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Abstract

In this paper, we consider the problem of sparse recovery from nonlinear measurements, which has

applications in state estimation and bad data detection forpower networks. An iterative mixedℓ1 andℓ2

convex programming is used to estimate the true state by locally linearizing the nonlinear measurements.

When the measurements are linear, through using the almost Euclidean property for a linear subspace,

we derive a new performance bound for the state estimation error under sparse bad data and additive

observation noise. When the measurements are nonlinear, wegive conditions under which the solution of

the iterative algorithm converges to the true state even though the locally linearized measurements may

not be the actual nonlinear measurements. We also numerically evaluate an iterative convex programming

approach to perform bad data detections in nonlinear electrical power networks problems. As a byproduct,

in this paper we provide sharp bounds on the almost Euclideanproperty of a linear subspace, using the

“escape-through-a-mesh” theorem from geometric functional analysis.

I. INTRODUCTION

In this paper, inspired by state estimation for nonlinear electrical power networks under bad data and

additive noise, we study the problem of sparse recovery fromnonlinear measurements. The static state of

an electric power network can be described by the vector of bus voltage magnitudes and angles. However,

in smart grid power networks, the measurement of these quantities can be corrupted due to errors in the

sensors, communication errors in transmitting the measurement results, and adversarial compromises of

the meters. In these settings, the observed measurements contain abnormally large measurement errors,

Part of this paper was presented in the 50th IEEE Conference on Decision and Control 2011 [18].
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called bad data, in addition to the usual additive observation noise. So the state estimation of power

networks needs to detect, identify, and eliminate these large measurement errors [2], [14], [3]. To make

the problem more challenging, the measurements in power networks are generally nonlinear functions of

the states. This motivates us to study the general problem ofstate estimation from nonlinear measurements

and bad data.

In general, suppose that we maken measurements to estimate the statex described by anm-

dimensional (m < n) real-numbered vector, then these measurements can be written as ann-dimensional

vectory, which is related to the state vector through the measurement equation

y = h(x) + v + e, (I.1)

whereh(x) is a set ofn general functions, which may be linear or a nonlinear, andv is the vector of

additive measurement noise, ande is the vector of bad data imposed on the measurements. In thispaper,

we assume thatv is anm-dimensional vector with i.i.d. zero mean Gaussian elements of varianceσ2.

We also assume thate is a vector with onlyk nonzero entries, and the nonzero entries can take arbitrary

real-numbered values, reflecting the nature of bad data.

When there are no bad data present, it is well known that the Least Square (LS) method can be used

to suppress the effect of observation noise on state estimations. In the LS method, we try to find a vector

x minimizing

‖y − h(x)‖2. (I.2)

However, the LS method generally only works well when there are no bad datae corrupting the

observationy. If the magnitudes of bad data are large, the estimation result can be very far from the

true state. So bad data detection to eliminate abnormal measurements is needed when there are bad data

present in the measurement results.

Since the probability of large measurement errors occurring is very small, it is reasonable to assume

that bad data are only present in a small fraction of then available meter measurements results. So

bad data detection in power networks can be viewed as a sparseerror detection problem, which shares

similar mathematical structures as sparse recovery problem in compressive sensing [5], [4]. However,

this problem in power networks is very different from ordinary sparse error detection problem [5]. In

fact, h(x) in (I.1) is a nonlinear mapping instead of a linear mapping asin [4]. It is the goal of this

paper to provide a sparse recovery algorithm and performance analysis for sparse recovery from nonlinear

measurements with applications in bad data detection for electrical power networks.

December 30, 2011 DRAFT



3

We first consider the simplified problem whenh(x) is linear, which serves as a basis for solving and

analyzing the sparse recovery problem with nonlinear measurements. For this sparse recovery problem

with linear measurements, a mixed leastℓ1 norm and least square convex programming is used to

simultaneously detect bad data and subtract additive noisefrom the observations. In our theoretical

analysis of the decoding performance, we assumeh(x) is a linear transformationHx, whereH is an

n×m matrix with i.i.d. standard zero mean Gaussian entries. Through using the almost Euclidean property

for the linear subspace generated byH, we derive a new performance bound for the state estimation error

under sparse bad data and additive observation noise. In ouranalysis, using the “escape-through-a-mesh”

theorem from geometric functional analysis [8], we are ableto significantly improve on the bounds for the

almost Euclidean property of a linear subspace, which may beinteresting in a more general mathematical

setting. Compared with earlier analysis on the same optimization problem in [4], the analysis in this paper

is new using the almost Euclidean property rather than the restricted isometry conditions used in [4], and

we are able to give explicit bounds on the error performance,which is generally sharper than the result

in [4] in terms of recoverable sparsity.

Generalizing the algorithm and results from linear measurements, we propose an iterative convex pro-

gramming approach to perform joint noise reduction and bad data detection from nonlinear measurements.

We establish conditions under which the iterative algorithm converges to the true state in the presence of

bad data even when the measurements are nonlinear. Our iterative convex programming based algorithm is

shown to work well in this nonlinear setting by numerical examples. Compared with [12], which proposed

to applyℓ1 minimization in bad data detection in power networks, our approach offers a better decoding

error performance when both bad data and additive observation noise are present. [10][11] considered

state estimations under malicious data attacks, and formulated state estimation under malicious attacks

as a hypothesis testing problem by assuming a prior probability distribution on the statex. In contrast,

our approach does not rely on any prior information on the signal x itself, and the performance bounds

hold for an arbitrary statex. Compressive sensing with nonlinear measurements were studied in [1] by

extending the restricted isometry condition. Our sparse recovery problem is different from the compressive

sensing problem considered in [1] since our measurements are overcomplete and are designed to perform

sparse error corrections instead of compressive sensing. Our analysis also does not rely on extensions of

the restricted isometry condition.

The rest of this paper is organized as follows. In Section II,we study joint bad data detection and

denoising for linear measurements, and derive the performance bound on the decoding error based on

the almost Euclidean property of linear subspaces. In Section III, a sharp bound on the almost Euclidean
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property is given through the “escape-through-mesh” theorem. In Section IV, we present explicitly

computed bounds on the estimation error for linear measurements. In Section V, we propose our iterative

convex programming algorithm to perform sparse recovery from nonlinear measurements, give theoretical

analysis on the performance guarantee of the iterative algorithm, and give an example to illustrate the

algorithm and performance bounds. In Section VI, we presentsimulation results of our iterative algorithm

to show its performance in power networks. Section VII concludes this paper.

