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Abstract—This paper studies the robust matrix completion
(RMC) problem with the objective to recover a low-rank matrix
from partial observations that may contain significant errors.
If all the observations in one column are erroneous, existing
RMC methods can locate the corrupted column at best but
cannot recover the actual data in that column. Low-rank Hankel
matrices characterize the additional correlations among columns
besides the low-rankness and exist in power system monitoring,
magnetic resonance imaging (MRI) imaging, and array signal
processing. Exploiting the low-rank Hankel property, this paper
develops an alternating-projection-based fast algorithm to solve
the nonconvex RMC problem. The algorithm converges to the
ground-truth low-rank matrix with a linear rate even when all the
measurements in a constant fraction of columns are corrupted.
The required number of observations is significantly less than the
existing bounds for the conventional RMC. Numerical results are
reported to evaluate the proposed algorithm.

Index Terms—matrix completion, low-rank Hankel matrix,
matrix decomposition, non-convex method

I. INTRODUCTION

Robust matrix completion (RMC) [5] aims to recover a low-
rank matrix X∗ in Cnc×n (nc ≤ n) from partial observations
of measurements M = X∗ + S∗ , where the sparse matrix
S∗ in Cnc×n represents arbitrary errors. Due to the wide
existence of low-rank matrices, RMC finds applications in
areas like video surveillance [28], face recognition [2], MRI
image processing [26], network traffic analysis [22], and power
systems [10]. For instance, each row of X∗ represents the
measurements from one phasor measurement unit (PMU) in
power systems, and each column corresponds to the time-
synchronized measurements from multiple PMUs [11]. S∗

represents the bad measurements.
Let Ω̂ ⊆ {1, · · · , nc} × {1, · · · , n} contain the indices

of the observed entries. If X∗ is at most rank r and S∗

contains at most s nonzero entries, RMC can be formulated
as a nonconvex optimization problem,

min
X,S∈Cnc×n

∑
(i,j)∈Ω̂

|Mi,j −Xi,j − Si,j |2

s.t. rank(X) ≤ r and ‖S‖0 ≤ s,
(1)

where ‖S‖0 measures the number of nonzero entries in S. If
all the entries are observed, i.e., Ω̂ contains all the indices, (1)
reduces to the robust principal component analysis (RPCA)1
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1Preliminary results of the paper about RPCA will appear in IEEE Interna-
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problem, which decomposes a low-rank matrix and a sparse
matrix from their sum. If S∗ is a zero matrix, (1) reduces to
the low-rank matrix completion problem.

One line of research is to relax the nonconvex rank and
`0-norm terms in (1) into the corresponding approximated
convex nuclear norm and `1-norm. Under mild assumptions,
X∗ and S∗ are indeed the solution to the convex relaxation
(see e.g., [5], [18] for RMC and [2], [7], [14] for RPCA).
Since the convex relaxation is still time-consuming to solve,
fast algorithms based on alternating minimization or gradient
descent are developed recently to solve the nonconvex problem
directly, for example [12], [19] for RMC and [6], [23], [32] for
RPCA. These approaches are more computationally efficient
than the convex alternatives.

If the fraction of nonzeros in each column and row of S∗

is at most Θ( 1
r ), then both the convex method in [5] and the

nonconvex method in [9] are proven to be able to recover
X∗ successfully2. If all the observations in a column are
corrupted, however, with the prior assumption that the matrix
is low-rank, one can locate the corrupted column at best but
cannot recover the actual values in either RPCA [29] or RMC
[7]. Since every column is a data point in the r-dimensional
column subspace, even if the column subspace is correctly
identified, at least r linearly independent equations, i.e., r
entries of each column, are needed to determine the exact
values of that column.

In many applications, the low-rank matrix has the additional
low-rank Hankel property. For instance, if X∗ contains the
time series of nc output channels in a dynamical system, then
the Hankel matrix of X∗ is approximately low-rank, provided
that the dynamical system can be approximated by a reduced-
order linear system. As demonstrated in [33], the Hankel
matrix of the spatial-temporal blocks of PMU data in power
systems is low-rank. In array signal processing, the Hankel
matrix of a spectrally sparse signal is low-rank [1], [8], [30],
and the rank depends on the number of sinusoidal components.
The low-rank Hankel property also holds for a class of finite
rate of innovation (FRI) signals, which are motivated by MRI
imaging [13], [16], [24], [25], [31].

The low-rank Hankel property has been exploited for data
recovery and error correction. Refs. [1], [8], [33] studied the
low-rank Hankel matrix completion problem from missing
data and proved analytically that the required number of
measurements by their respective approaches are significantly

2f(n) = O(g(n)) means that if for some constant C > 0, f(n) ≤ Cg(n)
holds when n is sufficiently large. f(n) = Θ(g(n)) means that for some
constants C1 > 0 and C2 > 0, C1g(n) ≤ f(n) ≤ C2g(n) holds when n
is sufficiently large.



smaller than that needed to recover a general low-rank matrix.
Error correction by exploiting the low-rank Hankel structure
has been exploited in RPCA [17] and RMC [8]. Ref. [8] pro-
vides the analytical guarantee of low-rank Hankel matrix re-
covery from randomly located data losses and corruptions. No
analytical guarantee is provided for fully corrupted channels in
[8]. Moreover, the recovery approach in [8] requires solving
Semidefinite Programming (SDP), which is computationally
expensive in large datasets.

This paper solves the RMC problem of a low-rank Hankel
matrix. Extending from the methods in [9], [23], this paper
develops an alternation-projection-based algorithm, and the
iterates are proved to converge to the ground-truth data ma-
trix linearly with a complexity of O

(
r2ncn log(n) log(1/ε)

)
,

where ε is the recovery error of X∗. The computational
cost is significantly smaller than the approach in [8]. The
required number of observations for the successful recovery
is O(µ2r3 log2(n) log(1/ε)), where µ is the incoherence of
the corresponding Hankel matrix. This number is significantly
smaller than the existing bound of O(rn log2(n)) for recov-
ering a general rank-r matrix [27].

Our data model follows the multi-channel Hankel matrix
studied in [33], which models multiple signals with common
sinusoidal components. The multi-channel Hankel matrix is
different from the single-channel Hankel matrix studied in [1],
[8], where the recovery of only one spectrally sparse signal is
considered. Our work provides the first algorithmic develop-
ment with the theoretical performance guarantee for multi-
channel low-rank Hankel matrix recovery from corrupted
measurements. Our method can tolerate up to Θ( 1

r ) fraction
of corruptions per row and does not have any constraint on
the number of corruptions per column. In fact, our method can
recover X∗ accurately even if S∗ contains a constant fraction
of fully corrupted columns. Full corrupted columns happen
in many applications. For example, simultaneous bad data
across all channels can happen due to device malfunctions,
communication errors, or cyber data attacks in power systems.

The rest of the paper is organized as follows. Sections II and
III introduce the problem formulation and discuss the related
work. Sections IV and V describe the proposed algorithm and
the theoretical performance guarantee. Section VI shows the
numerical results. Section VII concludes the paper.

Notation: Vectors are bold lowercase, matrices are bold
uppercase, and scalars are in normal font. For instant, Z is a
matrix, and z is vector. Zi∗ denotes the i-th row of Z, and Zij
denotes the (i, j)-th entry of Z. I and ei denote the identity
matrix and the i-th standard basis vector. ZT and ZH denote
the transpose and conjugate transpose of Z, so do zT and zH .
The inner product between two vectors is 〈z1, z2〉 = zH2 z1,
and corresponding `2 norm is ‖z‖2 = 〈z, z〉1/2. For matrices,
the inner product is defined as 〈Z1,Z2〉 = Tr(ZH

2 Z1). ‖Z‖F
stands for the Frobenius norm with ‖Z‖F = 〈Z,Z〉1/2. The
spectral norm of matrix Z is denoted by ‖Z‖2. The maximum
entry (in absolute value) of Z is denoted as ‖Z‖∞. In addition,
we use σi(Z1) to denote the i-th largest singular value of Z1,
and λi(Z2) to denote the i-th largest eigenvalue (in absolute
value) of a symmetric matrix Z2. Linear operators on matrix
spaces will be denoted by calligraphic letters. In particular, I

is the identity operator.

II. PROBLEM FORMULATION

Let X∗ = [x1,x2, · · · ,xn] ∈ Cnc×n denote the actual
data. We define a linear operator Hn1

: Cnc×n → Cncn1×n2

that maps a matrix into its corresponding Hankel matrix, i.e.,

Hn1(X
∗) =


x1 x2 · · · xn2

x2 x3 · · · xn2+1

...
...

. . .
...

xn1 xn1+1 · · · xn

 ∈ Cncn1×n2 (2)

with n1 + n2 = n + 1. We say X∗ satisfies the low-rank
Hankel property if rank(Hn1

(X∗)) ≤ r for some r � n and
some integer n1 in [r, n + 1 − r]. Throughout this paper, we
assume n1 > 1 is known and fixed and use HX∗ instead of
Hn1(X∗) for simplicity.

