekatos, S. Bhela, H. Zhu, and V. A. Centeno, “Infer-
ring power system dynamics from synchrophasor data using gaussian
processes,” IEEE Transactions on Power Systems, vol. 37, no. 6, pp.
4409–4423, 2022.

[35] C. M. Bishop, “Pattern recognition,” Machine learning, vol. 128, no. 9,
2006.

[36] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associa-
tion, vol. 112, no. 518, pp. 859–877, 2017.

[37] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[38] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, “Sparse
bayesian methods for low-rank matrix estimation,” IEEE Transactions
on Signal Processing, vol. 60, no. 8, pp. 3964–3977, 2012.

[39] J. Paisley, D. M. Blei, and M. I. Jordan, “Variational bayesian infer-
ence with stochastic search,” in International Conference on Machine
Learning, 2012, pp. 1363–1370.

[40] Y. Hao, M. Wang, and J. H. Chow, “Modeless streaming synchrophasor
data recovery in nonlinear systems,” IEEE Transactions on Power
Systems, vol. 35, no. 2, pp. 1166–1177, 2019.

[41] A. V. Oppenheim, A. S. Willsky, S. H. Nawab, G. M. Hernández et al.,
Signals & systems. Pearson Educación, 1997.

Ming Yi (S’17) received the B.E. degree in automa-
tion from Harbin Engineering University, Harbin,
China, in 2016, and the M.S. degrees in control
science and engineering from Harbin Institute of
Technology, Harbin, China, in 2018, respectively.

He is currently a Ph.D. student in Rensselaer Poly-
technic Institute, Troy, NY, USA. His research in-
terests include signal processing, machine learning,
power systems monitoring, and high-dimensional
data analysis.

Meng Wang (M’12-SM’22) received B.S. and M.S.
degrees from Tsinghua University, China, in 2005
and 2007, respectively. She received the Ph.D. de-
gree from Cornell University, Ithaca, NY, USA, in
2012.

She is an Associate Professor in the department
of Electrical, Computer, and Systems Engineering
at Rensselaer Polytechnic Institute, Troy, NY, USA,
where she joined in Dec. 2012. Before that, she
was a postdoc scholar at Duke University, Durham,
NC, USA. Her research interests include high-

dimensional data analytics, machine learning and artificial intelligence, power
systems monitoring, and synchrophasor technologies. She serves as an Asso-
ciate Editor for IEEE Transactions on Smart Grid.

Tianqi Hong (S’13–M’16) received the B.Sc. de-
gree in electrical engineering from Hohai University,
China, in 2011, and the M.Sc. degree in electrical
engineering from the Southeast University, China
and the Engineering school of New York University
in 2013. He received a Ph.D. degree from New York
University in 2016. His main research interests are
power system analysis, power electronics systems,
microgrid, and electromagnetic design.

Currently, he is an Energy System Scientist at
Argonne National Laboratory. Prior to this, he was

a Postdoc Fellow in the Engineering school of New York University and a
Senior Research Scientist at Unique Technical Services, LLC, responsible for
transportation electrification, battery energy storage integration, and medium
capacity microgrid. Dr. Hong is an active reviewer in the power engineering
area, and he serves as an Editorial Board Member of International Transactions
on Electrical Energy Systems, IEEE Transactions on Power Delivery, IEEE
Transactions on Industry Applications, and IEEE Power Engineering Letters.
He also serves as Special Activity Co-Chair of the IEEE IAS Industrial Power
Converters Committee (IPCC).

Dongbo Zhao (SM’16) is currently a Global Tech-
nology Manager with Eaton in Eaton Research Lab.
He was a Team Lead of DER Integration and a
Principal Energy System Scientist with Argonne Na-
tional Laboratory, Lemont, IL, and also an Institute
Fellow of Northwestern Argonne Institute of Science
and Engineering of Northwestern University, before
joining Eaton. His research interests include power
system control, protection, reliability analysis, trans-
mission and distribution automation, and electric
market optimization.

Dr. Zhao is a Senior Member of IEEE, and a member of IEEE PES,
IAS and IES Societies. He has been the editor of IEEE Transactions on
Power Delivery, IEEE Transactions on Sustainable Energy, and IEEE Power
Engineering Letters.



12

SUPPLEMENTARY MATERIALS

A. Gamma distribution

The Gamma function and the Gamma distribution are
introduced here. The definition of the Gamma function with
parameter e0 is

Γ(e0) =

∫ ∞

0

xe0−1e−xdx. (33)

The definition of the Gamma distribution of γy with parame-
ters (e0, f0) is

Γ(γy|e0, f0) =
f0

e0(γy)
e0−1e−f0γy

Γ(e0)
∝ (γy)

e0−1e−f0γy ,

(34)
where e0 and f0 are positive scalers. The symbol “∝” denotes
“proportional to.”

B. The Hankel operation and the mapping set

The Moore-Penrose pseudo-inverse of H is denoted as H†.
The entry (i, j) of inverse Hankel matrix (H†X) ∈ Rm×n is
defined as

(H†X)i,j = ⟨H†X, eie
T
j ⟩ =

1

κj

∑
u−i
m +v=j

Xu,v

=

{
1
κj

∑j
j1=1 X(j1−1)m+i,j+1−j1 j ≤ n2

1
κj

∑nj

j2=j+1−n2
X(j−j2)m+i,j2 j ≥ n2 + 1

, (35)

where κj is the total number of entries in the jth anti-diagonal
of an n2 × n1 matrix. Mathematically, it can be written as
κj = #{(j1, j2)|j1 + j2 = j + 1 1 ≤ j1 ≤ n2, 1 ≤ j2 ≤
nj , nj = min(j, n1)}

Let Hn2
(Y) denote the Hankel matrix of the data matrix

Y. Ψi,j denotes the set of indices of entries in Hn2(Y), where
the entry values are Yi,j . Mathematically, we have

Ψi,j = {(u, v)|(u, v) = ((j1 − 1)m+ i, j + 1− j1) for every
j1 = 1, 2, ..., j, under the case when j ≤ n2;

(u, v) = ((j − j2)m+ i, j2) for every j2 = j + 1− n2, ..., nj ,

where nj = min(j, n1), under the case when j ≥ n2 + 1; }
(i, j) ∈ Ω.

