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Abstract

In this paper, we consider the problem of sparse recovem fionlinear measurements, which has
applications in state estimation and bad data detectiopdamer networks. An iterative mixe€i and/,
convex programming is used to estimate the true state bylydoeearizing the nonlinear measurements.
When the measurements are linear, through using the almmdidBan property for a linear subspace,
we derive a new performance bound for the state estimatimr ender sparse bad data and additive
observation noise. When the measurements are nonlinegivereonditions under which the solution of
the iterative algorithm converges to the true state evenghdhe locally linearized measurements may
not be the actual nonlinear measurements. We also nunigrisaluate an iterative convex programming
approach to perform bad data detections in nonlinear @atpower networks problems. As a byproduct,
in this paper we provide sharp bounds on the almost Eucligeaperty of a linear subspace, using the

“escape-through-a-mesh” theorem from geometric funeli@malysis.
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. INTRODUCTION

In this paper, inspired by state estimation for nonlineactical power networks under bad data and
additive noise, we study the problem of sparse recovery fionlinear measurements. The static state of
an electric power network can be described by the vector efbltage magnitudes and angles. However,
in smart grid power networks, the measurement of these ifjigantan be corrupted due to errors in the
sensors, communication errors in transmitting the measame results, and adversarial compromises of

the meters. In these settings, the observed measuremertsncabnormally large measurement errors,

Part of this paper was presented in the 50th IEEE Conferendeezision and Control 2011 [18].
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called bad data, in addition to the usual additive obsermatioise. So the state estimation of power
networks needs to detect, identify, and eliminate theggelaneasurement errois [2], [14], [3]. To make
the problem more challenging, the measurements in poweroniet are generally nonlinear functions of
the states. This motivates us to study the general problestatd estimation from nonlinear measurements
and bad data.

In general, suppose that we make measurements to estimate the statedescribed by anm-
dimensional {» < n) real-numbered vector, then these measurements can bbenag am-dimensional

vectory, which is related to the state vector through the measureswration
y =h(x)+v+e, (1.1)

whereh(x) is a set ofn general functions, which may be linear or a nonlinear, and the vector of
additive measurement noise, amds the vector of bad data imposed on the measurements. |pdpisr,
we assume that is anm-dimensional vector with i.i.d. zero mean Gaussian elemehtvariances?.
We also assume thatis a vector with onlyk nonzero entries, and the nonzero entries can take arbitrary
real-numbered values, reflecting the nature of bad data.

When there are no bad data present, it is well known that tlastL8quare (LS) method can be used
to suppress the effect of observation noise on state e#insatn the LS method, we try to find a vector
x minimizing

[y = h(x)|2- (1.2)

However, the LS method generally only works well when there mo bad datae corrupting the
observationy. If the magnitudes of bad data are large, the estimationitrean be very far from the
true state. So bad data detection to eliminate abnormalureragnts is needed when there are bad data
present in the measurement results.

Since the probability of large measurement errors ocagirisrvery small, it is reasonable to assume
that bad data are only present in a small fraction of thavailable meter measurements results. So
bad data detection in power networks can be viewed as a spargedetection problem, which shares
similar mathematical structures as sparse recovery proliecompressive sensingl[5],/[4]. However,
this problem in power networks is very different from ordynaparse error detection problem [5]. In
fact, h(x) in (L.I) is a nonlinear mapping instead of a linear mappingra@]. It is the goal of this
paper to provide a sparse recovery algorithm and perforeanalysis for sparse recovery from nonlinear

measurements with applications in bad data detection &mtrétal power networks.

December 30, 2011 DRAFT



We first consider the simplified problem whéix) is linear, which serves as a basis for solving and
analyzing the sparse recovery problem with nonlinear nreasents. For this sparse recovery problem
with linear measurements, a mixed led&stnorm and least square convex programming is used to
simultaneously detect bad data and subtract additive rfoise the observations. In our theoretical
analysis of the decoding performance, we assfe is a linear transformatiot/x, where H is an
n xm matrix with i.i.d. standard zero mean Gaussian entriesoddpn using the almost Euclidean property
for the linear subspace generatedtywe derive a new performance bound for the state estimation e
under sparse bad data and additive observation noise. lanalysis, using the “escape-through-a-mesh”
theorem from geometric functional analysis [8], we are ablsignificantly improve on the bounds for the
almost Euclidean property of a linear subspace, which mapteeesting in a more general mathematical
setting. Compared with earlier analysis on the same opgitioiz problem in[[4], the analysis in this paper
is new using the almost Euclidean property rather than thgiceed isometry conditions used In [4], and
we are able to give explicit bounds on the error performandgch is generally sharper than the result
in [4] in terms of recoverable sparsity.

Generalizing the algorithm and results from linear measergs, we propose an iterative convex pro-
gramming approach to perform joint noise reduction and lzdd detection from nonlinear measurements.
We establish conditions under which the iterative algamittonverges to the true state in the presence of
bad data even when the measurements are nonlinear. Otivéeranvex programming based algorithm is
shown to work well in this nonlinear setting by numerical mdes. Compared with [12], which proposed
to apply/; minimization in bad data detection in power networks, oysrapch offers a better decoding
error performance when both bad data and additive observatise are present. [10][11] considered
state estimations under malicious data attacks, and fateulistate estimation under malicious attacks
as a hypothesis testing problem by assuming a prior prabadiktribution on the state. In contrast,
our approach does not rely on any prior information on thedig itself, and the performance bounds
hold for an arbitrary state. Compressive sensing with nonlinear measurements wededtin [1] by
extending the restricted isometry condition. Our sparsevery problem is different from the compressive
sensing problem considered if [1] since our measuremeatsvarcomplete and are designed to perform
sparse error corrections instead of compressive sensimgafalysis also does not rely on extensions of
the restricted isometry condition.