Let S∗ denote the additive errors in the measurements. We
assume at most s measurements are corrupted, i.e., ‖S∗‖0 ≤
s. The values of the nonzero entries can be arbitrary. The
measurements are presented by

M = X∗ + S∗. (3)
Define the operator PΩ̂ such that PΩ̂(M)i,j = Mi,j if
(i, j) ∈ Ω̂, and 0 otherwise. The robust low-rank Hankel
matrix completion problem aims to recover X∗ from PΩ̂(M).
We formulate it as the following nonconvex optimization
problem,

min
X,S

∥∥PΩ̂(M −X − S)
∥∥
F

s.t. rank(HX) ≤ r and ‖S‖0 ≤ s,
(4)

where the nonconvexity results from the rank and the sparsity
constraints.

Definition 1. A rank-r matrix L ∈ Cl1×l2 , with its Singular
Value Decomposition (SVD) L = UΣV H , is µ-incoherent if

max
1≤i≤l1

‖eTi U‖2 ≤
µr

l1
, max

1≤j≤l2
‖eTj V ‖2 ≤

µr

l2
. (5)

The incoherence assumption is standard in analyzing RPCA
and MC problem, see, e.g., [3], [29]. If a matrix is both low-
rank and sparse, like eie

T
j for any 1 ≤ i ≤ l1 and 1 ≤ j ≤ l2,

then there is no way to separate the sparse component and
the low-rank component. The incoherence assumption prevents
the low-rank matrix L to be sparse itself. The incoherence
measures the closeness of L to matrices like eie

T
j . If L =

eie
T
j , the corresponding µ is as large as max{l1, l2}/r. When

µ is small, the energy of L is spread over all its entries.
We assume S∗ and X∗ satisfy the following assumption

throughout the paper. We will show our method can accurately
recover X∗ based on this assumption.

Assumption 1. Each row of S∗ contains at most α fraction
of non-zero entries with α ≤ C1

µcsr
for some small positive

constant C1 ≤ 1
840 , 3 where cs = max

(
n
n1
, nn2

)
; HX∗ is

rank-r and µ-incoherent.

In the successful recovery of X∗ in conventional RPCA,
S∗ can have at most Θ( 1

r ) fraction of nonzeros in each row

3The constant C1 is derived from (69) and (74) in the Appendix.



and each column [23]. In contrast, Assumption 1 only requires
an upper limit for each row, while the entries in one column
of S∗ can all be nonzero. In fact, S∗ can contain α fraction
of consecutive columns with all nonzero entries. If n1 and n2

are in the same order, i.e., both proportional to n, then cs is
a constant. α could be as large as Θ( 1

r ). Thus, our method
can handle bad data across all the channels consecutively
for a nearly constant fraction of time if each row of X∗

corresponding to a time series.

III. APPLICATIONS AND RELATED WORK

A. Low-rank Hankel matrices

The low-rank Hankel property has been recently exploited
in different areas including array signal processing [8], [30],
dynamic system monitoring [33], and magnetic resonance
imaging (MRI) [16], [25], [31].

One example of the low-rank Hankel property is the class
of spectrally sparse signals [1], which are weighted sums of r
damped or undamped sinusoids. The mathematical expression
of an one-dimensional spectrally sparse signal is

g[t] =

r∑
i=1

die
(2πıfi−τi)t, t ∈ N, (6)

where fi and di are the frequency and the normalized complex
amplitude of the i-th sinusoid, respectively, and ı is the
imaginary unit. As g[t] is the sum of r sinusoids, its degree
of freedom is Θ(r). The one-dimensional spectrally sparse
signal g[t] can be viewed as a special case of X∗ in our
paper. Specially, X∗ only contains one row, i.e., nc = 1,
and let its i-th entry be g[i]. We follow [33] and refer to the
resulting Hankel matrix as a single-channel Hankel matrix to
differentiate from our general model of a multi-channel Hankel
matrix with nc > 1 in (2).

Ref. [8] also considers two-dimensional (2-D) and higher-
dimensional spectrally sparse signals that are the sums of r
2-D or higher-dimensional sinusoids. The data matrix X∗ of
a 2-D spectrally sparse signal in [8] can be represented as

X∗t1,t2 =

r∑
i=1

die
(2πıf1i−τ1i)t1+(2πıf2i−τ2i)t2 , (7)

where Xt1,t2 is the entry in row t1 and column t2. Note that
the degree of freedom of X is still Θ(r) for a 2-D signal.

The second example of the low-rank Hankel property is the
outputs of linear dynamic system discussed in [33]. Consider
a discrete-time system with the state vector st ∈ Cnp , and the
observation vector xt ∈ Cnc ,

st+1 = Ast,

xt+1 = Cst+1, t = 0, 1, · · · , n.
(8)

As described in [33], the data matrix X∗ = [x1,x2, · · · ,xn]
satisfies low-rank Hankel property. Hn1

(X∗) is rank r for
n1 ∈ [r, n+1−r], and the rank r is the number of the observed
modes of the dynamical system. If r < nc, Hn1(X∗) is also
rank r for any n1 ∈ [1, n + 1 − r]. Each row of X∗ can
be represented by a one-dimensional spectrally sparse signal.
All rows share the same set of sinusoids but have different

weights. The entry in row k and column t, denoted by X∗k,t,
can be written as

X∗k,t =

r∑
i=1

dk,ie
(2πıfi−τi)t, k = 1, · · · , nc, (9)

where dk,i is the normalized complex amplitude of the i-
th sinusoid in the k-th signal. The degree of freedom of
X∗ is Θ(ncr). We also remark that this paper considers the
recovery of X∗, which is irrelevant to the observability and
identifiability of the linearly dynamical system in (8). Our
method directly recovers the data from partial observations
and does not need to estimate the system model.

In MRI imaging, a signal is called finite rate of innovation
(FIR) [25] if there exists a finite sequence h[t] such that

(x∗ ∗ h)[t] = 0, ∀t, (10)

where (·) ∗ (·) computes the convolution of two signals. Such
h[t] is also known as annihilating filter. If the length of h[t] is
r + 1, then the Hankel matrix Hn1

(x) is a rank-r matrix for
some n1 ∈ [r, n − r + 1]. The MRI images satisfy (10) after
some transformation. The low-rank Hankel property has been
exploited in MRI image recovery [16], [25], [31].

B. Robust matrix completion

When n1 = 1, (4) reduces to the conventional RMC
problem studied in [2], [4], [5], [7], [9], [12], [18], [19], [21].
If all the measurements are available, RMC reduces to the
RPCA problem. The state-of-art RPCA algorithms such as
[14], [23] can recover the low-rank matrix even if at most
O( 1

r ) fraction of entries per row and per column are corrupted.
This bound is also proved to be order-wise optimal [23]. If
no corruptions exist, RMC reduces to the low-rank matrix
completion problem, and O(µ0rn log n) measurements are
needed to recover an nc-by-n (nc < n) rank-r matrix with
incoherence µ0 [3].

For the general RMC problem, one approach is to relax the
nonconvex rank and `0-norm into the convex nuclear norm
and `1 norm and then solve the resulting convex optimization
problem [2], [5], [18], [21]. Refs. [2], [5] show that the
convex approach can correct a constant fraction of randomly
distributed outliers, provided that a constant fraction of the
matrix entries are observed. Based on a stronger requirement
on the incoherence of the matrix, ref. [21] improves the theo-
retical bound such that only O(µ0rn log2(n)) observed entries
are required while tolerating a constant fraction of bad data.
Although fully corrupted columns are considered in [7], [18],
both papers cannot recover the corrupted columns. Ref. [7]
shows that when S∗ contains fully corrupted columns, the con-
vex approach can recover noncorrupted columns and estimate
the column subspace accurately. However, their approach can
only locate the corrupted column but cannot recover its actual
entries. Ref. [18] provides an upper bound of RMC when the
measurements contain noise. The error bound is large when
some columns are fully corrupted, because the recovery of
corrupted columns is not accurate.

Fast algorithms to solve the nonconvex formulation directly
have been recently developed. Ref. [4] adds a nonconvex



penalty function to speed up the minimization through a
shrinkage operator, but no analytical analysis is reported.
Ref. [19] proposes a projected gradient descent algorithm
over the nonconvex sets. Ref. [12] proposes an alternating
minimization algorithm. Both [12] and [19] prove the pro-
posed algorithms converge under the assumption of Restrict
Isometric Property (RIP), but no theoretical analyses of the
recovery performance are provided.

The low-rank Hankel has been exploited in missing data
recovery but not much in error corrections. Refs. [1] analyze
the matrix completion performance for single-channel Hankel
matrices, i.e., nc = 1. Ref. [33] extends the analyses to multi-
channel Hankel matrices with nc > 1. If S∗ is a zero matrix,
one can recover X∗ from O(µr3 log n) observations [33],
where µ is the incoherence of HX∗. Theorem 5 of [33]
indicates that µ is a constant for a group of well separated
frequencies fi’s and concentrated normalized amplitude dk,i’s.