(36)

C. The derivation details of updating rule for variational
inference

Algorithm 1 shows the complete updating process of our
proposed method. Note that Algorithm 1 can be simplified
when the objective is to recover missing data only. One can
skip the updating steps for E[Ei,j ] and E[βi,j ] in lines 24-25
and all the other updating steps remain the same.

As discussed in equation (21), computing p(Y o
Ω ) is in-

tractable. It is hard to directly minimize the KL divergence
in (23). Instead, we can solve an equivalent maximization
problem. To see this,

Algorithm 1 Bayesian High Rank Hankel Matrix Completion

Require: The observation matrix Y o; The parameters e0, f0,
g0, h0, γu and γx for prior distributions; The initial rank
K; The maximum iterations Tmax for the outer loop; The
maximum iterations tmax

1 , tmax
2 , tmax

3 and tmax
4 for the

inner loops; The convergence threshold ξ; The Hankel
parameter n2.

1: Initialization: Entries in U are randomly initialized by
N (0, 1). V is initialized by an all zeroes matrix. Use the
rank-r approximation of X as X̄0. The initial E is Y o−
PΩ(H†X̄0). η = 1, t = t1 = t2 = t3 = t4 = 1.

2: while η > ξ and t < Tmax do
3: Compute kernels KXU and KUU by (26) and (27);
4: Compute E[V.q] and ΣV.q

from q(V.q) by (44) and (45)
for each q = 1, 2, 3, ..., n1;

5: repeat
6: Compute ∇aU.k

ℓ1 by (53);
7: at1+1

U.k
= at1U.k

+ λ1∇aU.k
ℓ1 ;

8: t1 = t1 + 1
9: until converged or t1 = tmax

1 ; for all k
10: repeat
11: Compute ∇µU.k

ℓ1 and ∇2
µU.k

ℓ1 by (51) and (52);
12: µt2+1

U.k
= µt2

U.k
+ λ2(∇2

µU.k
ℓ1)

−1∇µU.k
ℓ1 ;

13: t2 = t2 + 1
14: until converged or t2 = tmax

2 for all k;
15: repeat
16: Compute ∇bX.q

ℓ2 by (59) ;
17: bt3+1

X.q
= bt3X.q

+ λ3∇bX.q
ℓ2 ;

18: t3 = t3 + 1
19: until converged or t3 = tmax

3 for all q;
20: repeat
21: Compute ∇µX.q

ℓ2 and ∇2
µX.q

ℓ2 by (57) and (58) ;
22: µt4+1

X.q
= µt4

X.q
+ λ4(∇2

µX.q
ℓ2)

−1∇µX.q
ℓ2 ;

23: t4 = t4 + 1;
24: until converged or t4 = tmax

4 for all q;
25: Compute E[Ei,j ] and ΣEi,j by (63) and (64) for all

(i, j) ∈ Ω;
26: Compute E[βi,j ] by (70) for all (i, j) ∈ Ω;
27: Compute E[γy] from q(γy) by (77);
28: if E[Vkq] < ξ1 for all k then
29: Remove E[U.k] in E[U ], E[Vkq] for all q;
30: K = K − 1;
31: end if
32: X

(l)
.q = µX.q

+ exp(0.5bX.q
)ϵ(l) for all q,

U
(l)
.k = µU.k

+ exp(0.5aU.q )ϵ
(l) for all k, ϵ(l) ∼

N (0, Imn2);

33: X̄t = 1
L

∑L
l=1X

(l)
.q ;

34: η = ∥X̄t−X̄t−1∥F

∥X̄t−1∥F
;

35: X̄t−1 = X̄t;
36: t = t+ 1;
37: end while
38: Compute the predictive mean E[Yi,j ] and the uncertainty

index by (28) and (30), respectively
39: return The estimation E[Yi,j ] and the uncertainty index.
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KL(q(Θ)||p(Θ,Y |Y o
Ω ))

= −
∫

q(Θ)ln
p(Θ,Y |Y o

Ω )

q(Θ)
dΘ

= E[ln q(Θ)]− E[ln p(Θ,Y |Y o
Ω )]

= E[ln q(Θ)]− E[ln p(Θ,Y ,Y o
Ω )] + ln(p(Y o

Ω ))

= −(E[ln p(Θ,Y ,Y o
Ω )]− E[ln q(Θ)]).

(37)

where ln (p(Y o
Ω )) represents taking the logarithm of p(Y o

Ω ).
The terms E[ln p(Θ,Y ,Y o

Ω )] − E[ln q(Θ)] are the so-called
evidence lower bound (ELBO). The term p(Y o

Ω ) is unrelated
to the optimization problem and can be removed. Thus, the KL
divergence minimization problem is equivalent to the ELBO
maximization problem.

The joint probability distribution of observed data, inferred
data, and all the latent variables is given by (38),

p(Θ,Y ,Y o
Ω )

= p(Y o
Ω|X,E, γy)p(Φ(X)|Φ(U),V )p(Φ(U)|γu)p(V |γv)p(γy)

p(X)p(U)p(E|β)p(β)

=

n∏
j=1

N (Y o
.j |PΩj

(H†X +E).j ,
1

γy
I|Ωj |)

∏n1

q=1 N (V.q|0, 1
γv
IK)N (X.q|0, 1

γx
Imn2

)N (Φ(X).q|Φ(U)V.q,
1
γϵ
Imn2

)

K∏
k=1

N (U.k|0,
1

γu
Imn2

)
∏

(i,j)∈Ω

p(Ei,j |βi,j)p(βi,j |g0, h0)

Γ(γy|e0, f0),
(38)

where N (Y o
.j |(H†X + E).j ,

1
γy
I|Ωj |) represents that the jth

column of Y o
.j follows a Gaussian distribution with mean

(H†X +E).j and covariance 1
γy
I|Ωj |, where Ωj is the set of

observed entries in jth column and |Ωj | denotes the cardinality
of Ωj . In the following part, we show the derivation details
for each updating rule of variational inference.
(I) The approximate posterior distribution of V.q follows a
Gaussian distribution (for all q = 1, ..., n1).
Note that