The rest of this paper is organized as follows. In Sectibrwi, study joint bad data detection and
denoising for linear measurements, and derive the perioceédound on the decoding error based on

the almost Euclidean property of linear subspaces. In @&, a sharp bound on the almost Euclidean
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property is given through the “escape-through-mesh” thorin Sectior 1V, we present explicitly
computed bounds on the estimation error for linear measemésnin Sectioh V, we propose our iterative
convex programming algorithm to perform sparse recovemnfnonlinear measurements, give theoretical
analysis on the performance guarantee of the iterativeritign and give an example to illustrate the
algorithm and performance bounds. In Secfioh VI, we presiemtilation results of our iterative algorithm

to show its performance in power networks. Secfiod VII cadek this paper.

[I. BAD DATA DETECTION FORLINEAR SYSTEMS

In this section, we introduce a convex programming formoitato do bad data detection in linear
systems, and characterize its decoding error performdnca.linear system, the correspondingx 1
observation vector in(I11) iy = Hx + e + v, wherex is anm x 1 signal vector {» < n), H is an
n X m matrix, e is a sparse error vector with nonzero elements, andis a noise vector withjv||2 < e.

In what follows, we denote the part of any vecterover any index sek aswy.

We solve the following optimization problem involving opiization variablesx andz, and we then

estimate the state to bex, which is the optimizer value fox.

min ly — Hx — z||1,
X,z

)

subjectto  |[|z]j2 <. (1.1)

This optimization problem appeared in a slightly differéortm in [4] by restrictingz in the null space
of H. We are now ready to give a theorem which bounds the decoding gerformance of (ILI1), using
the almost Euclidean property|[6]./[9].

Theorem 2.1: Lety, H, x, e andv are specified as above. Suppose that the minimum nonzenaaing
value of H is onin. Let C' be a real number larger than and suppose that every vecwrin range of
the matrix H satisfiesC||wg||1 < ||[wg|1 for any subsetX C {1,2,...,n} with cardinality |K| < F,
wherek is an integer, and{ = {1,2,....,n} \ K. We also assume the subspace generateH Isatisfies

the almost Euclidean property for a constant < 1, namely

avnfwlz < |lwlh

holds true for everyw in the subspace generated By
Then the solutiork to (II.I) satisfies

2(C +1)

—Umina(c — 1)6. (11.2)

[x —xl2 <
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Proof: Suppose that one optimal solution pair fo (Il.1)(3 z). Since||z||2 < ¢, we have||z|; <

Vitlla]s < ve.
Sincex andz = v are feasible for[{ILll) ang/ = Hx + e + v, then
ly — Hx —z||x
= |Hx—%x)+e+v—1z|
< [[Hx—-x)+e+v—v|
= el
Applying the triangle inequality td H (x — x) + e + v — 2||;, we further obtain

[1H(x = %) +eli = [Ivli = Izl < lle]s-

Denoting H (x — x) asw, because is supported on a sét with cardinality | K| < k, by the triangle

inequality for¢; norm again,
lells = Wzl + Iwglly = vl = l1z[ls < lef]s.

So we have

= lwilh + Iwglls < 12l + [[v]ly < 2v/ne (11.3)

With Clwx 1 < |[wsll1, we know

C 1 Wil1T > WK1 “K 1-

Cc-1

C—HH"VHl < 2V/ne.

By the almost Euclidean property,/n|wlls < ||w||1, it follows:

2(C+1)
< e .
Iwlls < S —ye (1.4)
By the definition of singular values,
omin|[x — X[}z < [|H (x = X)[]2 = [|wl|2, (11.5)
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so combining[(IL4), we get .
2 1
Il < 0 e
[
Note that when there are no sparse errors present, the dgcedior bound using the standard LS
method satisfiedx — x||2 < ﬁe [4]. Theorem[ 2.l shows that the decoding error bound_of](lis1
oblivious to the amplitudes of these bad data. This phenomevas also observed ihl[4] by using the
restricted isometry condition for compressive sensing.
We remark that, for givesr ande, by strong Lagrange duality theory, the solutioto (IL.I]) corresponds

to the solution tax in the following problem[(Il.6) for some Lagrange dual va@a\ > 0.
min - [ly — Hx — zfl + Aflzl2. (11.6)
In fact, when\ — oo, the optimizer||z||; — 0, and [IL.8) approaches
min [y - Hx]i,
and when\ — 0, the optimizerz — y — Hx, and [IL.6) approaches
min |y — Hx]l>.

Thus, [IL.6) can be viewed as a weighed versiorf;ominimization and’, minimization (or equivalently
the LS method). We will later use numerical experiments tasthat in order to recover a sparse vector
from measurements with both noise and errors, this weighesion outperforms both; minimization
and the LS method.

In the next two sections, we aim at explicitly computig}éﬂ% x y/n appearing in the error bound
(I.2), which is subsequently denoted@asn this paper. The appearance of t{ie factor is to compensate
for the energy scaling of large random matrices and its nmgawill be clear in later context. We first
compute explicitly the almost Euclidean property constaraind then use the almost Euclidean property

to get a direct estimate of the constdntin the error bound{IL.2).

[1l. BOUNDING THE ALMOST EUCLIDEAN PROPERTY

In this section, we would like to give a quantitative boundtba almost Euclidean property constant
a such that with high probability (with respect to the meadorehe subspace generated by rand&i

ay/n|lwll2 < ||lwl|1 holds for every vectow from the subspace generated By Here we assume that
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each element off is generated from the standard Gaussian distribubign, 1). Hence the subspace
generated by is a uniformly distributedn — m)-dimensional subspaces.

To ensure that the subspace generated fforsatisfies the almost Euclidean property with> 0, we
must have the event that the subspace generateHl lopes not intersect the sétv ¢ S"!||w|; <
ay/n||wl|2}, whereS"~1 is the unit Euclidean sphere iR". To evaluate the probability that this event
happens, we will need the following “escape-through-mekkbrem.

Theorem 3.1: [8] Let S be a subset of the unit Euclidean sphs&fe! in R". LetY be a randomm-
dimensional subspace &, distributed uniformly in the Grassmanian with respecti® Haar measure.