Only Refs. [8] and [17] consider the RMC problems for
the low-rank Hankel matrix. The nonconvex rank and `0-
norm are relaxed into the convex nuclear norm and `1-norm,
respectively in both [8] and [17], and only Ref. [8] provides
the theoretical guarantee. Although Ref. [8] consider high-
dimensional spectral sparse signals, the degree of freedom of
these signals is still Θ(r), which corresponds to single-channel
Hankel matrices in our setup. We consider multi-channel
Hankel matrix where nc > 1 in this paper. Moreover, Ref. [8]
assumes the locations of the corrupted entries are randomly
distributed and does not provide any theoretical recovery
guarantee when column-wise corruptions exist. This paper
provides the first theoretical study of RMC and RPCA for
multi-channel low-rank Hankel matrices with fully corrupted
columns. Furthermore, the convex approach in [8] requires
solving SDP, which is computationally challenging for large-
scale problems. The computational complexity of solving the
SDP to recover a Hankel matrix HX∗ ∈ Cncn1×(n+1−n1)

is O(n3
cn

3), while the computational complexity of our algo-
rithm is O

(
r2ncn log(n) log(1/ε)

)
, where ε is the approxima-

tion error.

C. Rank-based stagewise (R-RMC) algorithm

Ref. [9] proposed a nonconvex algorithm called Rank-based
stagewise (R-RMC) algorithm to solve RMC. The R-RMC
algorithm is directly extended from the AltProj algorithm in
[23] for RPCA by adjusting to partial measurements. R-RMC
contains two loops of iterations. In the k-th stage of the outer
loop, it decomposes M into a rank-k matrix and a sparse
matrix. The resulting matrices are used for initiation in the
(k + 1)-th stage. In the t-th iteration of the inner loop, it
updates the sparse matrix St and the rank-k matrix Lt+1

based on St−1 and Lt. St is obtained by a hard thresholding
over the residual error between M and Lt. Lt+1 is updated
by first moving along the gradient descent direction and then
truncating it to a rank-k matrix. The reason of using an outer
loop instead of directly decomposing into a rank-r and a sparse
matrix is that by the initial thresholding, the remaining sparse
corruptions in the residual is in the order of σ1(X∗), the
largest singular value of X∗. These corruptions would lead

to large errors in the estimation of the lower singular values
of X∗. Through the upper loop, the algorithm recovers the
lower singular values after the corruptions at higher values are
already removed. The computational complexity of R-RMC is
O
(

(mr2+nr3) log(1/ε)
)

, where m is the number of observed
measurements.

To achieve a recovery accuracy of ε, R-RMC requires at
least O(µ2

0r
3n log2(n) log(1/ε)) observed measurements. The

percentage of outliers per row and per column is at most O( 1
r ).

This paper develops an algorithm based upon R-RMC [9]
to solve the nonconvex problem (4). By exploiting the Hankel
structure, our algorithm can correct fully corrupted columns,
which cannot be corrected by R-RMC. Moreover, the required
number of measurements by our method is significantly less
than that by R-RMC.

IV. STRUCTURED ALTERNATING PROJECTION (SAP)
ALGORITHM

Here we present the structured alternating projections (SAP)
algorithm to solve (4). In the algorithm, M ,Xt,St ∈ Cnc×n,
and Wt,Lt ∈ Cncn1×n2 . Tξ is the hard thresholding operator,

Tξ(Z)i,j = Zij if |Zij | ≥ ξ, and 0 otherwise. (11)

Let Z =
∑
i=1 σiuiv

H
i denote the SVD of Z with σ1 ≥ σ2 ≥

· · · . Qk finds the best rank-k approximation to Z, i.e.,

Qk(Z) =

k∑
i=1

σiuiv
H
i . (12)

H† denote the Moore-Penrose pseudoinverse of H. Given any
matrix Z ∈ Cncn1×n2 , H†(Z) ∈ Cnc×n satisfies

(H†(Z))i,j =
1

wj

∑
k1+k2=j+1

Z(k1−1)nc+i,k2 , (13)

where wj denotes the number of elements in the j-th anti-
diagonal of an n1 × n2 matrix.

Algorithm 1 Structured Alternating Projections (SAP)

1: Input Observations PΩ̂(M), thresholding parameter ε,
the largest singular value σ1 = σ1(HX∗), and conver-
gence criterion η = 4µcsr√

ncn
.

2: Initialization X0 = 0, ξ0 = ησ1.
3: Partition Ω̂ into disjoint subsets Ω̂k,t (1 ≤ k ≤ r, 0 ≤
t ≤ T ) of equal size m̂, let p̂ = m̂

ncn
.

4: for Stage k = 1, 2, · · · , r do
5: for t = 0, 1, · · · , T = log(η

√
ncnσ1/ε) do

6: St = Tξt
(
PΩ̂k,t

(M −Xt)
)
;

7: Wt = H
(
Xt + p̂−1

(
PΩ̂k,t

(M −Xt)− St
))

;
8: ξt+1 = η

(
σk+1(Wt) + ( 1

2 )tσk(Wt)
)
;

9: Lt+1 = Qk(Wt);
10: Xt+1 = H†Lt+1;
11: end for
12: if ησk+1(WT ) ≤ ε√

ncn
then

13: Return XT+1;
14: end if
15: X0 = XT+1, ξ0 = ξT+1;
16: end for



SAP is built upon Rank-based stagewise (R-RMC) in [9].
The major differences of SAP from R-RMC are the additional
Hankel structure. The main contribution of this paper is the
analytical performance guarantee of SAP, which we defer to
Section V. The key steps are summarized as follows. Similar
to R-RMC [9], SAP also contains two stages of iterations. In
the t-th iteration of the inner loop, it updates the estimated
sparse error matrix St and data matrix Xt+1 based on St−1

and Xt. St is obtained by a hard thresholding over the residual
error between M and Xt. The thresholding ξt decreases as t
increases. The entire sampling set Ω̂ is first divided into several
disjoint subsets. The disjointness guarantees the independence
across Xt and Xt+1, which is a standard analysis trick in
solving RMC (see [27]). To obtain Xt+1, we first updated Xt

by moving along the gradient descent direction with a step
size p̂−1 = ncn

|Ω̂k,t|
. Then, Wt is calculated as the projection of

the updated Xt to the Hankel matrix space. Finally, Xt+1 is
obtained by H†Lt+1, and Lt+1 is updated by truncating Wt

to a rank-k matrix. The maximum number of iterations in
each inner loop, denoted as T , is set as log(η

√
ncnσ1/ε). In

practice, the algorithm can exit the loop before reaching the
maximum number of iterations if Xt+1 is already very close
to Xt. In the k-th iteration of the outer loop, the target rank
increases from 1 gradually, and the resulting matrices are used
as the initialization in the (k + 1)-th stage.

The reason of using an outer loop instead of directly
applying rank-r approximation when calculating Lt is the
same as that in R-RMC [9] and AltProj [23]. By the initial
thresholding, the remaining sparse corruptions in the residual
is in the order of σ1(HX∗), the largest singular value of
HX∗. These corruptions would lead to large errors in the
estimation of the lower singular values of HX∗. Through the
outer loop, the algorithm recovers the lower singular values
after the corruptions with higher values are already removed.

Calculating the best rank-k approximation in line 9 dom-
inates the computation complexity. Generally for a matrix
Wt ∈ Cncn1×n2 , the best rank-k approximation can be solved
in O(kncn

2), and ncn
2 results from calculating Wtz for

z ∈ Cn2 . Here, due to the Hankel structure of Wt, a fast con-
volution algorithm (see [1], [33]) only requires computational
complexity at O(ncn log(n)) to compute (HZ)z for any Z ∈
Cnc×n and z ∈ Cn2 . The fast convolution can also applied
to reduce the computational time to O

(
rncn log(n)

)
when

calculating Xt+1 = H†Lt+1 with stored SVD of Lt+1[1],
[33]. Hence, the computational complexity per iteration is
O
(
rncn log(n)

)
, and the total computational complexity is

O
(
r2ncn log(n) log(1/ε)

)
.

One can directly apply R-RMC on the structured Hankel
matrix. The resulting algorithm differs from SAP in line 7
and 10 that the updated rank-k matrix is not projected to
the Hankel matrix space. Based on the analysis in [9], the
computational time per iteration of R-RMC on Hankel matrix
is O(msr + ncnr

2), and ms is the number of observed
measurements in the structured Hankel matrix. With full
observations, the computational complexity per iteration of
R-RMC on Hankel matrices is as large as O(ncn

2r). By
downsampling the observation set to its theoretical limit in

Theorem 2 of [9], the computational complexity per iteration
can be reduced to O(µ2r3ncn log2(n)). However, it is still
larger than O(rncn log(n)) of SAP. Moreover, the constant
item of the theoretical limit in theorem 2 [9] is hard to deter-
mine in practice. Furthermore, downsampling will increases
the iteration number numerically. Though the complexity per
iteration is reduced by downsampling, the computational time
may increase, which is reported in Fig. 1(b) [9] as well.

We remark that σ1(HX∗) and µ may not be computed
directly. σ1(HX∗) is only used to obtain the initial estimate
of the sparse matrix. In practice, we use p−1(HPΩ̂(M)) to
estimate σ1(HX∗). This estimation idea is borrowed from [9],
[23]. As long as the estimated value is in the same order as
σ1(HX∗), all the theoretical results in the following Theorem
1 still hold, with a different constant C1 in Assumption 1. µ
is only used in η as η = µcsr√

ncn
. If the estimated incoherence

is in the same order as µ, all the results still hold with a
different constant C1 in Assumption 1 and a different constant
C2 in (14). In practice, one can estimate η by r√

ncn1n2
for

incoherent matrices without computing µ. This idea has been
used in [2], [9], [23], which all require µ in their algorithms
but do not actually compute it. Thus, we present Algorithm
1 using σ1(HX∗) and µ to simply the following theoretical
analysis, and one can replace them with estimated values in
implementation.