N (Φ(X).q|(Φ(U)V.q,
1

γϵ
In1)

∝ exp(
−γϵ
2

(Φ(X).q − Φ(U)V.q)
T (Φ(X).q − Φ(U)V.q))

∝ exp(−γϵ

2 (Φ(X)T.qΦ(X).q − 2V T
.q Φ(U)TΦ(X).q + V

T
.q Φ(U)TΦ(U)V.q))

∝ exp(−γϵ

2 KXX(q, q) + γϵV
T
.q KXU (q, :)

T − 1
2V

T
.q γϵKUUV.q))

(39)

where KXU (q, :) represents the qth row in KXU .
Also note that

N (V.q|0,
1

γv
IK) ∝ exp(

−γv
2

(V T
.q V.q)). (40)

Therefore,

p(V.q|−) ∝ N (Φ(X).q|(Φ(U)V.q,
1

γϵ
In1)N (V.q|0,

1

γv
IK)

∝ exp(−γϵ

2 KXX(q, q) + γϵV
T
.q KXU (q, :)

T − 1
2V

T
.q (γϵKUU + γvIK)V.q)

(41)

Then the following derivations are straightforward expansions.
The logarithm of q(V.q) can be expressed as

ln(q(V.q))

= EΘ\V.q
[ln p(Θ,Y ,Y o

Ω )] + const.

= EΘ\V.q
[ln p(Φ(X).q|U ,V , γϵ)p(V.q)] + const.

= EΘ\V.q
[ln N (Φ(X).q|(Φ(U)V.q,

1
γϵ
Imn2

)N (V.q|0, 1
γv
IK)]

+ const.
= EΘ\V.q

[ln exp(−γϵ

2 (Φ(X).q − Φ(U)V.q)
T (Φ(X).q − Φ(U)V.q))

exp(−γv

2 (V T
.q V.q))] + const.

= EΘ\V.q
[ln exp(−γϵ

2 (Φ(X)T.qΦ(X).q − 2V T
.q Φ(U)TΦ(X).q

−V T
.q Φ(U)TΦ(U)V.q))exp(−γv

2 (V T
.q V.q))] + const.

= EΘ\V.q
[ln exp(

−γϵ
2

(KXX(q, q)− 2V T
.q KXU (q, :)

T+

V T
.q KUUV.q))exp(−γv

2 (V T
.q V.q))] + const.

= EΘ\V.q
[ln exp(

−γϵ
2

KXX(q, q) + γϵV
T
.q KXU (q, :)

T

− 1

2
V T
.q (γϵKUU + γvIK)V.q))] + const.

= (−γϵ

2 E[KXX(q, q)] + γϵV
T
.q E[KXU (q, :)]

T − 1
2V

T
.q (γϵE[KUU ]

+ γvIK)V.q)) + const.
(42)

Then V.q follows a Gaussian distribution:

q(V.q) ∼ N (µV.q
,ΣV.q

), (43)

with mean µV.q
and ΣV.q

, where

ΣV.q = [γϵE[KUU ] + γvIK ]−1, (44)

µV.q
= γϵΣV.q

E[KXU (q, :)]
T . (45)

(II) The approximate posterior distribution of U.k follows a
Gaussian distribution (for all k = 1, ...,K) .

q(U.k) ∼ N (µU.k
,ΣU.k

), (46)

The mean µU.k
and the variance ΣU.k

needs to be computed.
From (37), we know that the approximate distributions of all
latent variables q(Θ) are obtained by solving the following
equivalent maximization problem,

q(Θ) = argmin
q(Θ)

KL(q(Θ)||p(Θ,Y |Y o
Ω ))

= argmax
q(Θ)

E[ln p(Θ,Y ,Y o
Ω )]− E[ln q(Θ)].

(47)

Based on the mean-field assumption, we assume that q(Θ) can
be factorized as q(Θ) =

∏N
i=1 q(Θi) where N is the number

of all latent variables. Then the maximization problem with
respect to one latent variable q(Θi) becomes
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q(Θi)

= arg max
q(Θi)

∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω )]d(Θi)

−
∫

q(Θi)ln q(Θi)dΘi

= arg max
q(Θi)

∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω |Θi)p(Θi)]d(Θi)

−
∫

q(Θi)ln q(Θi)dΘi.

= arg max
q(Θi)

∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω |Θi)]d(Θi)

+

∫
q(Θi)lnp(Θi)dΘi −

∫
q(Θi)ln q(Θi)dΘi

= arg max
q(Θi)

∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω |Θi)]d(Θi)

+

∫
q(Θi)ln

p(Θi)

q(Θi)
dΘi

= arg max
q(Θi)

∫
q(Θi)Eq(Θ\Θi)[ln p(Θ,Y ,Y o

Ω |Θi)]d(Θi)

−KL(q(Θi)|p(Θi)).
(48)

The derivations above are straightforward expansions.
When the objective function is for U.k, one can replace
the latent variable Θi in (48) with U.k. We employ the
reparameterization trick [37] to make the objective function
differentiable. The approximate distribution q(U.k) is assumed
to follow a Gaussian distribution N (µU.k

,ΣU.k
), where the

variance ΣU.k
is a diagonal matrix and the diagonal entry

σj
U.k

2 is the same for j = 1, ...mn2. The prior distribution
p(U.k) also follows a Gaussian distribution N (0, 1

γu
Imn2).

Plug in p(U.k) and q(U.k), the negative KL divergence can
be derived in a straightforward way as follows

−KL(q(U.k)|p(U.k))

= −
∫

q(U.k)ln
q(U.k)

p(U.k)
dU.k.