Let us further takew(S)=FE(supycg(h?w)), whereh is a random column vector iR" with i.i.d.

N(0,1) components. Assume that(S) < (vn —m — Q\/ﬁ). Then
(Va=m— g —w(S)
P(Y()S=0)>1-35e" =

From Theoreni_3]1, we can use the following programming toageestimate of the upper bound
of w(h, S) = supycq(hTw). Because the sdtw € S"!||w|1 < ay/n|lw|2} is symmetric, without
loss of generality, we assume that the elementh dbllow i.i.d. half-normal distributions, namely the
distribution for the absolute value of a standard zero meansSian random variables. With denoting

the i-th element ofh, sup,,.s(hTw) is equivalent to

max Zn: hiy; (1n.2)
subject to ;12 0,1<i<n (1n.2)
S <avi (1n.3)

=1
zn:yf =1. (1n.4)

=1

Following the method fron [17], we use the Lagrange duabt§ind an upper bound for the objective
function of [TIL.1]).

n

max h’w — ul(z w? — 1)

min
u1>0,us>0,A>0 w prt
n n
—UQ(Z w; — ay/n) + Z Aiw;, (111.5)
i=1 =1

where\ is a vector(Ay, A, ..., \p).

First, we maximize[(I[Lb) over;, i = 1,2, ...,n for fixed u1, uy and A. By making the derivatives to
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be zero, the minimizingy; is given by

Plugging this back to the objective function [n_(TlI.5), wetg

n

hlw — ul(z w? — 1)

1=1

—uz(z w; — ay/n) + Z A\ W;
i=1 i=1

no(_ ) )2
= 2iz ( uiu—i_ Ait hi) + u1 + an/nus. (1.e)
1

Next, we minimize [(ITL.6) over:; > 0. It is not hard to see the minimizing; is

Vi (—u2 4+ X + hi)?

Ul = 2 N
and the corresponding minimized value is
\IZ(U2+)\i+hi)2+a\/ﬁu2- (11.7)
=1

Then, we minimize[(IIL.7) oven > 0. Givenh andusy > 0, it is easy to see that the minimizingis

\ = up — hy if by < ug;
Z 0 otherwise

and the corresponding minimized value is

> (ug— hi)? + av/nug. (111.8)

1<i<n:h; <us

Now if we take anyus > 0, (IIL8) serves as an upper bound for (1ll.5), and thus alsapper bound

for supy,cg(h?w). Since/- is a concave function, by Jensen’s inequality, we have fgrgiwvenus, > 0,

E(sup (hTw)) < \/E{ Z (ug — h;)2} + an/nus. (11.9)

weS 1<i<n:h;<us

Sinceh has i.i.d. half-normal components, the righthand sidd bBjl equals to

(\/(u2+1)erfc Uz /V2) — \/2/Tuge%/2 + quy)v/n, (l.10)
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Fig. 1: o* overm/n

where erfc is the error function.
One can check thdat (T[.10) is convexin. Givena, we minimize [IIL.10) overn; > 0 and letg(a)\/n
denote the minimum value. Then from (T11.9) and (11 10) weokv

w(S) = E(s%%(hTw)) < g(a)v/n. (11.11)

Giveno = ™, we pick the largest* such thaty(a*) < v/1 — 4. Then asn goes to infinity, it holds that

1
2v/n—m

Then from Theoreni 31, with high probabilityw||; > a*y/n|w|2 holds for every vectow in the

w(S) < gla®)vn < (vVn—m — ). (111.12)

subspace generated By. We numerically calculate how* changes oved and plot the curve in Fig.
. For example, whend = 0.5, o* = 0.332, thus|w|; > 0.332y/n|/w||2 for all w in the subspace
generated byH.

Note that wheri> = % we geta = 0.332. That is much larger than the knownused in[19], which is
approximately0.07 (see Equation (12) in_[19]). When applied to the sparse megoproblem considered
in [19], we will be able to recover any vector with no more thag289n = 0.0578m nonzero elements,

which are20 times more than th%&m bound in [19].

IV. EVALUATING THE ROBUST ERRORCORRECTIONBOUND

If the elements in the measurement matfix are i.i.d. as the unit real Gaussian random variables
N(0,1), following upon the work of Marchenko and Pastur![13], Gerfiflrand Silverstein[[16] proved

that form/n = §, asn — oo, the smallest nonzero singular value

1
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almost surely as — co.

Now that we have already explicitly boundedand o, we now proceed to characterizé It turns
out that our earlier result on the almost Euclidean propeaty be used to computg.
Lemma 4.1: Suppose am-dimensional vectow satisfies|w||; > ay/n||w|2, and for some sek” C

{1,2,...,n} with cardinality | K| = k < n, ”WK‘”l = . Theng satisfies

wi —

pgr (1-p)? 1
— < .
k + n—k ~ a?n

Proof: Without loss of generality, we lgtw||; = 1. Then by the Cauchy-Schwarz inequality,

Wiz = w3 + [wgl3

> (”WK”1)2 + ( HWFHI )2

vn—k
2

=

_ 2,00

A F) 2
— = w]

1.
At the same time, by the almost Euclidean property,
o?nlwl3 < [wl,

so we must have

B> (1-p)? 1
[ < ]
k + n—k ~ a?n

[
Corollary 4.2: If a nonzeron-dimensional vectow satisfies|w|; > ay/n|w||2, and if for any set

K C {1,2,...,n} with cardinality |[K'| = k < n, C||lwg|1 = |[wx][1 for some numbe’ > 1, then

_ 02— 22 _
52(B+1 C%) —/(B+1-C?) 4B’ (V1)
n 2B
where B = {CX1°,
Proof: If C|wk|1 = ||[wg|1, we have
Wil 1
[wllh — C+1
So by Lemmd 4]15 = 1 satisfies
U
k n—k o?n
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This is equivalent to

1 C? (C +1)?
E + 1— k S a2
Solving this inequality for%, we get [[V.1). [ |
1

So for a sparsity rati(%, this corollary can be used to find a lower bouno[baatisfying% = o
Combining these results on computingin, « andC, we can then compute the bougﬁ%\/ﬁ =w

in Theoren 2.11. For example, whén= = = % we plot the boundw as a function of% in Fig.[2.