We also note that the recovery of X∗ is irrelevant to
the observability and identifiability of the linearly dynamical
system in (8), when X∗ contains the output time series
of (8). Our method directly recovers the data from partial
observations and does not need to estimate the system model.

V. RECOVERY GUARANTEE OF SAP

The recovery guarantee of SAP is summarized in Theorem
1, and the proof is deferred to the Appendix.

Theorem 1. Suppose X∗, S∗ satisfy the Assumption 1, and
the support of the sampling set Ω̂ is randomly selected. Let
η = 4µcsr√

ncn
and T = log(η

√
ncnσ1/ε) in Algorithm 1. If

m ≥ C2µ
2r3 log2(n) log

(µcsrσ1

ε

)
, (14)

with probability at least 1− rncT log3(ncn)
n2 , its output X and

S satisfy:

‖X −X∗‖F ≤ ε
‖S − PΩ̂(S∗)‖F ≤ ε, Supp(S) ⊆ Supp

(
PΩ̂(S∗)

) (15)

for some large constant C2 > 0 4.

Theorem 1 indicates that the resulting X returned
by SAP can be arbitrarily close to the ground truth
X∗ as long as the number of observations exceeds
O
(
µ2r3 log2(n) log(µcsrσ1/ε)

)
, and each row of S∗ has at

most Θ( 1
µr ) fraction of outliers. If X∗ contains spectrally

sparse signals as shown in (9), then X∗ is also rank r.
If we directly apply a low-rank MC method via convex

4The constant C2 = max(C4, C5), and C4 is derived from (63) in the
proof of Lemma 5, C5 is derived from (74) in the proof of Lemma 6.



relaxation [27] to recover X∗ from PΩ̂(X∗), the required
number of observations is at least O(µ0rn log2(n)). Since
n � r, SAP reduces the required number of observations
significantly by exploiting the Hankel structure. Moreover,
SAP can identity and correct fully corrupted columns up to
a fraction at Θ(1/µr). In contrast, traditional RMC methods
can locate the fully corrupted columns but cannot recover
the corrupted columns [7], [29]. The number of iterations rT
depends on log(1/ε), where ε is desired accuracy. Therefore,
the algorithm also enjoys a linear convergent rate.

If there is no bad data, i.e. S∗ = 0, (4) is reduced to
the MC problem. Under the setup of spectrally sparse signals
in (9), according to the Theorem 5 in [33], a group of well
separated frequencies fi’s can guarantee that the incoherence
µ < O(nc). If we further assume on the normalized amplitude
dk,i, say that dk,i’s are close to each other, the incoherence µ
is a constant. The degree of freedom depends linearly on the
rank r, while the theoretical bound in (14) relies on (r3). When
r is small, the theoretical bound in (14) is nearly optimal.
Compared with our algorithm AM-FIHT in [33], SAP does
not have the heavy-ball step and increases the rank gradually
instead of keeping fixed rank. To achieve a recovery error of ε,
AM-FIHT requires O

(
µκ6r2 log(n) log

(
σ1

κ3ε

))
observations.

In contrast, SAP depends on r3 but does not rely on the
conditional number κ, where κ is defined as the ratio of the
largest to smallest singular values of HX∗.

If there is no missing data, i.e. Ω̂ = {(k, t)|1 ≤ k ≤ nc, 1 ≤
t ≤ n}, (4) is reduced to RPCA problem. Each row of S∗

can have up to α ≤ C1

µcsr
fraction of corrupted entries. If

we choose n1 = n2, cs is constant. The existing results in
[14], [23] for RPCA can tolerate at most Θ( 1

r ) fraction of
outliers per row and per column. SAP also tolerates at most
Θ( 1

r ) fraction of outliers in each row. Moreover, SAP can
recover fully corrupted columns. There is no upper bound of
the number of corruptions per column. One can directly a
general RPCA algorithm such as AltProj [23] on the structured
Hankel matrix H(M), Altproj can recover the corrupted data
correctly based on the same analysis as in [23]. However, the
computational time per iteration of Altproj is O(rncn

2), which
is much large than O(rncn log(n)) by SAP.

VI. NUMERICAL RESULTS

We evaluate the performance of SAP numerically. The
experiments are implemented in MATLAB 2015 on a desktop
with 3.4GHz Intel Core i7-4770 CPU. Here, we study several
modes of missing data and bad data as shown in Figs. 1 and
2. For each pair of data loss and bad data modes, the supports
of the bad data matrix S∗ and the observed indices Ω̂ are
generated independently. The models are summarized as:
• M1/B1: Missing data or bad data occur randomly across

the all channels and times;
• M2/B2: Missing data or bad data occur in all channel

simultaneously s at randomly selected time indices;
• B3: Bad data occurs simultaneously and consecutively in

all the channels. The starting point is selected randomly.
The performance is tested on the spectrally sparse signals as

shown in (9). Each fi in (9) is randomly selected from (0, 1).

: observed  entry : missing entry

M1 M2

Time

C
hannels

Fig. 1: Two modes of missing data
: ground-truth data

B1 B2 B3

Time

C
hannels

: bad data

Fig. 2: Three modes of bad data

τi is set as 0 for all i. For the complex coefficient dk,i, its
angle is randomly selected from (0, 2π), and its magnitude is
set as 1+100.5ak,i , where ak,i is randomly selected from (0, 1).
For each non-zero entry in the bad data matrix S∗, its angle
is randomly selected from (0, 2π) ( except for Fig. 4), and
its magnitude is randomly selected from (X̄∗, 5X̄∗), where
X̄∗ = ‖X∗‖F /

√
ncn is the average energy of X∗. Unless

otherwise stated, the size of the data matrix X∗ ∈ Cnc×n is
set as nc = 30 and n = 300, and n1 = n/2 = 150.

In SAP, the SVD algorithm for a structured Hankel matrix is
computed via PROPACK [20]. PROPACK provides a general
framework to compute the partial SVD of a structured matrix
that denoted by A, and the user is required to implement the
functions to compute Ay1 and AHy2. For a Hankel matrix
HZ1, the function to compute (HZ1)z2 is implemented by
calculating the convolution of z2 and each row of Z1. Since
σ1(HX∗) is unknown, we use p−1(HPΩ̂(M)) to approximate
σ1(HX∗) in our experiments following the same idea in [9],
[23]. Also, during each iteration, we use the entire observed
set rather than the disjoint subsets as shown in line 3 of Alg.
1. In each inner loop, instead of keeping a fixed number of
iterations, SAP will jump out of the current inner loop if

‖PΩ̂(Xt+1 −Xt)‖F
‖PΩ̂(Xt)‖F

≤ 10−3 (16)

before reaching the maximum iteration number, which is set
as 200. The algorithm finally terminates if σk+1(Wt) ≤ 10−3

holds.
The results in Figs. 3-10 are all obtained by averaging over

100 independent trials for each block. We say that the trial is
successful if the returned X satisfies that

‖PΩ̂c(X −X∗)‖F
‖PΩ̂c(X∗)‖F

≤ 10−2, (17)

where Ω̂c is the complementary set of Ω̂ over {1, 2, · · · , nc}×
{1, 2, · · · , n}. A white block means that all 100 trials are
successful, while all trials fail in a black block.



A. Performance of SAP

In this experiment, we vary the rank and bad data percentage
to test the performance of SAP for several combined modes,
M1×B1, M2×B2, and M2×B3. M1×B1 means missing data
model M1 and bad data mode B1. We only provide the
simulation results of these three combined modes because
the performances of SAP are almost the same under modes
M1×B1, M2×B1, M1×B2 and M2×B2. The data loss per-
centage is fixed as 50%.

Fig. 3 shows the recovery performance when the angles of
nonzero entries in S∗ is randomly selected from (0, 2π). The
x-axis is the bad data percentage, and the y-axis is the rank.
The results under M1×B1 and M2×B2 are included in Fig. 3
to illustrate the similarity of SAP under these modes, and the
similarity also shows that columnwise corruptions and missing
entries do not affect the performance of SAP. Under mode
M2×B3, we test the performance of SAP under simultaneous
and consecutive bad data. It can tolerate 9% outliers for a
rank-17 matrix, and 27 out of 300 consecutive columns are
corrupted.