=
mn2

2
ln(γu) +

1

2
ln(|ΣU.k

|) + mn2

2
− 1

2
γuµ

T
U.k
µU.k

− 1

2
γutrace(ΣU.k

)

=
mn2

2
ln(γu)−

1

2
γuµ

T
U.k
µU.k

+
1

2

mn2∑
j=1

ln(σj
U.k

2) +
mn2

2

− 1

2
γu

mn2∑
j=1

σj
U.k

2

=
mn2

2
ln(γu)−

1

2
γuµ

T
U.k
µU.k

+
1

2
mn2aU.k

+
mn2

2

− 1

2
mn2γuexp(aU.k

),

(49)

where aU.k
is the logarithm of the variance and aU.k

=
ln(σj

U.k

2) for all j = 1, 2, ...mn2. Optimization over aU.k

prevents the negative solutions of the variance.

q(U.k)
(a)
= arg max

q(U.k)

∫
q(U.k)Eq(Θ\U.k)[ln p(Θ,Y ,Y o

Ω )]d(U.k)

−
∫
q(U.k)ln q(U.k)dU.k.

(b)
= arg max

q(U.k)

∫
q(U.k)Eq(Θ\U.k)[ln p(Θ,Y ,Y o

Ω |U.k)]d(U.k)

−KL(q(U.k)|p(U.k)).

(c)
≈ arg max

q(U.k)

1
L

∑L
l Eq(Θ\U.k)[ln p(Θ,Y ,Y o

Ω |U
(l)
.k )]

−KL(q(U.k)|p(U.k)).

(d)
= arg max

q(U.k)

1
L

∑L
l Eq(Θ\U.k)[ln p(Θ,Y ,Y o

Ω |U
(l)
.k )]− 1

2γuµ
T
U.k
µU.k

+ 1
2mn2aU.k

− 1
2mn2γuexp(aU.k

) + const.
(e)
= arg max

q(U.k)
− 1

L

∑L
l (

γϵ

2 E[||Φ(X)− Φ(U (l))V ||2F ])

− 1
2γuµ

T
U.k
µU.k

+ 1
2mn2aU.k

− 1
2mn2γuexp(aU.k

) + const.

= arg max
q(U.k)

− 1
L

∑L
l (

γϵ

2 E[trace(Φ(X)TΦ(X) + 2Φ(X)TΦ(U (l))V

+ V TΦ(U (l))TΦ(U (l))V )])− 1
2γuµ

T
U.k
µU.k

+ 1
2mn2aU.k

− 1

2
mn2γuexp(aU.k

) + const.

= arg max
q(U.k)

− 1
L

∑L
l (

γϵ

2 E[trace(KXX + 2K(l)
XUV + V TK(l)

UUV )]

− 1
2γuµ

T
U.k
µU.k

+ 1
2mn2aU.k

− 1
2mn2γuexp(aU.k

) + const.
(f)
= arg max

q(U.k)
−(γϵ

2 E[trace(2( 1
L

∑L
l K(l)

XU )V + V T ( 1
L

∑L
l K(l)

UU )V )]

− 1
2γuµ

T
U.k
µU.k

+ 1
2mn2aU.k

− 1
2mn2γuexp(aU.k

) + const.
(g)
≈ arg max

q(U.k)
−(γϵ

2 trace(2E[KXU ]E[V ] + E[V ]TE[KUU ]E[V ])

− 1
2γuµ

T
U.k
µU.k

+ 1
2mn2aU.k

− 1
2mn2γuexp(aU.k

) + const.

= arg max
q(U.k)

ℓ1 (µU.k
, aU.k

).

(50)

One can replace the latent variable Θi in (48) with U.k to
get steps (a) and (b) in (50). Step (c) follows the Monte-
Carlo approximation. The reparameterization trick [37] is
employed here to make the Monte-Carlo estimation differ-
entiable with respect to U.k. The reparametrization of U.k

is U.k = µU.k
+ exp(0.5aU.k

)ϵ, ϵ ∼ N (0, Imn2), where
exp(0.5aU.k

) is the standard deviation. ϵ is the auxiliary noise
vector. Step (d) follows the definition of KL divergence in
(49). Steps (e)-(f) follow from the straightforward expansion,
and we use kernels to replace the inner product of mapping
functions. Step (f) holds because the Kernel function KXX

is not related to the q(U.k) and is removed from the objective
function. The definition of the other two Kernel matrices is
K(l)

XU (q, k) = exp(− 1
2c2

||X.q − U (l)
.k ||22) = exp(− 1

2c2
||X.q −

µU.k
−exp(0.5aU.k

)ϵ(l)||22) and K(l)
UU (i, k) = exp(− 1

2c3
||U.i−

µU.k
− exp(0.5aU.k

)ϵ(l)||22) ϵ(l) ∼ N (0, Imn2). At step (g),
E[KXU ] and E[KUU ] are approximated by sampling X and
U to compute the kernel L times and then taking the average.

The gradient of the objective function over µU.k
is
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∇µU.k
ℓ1 = γϵ

L

∑L
l [

1
c2
(−X(l)Qk

1 + (1T
n1
Qk

1)U
(l)
.k )

+
2

c3
(−U (l)Qk

2 + 1T
KQ

k
2U

(l)
.k )]− γuµU.k

(51)

where 1n1 ∈ Rn1 ,1K ∈ RK are all-one vectors. Qk
1 =

(−E[Vk.]
T ⊙k1XU ), Q

k
2 = ( 12E[V ]E[Vk.]

T ⊙kUU ), k1XU and
kUU are the kth column in K(l)

XU and K(l)
UU , respectively. Com-

puting the kernels K(l)
XU and K(l)

UU at each sub-iteration of the
gradient ascent is computationally expensive. We approximate
K(l)

XU and K(l)
UU by E[KXU ] and E[KUU ], respectively.

As discussed in Ref. [32], the term XQk
1 in (51) is nearly a

constant and can be neglected when computing Hessian. The
approximate Hessian of the objective function over µU.k

is

∇2
µU.k

ℓ1 = [γϵ(
1
c2
(1T

n1
Qk

1)− 2
c3
(qk2 − 1T

KQ
k
2))− γu]Imn2

, (52)

where qk2 is the kth entry in vector Qk
2 .