II. BAD DATA DETECTION FORL INEAR SYSTEMS

In this section, we introduce a convex programming formulation to do bad data detection in linear

systems, and characterize its decoding error performance.In a linear system, the correspondingn × 1

observation vector in (I.1) isy = Hx + e + v, wherex is anm × 1 signal vector (m < n), H is an

n×m matrix, e is a sparse error vector withk nonzero elements, andv is a noise vector with‖v‖2 ≤ ǫ.

In what follows, we denote the part of any vectorw over any index setK aswK .

We solve the following optimization problem involving optimization variablesx andz, and we then

estimate the statex to be x̂, which is the optimizer value forx.

min
x,z

‖y −Hx− z‖1,

subject to ‖z‖2 ≤ ǫ. (II.1)

This optimization problem appeared in a slightly differentform in [4] by restrictingz in the null space

of H. We are now ready to give a theorem which bounds the decoding error performance of (II.1), using

the almost Euclidean property [6], [9].

Theorem 2.1: Let y, H, x, e andv are specified as above. Suppose that the minimum nonzero singular

value ofH is σmin. Let C be a real number larger than1, and suppose that every vectorw in range of

the matrixH satisfiesC‖wK‖1 ≤ ‖wK‖1 for any subsetK ⊆ {1, 2, ..., n} with cardinality |K| ≤ k,

wherek is an integer, andK = {1, 2, ..., n} \K. We also assume the subspace generated byH satisfies

the almost Euclidean property for a constantα ≤ 1, namely

α
√
n‖w‖2 ≤ ‖w‖1

holds true for everyw in the subspace generated byH.

Then the solution̂x to (II.1) satisfies

‖x− x̂‖2 ≤
2(C + 1)

σminα(C − 1)
ǫ. (II.2)

December 30, 2011 DRAFT
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Proof: Suppose that one optimal solution pair to (II.1) is(x̂, ẑ). Since‖ẑ‖2 ≤ ǫ, we have‖ẑ‖1 ≤
√
n‖ẑ‖2 ≤

√
nǫ.

Sincex andz = v are feasible for (II.1) andy = Hx+ e+ v, then

‖y −Hx̂− ẑ‖1

= ‖H(x − x̂) + e+ v − ẑ‖1

≤ ‖H(x − x) + e+ v − v‖1

= ‖e‖1.

Applying the triangle inequality to‖H(x− x̂) + e+ v − ẑ‖1, we further obtain

‖H(x − x̂) + e‖1 − ‖v‖1 − ‖ẑ‖1 ≤ ‖e‖1.

DenotingH(x− x̂) asw, becausee is supported on a setK with cardinality |K| ≤ k, by the triangle

inequality for ℓ1 norm again,

‖e‖1 − ‖wK‖1 + ‖wK‖1 − ‖v‖1 − ‖ẑ‖1 ≤ ‖e‖1.

So we have

− ‖wK‖1 + ‖wK‖1 ≤ ‖ẑ‖1 + ‖v‖1 ≤ 2
√
nǫ (II.3)

With C‖wK‖1 ≤ ‖wK‖1, we know

C − 1

C + 1
‖w‖1 ≤ −‖wK‖1 + ‖wK‖1.

Combining this with (II.3), we obtain

C − 1

C + 1
‖w‖1 ≤ 2

√
nǫ.

By the almost Euclidean propertyα
√
n‖w‖2 ≤ ‖w‖1, it follows:

‖w‖2 ≤ 2(C + 1)

α(C − 1)
ǫ. (II.4)

By the definition of singular values,

σmin‖x− x̂‖2 ≤ ‖H(x− x̂)‖2 = ‖w‖2, (II.5)
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so combining (II.4), we get

‖x− x̂‖2 ≤
2(C + 1)

σminα(C − 1)
ǫ.

Note that when there are no sparse errors present, the decoding error bound using the standard LS

method satisfies‖x − x̂‖2 ≤ 1
σmin

ǫ [4]. Theorem 2.1 shows that the decoding error bound of (II.1) is

oblivious to the amplitudes of these bad data. This phenomenon was also observed in [4] by using the

restricted isometry condition for compressive sensing.

We remark that, for giveny andǫ, by strong Lagrange duality theory, the solutionx̂ to (II.1) corresponds

to the solution tox in the following problem (II.6) for some Lagrange dual variable λ ≥ 0.

min
x,z

‖y −Hx− z‖1 + λ‖z‖2. (II.6)

In fact, whenλ → ∞, the optimizer‖z‖2 → 0, and (II.6) approaches

min
x

‖y −Hx‖1,

and whenλ → 0, the optimizerz → y −Hx, and (II.6) approaches

min
x

‖y −Hx‖2.

Thus, (II.6) can be viewed as a weighed version ofℓ1 minimization andℓ2 minimization (or equivalently

the LS method). We will later use numerical experiments to show that in order to recover a sparse vector

from measurements with both noise and errors, this weightedversion outperforms bothℓ1 minimization

and the LS method.

In the next two sections, we aim at explicitly computing2(C+1)
σminα(C−1) ×

√
n appearing in the error bound

(II.2), which is subsequently denoted as̟ in this paper. The appearance of the
√
n factor is to compensate

for the energy scaling of large random matrices and its meaning will be clear in later context. We first

compute explicitly the almost Euclidean property constantα, and then use the almost Euclidean property

to get a direct estimate of the constantC in the error bound (II.2).

III. B OUNDING THE ALMOST EUCLIDEAN PROPERTY

In this section, we would like to give a quantitative bound onthe almost Euclidean property constant

α such that with high probability (with respect to the measurefor the subspace generated by randomH),

α
√
n‖w‖2 ≤ ‖w‖1 holds for every vectorw from the subspace generated byH. Here we assume that

December 30, 2011 DRAFT
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each element ofH is generated from the standard Gaussian distributionN(0, 1). Hence the subspace

generated byH is a uniformly distributed(n−m)-dimensional subspaces.

To ensure that the subspace generated fromH satisfies the almost Euclidean property withα > 0, we

must have the event that the subspace generated byH does not intersect the set{w ∈ Sn−1|‖w‖1 <

α
√
n‖w‖2}, whereSn−1 is the unit Euclidean sphere inRn. To evaluate the probability that this event

happens, we will need the following “escape-through-mesh”theorem.

Theorem 3.1: [8] Let S be a subset of the unit Euclidean sphereSn−1 in Rn. Let Y be a randomm-

dimensional subspace ofRn, distributed uniformly in the Grassmanian with respect to the Haar measure.