V. SPARSEERRORCORRECTION FROMNONLINEAR MEASUREMENTS

In applications, measurement outcome can be nonlineatifunscof system states. Let us denote the
i-th measurement bi;(x), wherel < i < n andh;(x) can be a nonlinear function &f. In this section,
we study the theoretical performance guarantee of spacseery from nonlinear measurements and
give an iterative algorithm to do sparse recovery from nmadr measurements, for which we provide
conditions under which the iterative algorithm convergeshe true state.

In Subsection V-A, we explore the conditions under whichrspaecovery from nonlinear measure-
ments are theoretically possible. In Subsecfion]|V-B, weckles our iterative algorithm to perform
sparse recovery from nonlinear measurements. In Subeé¢@, we study the algorithm performance
guarantees when the measurements are with or without &&lditise. In Subsectidn ViD, we give an

example to illustrate our algorithm and analysis.

A. Theoretical Guarantee for Direct ¢3 and ¢;-Minimization

We first give a general condition which guarantees recogerarrectly the state from the corrupted

observationy without considering the computational cost.
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Theorem 5.1: Lety, h(-), x, H, ande be specified as above; agd= h(x) + e. A statex can be

recovered correctly from any errerwith ||e|lo < k from solving the optimization
min [y = A()o, (V:1)

if and only if for anyx* # x, ||h(x) — h(x*)|lo > 2k + 1.

Proof: We first prove the sufficiency part, namely if for any # x,

h(x) —h(x*)|o > 2k+1, we
can always correctly recover from y corrupted with any erroe with |lel|o < k. Suppose that instead

an solution to the optimization problem (V.1) is & # x. Then

Iy = h(x*)llo
= [[(h(x) +€) = h(x")llo
[1h(x) = h(x")[lo = llello

2k +1) — k

v

v

> leflo = lly = 2()llo-

So x* # x can not be a solution td_(V.1), which is a contradiction.

For the necessary part, suppose that there exists' a@ax such that|h(x) — h(x*)|o < 2k. Let I be
the index set wheré(x) andh(x*) differ and its sizel/| < 2k. Let v = h(x*) — h(x). We picke such
thate; = v;, Vi € I', whereI’ C I is an index set with cardinality/’| = k; ande; to be 0 otherwise.
Then

Iy = h(x)llo
= [[P(x) = h(x") +ello

— |1 —k

IN

k= llello = lly = ()]0,

which means thak can not be a solution td_(\.1) and is certainly not a uniquettmi to (V.1). =
Theorem 5.2: Lety, h(:), x, H, ande be specified as above; and apd= h(x) + e. A statex can

be recovered correctly from any errerwith ||e|lp < k from solving the optimization

min [y~ h(l1, (v.2)
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if and only if for anyx* # x,

(h(x) — h(x*))k |1 < |[(h(x) — h(x*))%]l1, where K is the support of
the error vectoe.

Proof: We first prove if anyx* # x, [[(h(x) — h(x*))k |1 < [[(h(x) — h(x*))%|1, where K is
the support of the error vectaer, we can correctly recover statefrom (V.2). Suppose that instead an

solution to the optimization problerh (V.1) is a«f # x. Then

ly = h(x)lly
= [[(h(x) +€) = h(x")[l
= llex = (h(x") = h(x))r 1 + [[(R(x") = h(x))gllx
= lexll = [[(A(x*) = h(x)[[1 + [I(A(X") = h(x)) %l
> ekl = [ly = (=)
Sox* # x can not be a solution t¢_(V.2), and this leads to a contrauficti
Now suppose that there exists ah# x such that|(h(x) —h(x*)) k|1 > [[(h(x) — h(x*))%I/1, Wwhere

K is the support of the error vecter Then we can picle to be (h(x*) — h(x))x over its supportx’

and to be0 over K. Then

ly = h(x")lly
= [[h(x) = h(x") + e[l
= [[(h(x") = h(x)glh
< l(h(x) = h(x")kll = llelly = lly = (=),
which means thak can not be a solution t¢_(M.2) and is certainly not a uniqueittmt to (V.2). =
However, direc?, and/; minimization may be computationally costly becadgs@orma and nonlinear
h(-) may lead to non-convex optimization problems. In the nexisseation, we introduce our computa-

tionally efficient iterative sparse recovery algorithm ietgeneral setting when the additive noisés

present.

B. Iterative ¢;-Minimization Algorithm

Lety, h(-), x, H, e andv be specified as above; agd= h(x) + e + v with ||v]j2 < e. Now let

us consider the algorithm which recovers the state vasaipdeatively. Ideally, an estimate of the state
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variables x, can be obtained by solving the following minimization peoh,

min |y — h(x) -z,
X,Z

)

subjectto  ||z]j2 <. (V.3)

wherex is the optimal solutionx. Even though?; norm is a convex function, the functiok(-) may
make the objective function non-convex.

Sinceh is nonlinear, we linearize the equations and apply an iterairocedure to obtain a solution.
We start with an initial state. In the k-th (¢ > 1) iteration, letAy* = y — h(x*~1), then we solve
the following convex optimization problem,

min |Ay* — HPcl Ax — 2|y,

X,z

subjectto  ||z]j2 <, (V.4)

where H'°c4 is then x m Jacobian matrix of, evaluated at the point*~!. Let Ax* denote the optimal

solution Ax to (\.4), then the state estimation is updated by
xF = xF1 4 AxF. (V.5)

We repeat the process untlix* approache$ close enough ok reaches a specified maximum value.
Note that when there is no additive noise, we can take0 in this iterative algorithm. When there

is no additive noise, the algorithm is exactly the same assthg estimation algorithm from [12].