Fig. 4 shows the recovery performance when the angles
of nonzero entries in S∗ is randomly selected from (0, π/2)
such that both the real and imaginary parts of S∗ are positive.
Comparing Figs. 3 and 4, one can see that SAP performs very
similar when the corruptions have random signs and when
the corruptions have positive signs. The recovery performance
with random signs is slightly better in all three modes.
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Fig. 3: Phase transition of SAP with random outliers
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Fig. 4: Phase transition of SAP with outliers restricted in
Quadrant I

B. Comparison with existing RMC methods

We compare SAP with two other RMC methods to recover
X∗ from PΩ̂(M). One is R-RMC [9], and the other is
the convex relaxation of (4) by relaxing rank and `0-norm
to the approximated convex nuclear norm and `0-norm, and
the convex optimization is solved by Alternating Direction
Method of Multipliers (ADMM) [2]. 5 Under M1×B1, we
apply ADMM and R-RMC on both PΩ(M) and the Hankel
matrix H

(
PΩ(M)

)
. Since ADMM and R-RMC cannot toler-

ate columnwise data losses or corruptions, they can not recover
X∗ under M2×B2 and M2×B3. Hence, we only test ADMM
and R-RMC on HPΩ(M) under these two modes. The phase
transitions in Fig. 5 are obtained by varying the data loss and
bad data percentages, and the rank is set as 5 throughout this
simulation.
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Fig. 6: Phase transition of SAP, ADMM and R-RMC on
Hankel matrix under mode M2×B2
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Fig. 7: Phase transition of SAP, ADMM and R-RMC on
Hankel matrix under mode M2×B3

From the results shown in Figs. 5-7, under all these three
modes, SAP performs the best among all methods. In Fig.
5, ADMM and R-RMC are both applied on the original
observed data matrix PΩ̂(M), and the performances are much
worse than SAP. When applying ADMM and R-RMC on the
structured Hankel matrices, they both achieve higher success
rates as shown in Figs. 5, 6 and 7. However, under modes
M1×B1 and M2×B2, ADMM can only handle up to 30%
data loss even on the structured Hankel matrix, while SAP

5We downloaded the codes from https://github.com/andrewssobral for R-
RMC and https://github.com/dlaptev/RobustPCA for ADMM
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Fig. 5: Phase transition of SAP, ADMM and R-RMC under mode M1×B1



can still recover the data matrix under 80% data loss. R-
RMC performs slightly worse than SAP when applying on the
structured Hankel matrix in modes 1 and 2, but SAP obtains
a much larger rate of success in mode M2×B3.

Moreover, SAP is significantly faster than ADMM and R-
RMC on structured Hankel matrix as shown in Fig. 8. We vary
number of columns n from 2000 to 8000 with a step size of
1000, and the results are averaging over 100 successful inde-
pendent trials for each n. Since the computational complexities
of all these methods depend linearly on nc, we keep nc = 1.
The rank is fixed as 5, and n1 is set as n/2 throughout the
experiments. The size of the Hankel matrix is approximately
n
2 ×

n
2 . We consider the mode of M1×B1 where the locations

of both bad data and miss data are generated randomly, and
the bad data percentage is set as 20%. Since the computational
complexity of R-RMC depends on the size of observed set,
we study both 50% and 95% data loss percentages. The
computational time of ADMM with 95% data loss is not
included since it does not converge in this setting.
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Fig. 8: Computational time of SAP, ADMM and R-RMC on
the structured Hankel matrix

The computational time of SAP increases the least as the
matrix size increases among all the methods. The convex
method ADMM is the slowest with 50% data loss. ADMM
takes over 1000 seconds to recover the Hankel matrix of size
2000 × 2000. R-RMC takes around 935 seconds to recover
the Hankel matrix of size 4000 × 4000. With 95% data loss,
the computational time of R-RMC decreases by applying fast
algorithms to compute the sparse matrix multiplication. It takes
much more time than SAP. For example, SAP takes less than
40 seconds to recover the Hankel matrix of size 4000× 4000,
while R-RMC takes around 227 seconds in the same setting.

C. Comparison with AM-FIHT in MC

In this experiment, we compare SAP with AM-FIHT in
[33] to solve MC problem. We do not include other MC
methods, such as SVT, because AM-FIHT is demonstrated
to outperform other methods in both recovering accuracy
and computational time [33]. We fix rank as 5. Since the
number of observed entries for successful recovery depends on
the conditional number κ, we consider both well-conditioned
matrices, where κ is small, and ill-conditioned matrices, where
κ is larger. To generate a well-conditioned matrix, we just
follow the same setup for generating X∗ in the previous
experiments. To generate a ill-conditioned matrix, we enlarges
the amplitude of the first sinusoid d1,i by a factor of r in all
channels.
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Fig. 9: Phase transition of SAP for ill-conditioned matrix
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Fig. 10: Phase transition of AM-FIHT for ill-conditioned
matrix

Fig. 9 shows the performance of SAP when recovering ill-
conditioned matrices. When the matrix is well-conditioned,
both SAP and AM-FIHT perform very similarly. Moreover,
SAP performs similarly on both well-conditioned and ill-
conditioned matrices. This verify our result in (14) that the
performance of SAP does not depend on κ. We do not include
the results of SAP and AM-FIHT in well-conditioned matrices
because they are both similar to Fig. 9. When the matrix is
ill-conditioned, AM-FIHT is much worse than SAP.

VII. CONCLUSION AND DISCUSSIONS

The multi-channel low-rank Hankel matrix naturally char-
acterizes the correlations among columns of a matrix in
addition to the low-rankness. Exploiting the low-rank Han-
kel structure, this paper develops a non-convex approach to
recover the low-rank matrix from partial observations, even
when a constant fraction of the columns are all corrupted
simultaneously and consecutively. The proposed algorithm
converges to the ground-truth matrix linearly. The required
number of observations is significantly smaller than all the
existing bounds for robust matrix completion. Our method
applies to power system monitoring, MRI imaging, and array
signal processing.
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APPENDIX

A. Notations and technical assumptions

Sampling model with replacement. As a standard tech-
nique in solving RMC problem [27], the model of sampling
with replacement assumes that every entry is sampled in-
dependently with replacement. In this model, one entry can
be sampled multiple times. To distinguish from Ω̂ defined in
Section II, let Ω be the union of indices that uniformly sampled
from {1, 2, · · · , nc} × {1, 2, · · · , n} following the sampling
model with replacement. Due to the repetitions in the sampling
model with replacement, |Ω| ≥ |Ω̂| should hold for successful
recovery [27]. Hence, the required number of observations for
successful recovery under sampling model with replacement
is sufficient to guarantee successful recovery under sampling
model without replacement.

Symmetric Hankel Operator. Here, we introduce the oper-
ator H̃, which is the symmetric extension of Hankel operator
H. For any Z ∈ Cnc×n, H̃(Z) ∈ Cnc(n1+n2)×nc(n1+n2) is
defined as

H̃(Z) =


0 · · · 0
...

. . .
...

0 · · · 0

(H(Z))H

...
(H(Z))H

H(Z) · · · H(Z)︸ ︷︷ ︸
nc copies

0

 . (18)

Define HX∗ = UΣV H as the SVD of HX∗, then H̃X∗ can
be written as

H̃X∗ =
1
√

2

(
Ṽ Ṽ
U U

)(√
ncΣ 0
0 −√ncΣ

)
1
√

2

(
Ṽ Ṽ
U U

)H

, (19)

where Ṽ = 1√
nc

[V H · · · V H ]H . Therefore, H̃X is a
rank-2r matrix. Moreover, if HX∗ is µ-incoherent, one can
easily check that the incoherence µ̃ of H̃X satisfies µ̃ ≤ cs

2 µ.
When n1 and n2 are in the same order, cs is a constant.
The key steps (lines 5-9) of Alg. 1 can be represented
equivalently based on H̃ as:



S̃t = Tξt(M −Xt);

W̃t = H̃
(
Xt + p−1PΩk,t

(M −Xt − S̃t)
)
;

ξt+1 =
η
√
nc

(
|λ2k(W̃t)|+

(1

2

)t|λ2k+2(W̃t)|
)

;

L̃t+1 = Q2k(W̃t);

Xt+1 = H̃†(L̃t+1);

(20)

The Pseudoinverse operator H̃† can be calculated from

(H̃†(Z))i,j =
1

ncwj
〈H̃(eie

T
j ),Z〉. (21)

In fact, (20) generates the same Xt’s as lines 5-9 in Alg. 1.
(20) differs from lines 5-9 in Alg. 1 mainly in two aspects :
(1) S̃t is updated based on the full observation of M ; (2) W̃t

lies in the space defined by H̃. Though we cannot calculate
S̃t from PΩ(M) in practice, S̃t is introduced to simplify our
analysis and does not affect the update of Xt. To see this,
we first assume the values of Xt−1 are the same for (20) and
lines 5-9 in Alg. 1. Then, the threshold ξt remains the same
as well. Next, we have

PΩk,t
(S̃t) = St, (22)

which suggests PΩk,t
(M −Xt) − St = PΩk,t

(M −Xt −
S̃t). Operator H̃ does not affect the update rule of Xt, either.
Similarly, suppose Xt−1 remains the same for some t, then it
is easy to verify that

L̃t =


0 · · · 0
...

. . .
...

0 · · · 0

LH
t

...
LH

t

Lt · · · Lt︸ ︷︷ ︸
nc copies

0

 ∈ Cnc(n1+n2)×nc(n1+n2).