We employ the relaxed Newton method [32] to achieve a
faster convergence rate. The step size of the relaxed Newton
method is (∇2

µU.k
ℓ1)

−1∇µU.k
ℓ1. Compared with the standard

Newton method, the relaxed Newton method has a relaxed
hyper-parameter before the step size when computing the
gradient.

The steepest gradient ascent is employed to update aU.k
.

The gradient of the objective function over aU.k
is

∇aU.k
ℓ

= 0.5exp(0.5aU.k
)ϵT γϵ

L

∑L
l [

1
c2
(−X(l)Qk

1 + (1T
nQ

k
1)U

(l)
.k )

+ 2
c3
(−U (l)Qk

2 + 1T
KQ

k
2U

(l)
.k )] + 1

2mn2(1− γuexp(aU.k
)).

(53)

(III) The approximate posterior distribution of X.q follows a
Gaussian distribution (for all q = 1, ..., n1).

q(X.q) ∼ N (µX.q ,ΣX.q ), (54)

where the variance ΣX.q is a diagonal matrix and all diagonal
entries σj

X.q

2 are the same. The prior distribution p(X.q)

satisfies a Gaussian distribution N (0, 1
γx
Imn2

).
Plug in the p(X.q) and q(X.q), the negative KL divergence

can be straightforwardly derived as

−KL(q(X.q)|p(X.q))

= −
∫

q(X.q)ln
q(X.q)

p(X.q)
dX.q.

=
mn2

2
ln(γx) +

1

2
ln(|ΣX.q |) +

mn2

2
− 1

2
γxµ

T
X.q
µX.q

− 1

2
γxtrace(ΣX.q )

=
mn2

2
ln(γx)−

1

2
γxµ

T
X.q
µX.q

+
1

2

mn2∑
j=1

ln(σj
X.q

2) +
mn2

2

− 1

2
γx

mn2∑
j=1

σj
X.q

2

=
mn2

2
ln(γx)−

1

2
γxµ

T
X.q
µX.q +

1

2
mn2bX.q +

mn2

2

− 1

2
mn2γxexp(bX.q

)

(55)

where bX.q
is the logarithm of the variance and bX.q

=

ln(σj
X.q

2) for all j = 1, 2, ...mn2.

q(X.q)
(h)
= arg max

q(X.q)

∫
q(X.q)Eq(Θ\X.q)[ln p(Θ,Y ,Y o

Ω )]dX.q

−
∫
q(X.q)ln q(X.q)dX.q.

(i)
= arg max

q(X.q)

∫
q(X.q)Eq(Θ\X.q))[ln p(Θ,Y ,Y o

Ω |X.q)]dX.q

−KL(q(X.q)|p(X.q)).

(j)
= arg max

q(X.q)

1
L

∑L
l Eq(Θ\X.q))[ln p(Θ,Y ,Y o

Ω |X
(l)
.q )]

−KL(q(X.q)|p(X.q)).

(k)
= arg max

q(X.q)

1
L

∑L
l Eq(Θ\X.q))[ln p(Θ,Y ,Y o

Ω |X
(l)
.q )]

− 1
2γxµ

T
X.q
µX.q

+ 1
2mn2bX.q

− 1
2mn2γxexp(bX.q

) + const.
(l)
= arg max

q(X.q)
− 1

L

∑L
l (E[

γϵ

2 ||Φ(X
(l)).q − Φ(U)V.q||22]

+
E[γy ]
2 E[||Y o

.j − PΩj
(H†X(l) +E).j ||22])− 1

2γxµ
T
X.q
µX.q

+ 1
2mn2bX.q

− 1
2mn2γxexp(bX.q ) + const.

(m)
= arg max

q(X.q)
− 1

L

∑L
l (

γϵ

2 E[||Φ(X
(l)).q − Φ(U)V.q||22]

+ E[γy ]
2 E[||H(Y o

Ω −E).q − PHΩqX
(l)
.q ||22])− 1

2γxµ
T
X.q
µX.q +

1
2mn2bX.q

− 1
2mn2γxexp(bX.q

) + const.

= arg max
q(X.q)

− 1
L

∑L
l (

γϵ

2 E[trace(Φ(X(l))T.qΦ(X
(l)).q − 2Φ(X(l))T.qΦ(U)V.q

+V T
.q Φ(U)TΦ(U)V.q)] +

E[γy ]
2 E[||H(Y o

Ω −E).q − PHΩq
X

(l)
.q ||22])− 1

2γxµ
T
X.q
µX.q

+ 1
2mn2bX.q

− 1
2mn2γxexp(bX.q

) + const.
(n)
= arg max

q(X.q)
−(γϵ

2 E[trace( 1
L

∑L
l Kq(l)

xx − 2( 1
L

∑L
l Kq(l)

XU )V.q + V
T
.q KUUV.q)]

+
E[γy ]
2 E[||H(Y o

Ω −E).q − PHΩqX
(l)
.q ||22])− 1

2γxµ
T
X.q
µX.q +

1
2mn2bX.q

− 1
2mn2γxexp(bX.q ) + const.

(o)
≈ arg max

q(X.q)
−γϵ

2 trace(−2E[Kq
XU ]E[V.q])− E[γy ]

2
1
L

∑L
l ||H(Y o

Ω − E[E]).q − PHΩqX
(l)
.q ||22

− 1
2γxµ

T
X.q
µX.q +

1
2mn2bX.q − 1

2mn2γxexp(bX.q ) + const.