Let us further takew(S)=E(sup
w∈S(h

Tw)), whereh is a random column vector inRn with i.i.d.

N(0, 1) components. Assume thatw(S) < (
√
n−m− 1

2
√
n−m

). Then

P (Y
⋂

S = ∅) > 1− 3.5e−
(
√

n−m− 1
2
√

n−m
)−w(S)

18 .

From Theorem 3.1, we can use the following programming to getan estimate of the upper bound

of w(h, S) = sup
w∈S(h

Tw). Because the set{w ∈ Sn−1|‖w‖1 < α
√
n‖w‖2} is symmetric, without

loss of generality, we assume that the elements ofh follow i.i.d. half-normal distributions, namely the

distribution for the absolute value of a standard zero mean Gaussian random variables. Withhi denoting

the i-th element ofh, sup
w∈S(h

Tw) is equivalent to

max

n
∑

i=1

hiyi (III.1)

subject to y0 ≥ 0, 1 ≤ i ≤ n (III.2)
n
∑

i=1

yi ≤ α
√
n (III.3)

n
∑

i=1

y2i = 1. (III.4)

Following the method from [17], we use the Lagrange duality to find an upper bound for the objective

function of (III.1).

min
u1≥0,u2≥0,λ≥0

max
w

hTw − u1(

n
∑

i=1

w2
i − 1)

−u2(

n
∑

i=1

wi − α
√
n) +

n
∑

i=1

λiwi, (III.5)

whereλ is a vector(λ1, λ2, ..., λn).

First, we maximize (III.5) overwi, i = 1, 2, ..., n for fixed u1, u2 andλ. By making the derivatives to

December 30, 2011 DRAFT
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be zero, the minimizingwi is given by

wi =
hi + λi − u2

2u1
, 1 ≤ i ≤ n

Plugging this back to the objective function in (III.5), we get

hTw − u1(

n
∑

i=1

w2
i − 1)

−u2(

n
∑

i=1

wi − α
√
n) +

n
∑

i=1

λiwi

=

∑n
i=1 (−u2 + λi + hi)

2

4u1
+ u1 + α

√
nu2. (III.6)

Next, we minimize (III.6) overu1 ≥ 0. It is not hard to see the minimizingu∗1 is

u∗1 =

√
∑n

i=1 (−u2 + λi + hi)2

2
,

and the corresponding minimized value is
√

√

√

√

n
∑

i=1

(−u2 + λi + hi)2 + α
√
nu2. (III.7)

Then, we minimize (III.7) overλ ≥ 0. Givenh andu2 ≥ 0, it is easy to see that the minimizingλ is

λi =







u2 − hi if hi ≤ u2;

0 otherwise,

and the corresponding minimized value is

√

∑

1≤i≤n:hi<u2

(u2 − hi)2 + α
√
nu2. (III.8)

Now if we take anyu2 ≥ 0, (III.8) serves as an upper bound for (III.5), and thus also an upper bound

for sup
w∈S(h

Tw). Since
√· is a concave function, by Jensen’s inequality, we have for any givenu2 ≥ 0,

E(sup
w∈S

(hTw)) ≤
√

E{
∑

1≤i≤n:hi<u2

(u2 − hi)2}+ α
√
nu2. (III.9)

Sinceh has i.i.d. half-normal components, the righthand side of (III.9) equals to

(

√

(u22 + 1)erfc(u2/
√
2)−

√

2/πu2e−u2
2/2 + αu2)

√
n, (III.10)

December 30, 2011 DRAFT
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where erfc is the error function.

One can check that (III.10) is convex inu2. Givenα, we minimize (III.10) overu2 ≥ 0 and letg(α)
√
n

denote the minimum value. Then from (III.9) and (III.10) we know

w(S) = E(sup
w∈S

(hTw)) ≤ g(α)
√
n. (III.11)

Given δ = m
n , we pick the largestα∗ such thatg(α∗) <

√
1− δ. Then asn goes to infinity, it holds that

w(S) ≤ g(α∗)
√
n < (

√
n−m− 1

2
√
n−m

). (III.12)

Then from Theorem 3.1, with high probability‖w‖1 ≥ α∗√n‖w‖2 holds for every vectorw in the

subspace generated byH. We numerically calculate howα∗ changes overδ and plot the curve in Fig.

1. For example, whenδ = 0.5, α∗ = 0.332, thus ‖w‖1 ≥ 0.332
√
n‖w‖2 for all w in the subspace

generated byH.

Note that whenmn = 1
2 , we getα = 0.332. That is much larger than the knownα used in [19], which is

approximately0.07 (see Equation (12) in [19]). When applied to the sparse recovery problem considered

in [19], we will be able to recover any vector with no more than0.0289n = 0.0578m nonzero elements,

which are20 times more than the1
384m bound in [19].

IV. EVALUATING THE ROBUST ERROR CORRECTIONBOUND

If the elements in the measurement matrixH are i.i.d. as the unit real Gaussian random variables

N(0, 1), following upon the work of Marchenko and Pastur [13], Geman[7] and Silverstein [16] proved

that form/n = δ, asn → ∞, the smallest nonzero singular value

1√
n
σmin → 1−

√
δ

December 30, 2011 DRAFT
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almost surely asn → ∞.

Now that we have already explicitly boundedα andσmin, we now proceed to characterizeC. It turns

out that our earlier result on the almost Euclidean propertycan be used to computeC.

Lemma 4.1: Suppose ann-dimensional vectorw satisfies‖w‖1 ≥ α
√
n‖w‖2, and for some setK ⊆

{1, 2, ..., n} with cardinality |K| = k ≤ n, ‖wK‖1

‖w‖1
= β. Thenβ satisfies

β2

k
+

(1− β)2

n− k
≤ 1

α2n
.

Proof: Without loss of generality, we let‖w‖1 = 1. Then by the Cauchy-Schwarz inequality,

‖w‖22 = ‖wK‖22 + ‖wK‖22

≥ (
‖wK‖1√

k
)2 + (

‖wK‖1√
n− k

)2

= (
β2

k
+

(1 − β)2

n− k
)‖w‖21.

At the same time, by the almost Euclidean property,

α2n‖w‖22 ≤ ‖w‖21,

so we must have
β2

k
+

(1− β)2

n− k
≤ 1

α2n
.