(Since n + 1 = n1 + n2, we use n to replace n1 + n2 for
convenience in all the sections of Appendix.) Moreover, L̃t
has duplicated eigenvalues as |λ2i−1(L̃t)| = |λ2i(L̃t)| for
1 ≤ i ≤ r, where λi(L̃t) is the i-th largest eigenvalues (in
absolute value) of L̃t. Furthermore, let σi(Lt) be the i-th
largest singular value of Lt, from (19) we have

σi(Lt) =
1
√
nc
|λ2i−1(L̃t)| =

1
√
nc
|λ2i(L̃t)|. (23)

Similar results can be derived for W̃t. From the definition of
H̃† and the structure of L̃t, it is straightforward that Xt+1

returned by lines 5-9 in Alg. 1 and (20) are equivalent. In
conclusion, if we start with the same initial point X0 = 0,
the update rule in (20) will generate the same Xt’s as those
by lines 5-9 in Alg. 1, and we also have PΩk,t

(S̃t) = St.
Definition of H1,t, H2,t and Ht. From (20), we know that

L̃t+1 =Q2k

(
H̃Xt + p̂−1H̃PΩk,t

(M −Xt − S̃t)
)

=Q2k

(
H̃Xt + p̂−1H̃PΩk,t

(X∗ + S∗ −Xt − S̃t)
)

=Q2k

(
H̃X∗ + H̃(I − p̂−1PΩk,t

)(Xt + S̃t −X∗ − S∗)

+ H̃(S∗ − S̃t)
)
.

Let Ht = H1,t + H2,t, where

H1,t = H̃(S∗ − S̃t), (24)

H2,t = H̃(I − p̂−1PΩk,t
)(Xt + S̃t −X∗ − S∗). (25)

Then, we have

L̃t = Q2k(H̃X∗ + Ht) = Q2k(H̃X∗ + H1,t + H2,t).

B. Key lemma in proving Theorem 1
We first introduce the most critical lemma in the whole

proof. Lemma 1 is presented to bound the `2-norm of
eTi (Ht)

aZ by the `2-norm of eTi Z for all 1 ≤ a ≤ log(n).
Although Lemma 1 is not directly used in proving Theorem
1, Lemma 1 is paramount important in showing the recovery
error of Xt decreases as t increases that summarized in
Lemma 6.

Lemma 15 in [9] provides a similar result for general
matrix but with a more complicated proof. Ref. [9] fo-
cused on bounding all entries of eTi (H1,t + H2,t)

aZ, so
Ref. [9] needed to write the closed forms of all entries in
(H1,t +H2,t)

a. The closed forms are hard to determine, and
several cases should be discussed separately. However, we
will prove (26) by mathematical induction over a. Only two
items, ‖eTi H1,t(Ht)

a−1Z‖2 and ‖eTi H2,t(Ht)
a−1Z‖2, need

to be bounded in the inductive step. Also, the conclusion of
Lemma 1 in (26) can be extended to general matrices, though
Ht = H1,t + H2,t is the Hankel matrix as defined in (24)
and (25).

There are two lemmas used in the inductive steps of proving
Lemma 1. 6 Lemma 2 is established on the sparsity assumption
with respect to H1,t. Moreover, Lemma 2 is a special case that
a = 1 of Lemma 5 in [23], and all the steps are straightforward
from [23]. However, instead of discussing a special U like in
[23], we consider a general matrix Z here. Lemma 3 provides
similar result for matrices with zero mean and bounded high
moments, and it is used to bound H2,t. The technique used
in Lemma 3 is similar as that of Lemma 9 in [15]. Rather
than bounding each entry of eTi (H̃Y )Z separately as [15],
we bound the `2 norm of eTi (H̃Y )Z directly, which leads to
a tighter bound by a factor of r−1. The same trick is applied
in [9] as well.

Lemma 1. Suppose the assumptions in Theorem 1. If we
further assume that Supp(S̃t − S∗) ⊆ Supp(S∗), then for
1 ≤ a ≤ log(ncn) and any Z ∈ Cncn×l, with probability at
least 1− nc log(ncn)

n2 , we have

max
i
‖eTi (Ht)

aZ‖2

≤
(
C3βt log(n) + αncn‖H1,t‖∞

)a
max
i
‖eTi Z‖2,

(26)

where βt =
√

ncn
p̂

∥∥∥Xt + S̃t −X − S
∥∥∥
∞

and C3 is a

constant that greater than e4.

Lemma 2. Assume each row and column of H ∈ Cncn×ncn

has at most s nonzero entries, then for any Z ∈ Cncn×l,

max
1≤i≤ncn

‖eTi HZ‖2 ≤ (s‖H‖∞) max
1≤j≤ncn

‖eTj Z‖2. (27)

Lemma 3. Assume each entry of Y ∈ Cnc×n is drawn
independently with

E(Yi,j) = 0, E(|Yi,j |k) ≤ 1

ncn
(28)

for all 1 ≤ i ≤ nc, 1 ≤ j ≤ n and k ≥ 2. Then, for any
Z ∈ Cncn×l, we have

max
1≤i≤ncn

‖eTi (H̃Y )Z‖2 ≤ C3 log(n) max
1≤j≤ncn

‖eTj Z‖2, (29)

6The proof of these two lemmas are presented in the supplementary material



with probability 1− ncn−3.

Proof of Lemma 1. From the assumption, we know each row
of S∗ has at most α fraction of nonzero entries. Since each row
of HS∗ is a subset of the corresponding row in S∗, then the
number of nonzero entries in each row of HS∗ is bounded by
αn. Similarly, the nonzero entries in each column of HS∗ is
bounded by αncn. By the definition of H̃ in (18), we know that
each row or column of H̃S∗ has at most αncn nonzero entries.
On the other hand, 1

βt
(I − p̂−1PΩk,t

)(Xt + S̃t −X∗ − S∗)
satisfies (28) in Lemma 3. The property of zero mean in (28)
is trivial. For bounded high moment, with k ≥ 2,

E
[∣∣∣ 1

βt
(I − p−1PΩ)(Xt + S̃t −X∗ − S∗)

∣∣∣k]
≤
( p

ncn

) k
2
(
p(1− p−1)k + (1− p)

)
=
( p

ncn

) k
2 ·

(1− p)
(
(1− p)k−1 + pk−1

)
pk−1

≤
( p

ncn

) k
2 · 1

pk−1
=

1

ncn
· 1

(ncnp)
k
2−1

≤ 1

ncn
.

(30)

Since Ht = H1,t + H2,t, we have∥∥eTi (Ht)
aZ
∥∥

2
=
∥∥eTi (H1,t + H2,t)(Ht)

a−1Z
∥∥

2

≤
∥∥eTi H1,t(Ht)

a−1Z
∥∥

2
+
∥∥eTi H2,t(Ht)

a−1Z
∥∥

2
.

(31)

By Lemma 2, we have∥∥eTi H1,t(Ht)
a−1Z

∥∥
2
≤ αncn

∥∥eTi (Ht)
a−1Z

∥∥
2
. (32)

By Lemma 3, we have∥∥∥eT
i H2,t(Ht)

a−1Z
∥∥∥
2
≤ C3βt log(n)

∥∥∥eT
i (Ht)

a−1Z
∥∥∥
2
. (33)

with high probability.
Hence, (32) and (33) suggests∥∥eTi (Ht)

aZ
∥∥

2

≤
(
C3βt log(n) + αncn‖H1,t‖∞

) ∥∥eTi (Ht)
a−1Z

∥∥
2

(34)

with high probability.
Then, by applying (34) multiple times, with high probability
we have∥∥eTi (Ht)

aZ
∥∥

2

≤
(
C3βt log(n) + αncn‖H1,t‖∞

)a ∥∥eTi Z∥∥2
.

(35)

Taking a union bound over all i completes the whole proof.

C. Supporting Lemmas for Theorem 1

In the following lemmas, S̃t, Xt, Ht, W̃t and L̃t are
generated in the k-th outer loop unless otherwise specified.
For convenience, we use λ∗i to denote λ2i−1(H̃X∗), which is
the (2i−1)-th largest eigenvalue (in absolute value) of H̃X∗.
Similarly, λ(t)

i stands for λ2i−1(W̃t), which is the (2i− 1)-th
largest eigenvalue (in absolute value) of W̃t.

Lemma 5 proves that the assumptions (40) and (42) are
equivalent. Lemma 6 shows the reduction of ‖Xt+1−X∗‖∞
as t increases. Moreover, the error bound of ‖S̃t+1 − S∗‖∞
is given in Lemma 7 based on the bound of ‖Xt+1−X∗‖∞.

Lemma 4 (Weyl’s inequality). Suppose A and B are two
n × n symmetric matrices satisfying B = A + E. Let λ1 ≥
λ2 ≥ · · ·λn be the eigenvalues of A, denoted by λi(A) = λi.
Then,

|λi(B)− λi(A)| ≤ ‖E‖2, 1 ≤ i ≤ n. (36)

Lemma 5. Suppose the assumptions in Theorem 1 and

‖S̃t − S∗‖∞ ≤
7µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
,

Supp(S̃t − S∗) ⊆ Supp(S∗),
(37)

‖Xt −X∗‖∞ ≤
2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
. (38)

With probability at least 1− ncn−2, we have

‖Ht‖2 ≤
1

60

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
. (39)

provided that m̂ ≥ C4µ̃
2r̃2 log(n).