C. Convergence Conditions for the Iterative Sparse Recovery Algorithm

In this subsection, we discuss the convergence of the peapalgorithm in Subsectidn VIB. First, we
give a necessary condition (Theoréml5.3) for recoveringtiihe state when there is no additive noise,
and then give a sufficient condition (Theorém]5.4) for theaiige algorithm to converge to the true
state in the absence of additive noise. Secondly, we giv@énmrmance bounds (Theorém15.5) for the
iterative sparse recovery algorithm when there is additvise.

Theorem 5.3 (Necessary Condition for Recovering True State): Lety, h(-), x, H, ande be specified
as above; ang = h(x) +e. The iterative algorithm converges to the true statenly if for the Jacobian
matrix ¢! at the point ofx and for anyx* # 0, ||(H"*x*) |1 < ||(H'**'x*)% |1, whereK is the

support of the error vectas.
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Proof: The proof follows from the proof for Theoreim 5.2, with thedar functiong(Ax) = h(x) +

Hlocal Ax - where H'oca! s the Jacobian matrix at the true state n

Theorem 5.8 shows that for nonlinear measurements, thé Jacabian matrix needs to satisfy the
same condition as the matrix for linear measurements. T¢8siraes that the iterative algorithm starts
with the correct initial state. However, the iterative aion generally does not start the true state
In the following theorem, we give a sufficient condition féretalgorithm to converge to the true state
when there is no additive noise.

Theorem 5.4 (Guarantee without Additive noise): Lety, h(-), x, H, ande be specified as above; and
y = h(x)+e. Suppose that at every poirt the local Jacobian matrik is full rank and satisfies that for

everyz in the range offf, C||zx||1 < ||zx|

1, Where K is the support of the error vectetr Moreover,

for a fixed constanfi < 1, we assume that

2(0 + 1) 0.1 (Htrue _ Hlocal)

max

C=1 o ()

<8, (V.6)

holds true for any two states; andx,, where H'°c® s the local Jacobian matrix at the poiat, H e
is @ matrix such thab(xz) — h(x1) = H"®(x3 — X1), 0} 0x(

(A) = min{||Az||; : with ||z|; = 1}.

Then any statex can be recovered correctly from the observajofrom the iterative algorithm in

A) is the induced’; matrix norm for A,

andol

min

(A) for a matrix A is defined asr}

min

Subsection_V-B, regardless of the initial starting statehef algorithm.
Proof: We know that
y = H™eAx* + h(x*) + e, (V.7)

where H'"¢ is ann x m matrix andAx* = x — x*, namely the estimation error at tieth step.

Since at the(k + 1)-th step, we are solving the following optimization problem
min [y — h(x*) — H'*" Ax]s. (V.8)
Plugging [\.T) into [(\V8), this is equivalent to
rgi)? |H e Ax* + e — HIOAx]|;, (V.9)
which we can further write as

Igin ||HlocalAX* + (Htrue _ Hlocal)AX* te— HlocalAXHI' (VlO)
x
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We denote( H"¢ — ['ecel)Ax* asw, which is the measurement gap generated by using the local
Jacobian matrixi*°* instead of H"""¢. Suppose that the solution isx = Ax* — error. Since we
are looking for the solution which minimizes the objectiéienorm, andAx = Ax* is feasible for the

optimization problem[(VI8), we have
|H x error + w4 ey < |w + el|1. (V.11)

By triangular inequality, we have

Cc-1
el + C—HIIH“’C‘” xerror|y — [[wlly < lleflx + [lwll1. (V.12)

So

2(C + 1)
C—1

HHlocal % 67‘7"07‘”1 < ||W||1 (V13)

Sinceerror = Ax* — Ax, (x — x*) = Ax*, andx — xF! = (x — x¥) — (x"! —xF) = Ax* — Ax,

we have
HX _ Xk+1H1 - 2(0 + 1) O-rlna:c(Htrue _ Hlocal) (V 14)
=l = C-1 oh () '
where o} . (H"e — [local) and o . (H') are respectively the matrix quantities defined in the

statement of the theorem.

So as long as
2(0 + 1) 0.1 (Htrue _ Hlocal)

max

C -1 07171in (Hlocal)

< B, (V.15)

for some constant < 1, the algorithm converges to the true statand the estimation error eventually
decreases t0. ]

While the algorithm can converge to the true state when tiemo additive noise, the following
theorem gives the performance bound for the iterative spasovery algorithm when there is additive
noise.

Theorem 5.5 (Guarantee with Additive noise): Lety, h(-), x, H, e, andn be specified as above; and
y = h(x)+ e+ v with ||v||2 < e. Suppose that at every poirf the local Jacobian matrik is full rank
and satisfies that for evewyin the range ofH, C|zk |1 < |z|/1, whereK is the support of the error

vectore. Moreover, for a fixed constart < 1, we assume that

2(0 + 1) 0.1 (Htrue _ Hlocal)

max

C -1 O-rlnin(Hlocal)

<p (V.16)
holds for any two states; andx,, where H'*® is the local Jacobian matrix at the poiat, H"" is a
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matrix such thati(xs) — h(x1) = H"¢(x5 — x1), 0}

max (

(4) = min{|[Az]), : with [z]}, = 1}.

A) is the induced’; matrix norm for 4, and
oLin(A) for a matrix A is defined arl,;,

Then for any true state, the estimationk**! = x* + AzF+1, where AzF*+! is the solution to the

(k + 1)-th iteration optimization

min HAyk-i-l _ HlocalAXk—i-l _ ZHla
AxFt1 7
subjectto  ||z]|s <€ (V.17)
satisfies
2(C + 1)
_ k+1 < x 2
e xS o e 2V
2(0 4 1) U}nax(HtTue _ Hlocal) ’ ok ’
C—-1 0.1 ) (Hlocal) |X x |1'
min

. 1 true __ fylocal
As k — o0, with Z(chll) O-MQ; Ll (Hloill) ) < ﬁ < 1:

T
min

2(C +1)
(1= B)(C = 1)a,,, (Hoeat)

e — x"*1|y <

X 2v/ne.