Corollary 4.2: If a nonzeron-dimensional vectorw satisfies‖w‖1 ≥ α
√
n‖w‖2, and if for any set

K ⊆ {1, 2, ..., n} with cardinality |K| = k ≤ n, C‖wK‖1 = ‖wK‖1 for some numberC ≥ 1, then

k

n
≥ (B + 1− C2)−

√

(B + 1− C2)2 − 4B

2B
, (IV.1)

whereB = (C+1)2

α2 .

Proof: If C‖wK‖1 = ‖wK‖1, we have

‖wK‖1
‖w‖1

=
1

C + 1
.

So by Lemma 4.1,β = 1
C+1 satisfies

β2

k
+

(1− β)2

n− k
≤ 1

α2n
.
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This is equivalent to
1
k
n

+
C2

1− k
n

≤ (C + 1)2

α2

Solving this inequality forkn , we get (IV.1).

So for a sparsity ratiokn , this corollary can be used to find a lower bound onC satisfying‖wK‖1

‖w‖1
= 1

C+1 .

Combining these results on computingσmin, α andC, we can then compute the bound2(C+1)
σminα(C−1)

√
n = ̟

in Theorem 2.1. For example, whenδ = m
n = 1

2 , we plot the bound̟ as a function ofkn in Fig. 2.

V. SPARSEERROR CORRECTION FROMNONLINEAR MEASUREMENTS

In applications, measurement outcome can be nonlinear functions of system states. Let us denote the

i-th measurement byhi(x), where1 ≤ i ≤ n andhi(x) can be a nonlinear function ofx. In this section,

we study the theoretical performance guarantee of sparse recovery from nonlinear measurements and

give an iterative algorithm to do sparse recovery from nonlinear measurements, for which we provide

conditions under which the iterative algorithm converges to the true state.

In Subsection V-A, we explore the conditions under which sparse recovery from nonlinear measure-

ments are theoretically possible. In Subsection V-B, we describe our iterative algorithm to perform

sparse recovery from nonlinear measurements. In Subsection V-C, we study the algorithm performance

guarantees when the measurements are with or without additive noise. In Subsection V-D, we give an

example to illustrate our algorithm and analysis.

A. Theoretical Guarantee for Direct ℓ0 and ℓ1-Minimization

We first give a general condition which guarantees recovering correctly the statex from the corrupted

observationy without considering the computational cost.

December 30, 2011 DRAFT
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Theorem 5.1: Let y, h(·), x, H, ande be specified as above; andy = h(x) + e. A statex can be

recovered correctly from any errore with ‖e‖0 ≤ k from solving the optimization

min
x

‖y − h(x)‖0, (V.1)

if and only if for anyx∗ 6= x, ‖h(x) − h(x∗)‖0 ≥ 2k + 1.

Proof: We first prove the sufficiency part, namely if for anyx∗ 6= x, ‖h(x)−h(x∗)‖0 ≥ 2k+1, we

can always correctly recoverx from y corrupted with any errore with ‖e‖0 ≤ k. Suppose that instead

an solution to the optimization problem (V.1) is anx∗ 6= x. Then

‖y − h(x∗)‖0

= ‖(h(x) + e)− h(x∗)‖0

≥ ‖h(x) − h(x∗)‖0 − ‖e‖0

≥ (2k + 1)− k

> ‖e‖0 = ‖y − h(x)‖0.

So x∗ 6= x can not be a solution to (V.1), which is a contradiction.

For the necessary part, suppose that there exists anx∗ 6= x such that‖h(x)− h(x∗)‖0 ≤ 2k. Let I be

the index set whereh(x) andh(x∗) differ and its size|I| ≤ 2k. Let γ = h(x∗)− h(x). We picke such

that ei = γi, ∀i ∈ I ′, whereI ′ ⊆ I is an index set with cardinality|I ′| = k; andei to be 0 otherwise.

Then

‖y − h(x∗)‖0

= ‖h(x) − h(x∗) + e‖0

= |I| − k

≤ k = ‖e‖0 = ‖y − h(x)‖0,

which means thatx can not be a solution to (V.1) and is certainly not a unique solution to (V.1).

Theorem 5.2: Let y, h(·), x, H, ande be specified as above; and andy = h(x) + e. A statex can

be recovered correctly from any errore with ‖e‖0 ≤ k from solving the optimization

min
x

‖y − h(x)‖1, (V.2)

December 30, 2011 DRAFT
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if and only if for anyx∗ 6= x, ‖(h(x) − h(x∗))K‖1 < ‖(h(x) − h(x∗))K‖1, whereK is the support of

the error vectore.

Proof: We first prove if anyx∗ 6= x, ‖(h(x) − h(x∗))K‖1 < ‖(h(x) − h(x∗))K‖1, whereK is

the support of the error vectore, we can correctly recover statex from (V.2). Suppose that instead an

solution to the optimization problem (V.1) is anx∗ 6= x. Then

‖y − h(x∗)‖1

= ‖(h(x) + e)− h(x∗)‖1

= ‖eK − (h(x∗)− h(x))K‖1 + ‖(h(x∗)− h(x))K‖1

≥ ‖eK‖1 − ‖(h(x∗)− h(x))K‖1 + ‖(h(x∗)− h(x))K‖1

> ‖eK‖1 = ‖y − h(x)‖1.

Sox∗ 6= x can not be a solution to (V.2), and this leads to a contradiction.

Now suppose that there exists anx∗ 6= x such that‖(h(x)−h(x∗))K‖1 ≥ ‖(h(x)−h(x∗))K‖1, where

K is the support of the error vectore. Then we can picke to be (h(x∗) − h(x))K over its supportK

and to be0 overK. Then

‖y − h(x∗)‖1

= ‖h(x) − h(x∗) + e‖1

= ‖(h(x∗)− h(x))K‖1

≤ ‖(h(x) − h(x∗))K‖1 = ‖e‖1 = ‖y − h(x)‖1,

which means thatx can not be a solution to (V.2) and is certainly not a unique solution to (V.2).

However, directℓ0 andℓ1 minimization may be computationally costly becauseℓ0 norma and nonlinear

h(·) may lead to non-convex optimization problems. In the next subsection, we introduce our computa-

tionally efficient iterative sparse recovery algorithm in the general setting when the additive noisev is

present.