= arg max
q(X.q)

ℓ2 (µX.q
, bX.q

),

(56)

One can replace the latent variable Θi in (48) with X.q

to get steps (h) and (i) in (56). Step (j) follows the Monte-
Carlo approximation. The reparameterization trick [37] is also
employed here to make the Monte-Carlo estimation differ-
entiable with respect to X.q . The reparametrization of X.q

is X.q = µX.q + exp(0.5bX.q )ϵ, ϵ ∼ N (0, Imn2), where
exp(0.5bX.q ) is the standard deviation. ϵ is the auxiliary
noise vector. Step (k) follows the definition of KL divergence
in (55). Steps (l) to (n) follow from the straightforward
expansion and we use kernels to replace the inner product of
mapping functions. At step (l), PΩ(.) is the sampling operator
with (PΩ(Y ))ij = Yi,j if (i, j) ∈ Ω and 0 otherwise. PΩj

denotes the jth column in PΩ. At step (d), HΩ denotes the
index set of observed entries in the constructed Hankel matrix.
PHΩ(.) is the sampling operator with (PHΩ(X))ij =Xi,j if
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(i, j) ∈ HΩ and 0 otherwise. PHΩq
denotes the qth column in

PHΩ. At step (n), Kq
xx is a scaler and denotes the qth diagonal

element in KXX . Kq
XU ∈ R1×K denotes the qth row in KXU .

At step (o), Kq
xx is removed because it is a scaler. E[KXU ]

is approximated by sampling X and U to compute the kernel
L times and then taking the average.

The gradient of the objective function over µX is

∇µX.q
ℓ2 = 1

L

∑L
l [

1
c2
γϵ(−U (l)Qq

3 +X
(l)
.q 1T

KQ
q
3)

+γy(H(Y o
Ω −E).q − PHΩqX

(l)
.q )⊙ PHΩq )]− γxµX.q ,

(57)

where Qq
3 = (−E[V.q] ⊙ kqTXU ), k

q
XU ∈ R1×K denotes the

qth row in K(l)
XU . We approximate K(l)

XU by E[KXU ].
The approximate Hessian of objective function over µX.q

is

∇2
µX.q

ℓ2 = (
1

c2
γϵ(1

T
KQ

q
3)− γx)Imn2

− γyDiag(PHΩq
),

(58)

where the diagonal matrix Diag(PHΩq ) = (PHΩq1
T
mn2

) ⊙
Imn2 , where 1mn2 ∈ Rmn2 and ⊙ represents the element-wise
product. The diagonal entries of Diag(PHΩq

) are constructed
from the vector PHΩq

. The relaxed Newton method is also
employed to update µx.q

The step size of the relaxed Newton
method is (∇2

µX.q
ℓ2)

−1∇µX.q
ℓ2.

The steepest gradient ascent is employed to update bX.q
.

The gradient of the objective function ℓ2 over bX.q
is

∇bX.q
ℓ2

= 0.5exp(0.5bX.q
)ϵT 1

L

∑L
l [

1
c2
γϵ(−U (l)Qq

3 +X
(l)
.q 1T

KQ
q
3)

+γyPHΩq
⊙ (H(Y o

Ω −E).q − PHΩq
X

(l)
.q )] + 1

2mn2(1− γxexp(bX.q
)).
(59)

(IV) The approximate probabilistic distribution of Ei,j follows
a Gaussian distribution (for all (i, j) ∈ Ω).
Note that

p(Ei,j |−)

∝ N (Yi,j |(H†X)i,j + Ei,j ,
1

γy
)N (Ei,j |0,

1

βi,j
)

∝ (γy)
1
2 exp(−γy

2 (Ei,j − (Yi,j − (H†X)i,j))
2)exp(−βi,j

2 E2
i,j)

∝ exp(−(γy+βi,j)
2 E2

i,j + γyEi,j(Yi,j − (H†X)i,j)− γy

2 (Yi,j − (H†X)i,j)
2).

(60)

Then the logarithm of q(Ei,j) is

ln(q(Ei,j))

= EΘ\Ei,j
[lnp(Y ,Θ)] + const.

= EΘ\Ei,j
[ln p(Y |U ,V ,X, γy)p(Ei,j)] + const.

= EΘ\Ei,j
[ln N (Yi,j |(H†X)i,j + Ei,j ,

1
γy
)N (Ei,j |0, 1

βi,j
)] + const.

= E[
−(γy + βi,j)

2
E2

i,j + γyEi,j(Yi,j − (H†X)i,j)

− γy
2
(Yi,j − (H†X)i,j)

2] + const.

=
−(E[γy ]+E[βi,j ])

2 E2
i,j + E[γy]Ei,j(Yi,j − E[(H†X)i,j ]

− E[
γy
2
(Yi,j − (H†X)i,j)

2))] + const.

(61)

Then q(Ei,j) follows a Gaussian distribution with mean µEi,j

and variance ΣEi,j , i.e.,

q(Ei,j) ∼ N (µEi,j
,ΣEi,j

), (62)

where

µEi,j
= E[γy]ΣEi,j

(Y o
i,j − (H†E[X])i,j), (63)

ΣEi,j
=

1

E[γy] + E[βi,j ]
. (64)

(V) The approximate distribution βi,j follows a Gamma dis-
tribution (for all (i, j) ∈ Ω).
Because

Γ(βi,j |g0, h0) =
hg0
0 (βi,j)

g0−1e−h0βi,j

Γ(g0)

∝ (βi,j)
g0−1e−h0βi,j ,

(65)

Also note that

N (Ei,j |0,
1

βi,j
) ∝ (βi,j)

1
2 exp(

−βi,j

2
E2

i,j). (66)

From (65) and (65), we can get

p(βi,j |−) ∝ N (Ei,j |0,
1

βi,j
)Γ(βi,j |g0, h0)

∝ (βi,j)
1
2+g0−1exp(−βi,j(

1

2
E2

i,j + h0)).

(67)

Thus

ln(q(βi,j))

= EΘ\βi,j
[ln p(Θ,Y ,Y o

Ω )] + const.

= EΘ\βi,j
[ln p(Ei,j |βi,j)p(βi,j)] + const.

= EΘ\βi,j
[ln N (Ei,j |0,

1

βi,j
)Γ(βi,j |g0, h0)] + const.

= [(
1

2
+ g0 − 1)ln(βi,j)− βi,j(

1

2
E[E2

i,j ] + h0)] + const..

(68)

where E[E2
i,j ] = E[Ei,j ]

2 +ΣEi,j
.