Proof: The proof follows the same line of reasoning in proving Tleeoi5.4 and Theorefm 2.1. In
fact,
y = H™*Ax* + h(x*) + e + v, (V.18)

where H'"¢ is ann x m matrix andAx* = x — x*, namely the estimation error at tieth step.

Since at the(k + 1)-th step, we are solving the following optimization problem

min  ||Ay — H%Ax — 2|,
Ax,z

subjectto  ||z||2 <. (V.19)
Plugging ((V.18) into[(V.1B), we are really solving

min |H" e Ax* + e + v — HUAx — 2|,
Ax,z

subjectto  ||z]2 <e. (V.20)
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Denoting (H'#¢ — H'*?!) Ax* as w, which is the measurement gap generated by using the local

Jacobian matrixZe® instead of H*"“¢, then [V.20) is equivalent to

minax, ||H(Ax* — Ax) +w +e+v—z|,

subject to ||z]js <e. (V.21)

Suppose that the solution to (V|17) &&x = Ax* — error. We are minimizing the objectivé, norm,

and (Ax*,v) is a feasible solution with an objective function vall® + e||;, so we have
|H 5 error + w4 e+ v —z|] < ||w+ el (V.22)

By triangular inequality and the property éf'>®, using the same line of reasoning as in the proof
of Theoren 211, we have

Cc-1
el + C—HHHIOC‘” xerror|ly — Wiy — [Ivily — |l
< llellr + lIwlls. (V.23)

So
2(C+1)

Hlocal % <
I error|; < o1

(wlly + [[vllx + [12]1)- (V.24)

Since||v||; and ||z||; are both no bigger thaf/ne, using the same reasoning as in the proof of
Theoreni 5.4, we have

2(C + 1)
k+1
e = X = e o,y <Y
20C +1 07171ax Htrue _ Hlocal
( ) ( ) HX _ Xk”h

C—-1 07171in (Hlocal)

where o}

max

(Htrue _ Hlocal) and 0,1

min

(H'ocal) are respectively the matrix quantities defined in the
statement of the theorem.

So as long as
2(0 + 1) O‘l (Htrue _ Hlocal)

max

C=1 ol (Hw)

< B, (V.25)

for some fixed constant < 1, the error upper bound converges(gqﬁ)(cf(gji)n(moml) X 2y/ne. N
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D. An Example of Sparse Recovery from Nonlinear Measurements

Now we give an example of sparse recovery from nonlinear oreagents. For simplicity, we make
the measurements corrupted with sparse bad data but notditiive noisei(-) is a 12-dimensional
vector as a mapping of two variablesandy, which is given in[(V-D). We index thé2 measurements

sequentially from top to bottom as2,..., 12.

(z +y)sin(z +y)
(x +y) cos(x +y)
(z —y)sin(z —y)
(z —y) cos(z —y)
(x 4+ y)sin(z — y)
hr.y) = (x — y)sin(z +y)
(x +y) cos(z — y)
(x —y)cos(x +y)
x sin(x)
x cos(z)
ysin(y)
ycos(y)

The following theorem shows that this set of nonlinear messents are able to correttcorrupted
entry in the measurements.

Lemma 5.6 If (x1,91) # (22,v2),

h(z1,y1) — h(z2,92)|l0 > 3, and so any state can be correctly
recovered when at most one error is present in the measuremen
Proof: Suppose that; —y; = zo —yo andx1 + 11 # 22 +yo. We further consider two cases. In the

first casex; — y1 = z2 — y2 = 0, then for index 7, at least one of indices 1 and 2, and at legestod
indices 9, 10, 11 and 12z, y;) andh(xs,y2) are different. In the second casg,—y; = v —y2 # 0,
then for at least one of indices 1 and/d;z1,y1) andh(xs,y2) are different; for at least one of indices
5 and 7,h(z1,y1) andh(z2, yo) are different; and for at least one of indices 9, 10, 11 andhl2;, y;)
andh(z2,y2) are different.

Suppose that; + y; = x2 + yo andzy — y1 # 2 — yo. By symmetry to the previous scenario
“r1 —y1 =22 —yo @Ndxy +y1 # x2 + 12", We have|h(zi,y1) — h(x2,y2)(l0 > 3.

Now we suppose that; — y1 # 2 — yo andzy +y1 # x2 + yo, then then for at least one of indices 1

and 2,h(x1,y1) andh(zs,y2) are different; for at least one of indices 3 andz1,y1) andh(xz, y2)
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are different; and for at least one of indices 9, 10, 11 andhl2,,y;) andh(z2,y2) are different.

Summarizing all these scenarios,(if;, y1) # (x2,y2), ||h(z1,y1) — h(x2,y2)|l0 > 3. [

So this system of nonlinear measurements can guaranteectiog’l bad data entry. But can we
efficiently find the true state from bad data using the iteeaiparse recovery algorithm in Subsection
V-BP? To proceed, we first give the Jacobian matrix igr) in (\.6).

Suppose the true state (i8,y) = (0.2,0.45), and suppose there is one bad data entry in the measure-
ments, where we le¢ = (0,0,0,0,0,1.7783,0,0,0,0,0,0). Suppose that the iterative sparse recovery
algorithm starts with the initial statézg,yo) = (0.1,0.2). Then by definition, at the initial point

(zo,y0) = (0.1,0.2), the local Jacobian matrix is

0.5821  0.5821
0.8667  0.8667

~0.1993  0.1993

0.9850  —0.9850
0.1987  —0.3983
plocal _ 0.2000 —0.3911 V26)
1.0250  0.9651

0.9849  —0.9258

0.1993 0
0.9850 0
0 0.3947
0 0.9403

Then by using the mean value theorem in two variables for wWedve functions inki(-), we can
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calculate aH!"“¢ as
0.8707 0.8707

0.6596  0.6596
~0.3459  0.3459

0.9515 —0.9515
0.2932  —0.6407
. 0.2984  —0.6063
Hiree — (V.27)
1.0709  0.8968

0.9683 —0.8013

0.2975 0
0.9651 0
0 0.6239
0 0.8367

For the small example with two variables, we can calcuidig, (H!¢— H'*¢!) = 1.6590, o) . (H'"c) =

3.9284, andC = 13.5501. So

2(0 + 1) 0.1 (Htrue _ Hlocal)

max

C -1 O-rlm‘n(Hlocal)

= 0.9792 < 1, (V.28)

which satisfies the condition appearing in Theoten 5.4.