B. Iterative ℓ1-Minimization Algorithm

Let y, h(·), x, H, e andv be specified as above; andy = h(x) + e + v with ‖v‖2 ≤ ǫ. Now let

us consider the algorithm which recovers the state variables iteratively. Ideally, an estimate of the state
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variables,x̂, can be obtained by solving the following minimization problem,

min
x,z

‖y − h(x)− z‖1,

subject to ‖z‖2 ≤ ǫ. (V.3)

where x̂ is the optimal solutionx. Even thoughℓ1 norm is a convex function, the functionh(·) may

make the objective function non-convex.

Sinceh is nonlinear, we linearize the equations and apply an iterative procedure to obtain a solution.

We start with an initial statex0. In the k-th (k ≥ 1) iteration, let∆yk = y − h(xk−1), then we solve

the following convex optimization problem,

min
∆x,z

‖∆yk −H local∆x− z‖1,

subject to ‖z‖2 ≤ ǫ, (V.4)

whereH local is then×m Jacobian matrix ofh evaluated at the pointxk−1. Let ∆xk denote the optimal

solution∆x to (V.4), then the state estimation is updated by

xk = xk−1 +∆xk. (V.5)

We repeat the process until∆xk approaches0 close enough ork reaches a specified maximum value.

Note that when there is no additive noise, we can takeǫ = 0 in this iterative algorithm. When there

is no additive noise, the algorithm is exactly the same as thestate estimation algorithm from [12].

C. Convergence Conditions for the Iterative Sparse Recovery Algorithm

In this subsection, we discuss the convergence of the proposed algorithm in Subsection V-B. First, we

give a necessary condition (Theorem 5.3) for recovering thetrue state when there is no additive noise,

and then give a sufficient condition (Theorem 5.4) for the iterative algorithm to converge to the true

state in the absence of additive noise. Secondly, we give theperformance bounds (Theorem 5.5) for the

iterative sparse recovery algorithm when there is additivenoise.

Theorem 5.3 (Necessary Condition for Recovering True State): Let y, h(·), x, H, ande be specified

as above; andy = h(x)+e. The iterative algorithm converges to the true statex only if for the Jacobian

matrix H local at the point ofx and for anyx∗ 6= 0, ‖(H localx∗)K‖1 ≤ ‖(H localx∗)K‖1, whereK is the

support of the error vectore.
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Proof: The proof follows from the proof for Theorem 5.2, with the linear functiong(∆x) = h(x)+

H local∆x, whereH local is the Jacobian matrix at the true statex.

Theorem 5.3 shows that for nonlinear measurements, the local Jacobian matrix needs to satisfy the

same condition as the matrix for linear measurements. This assumes that the iterative algorithm starts

with the correct initial state. However, the iterative algorithm generally does not start the true statex.

In the following theorem, we give a sufficient condition for the algorithm to converge to the true state

when there is no additive noise.

Theorem 5.4 (Guarantee without Additive noise): Let y, h(·), x, H, ande be specified as above; and

y = h(x)+e. Suppose that at every pointx, the local Jacobian matrixH is full rank and satisfies that for

everyz in the range ofH, C‖zK‖1 ≤ ‖zK‖1, whereK is the support of the error vectore. Moreover,

for a fixed constantβ < 1, we assume that

2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
≤ β, (V.6)

holds true for any two statesx1 andx2, whereH local is the local Jacobian matrix at the pointx1, Htrue

is a matrix such thath(x2) − h(x1) = Htrue(x2 − x1), σ1
max(A) is the inducedℓ1 matrix norm forA,

andσ1
min(A) for a matrixA is defined asσ1

min(A) = min{‖Az‖1 : with ‖z‖1 = 1}.

Then any statex can be recovered correctly from the observationy from the iterative algorithm in

Subsection V-B, regardless of the initial starting state ofthe algorithm.

Proof: We know that

y = Htrue∆x∗ + h(xk) + e, (V.7)

whereHtrue is ann×m matrix and∆x∗ = x− xk, namely the estimation error at thek-th step.

Since at the(k + 1)-th step, we are solving the following optimization problem

min
∆x

‖y − h(xk)−H local∆x‖1. (V.8)

Plugging (V.7) into (V.8), this is equivalent to

min
∆x

‖Htrue∆x∗ + e−H local∆x‖1, (V.9)

which we can further write as

min
∆x

‖H local∆x∗ + (Htrue −H local)∆x∗ + e−H local∆x‖1. (V.10)
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We denote(Htrue − H local)∆x∗ asw, which is the measurement gap generated by using the local

Jacobian matrixH local instead ofHtrue. Suppose that the solution is∆x = ∆x∗ − error. Since we

are looking for the solution which minimizes the objectiveℓ1 norm, and∆x = ∆x∗ is feasible for the

optimization problem (V.8), we have

‖H local × error +w + e‖1 ≤ ‖w + e‖1. (V.11)

By triangular inequality, we have

‖e‖1 +
C − 1

C + 1
‖H local × error‖1 − ‖w‖1 ≤ ‖e‖1 + ‖w‖1. (V.12)

So

‖H local × error‖1 ≤
2(C + 1)

C − 1
‖w‖1. (V.13)

Sinceerror = ∆x∗ −∆x, (x− xk) = ∆x∗, andx− xk+1 = (x− xk)− (xk+1 − xk) = ∆x∗ −∆x,

we have
‖x− xk+1‖1
‖x− xk‖1

≤ 2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
, (V.14)

where σ1
max(H

true − H local) and σ1
min(H

local) are respectively the matrix quantities defined in the

statement of the theorem.

So as long as
2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
≤ β, (V.15)

for some constantβ < 1, the algorithm converges to the true statex and the estimation error eventually

decreases to0.

While the algorithm can converge to the true state when thereis no additive noise, the following

theorem gives the performance bound for the iterative sparse recovery algorithm when there is additive

noise.

Theorem 5.5 (Guarantee with Additive noise): Let y, h(·), x, H, e, andn be specified as above; and

y = h(x)+e+v with ‖v‖2 ≤ ǫ. Suppose that at every pointx, the local Jacobian matrixH is full rank

and satisfies that for everyz in the range ofH, C‖zK‖1 ≤ ‖zK‖1, whereK is the support of the error

vectore. Moreover, for a fixed constantβ < 1, we assume that

2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
≤ β (V.16)

holds for any two statesx1 andx2, whereH local is the local Jacobian matrix at the pointx1, Htrue is a
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matrix such thath(x2) − h(x1) = Htrue(x2 − x1), σ1
max(A) is the inducedℓ1 matrix norm forA, and

σ1
min(A) for a matrixA is defined asσ1

min(A) = min{‖Az‖1 : with ‖z‖1 = 1}.