Lemma 6. Suppose the assumptions in Theorem 1 and

‖S̃t − S‖∗∞ ≤
8µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
,

Supp(S̃t) ⊆ Supp(S∗),

‖Xt −X∗‖∞ ≤
2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
.

(40)

With probability at least 1− nc log3(ncn)
n2 , we have

‖Xt+1 −X∗‖∞ ≤
2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t
|λ∗k|

)
(41)

provided that m̂ ≥ C5µ̃
2r̃2 log2(n).

Lemma 7. Suppose the assumptions in Theorem 1 and

‖Ht‖2 ≤
1

60

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
,

‖Xt+1 −X∗‖∞ ≤
2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t
|λ∗k|

)
.

(42)

Then, we have

‖S̃t+1 − S∗‖∞ ≤
7µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t
|λ∗k|

)
,

and Supp(S̃t+1 − S∗) ⊆ Supp(S∗).
(43)

D. Proof of Theorem 1

The proof of Theorem 1 follows the similar framework
established in AltProj [23] by inductions over k and t. Here,
we are mainly focused on the inductions over k and t for
(44). The induction over k follows naturally for the selected
T , which is the iteration number of inner loop. The key part
is the induction over t, and the critical steps are verified by
applying Lemmas 5, 6 and 7 recursively. Lemmas 6 and 7
play the similar roles as Lemmas 7 and 9 in [23]. However,
we need an extra lemma 5 to handle the additional item Ht



caused by the partial observation since AltProj only considers
the case of full observation.

Proof of Theorem 1. The proof is based on induction over t
and k for the following equation:

‖S̃(k)
t − S∗‖∞ ≤

7µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
,

Supp(S̃
(k)
t − S∗) ⊆ Supp(S∗),

‖X(k)
t −X∗‖∞ ≤

2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
,

(44)

where we use X
(k)
t to represent the iteration Xt generated in

the k-th outer loop, similar for S̃(k)
t , H(k)

t and ξ(k)
t .

Base Case: When k = 1 and t = 0, X(1)
0 is initialized as 0.

Since H̃X∗ is µ̃-incoherent, we have

‖X∗ −X
(1)
0 ‖∞ = ‖X∗‖∞ = ‖H̃X∗‖∞ ≤

µ̃r̃

ncn
λ∗1. (45)

Note that the hard thresholding ξ
(1)
0 is initialized as 4µ̃r̃

ncn
λ∗1,

for S̃(1)
0 , we consider three cases:

Case 1: If S∗i,j = 0, then (S̃
(1)
0 )i,j = T

ξ
(1)
0

(X∗i,j).

|X∗i,j | ≤
µ̃r̃

ncn
λ∗1 ≤ ξ

(1)
0 . (46)

Hence, (S̃
(1)
0 )i,j = 0.

Case 2: If S∗i,j 6= 0 and |Mi,j | > ξ
(1)
0 , then (S̃

(1)
0 )i,j =

S∗i,j +X∗i,j .

|(S̃(1)
0 )i,j − S∗i,j | = |X∗i,j | ≤

µ̃r̃

ncn
λ∗1. (47)

Case 3: If S∗i,j 6= 0 and |Mi,j | ≤ ξ(1)
0 , then (S̃

(1)
0 )i,j = 0.

|(S̃(1)
0 )i,j − S∗i,j | =|S∗i,j | ≤ ξ

(1)
0 + |X∗i,j | ≤

5µ̃r̃

ncn
λ∗1. (48)

Hence, we have

‖S̃(1)
0 − S∗‖∞ ≤

5µ̃r̃

ncn
λ∗1,

Supp(S̃
(1)
0 − S∗) = Supp(S∗).

(49)

From (45) and (49), we know that (44) is true in the base case.
Induction over t: For any fixed k ≥ 0, suppose that S̃(k)

t and
X

(k)
t satisfy (44) for some t ≥ 0. Then, according to Lemma

6, we have

‖X(k)
t+1 −X∗‖∞ ≤

2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t
|λ∗k|

)
. (50)

Note in Lemma 5, (44) suggests that

‖H(k)
t ‖2 ≤

1

60

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
, (51)

with high probability. By Lemma 7, (50) and (51) give that

‖S̃(k)
t+1 − S∗‖∞ ≤

7µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t
|λ∗k|

)
,

Supp(S̃
(k)
t+1 − S∗) ⊆ Supp(S∗).

(52)

Hence, (44) is still valid for S̃(k)
t+1 and X

(k)
t+1.

Induction over k: Suppose at kth stage, the initialization
X

(k)
0 and S̃

(k)
0 satisfy (44), that is

‖S̃(k)
0 − S∗‖∞ ≤

7µ̃r̃

ncn

(
|λ∗k+1|+ 2|λ∗k|

)
,

Supp(S̃
(k)
0 − S∗) ⊆ Supp(S∗),

and ‖X(k)
0 −X∗‖∞ ≤

2µ̃r̃

ncn

(
|λ∗k+1|+ 2|λ∗k|

)
.

(53)

From the discussion of induction over t above, we know that,

‖S̃(k)
T − S∗‖∞ ≤

7µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)T−1

|λ∗k|
)
,

Supp(S̃
(k)
T − S∗) ⊆ Supp(S∗),

‖X(k)
T+1 −X∗‖∞ ≤

2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)T
|λ∗k|

)
,

(54)

where T = log(4µ̃r̃|λ∗1|/ε).
Then, from Lemmas 4 and 5, we have∣∣∣|λ(T )

k+1| − |λ
∗
k+1|

∣∣∣ ≤‖HT ‖2

≤ 1

60

(
|λ∗k+1|+

(1

2

)T−1

|λ∗k|
)

≤ 1

60

(
|λ∗k+1|+

ε

2µ̃r̃

)
.

(55)

Now, we consider two cases,
Case 1: if η√

nc
λ

(T )
k+1 ≤

ε
ncn

, (55) implies that |λ∗k+1| ≤ ε
2µ̃r̃ .

Hence,

‖X(k)
T+1−X

∗‖∞ ≤
2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)T
|λ∗k|

)
≤ ε

ncn
. (56)

Similar results can be established for ST . Therefore, X =
X

(k)
T+1 and S = S

(k)
T satisfy (15) in Theorem 1.

Case 2: if η√
nc
λ

(T )
k+1 >

ε
ncn

, then (55) implies that |λ∗k+1| ≥
ε

6µ̃r̃ . Hence,

‖X(k)
T+1 −X∗‖∞ ≤

2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)T
|λ∗k|

)
≤2µ̃r̃

ncn

(
|λ∗k+1|+

ε

4µ̃r̃

)
≤2µ̃r̃

ncn

(
|λ∗k+2|+ 2|λ∗k+1|

)
.

(57)

Suppose we have an extra step

S̃
(k)
T+1 = T

ξ
(k)
T+1

(M −XT+1).

From Lemma 7, we have

‖S̃(k)
T+1 − S∗‖∞ ≤

7µ̃r̃

ncn

(
|λ∗k+2|+ 2|λ∗k+1|

)
,

Supp(S̃
(k)
T+1 − S∗) ⊆ Supp(S∗).

(58)

X
(k+1)
0 = X

(k)
T+1 is clear from Alg. 1, and it can also be

verified that S̃
(k+1)
0 = S̃

(k)
T+1. Hence, X

(k+1)
0 and S̃

(k+1)
0

satisfy (44) as well.
Note that H̃X∗ is at most rank-2r, we will meet the termi-
nating condition anyway. If not, from case 2, we have the
contradiction

0 = |λ∗r+1| ≥
ε

6µ̃r̃
> 0. (59)



Hence, the algorithm has at most r ·T iterations, and we need
the size of samplings satisfies

m ≥ rTm̂ ≥ max(C4, C5)µ2c2sr
3 log2(n)T, (60)

where the requirement on m̂ comes from Lemmas 5 and 6.

E. Proof of Lemma 5

We first bound the spectral norm of H1,t and H2,t in (65)
and (63), respectively. Then, the theoretical bound will be
directly obtained by applying the triangle inequality in (38).
Lemma 8 is a direct application of the standard Bernstein
inequality, which shows that the operator p̂−1H̃PΩk,t

can be
close enough to its mean H̃. Though the definition of H̃ is
different from that in [33], (61) still holds and can be proved
by following the same framework in [33].

Lemma 8 ([33], Lemma 12). Let H2,t satisfy the definition
in (25). Then, with probability at least 1− ncn−2, we have

‖H2,t‖2 ≤
√

16 log(n)βt (61)

provided that m̂ ≥ 16 log(n).

Proof of Lemma 5. Since Ht = H1,t + H2,t, we have
‖Ht‖2 ≤ ‖H1,t‖2 + ‖H2,t‖2.
From Lemma 8, we know that

‖H2,t‖2 ≤
√

16 log(n)βt

≤
√

16 log(n)

m̂
ncn‖Xt + St −X∗ − S∗‖∞.

(62)

From the assumption, we know that

‖Xt + St −X∗ − S∗‖∞ ≤‖Xt −X∗‖∞ + ‖St − S∗‖∞

≤9µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
.