In fact, in the first iteration, the algorithm outputs;, y1) = (0.1980, 0.4392) and||(z1,y1)—(z,y)||2 =
0.0110. After the second iteration, we already get a very good egion (x5, y2) = (0.2000,0.4500)
and||(x2,92) — (x,9)|l2 = 2.2549 x 10~°. The solution does converge to the true state.

We note that the convergence condition in Theotem 5.4 isezoatve. Sometimes even if the initial
starting point is far from the true state and the convergesmadition fails, the algorithm can still
converge. For example, now suppose that the true state(is, af = [0.4,1.2] and the iterative sparse
recovery algorithm still initializes with(zo, yo) = (0.1,0.2). Suppose that the bad data vector is still

e = (0,0,0,0,0,1.7783,0,0,0,0,0,0). Then again by using the mean value theorem, we calculate a
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sin(x +y)+ (xr+y)cos(z +y) sin(zx+y)+ (z+y)cos(z +y)
cos(z+vy) — (z+y)sin(zr +vy) cos(x+y)— (x +y)sin(z +y)
sin(x —y) + (z —y) cos(xr —y) —sin(z —y) — (v —y) cos(x — y)
cos(x —y) — (x —y)sin(x —y) —cos(zx —y)+ (z —y)sin(z — y)
sin(x —y) + (z +y)cos(x —y) sin(x —y) — (z + y) cos(x — y)

(o, y) = sin(z +y) + (z —y) cos(z +y) —sin(z +y) + (z — y) cos(z + y) (V.6)
' cos(x —y) — (z+y)sin(z —y) cos(x —y) + (x + y)sin(z — y) '
cos(z+y) — (x —y)sin(zr +vy) —cos(x+y)— (z—y)sin(x +y)

sin(z) + x cos(x) 0
cos(z) — xsin(x) 0
0 sin(y) + y cos(y)
0 cos(y) — ysin(y)
Htrue as
1.1621 1.1621
—0.2566 —0.2566
—0.8055 0.8055
0.6543 —0.6543
0.4119 —1.2413
. 0.4068 —0.8921
H'™ = (V.29)
1.3597 0.4083
0.9437 —0.1640
0.4860 0
0.8964 0
0 1.0786
0 0.2385

In the first iteration, we get a new estimation of the sfatg y;) = (0.3730,0.7558) and||(z1,y1) —

(z,y)||2 = 0.4450. After the second iteration, we get a new estimatjon, y2) = (0.3995,1.1468) and
|(z2,y2)—(x,y)]]2 = 0.0532. After the third iteration, we get a new estimatigy, y3) = (0.400, 1.2003)

and||(z3,y3) — (7,9)|l2 = 2.96 x 10~*. The algorithm converges to the true state even though in the

(H'ecaly = 3.9284, C' = 13.5501 and

first step,o.

max

December 30, 2011

(Htrue _ Hlocal) = 6.6885, 0.1 )

min

2(0 + 1) O.}nax(Htrue _ Hlocal)

= 3.9478 > 1.

C -1 O-ylmn(Hlocal)

(V.30)
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VI. NUMERICAL RESULTS

In our simulation, we apply (I[}6) to estimate an unknownteedrom Gaussian linear measurements
with both sparse errors and noise, and also apply the iteraiethod to recover state information from
nonlinear measurements with bad data and noise in a powtEnsys

Linear System: We first consider recovering a signal vector from linear G@urs measurements. Let
m = 60 andn = 150. We generate the measurement mafd%*™ with i.i.d. N(0,1) entries. We also
generate a vectax € R™ with i.i.d Gaussian entries and normalize it|fg|| = 1.

We fix the noise level and consider the estimation perforrramioen the number of erroneous mea-
surements changes. We add to each measuremeHtxofvith a Gaussian noise independently drawn
from N(0,0.5%). Let p denote the percentage of erroneous measurements. Gives randomly choose
pn measurements, and each such measurement is added with gsigdBaarsor independently drawn from
N(0,5%). We apply [IL6) to estimatex using different choices ofi. Let x* denote the estimation of
x, and the estimation error is represented|y — x||o. We use[(IL.6) instead of (Il1) in simulation,
since the recovering algorithm has no prior knowledge ofrthise vector, and solving an unconstrained
optimization problem is more computationally efficientrihsolving a constrained one.

Fig.[3 shows how the estimation error changeg @screases, where each result is averaged over one
hundred and fifty runs. As discussed earlier, whas large, likeA = 18 in this example [{ILB) approaches
¢1-minimization; when) is close to zero, like\ = 0.05 here, [I.6) approache& -minimization; when
A = 8, ([.6) can be viewed as a weighted version/gfand ¢, minimization. Whenp is zero or close
to one, the measurements only contain i.i.d. Gaussian sioibas, among the three choices gfthe
estimation error is relatively small when= 0.05. Whenp is away from zero and one, the measurements
contain both noise and sparse errors, then a weighted werie and/, minimization (represented by the
case) = 8) outperforms both/;-minimization (approximated by the case= 18) and ¢,-minimization
(approximated by the case= 0.05) in terms of a small estimation error.