Then for any true statex, the estimationxk+1 = xk + ∆xk+1, where∆xk+1 is the solution to the

(k + 1)-th iteration optimization

min
∆x

k+1,z
‖∆yk+1 −H local∆xk+1 − z‖1,

subject to ‖z‖2 ≤ ǫ (V.17)

satisfies

‖x − xk+1‖1 ≤
2(C + 1)

(C − 1)σ1
min(H

local)
× 2

√
nǫ

+
2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
‖x− xk‖1.

As k → ∞, with 2(C+1)
C−1

σ1
max

(Htrue−Hlocal)
σ1
min

(Hlocal) ≤ β < 1,

‖x− xk+1‖1 ≤
2(C + 1)

(1− β)(C − 1)σ1
min(H

local)
× 2

√
nǫ.

Proof: The proof follows the same line of reasoning in proving Theorem 5.4 and Theorem 2.1. In

fact,

y = Htrue∆x∗ + h(xk) + e+ v, (V.18)

whereHtrue is ann×m matrix and∆x∗ = x− xk, namely the estimation error at thek-th step.

Since at the(k + 1)-th step, we are solving the following optimization problem

min
∆x,z

‖∆y −H local∆x− z‖1,

subject to ‖z‖2 ≤ ǫ. (V.19)

Plugging (V.18) into (V.19), we are really solving

min
∆x,z

‖Htrue∆x∗ + e+ v−H local∆x− z‖1,

subject to ‖z‖2 ≤ ǫ. (V.20)
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Denoting (Htrue − H local)∆x∗ as w, which is the measurement gap generated by using the local

Jacobian matrixH local instead ofHtrue, then (V.20) is equivalent to

min∆x,z ‖H local(∆x∗ −∆x) +w + e+ v − z‖1,

subject to ‖z‖2 ≤ ǫ. (V.21)

Suppose that the solution to (V.17) is∆x = ∆x∗ − error. We are minimizing the objectiveℓ1 norm,

and (∆x∗,v) is a feasible solution with an objective function value‖w + e‖1, so we have

‖H local × error +w + e+ v − z‖1 ≤ ‖w + e‖1. (V.22)

By triangular inequality and the property ofH local, using the same line of reasoning as in the proof

of Theorem 2.1, we have

‖e‖1 +
C − 1

C + 1
‖H local × error‖1 − ‖w‖1 − ‖v‖1 − ‖z‖1

≤ ‖e‖1 + ‖w‖1. (V.23)

So

‖H local × error‖1 ≤
2(C + 1)

C − 1
(‖w‖1 + ‖v‖1 + ‖z‖1). (V.24)

Since ‖v‖1 and ‖z‖1 are both no bigger than2
√
nǫ, using the same reasoning as in the proof of

Theorem 5.4, we have

‖x − xk+1‖1 ≤
2(C + 1)

(C − 1)σ1
min(H

local)
× 2

√
nǫ

+
2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
‖x− xk‖1,

where σ1
max(H

true − H local) and σ1
min(H

local) are respectively the matrix quantities defined in the

statement of the theorem.

So as long as
2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
≤ β, (V.25)

for some fixed constantβ < 1, the error upper bound converges to 2(C+1)
(1−β)(C−1)σ1

min
(Hlocal) × 2

√
nǫ.
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D. An Example of Sparse Recovery from Nonlinear Measurements

Now we give an example of sparse recovery from nonlinear measurements. For simplicity, we make

the measurements corrupted with sparse bad data but not withadditive noise.h(·) is a 12-dimensional

vector as a mapping of two variablesx andy, which is given in (V-D). We index the12 measurements

sequentially from top to bottom as1,2,..., 12.

h(x, y) =

































































(x+ y) sin(x+ y)

(x+ y) cos(x+ y)

(x− y) sin(x− y)

(x− y) cos(x− y)

(x+ y) sin(x− y)

(x− y) sin(x+ y)

(x+ y) cos(x− y)

(x− y) cos(x+ y)

x sin(x)

x cos(x)

y sin(y)

y cos(y)

































































The following theorem shows that this set of nonlinear measurements are able to correct1 corrupted

entry in the measurements.

Lemma 5.6: If (x1, y1) 6= (x2, y2), ‖h(x1, y1) − h(x2, y2)‖0 ≥ 3, and so any state can be correctly

recovered when at most one error is present in the measurements.

Proof: Suppose thatx1− y1 = x2− y2 andx1+ y1 6= x2+ y2. We further consider two cases. In the

first case,x1 − y1 = x2 − y2 = 0, then for index 7, at least one of indices 1 and 2, and at least one of

indices 9, 10, 11 and 12,h(x1, y1) andh(x2, y2) are different. In the second case,x1−y1 = x2−y2 6= 0,

then for at least one of indices 1 and 2,h(x1, y1) andh(x2, y2) are different; for at least one of indices

5 and 7,h(x1, y1) andh(x2, y2) are different; and for at least one of indices 9, 10, 11 and 12,h(x1, y1)

andh(x2, y2) are different.

Suppose thatx1 + y1 = x2 + y2 and x1 − y1 6= x2 − y2. By symmetry to the previous scenario

“x1 − y1 = x2 − y2 andx1 + y1 6= x2 + y2”, we have‖h(x1, y1)− h(x2, y2)‖0 ≥ 3.

Now we suppose thatx1− y1 6= x2− y2 andx1+ y1 6= x2+ y2, then then for at least one of indices 1

and 2,h(x1, y1) andh(x2, y2) are different; for at least one of indices 3 and 4,h(x1, y1) andh(x2, y2)
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are different; and for at least one of indices 9, 10, 11 and 12,h(x1, y1) andh(x2, y2) are different.

Summarizing all these scenarios, if(x1, y1) 6= (x2, y2), ‖h(x1, y1)− h(x2, y2)‖0 ≥ 3.

So this system of nonlinear measurements can guarantee correcting 1 bad data entry. But can we

efficiently find the true state from bad data using the iterative sparse recovery algorithm in Subsection

V-B? To proceed, we first give the Jacobian matrix forh(·) in (V.6).