This reveals that the βi,j is from a Gamma distribution.

q(βi,j) ∼ Γ(
1

2
+ g0,

1

2
E[E2

i,j ] + h0), (69)

and its mean is

E[βi,j ] =
1
2 + g0

1
2E[E

2
i,j ] + h0

, (70)

where E[E2
i,j ] = E[Ei,j ]

2 +ΣEi,j .
(VI) The approximate posterior distribution of γy follows a
Gamma distribution.
Note that

Γ(γy|e0, f0) =
fe0
0 (γy)

e0−1e−f0γy

Γ(e0)
∝ (γy)

e0−1e−f0γy , (71)

Also
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n∏
j=1

N (Y o
.j |PΩj

(H†X +E).j ,
1

γy
I|Ωj |)

∝ ∏n
j=1

1

(2π)1/2
√

|γy|−|Ωj |
exp(−γy

2 ||Y o
.j − PΩj

(H†X +E).j ||22)

∝
n∏

j=1

(γy)
|Ωj |

2 exp(
−γy
2

||Y o
.j − PΩj (H†X +E).j ||22)

∝ (γy)
|Ω|
2 exp(

−γy
2

||Y o
Ω − PΩ(H†X +E)||2F ).

(72)

Combine (71) and (72), we can obtain

p(γy|−) ∝
∏n

j=1 N (Y o
.j |PΩj

(H†X +E).j ,
1
γy
I|Ωj |)Γ(γy|e0, f0)

∝ (γy)
|Ω|
2 exp(

−γy
2

||Y o
Ω − PΩ(H†X +E)||2F ).

(73)

Then the following derivations are straightforward expansions.
The ln(q(γy)) can be derived as

ln(q(γy))
= EΘ\γy

[ln p(Θ,Y ,Y o
Ω )] + const.

= EΘ\γy
[lnp(Y o

Ω|X,E, γy)P (γy)] + const.

= EΘ\γy
[ln

∏n
j=1 N (Y o

.j |(H†X +E).j ,
1
γy
)Γ(γy|e0, f0)] + const.

= EΘ\γy
[ln(γy)

|Ω|
2 exp(−γy

2

∑
(i,j)∈Ω(Y

o
i,j − Ei,j − 1

κj

∑
(u,v)∈Ψi,j

Xu,v)
2)]

+ ln((γy)e0−1e−f0γy ) + const.

= EΘ\γy
[( |Ω|

2 + e0 − 1)ln(γy)− f0γy + (
−γy

2

∑
(i,j)∈Ωi

(Y o
i,j − Ei,j

− 1
κj

∑
(u,v)∈Ψi,j

Xu,v)
2)] + const.

= [( |Ω|
2 + e0 − 1)ln(γy) + (

−γy

2 E[||Y o
Ω − PΩ(H†X +E)||2F ])

+ const.

= [( |Ω|
2 + e0 − 1)ln(γy) + (

−γy

2

∑
(i,j)∈Ωi

E[Y o
i,j − Ei,j

− 1
κj

∑
(u,v)∈Ψi,j

Xu,v)
2] + const.,

(74)

with

E[(Y o
i,j − Ei,j − 1

κj

∑
(u,v)∈Ψi,j

Xu,v)
2]

= E[(Y o
i,j − Ei,j)

2 − 2(Yi,j − Ei,j)
1
κj

∑
(u,v)∈Ψi,j

Xu,v + ( 1
κj

∑
(u,v)∈Ψi,j

Xu,v)
2]

≈ (Y o
i,j − E[Ei,j ])

2 +ΣEi,j
− 2(Y o

i,j − E[Ei,j ])E[Xu,v] + E[X2
u,v]

= (Y o
i,j − E[Ei,j ])

2 − 2(Y o
i,j − E[Ei,j ])E[Xu,v] + E[Xu,v]

2 + Var(Xu,v)

= (Y o
i,j − E[Ei,j ]− E[Xu,v])

2 +ΣEi,j
+ Var(Xu,v)

≈ (Y o
i,j − E[Ei,j ]− 1

κj

∑
(u,v)∈Ψi,j

E[Xu,v])
2 +ΣEi,j

+ 1
κj

∑
(u,v)∈Ψi,j

Var(Xu,v).
(75)

where Var(Xu,v) denotes the variance of Xu,v .
This reveals that the γy follows a Gamma distribution.

q(γy) ∼ Γ( |Ω|
2 + e0,

1
2E[||Y

o
Ω − PΩ(H†X +E)||2F ] + f0),

(76)
and its mean is

E[γy] =
|Ω|
2 + e0

1
2E[||Y

o
Ω − PΩ(H†X +E)||2F ] + f0

. (77)

D. Data Recovery and Uncertainty Index

We define a set ψ = {X, γy} to represent the related latent
variables for the estimation of Yi,j . The predictive mean is
derived as follows:

E[Yi,j ] =

∫
p(Yi,j |Y o

Ω )Yi,jdYi,j

=

∫
(

∫
p(Yi,j |ψ)p(ψ|Y o

Ω )dψ)Yi,jdYi,j

=

∫
(

∫
p(Yi,j |ψ)Yi,jdYi,j)p(ψ|Y o

Ω )dψ

=

∫
Ep(Yi,j |ψ)[Yi,j ]p(ψ|Y o

Ω )dψ

=

∫
(H†X)p(ψ|Y o

Ω )dψ

≈ 1

J

J∑
l=1

(H†X(l))i,j X(l) ∼ q(X|Y o
Ω ).

(78)

where Ep(Yi,j |ψ)[Yi,j ] denotes the expectation of Yi,j over the
probability p(Yi,j |ψ). Each X(l) is sampled J times from the
learned posterior distributions. The Monte Carlo integration is
employed in the last step in equation (78) to approximate the
exact integration.