We next consider the recovery performance when the numberroheous measurements is fixed.
We randomly choose twelve measurements and add to each sagurament an independent Gaussian
error from N (0,52). Then, we add an independent Gaussian noise f\i®, %) to each one of the:
measurements. Figl 4 shows how the estimation éjxdr— x||» changes ag increases with different
choices ofA\. Wheno is close to zero, the effect of sparse errors are dominating ¢, -minimization
(approximated by the case = 18) has the best recovery performance. Whers large, the effect of

i.i.d. Gaussian noises are dominating, tigsninimization (approximated by the case= 0.05) has the
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Fig. 4: Estimation error versus for Gaussian measurements with fixed percentage of errors

best recovery performance. In between, a weighted verdigh and ¢, minimization (represented by
the case\ = 8) has the best performance.

For a giveno, we also apply[{(IL.6) withA from 0.05 to 12.05 (step size 0.2), and pick the bgst
with which the estimation error is minimized. For eagchthe result is averaged over three hundred runs.
Fig. [ shows the curve of* againstoc. When the percentage of measurements with bad data is fixed,
(p = 12/100 = 0.12 here,) \* decreases as the noise level increases.

Power System: We also consider estimating the state of a power system fr@italle measurements
and known system configuration. The state variables aredli@ge magnitudes and the voltage angles at
each bus. The measurements can be the real and reactive ipjgetions at each bus, and the real and
reactive power flows on the lines. All the measurements areupted with noise, and a small fraction
of the measurements contains errors. We would like to estirtiee state variables from the corrupted

measurements.
The relationship between the measurements and the staéblearfor ak’-bus system can be stated
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11

Fig. 5: A* versuso for Gaussian measurements

as follows [12]:

1%

P, = Z EiEj}/ij COS(@U +6; — 5j), (V|1)
j=1
k/
Qi = Y EiE;Yysin(0;;+ 6 — ), (V1.2)
j=1
Py = EE;Y; COS(eij + &; — 6j)
—E?Yij cosb;; + EfYSZ cosfs; 1 # 7, (VI.3)
Qij = EiE;Yj;sin(0;; + 0, — 6))
—E2Yi;sin6;; + EXYyisin0s; i # j, (V1.4)

where P; and(); are the real and reactive power injection at busspectively,P;; andQ;; are the real
and reactive power flow from busto busj, E; andé; are the voltage magnitude and angle at bus
Y;; and#;; are the magnitude and phase angle of admittance fromi bobusj, Y;; andd,; are the
magnitude and angle of the shunt admittance of line at:bGven a power system, a¥;;, 0;;, Ys; and
0,; are known.

For ak’-bus system, we treat one bus as the reference bus and sailtixgevangle at the reference
bus to be zero. There are = 2k’ — 1 state variables with the first’ variables for the bus voltage
magnitudest; and the resk’ — 1 variables for the bus voltage anglés Let x € R™ denote the state
variables and leyy € R™ denote thex measurements of the real and reactive power injection aneipo
flow. Let v € R"™ denote the noise and € R™ denote the sparse error vector. Then we can write the
equations in a compact form,

y =h(x)+v+e, (VL5)
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THREE WINDING TRANSFORMER EQUIVALENTS
HANCOCK ROANOKE
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Fig. 6: IEEE 30-bus test system

whereh(-) denotesn nonlinear functions defined i (V1.1) t6 (V1.4).

We use the iterative algorithm introduced in Subseclion] ¥6Brecoverx from y. We start with
the initial statex” wherez? = 1 for all i € {1,..,n}, andz? = 0 for all i € {n +1,...,2n — 1}.
Since we assume no knowledge of the magnituder &fnd unconstrained problem is generally more
computationally efficient than a constrained one, in tlie iteration, instead of solving (M.4), we solve
the following unconstrained convex optimization problem

min  ||Ay* — HUAx — z||; + )|z, (V1.6)

X,z

where H'e is the Jacobian matrix of evaluated ax*~!. Let Ax* denote the optimal solution akx

to (VL.G), then the state estimation is updated by
xF = x4+ AxF. (VL.7)

We repeat the process untlix” is close to0, or the number of iteration reaches a specified value.
We evaluate the performance on the IEEE 30-bus test systignl@FBhows the structure of the test

system. Then the state vector contalits variables. We takex = 100 measurements including the

real and reactive power injection at each bus and some ofdhkeand reactive power flows on the

lines. evaluate how the estimation performance changdseasdise level increases when the number of
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Fig. 7: Estimation error versus with fixed percentage of errors in power system

erroneous measurements is fixgds fixed to be 0.06, and we randomly choose aBetith cardinality

|T'| = pn = 6. Each measurement with its index T contains a Gaussian error independently drawn
from N (0,0.7?). Each measurement also contains a Gaussian noise indegigratawn fromN (0, o2).

For a fixed noise levet, we use the above mentioned iterative procedure to rectreestate vector
x. The result is averaged over two hundred runs. Eig. 7 shoeresimation errofjx* — x||» against

o whenp = 0.06. Between)\ = 12 (approximating/;-minimization) and\ = 0.5 (approximating/s-
minimization), the former one has a better recovery perforoe when the noise levelis small, and the
latter one has a better performance wheis large. Moreover, the recovery performance whea 5 in

general outperforms that whenis either large X = 12) or small A = 0.05).

VIlI. CONCLUSION

In this paper, we studied sparse recovery from nonlinearsoreanents with applications in state
estimation for power networks from nonlinear measuremeotsupted with bad data. An iterative mixed
¢ and ¢, convex programming was proposed for state estimation balliodinearizing the nonlinear
measurements. By studying the almost Euclidean property finear subspace, we gave a new state
estimation error bound when the measurements are lineathantieasurements are corrupted with both
bad data and by additive noise. When the measurements aliaeasrand corrupted with bad data, we
gave conditions under which the solution of the iteratigoathm converges to the true state even though
local linearizing of measurements may not be accurate. Whenigally evaluated the iterative convex
programming approach performance in bad data detectiondolinear electrical power networks. As a
byproduct, we provided sharp bounds on the almost Eucligeeaperty of a linear subspace, using the

“escape-through-a-mesh” theorem from geometric funefi@malysis.
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