Suppose the true state is(x, y) = (0.2, 0.45), and suppose there is one bad data entry in the measure-

ments, where we lete = (0, 0, 0, 0, 0, 1.7783, 0, 0, 0, 0, 0, 0). Suppose that the iterative sparse recovery

algorithm starts with the initial state(x0, y0) = (0.1, 0.2). Then by definition, at the initial point

(x0, y0) = (0.1, 0.2), the local Jacobian matrix is

H local =

































































0.5821 0.5821

0.8667 0.8667

−0.1993 0.1993

0.9850 −0.9850

0.1987 −0.3983

0.2000 −0.3911

1.0250 0.9651

0.9849 −0.9258

0.1993 0

0.9850 0

0 0.3947

0 0.9403

































































(V.26)

Then by using the mean value theorem in two variables for the twelve functions inh(·), we can
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calculate aHtrue as

Htrue =

































































0.8707 0.8707

0.6596 0.6596

−0.3459 0.3459

0.9515 −0.9515

0.2932 −0.6407

0.2984 −0.6063

1.0709 0.8968

0.9683 −0.8013

0.2975 0

0.9651 0

0 0.6239

0 0.8367

































































(V.27)

For the small example with two variables, we can calculateσ1
max(H

true−H local) = 1.6590, σ1
min(H

local) =

3.9284, andC = 13.5501. So

2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
= 0.9792 < 1, (V.28)

which satisfies the condition appearing in Theorem 5.4.

In fact, in the first iteration, the algorithm outputs(x1, y1) = (0.1980, 0.4392) and‖(x1, y1)−(x, y)‖2 =
0.0110. After the second iteration, we already get a very good estimation (x2, y2) = (0.2000, 0.4500)

and‖(x2, y2)− (x, y)‖2 = 2.2549 × 10−5. The solution does converge to the true state.

We note that the convergence condition in Theorem 5.4 is conservative. Sometimes even if the initial

starting point is far from the true state and the convergencecondition fails, the algorithm can still

converge. For example, now suppose that the true state is at(x, y) = [0.4, 1.2] and the iterative sparse

recovery algorithm still initializes with(x0, y0) = (0.1, 0.2). Suppose that the bad data vector is still

e = (0, 0, 0, 0, 0, 1.7783, 0, 0, 0, 0, 0, 0). Then again by using the mean value theorem, we calculate a
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J(x, y) =









































sin(x+ y) + (x+ y) cos(x+ y) sin(x+ y) + (x+ y) cos(x+ y)
cos(x+ y)− (x+ y) sin(x+ y) cos(x+ y)− (x+ y) sin(x+ y)
sin(x− y) + (x− y) cos(x− y) − sin(x− y)− (x− y) cos(x− y)
cos(x− y)− (x− y) sin(x− y) − cos(x− y) + (x− y) sin(x− y)
sin(x− y) + (x+ y) cos(x− y) sin(x− y)− (x+ y) cos(x− y)
sin(x+ y) + (x− y) cos(x+ y) − sin(x+ y) + (x− y) cos(x+ y)
cos(x− y)− (x+ y) sin(x− y) cos(x− y) + (x+ y) sin(x− y)
cos(x+ y)− (x− y) sin(x+ y) − cos(x+ y)− (x− y) sin(x+ y)

sin(x) + x cos(x) 0
cos(x)− x sin(x) 0

0 sin(y) + y cos(y)
0 cos(y)− y sin(y)









































(V.6)

Htrue as

Htrue =

































































1.1621 1.1621

−0.2566 −0.2566

−0.8055 0.8055

0.6543 −0.6543

0.4119 −1.2413

0.4068 −0.8921

1.3597 0.4083

0.9437 −0.1640

0.4860 0

0.8964 0

0 1.0786

0 0.2385

































































(V.29)

In the first iteration, we get a new estimation of the state(x1, y1) = (0.3730, 0.7558) and‖(x1, y1)−
(x, y)‖2 = 0.4450. After the second iteration, we get a new estimation(x2, y2) = (0.3995, 1.1468) and

‖(x2, y2)−(x, y)‖2 = 0.0532. After the third iteration, we get a new estimation(x3, y3) = (0.400, 1.2003)

and ‖(x3, y3) − (x, y)‖2 = 2.96 × 10−4. The algorithm converges to the true state even though in the

first step,σ1
max(H

true −H local) = 6.6885, σ1
min(H

local) = 3.9284, C = 13.5501 and

2(C + 1)

C − 1

σ1
max(H

true −H local)

σ1
min(H

local)
= 3.9478 > 1. (V.30)
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VI. N UMERICAL RESULTS

In our simulation, we apply (II.6) to estimate an unknown vector from Gaussian linear measurements

with both sparse errors and noise, and also apply the iterative method to recover state information from

nonlinear measurements with bad data and noise in a power system.

Linear System: We first consider recovering a signal vector from linear Gaussian measurements. Let

m = 60 andn = 150. We generate the measurement matrixHn×m with i.i.d. N(0, 1) entries. We also

generate a vectorx ∈ Rm with i.i.d Gaussian entries and normalize it to‖x‖2 = 1.

We fix the noise level and consider the estimation performance when the number of erroneous mea-

surements changes. We add to each measurement ofHx with a Gaussian noise independently drawn

from N(0, 0.52). Let ρ denote the percentage of erroneous measurements. Givenρ, we randomly choose

ρn measurements, and each such measurement is added with a Gaussian error independently drawn from

N(0, 52). We apply (II.6) to estimatex using different choices ofλ. Let x∗ denote the estimation of

x, and the estimation error is represented by‖x∗ − x||2. We use (II.6) instead of (II.1) in simulation,

since the recovering algorithm has no prior knowledge of thenoise vector, and solving an unconstrained

optimization problem is more computationally efficient than solving a constrained one.

Fig. 3 shows how the estimation error changes asρ increases, where each result is averaged over one

hundred and fifty runs. As discussed earlier, whenλ is large, likeλ = 18 in this example, (II.6) approaches

ℓ1-minimization; whenλ is close to zero, likeλ = 0.05 here, (II.6) approachesℓ1-minimization; when

λ = 8, (II.6) can be viewed as a weighted version ofℓ1 and ℓ2 minimization. Whenρ is zero or close

to one, the measurements only contain i.i.d. Gaussian noises, thus, among the three choices ofλ, the

estimation error is relatively small whenλ = 0.05. Whenρ is away from zero and one, the measurements

contain both noise and sparse errors, then a weighted version of ℓ1 andℓ2 minimization (represented by the

caseλ = 8) outperforms bothℓ1-minimization (approximated by the caseλ = 18) and ℓ2-minimization

(approximated by the caseλ = 0.05) in terms of a small estimation error.

We next consider the recovery performance when the number oferroneous measurements is fixed.