The E[Y 2
i,j ] is computed as follows:

Ep(Yi,j |Y o
Ω )[Y

2
i,j ]

=

∫
p(Yi,j |Y o

Ω )Y
2
i,jdYi,j

=

∫
(

∫
p(Yi,j |ψ)p(ψ|Y o

Ω )dψ)Y
2
i,jdYi,j

=

∫
(

∫
p(Yi,j |ψ)Y 2

i,jdYi,j)p(ψ|Y o
Ω )dψ

=

∫
(Ep(Yi,j |ψ)[Y

2
i,j ])p(ψ|Y o

Ω )dψ

=

∫
(Varp(Yi,j |ψ)[Yi,j ] + E2

p(Yi,j |ψ)[Yi,j ]))p(ψ|Y o
Ω )dψ

=

∫
(
1

γy
+ (H†X)2i,j)p(ψ|Y o

Ω )dψ

≈ 1

J

J∑
l=1

1

γ
(l)
y

+
1

J

J∑
l=1

(H†X(l))2i,j ,

(79)

where each γ
(l)
y is sampled from the learned posterior dis-

tribution q(γy|Y o
Ω ). The predictive variance is computed by

combining (78) and (79), i.e.,

Var[Yi,j ] = E[Y 2
i,j ]− E[Yi,j ]

2

≈ 1

J

J∑
l=1

1

γ
(l)
y

+
1

J

J∑
l=1

(H†X(l))2i,j − (
1

J

J∑
l=1

(H†X(l))i,j)
2.

(80)
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(a) (b) (c)

(d) (e) (f)

Fig. 10: The recovery performance on 16.7% M3 missing data. (a) the observed data, (b) the estimated data by the proposed Ba-NSDR
method, (c) the estimated data by the BHMC method, (d) the estimated data by the BHMC-S method, (e) the estimated data by the AM-FIHT
method, (f) the estimated data by the SDR-K method.

E. Parameter Settings of Baseline Methods for Synthetic Data
We listed some key parameters of baseline methods for

synthetic data. The Hankel parameters n2 = 30 if the missing
data mode is M3 and n2 = 20 for other modes if not otherwise
stated. We tuned these parameters to achieve good results.
Some of them may not be the optimal parameters. The key
parameters are as follows:

• KMC: the rank is 100.
• AM-FIHT: the rank is 6.
• BHMC: e0 = 10−6, f0 = 10−6 the rank is 6;
• BHMC-S: e0 = 10−6, f0 = 10−3, the window length is

60, the step size is 1, the rank is 8;
• SDR-K: the window length is 20 for M3 mode and 10

for other cases, n2 = 8, the rank is 5;
• SAP: the rank is 6;
• BRHMC: e0 = 10−6, f0 = 10−6, g0 = 10−6, h0 =

10−6, the rank is 10;
• BRHMC-S: e0 = 10−6, f0 = 10−3, g0 = 0.2, h0 =

10−6, the window length is 50, the rank is 10.

F. Computational Complexity
The computational complexities for computing KXU and

KUU are O(mn2n1K) and O(mn2K
2), respectively. The

most expensive parts in each iteration are computing V ,
U , and X . The computational complexity for updating V
is O(mn2n1K + mn2K

2 + K3 + K2n1), and because n1

is usually much larger than K, the complexity could be
reduced to O(mn2n1K). The computational complexity for
updating U is O(Lmn2n1Ktmax

2 +Lmn2K
2tmax

2 ). The com-
putational complexity for updating X is O(Lmn2n1Ktmax

4 +
Lmn2n1t

max
4 ). Because tmax

2 and tmax
4 are set as the same

value in this paper, we use tmax to represent the maximum
iterations tmax

2 and tmax
4 of inner loops for brevity. The total

computational complexity is O(Lmn2n1Ktmax). One can see
that the computational complexity scales at most linearly
regarding the size of the Hankel matrix.

G. Additional Experiments

1) Additional synthetic dataset: In this section, we eval-
uated the data recovery performance on synthetic data with
phase added to the sinusoids. Each entry Yi,j in Y is generated
by

Yi,j =

r∑
k=1

bk,je
−aitj sin(2πfk,jtj + αk,j)

i = 1, ...,m, j = 1, ..., n,

(81)

The problem setup is the same with (32) except that an extra
phase is added. The phase term ϕk,j is also time-varying and
is randomly selected from ( π

12 ,
π
6 ). Fig. 11 shows the recovery

results. One can see from Fig. 11 that the recovery results of
the Ba-NSDR method are comparable to Fig. 6. This verifies
that our algorithm is not sensitive to the extra phase.

2) Extra recorded PMU dataset: We provide an additional
case study on another recorded event, which is a transformer
failure in the central New York power system. The event is
shown in Fig. 12. Some parameters are set as follows: n2 =
80, c2 = c3 = 60, f0 = 10−4.

• Case 3: 16.7% data are removed following Mode M3 on
this event. The length of M3 missing data is 50 consec-
utive time instants, which correspond to 1.67 seconds.

Fig. 10 compares the recovery performance of our proposed
Ba-NSDR method with BHMC, BHMC-S, AM-FIHT, SDR-
K methods on Case 3. Table XI reports the NEE over the
whole ten-second window, the NEE of a window between 3-7
seconds where missing data occur, denoted by NEE3−7, and
the computational time of these methods. Ba-NSDR achieves
a great balance of recovery accuracy and computational cost.
In Fig. 10 (d), BHMC-S can also recover the disturbances
with slightly worse recovery performance than our method.
However, the computational cost of BHMC-S is much higher
than the proposed method. In Table XI, we can see that
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(a) M1 (b) M2 (c) M3

(d) M1 B2 (e) M2 B1 (f) M3 B1

Fig. 11: The recovery performance of the Ba-NSDR method on synthetic sinusoids with a phase. (a)-(c) show the missing data recovery
results with three missing modes. (d)-(f) show the recovery results with both missing and bad data.

Fig. 12: The measurements of voltage magnitude

the computational time of BHMC-S is 50 times as large as
required by our algorithm.

Table XI: The recovery performance on 16.7% M3 mode on the
second event

method Ba-NSDR BHMC BHMC-S AM-FIHT SDR-K
NEE 8.0 ×10−4 7.7 ×10−3 9.6 ×10−4 3.2 ×10−3 2.0 ×10−3

NEE3−7 1.3 ×10−3 1.2 ×10−2 1.5 ×10−3 5.0 ×10−3 3.2 ×10−3

Time(sec.) 60.3 25.2 3036.1 14.7 2.1