Hence, if m̂ ≥ C4µ̃
2r̃2 log(n) with C4 ≥ 48002, we have

‖H2,t‖2 ≤
1

120

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
. (63)

For ‖H1,t‖2, from the assumption, we know that each row or
column of H1,t has at most αncn nonzero entries. Then, for
any pair of unit vectors z, w∈ Cncn, we have

|zH1,tw
H |

=|
∑
i1,i2

zi1wi2(H1,t)i,j | ≤
∑
i1,i2

|zi1wi2 | · |(H1,t)i,j |

≤1

2

∑
i1,i2

(
|zi1 |2 + |wi2 |2

)
|(H1,t)i,j | ≤ αncn‖H1,t‖∞

≤ 1

120

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)

(64)

with α ≤ 1
840µ̃r̃ . Since (64) holds for any pair of unit vectors

z and w, we know that

‖H1,t‖2 ≤
1

120

(
|λ∗k+1|+

(1

2

)t−1

|λ∗k|
)
, (65)

which completes the whole proof.

F. Proof of Lemma 6

The proof of Lemma 6 is built upon exploiting the Taylor
expansion of the eigenvectors of H̃X∗, where similar proof
structures are presented in both [23] and [15]. However,
neither [23] nor [15] considers missing data and bad data
simultaneously, so the perturbation item Ht in our paper is
different since both H1,t and H2,t are nonzero.

The following two lemmas are introduced to condense
our proof of Lemma 6. Lemma 9 illustrates the relationship
between the infinity norm and the spectral norm of a matrix,
and it is a direct corollary of the incoherence definition. (66)
in Lemma 10 first appears in the proof of Lemma 7 [23] and
later is summarized in Lemma 13 [15].

Lemma 9 ([15], Lemma 12). Suppose A ∈ Cn×n is a
symmetric matrix with rank r and incoherence µ, then for
any symmetric matrix B ∈ Cn×n, we have

‖ABA−A‖∞ ≤
µr

n
‖ABA−A‖2.

Lemma 10 ([15], Lemma 13). Suppose A,E ∈ Cn×n are
two symmetric matrices. Let B = A + E and Qk(B) =
UΛUH be the eigenvalue decomposition of the best rank-k
approximation of B. Then, if Λ−1 exists, we have

‖A−AUΛ−1UHA‖2 ≤ 3‖E‖2 +
‖E‖22
|λk(B)|

+ |λk+1(B)|,

‖AUΛ−aUHA‖2 ≤ |λk(B)|−a
(
‖E‖2 + |λk(B)|

)2
, ∀a ≥ 2.

(66)

Proof of Lemma 6. Since ‖Xt+1 − X∗‖∞ = ‖H̃†(L̃t+1 −
H̃X∗)‖∞ ≤ ‖L̃t+1 − H̃X∗‖∞, it is sufficient to bound
‖L̃t+1 − H̃X∗‖∞. Recall that L̃t+1 = Q2k(W̃t) is a rank-
2k symmetric matrix, let L̃t+1 = ŨΛ̃ŨH be the eigen
decomposition of L̃t+1. On the other hand,

W̃t = H̃X∗ + Ht, (67)

then for each eigenvector ũi of L̃t+1, we have(
H̃X∗ + Ht

)
ũi = λi(W̃t)ũi.

For ∀ i ≤ k ≤ r, we know that |λ2i(W̃t)| = |λ2i−1(W̃t)| =
|λ(t)
i | ≥ |λ

(t)
k |. From Lemma 5 and (67), we know that

|λ(t)
k − λ

∗
k| ≤ ‖Ht‖2 ≤

1

20
λ∗k, (68)

that is
λ

(t)
k ≥

19

20
λ∗k > 0. (69)

Then dividing by λi(W̃t) on both sides,(
I − Ht

λi(W̃t)

)
ũi =

1

λi(W̃t)
(H̃X∗)ũi.

Then, with Taylor expansion,

ũi =

(
I − Ht

λi(W̃t)

)−1
(H̃X∗)ũi
λi(W̃t)

=

(
I +

Ht

λi(W̃t)
+

(
Ht

λi(W̃t)

)2

+ · · ·

)
(H̃X∗)ũi
λi(W̃t)

.



Hence,

ŨΛ̃ŨH − H̃X∗

=

∞∑
a=0

∞∑
b=0

(
Ht

)a
(H̃X∗)ŨΛ̃−(a+1)Λ̃Λ̃−(b+1)ŨH(H̃X∗)

(
Ht

)b
− H̃X∗

=

∞∑
a=0

∞∑
b=0

(
Ht

)a
(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)

(
Ht

)b − H̃X∗
=
(
(H̃X∗)ŨΛ̃−1ŨH(H̃X∗)− H̃X∗

)
+
∑

a+b≥1

(
Ht

)a
(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)

(
Ht

)b
.

Then,
‖ŨΛ̃ŨH − H̃X∗‖∞
≤‖(H̃X∗)ŨΛ̃−1ŨH(H̃X∗)− H̃X∗‖∞

+
∑

a+b≥1

‖
(
Ht

)a
(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)

(
Ht

)b‖∞
:=I0 +

∑
a+b≥1

Ia,b.

For I0, since W̃t − H̃X∗ = Ht, we have

I0
(a)

≤ µ̃r̃

ncn
‖(H̃X∗)ŨΛ̃−1ŨH(H̃X∗)− H̃X∗‖2

(b)

≤ µ̃r̃

ncn

(
3‖Ht‖2 +

‖Ht‖22
|λ(t)
k |

+ |λ(t)
k+1|

)
.

(70)

where (a) holds due to Lemma 9, and (b) comes from the first
inequality in Lemma 10.
Again from W̃t − H̃X∗ = Ht, Lemma 4 tells us that

|λ(t)
k+1| ≤ ‖Ht‖2 + |λ∗k+1|. (71)

On the other hand, from (69), we have

‖Ht‖2
λ

(t)
k

≤ 1/20

1− 1/20
≤ 1

19
. (72)

Then,
I0 ≤

µ̃r̃

ncn

(
5‖Ht‖2 + |λ∗k+1|

)
. (73)

For Ia,b and a+ b ≤ log(ncn), we have
Ia,b

=max
i1,i2

∣∣∣eT
i1

(
Ht

)a
(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)

(
Ht

)b
ei2

∣∣∣
≤max

i1,i2
‖eT

i1

(
Ht

)a
Ũ‖2‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

· ‖eT
i2

(
Ht

)b
Ũ‖2

≤
(
C3βt log(n) + αncn‖H1,t‖∞

)a+b

·max
i1,i2
‖eT

i1Ũ‖2‖e
T
i2Ũ‖2‖(H̃X

∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

≤ µ̃r̃

ncn

(
C3βt log(n) + αncn‖H1,t‖∞

)a+b

· ‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2
(c)

≤ µ̃r̃

ncn

( 1

60
νt
)a+b

‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

with high probability, where νt = |λ∗k+1| +
(

1
2

)t−1

|λ∗k|.
Moreover, (c) holds since

C3βt log(n) ≤ 1

120
νt, αncn‖H1,t‖∞ ≤

1

120
νt (74)

provided that m̂ ≥ C5µ̃
2r̃2 log2(n) and α ≤ 1

840µ̃r̃ , where
C5 = (1200C3)2.
When a+ b ≥ log(ncn), we have

Ia,b

=max
i1,i2
|eT

i1

(
Ht

)a
(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)

(
Ht

)b
ei2 |

≤max
i1,i2
‖eT

i1

(
Ht

)a
Ũ‖2‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

· ‖eT
i2

(
Ht

)b
Ũ‖2

≤‖Ht‖a+b
2 ‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

(d)

≤
( 1

60
νt
)a+b

‖Ht‖a+b
2 ‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

≤
(1
2

)a+b( 1

30
νt
)a+b

‖Ht‖a+b
2

· ‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

≤ µ̃r̃

ncn

( 1

30
νt
)a+b

‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2,

where (d) holds from Lemma 5.
Next, using Lemma 10, we have

‖(H̃X∗)ŨΛ̃−(a+b+1)ŨH(H̃X∗)‖2

≤|λ(t)
k |
−(a+b−1)

(
1 +
‖Ht‖2
|λ(t)
k |

)2

≤ 3|λ(t)
k |
−(a+b−1),

(75)

where the last inequality comes from (72).
Since νt ≤ 3|λ∗k| for t ≥ 0, we have∑

a+b≥1

Ia,b ≤
∑
a+b≥1

µ̃r̃

10ncn

(
30|λ(t)

k |
νt

)−(a+b−1)

νt

≤
∑
a+b≥1

µ̃r̃

10ncn

(
10|λ(t)

k |
|λ∗t |

)−(a+b−1)

νt

≤ µ̃r̃

2ncn
νt.

(76)

Hence, (73) and (76) suggest

‖ŨΛ̃Ũ − H̃X∗‖∞ ≤
µ̃r̃

ncn

(
5‖Ht‖2 + |λ∗k+1|

)
+

µ̃r̃

2ncn
νt

≤ µ̃r̃

ncn

(
νt + |λ∗k+1|

)
≤2µ̃r̃

ncn

(
|λ∗k+1|+

(1

2

)t
|λ∗k|

)
,

which completes the whole proof.