We randomly choose twelve measurements and add to each such measurement an independent Gaussian

error fromN(0, 52). Then, we add an independent Gaussian noise fromN(0, σ2) to each one of then

measurements. Fig. 4 shows how the estimation error‖x∗ − x‖2 changes asσ increases with different

choices ofλ. Whenσ is close to zero, the effect of sparse errors are dominating,thus ℓ1-minimization

(approximated by the caseλ = 18) has the best recovery performance. Whenσ is large, the effect of

i.i.d. Gaussian noises are dominating, thusℓ2-minimization (approximated by the caseλ = 0.05) has the
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Fig. 3: Estimation error versusρ for Gaussian measurements with fixed noise level
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Fig. 4: Estimation error versusσ for Gaussian measurements with fixed percentage of errors

best recovery performance. In between, a weighted version of ℓ1 and ℓ2 minimization (represented by

the caseλ = 8) has the best performance.

For a givenσ, we also apply (II.6) withλ from 0.05 to 12.05 (step size 0.2), and pick the bestλ∗

with which the estimation error is minimized. For eachσ, the result is averaged over three hundred runs.

Fig. 5 shows the curve ofλ∗ againstσ. When the percentage of measurements with bad data is fixed,

(ρ = 12/100 = 0.12 here,)λ∗ decreases as the noise level increases.

Power System: We also consider estimating the state of a power system from available measurements

and known system configuration. The state variables are the voltage magnitudes and the voltage angles at

each bus. The measurements can be the real and reactive powerinjections at each bus, and the real and

reactive power flows on the lines. All the measurements are corrupted with noise, and a small fraction

of the measurements contains errors. We would like to estimate the state variables from the corrupted

measurements.

The relationship between the measurements and the state variables for ak′-bus system can be stated
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Fig. 5: λ∗ versusσ for Gaussian measurements

as follows [12]:

Pi =

k′
∑

j=1

EiEjYij cos(θij + δi − δj), (VI.1)

Qi =

k′
∑

j=1

EiEjYij sin(θij + δi − δj), (VI.2)

Pij = EiEjYij cos(θij + δi − δj)

−E2

i Yij cos θij + E2

i Ysi cos θsi i 6= j, (VI.3)

Qij = EiEjYij sin(θij + δi − δj)

−E2

i Yij sin θij + E2

i Ysi sin θsi i 6= j, (VI.4)

wherePi andQi are the real and reactive power injection at busi respectively,Pij andQij are the real

and reactive power flow from busi to busj, Ei and δi are the voltage magnitude and angle at busi.

Yij and θij are the magnitude and phase angle of admittance from busi to busj, Ysi and θsi are the

magnitude and angle of the shunt admittance of line at busi. Given a power system, allYij, θij, Ysi and

θsi are known.

For ak′-bus system, we treat one bus as the reference bus and set the voltage angle at the reference

bus to be zero. There arem = 2k′ − 1 state variables with the firstk′ variables for the bus voltage

magnitudesEi and the restk′ − 1 variables for the bus voltage anglesθi. Let x ∈ Rm denote the state

variables and lety ∈ Rn denote then measurements of the real and reactive power injection and power

flow. Let v ∈ Rn denote the noise ande ∈ Rn denote the sparse error vector. Then we can write the

equations in a compact form,

y = h(x) + v + e, (VI.5)
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Fig. 6: IEEE 30-bus test system

whereh(·) denotesn nonlinear functions defined in (VI.1) to (VI.4).

We use the iterative algorithm introduced in Subsection V-Bto recoverx from y. We start with

the initial statex0 wherex0i = 1 for all i ∈ {1, ..., n}, and x0i = 0 for all i ∈ {n + 1, ..., 2n − 1}.

Since we assume no knowledge of the magnitude ofv and unconstrained problem is generally more

computationally efficient than a constrained one, in thekth iteration, instead of solving (V.4), we solve

the following unconstrained convex optimization problem

min
∆x,z

‖∆yk −H local∆x− z‖1 + λ‖z‖2, (VI.6)

whereH local is the Jacobian matrix ofh evaluated atxk−1. Let ∆xk denote the optimal solution of∆x

to (VI.6), then the state estimation is updated by

xk = xk−1 +∆xk. (VI.7)

We repeat the process until∆xk is close to0, or the number of iteration reaches a specified value.

We evaluate the performance on the IEEE 30-bus test system. Fig. 6 shows the structure of the test

system. Then the state vector contains59 variables. We taken = 100 measurements including the

real and reactive power injection at each bus and some of the real and reactive power flows on the

lines. evaluate how the estimation performance changes as the noise level increases when the number of
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Fig. 7: Estimation error versusσ with fixed percentage of errors in power system

erroneous measurements is fixed.ρ is fixed to be 0.06, and we randomly choose a setT with cardinality

|T | = ρn = 6. Each measurement with its index inT contains a Gaussian error independently drawn

from N(0, 0.72). Each measurement also contains a Gaussian noise independently drawn fromN(0, σ2).

For a fixed noise levelσ, we use the above mentioned iterative procedure to recover the state vector

x. The result is averaged over two hundred runs. Fig. 7 shows the estimation error‖x∗ − x‖2 against

σ when ρ = 0.06. Betweenλ = 12 (approximatingℓ1-minimization) andλ = 0.5 (approximatingℓ2-

minimization), the former one has a better recovery performance when the noise levelσ is small, and the

latter one has a better performance whenσ is large. Moreover, the recovery performance whenλ = 5 in

general outperforms that whenλ is either large (λ = 12) or small (λ = 0.05).

VII. C ONCLUSION

In this paper, we studied sparse recovery from nonlinear measurements with applications in state

estimation for power networks from nonlinear measurementscorrupted with bad data. An iterative mixed

ℓ1 and ℓ2 convex programming was proposed for state estimation by locally linearizing the nonlinear

measurements. By studying the almost Euclidean property for a linear subspace, we gave a new state

estimation error bound when the measurements are linear andthe measurements are corrupted with both

bad data and by additive noise. When the measurements are nonlinear and corrupted with bad data, we

gave conditions under which the solution of the iterative algorithm converges to the true state even though

local linearizing of measurements may not be accurate. We numerically evaluated the iterative convex

programming approach performance in bad data detection fornonlinear electrical power networks. As a

byproduct, we provided sharp bounds on the almost Euclideanproperty of a linear subspace, using the

“escape-through-a-mesh” theorem from geometric functional analysis.
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