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1 Bayesian Statistical Modeling

• In the Bayesian theory of parameter estimation, the unknown parameter θ is treated

as a realization of a random variable with its own distribution f(θ) is called the prior

distribution.

• A statistical model is specified in terms of the conditional pdf/pmf f(x|θ) and the prior

distribution f(θ) of θ.

• The prior model is specified by the investigator based on his/her prior knowledge on

the uncertainty of θ.

• The idea is to combine the data likelihood function f(x|θ) with the prior knowledge

f(θ) to convert prior distribution into a distribution informed by the data likelihood,

i.e, the posterior distribution and use this distribution for inference.

• Using Bayes rule, we can express the posterior probability of θ as follows:

f(θ|x) =
f(x|θ)f(θ)

f(x)

=
f(x|θ)f(θ)∫
f(x|θ́)f(θ́)dθ́

• The prior distribution represents the uncertainty in θ before x is observed and the

posterior distribution reflects our uncertainty in θ after x is observed.

• Conjugate Priors - A class of prior probability distributions f(θ) is said to be con-

jugate to a class of likelihood functions f(x|θ) if the resulting posterior distributions

f(θ|x) are in the same family as f(θ).

• Sufficiency and Bayesian Inference - If T = τ(X) is a sufficient statistic for θ and

τ(x1) = τ(x2) for the observations x1 and x2, then x1 and x2 lead to the same Bayesian

inference for θ.
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2 Bayesian Estimation

• The objective is to estimate a specific value of θ given a set of observations based on

the a posteriori model f(θ|x).

• Main ingredient of the Bayesian estimation is the “cost”, “risk” or “loss” function

c(θ̂(x), θ).

The cost function represents the investigators view of “loss” when θ is declared as θ̂(x)

for a given X = x.

• The optimum estimator in the Bayesian sense is the one that minimizes the expected

cost, known as the Bayes risk

R(θ̂) := E[c(θ̂(X), θ)].

• Note that the expectation is with respect to both X and θ

R(θ̂) =

∫
c(θ̂(X), θ)f(x, θ)dxdθ

=

∫
c(θ̂(X), θ)f(x|θ)f(θ)dxdθ.

• Minimizing the Bayes risk gives the Bayesian estimator:

θ̂ = arg min
φ
R(φ).

• The optimal estimator can be expressed solely by the cost function c(θ̂(x), θ) and the

posterior probability f(θ|x).

– Note that

R(θ̂) = E[c(θ̂(X), θ)]

= EX [Eθ|X [c(θ̂(X), θ)|X = x]].
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– Thus to minimize R(θ̂), Eθ|X [c(θ̂(X), θ)|X = x] must be minimized.

• Thus, Bayesian estimator can be reexpressed as

θ̂ = arg min
φ
Eθ|X [c(φ, θ)|X = x].

• This is called posterior expected loss and it depends on only posterior density and the

loss.

2.1 Bayesian Cost Functions

Some commonly used cost functions are

• Squared error:

c(θ̂, θ) = (θ̂ − θ)T (θ̂ − θ).

• Absolute error:

c(θ̂, θ) = ‖θ̂ − θ‖2
L1−norm =

p∑
i=1

|θ̂i − θi|.

For scalar parameters:

c(θ̂, θ) = |θ̂ − θ|.

• Uniform error:

c(θ̂, θ) = I{‖θ̂−θ‖>ε}

=

 1 if |θ̂ − θ| > ε

0 otherwise

where ε > 0.

For all three cost function, we can compute the expected cost and determine the Bayes

risk:
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• Mean Square Error:

MSE(θ̂) = E[(θ̂ − θ)T (θ̂ − θ)].

• Mean Absolute Error:

MAE(θ̂) = E[|θ̂ − θ|].

• Error Probability:

Pe(θ̂) = P (‖θ̂ − θ‖ > ε).

2.2 Minimum Mean Squared Error Estimation

• We define the Bayesian MSE to be the Bayes risk when the cost function is the squared

error.

MSE(θ̂) = Eθ|X [(θ̂ − θ)T (θ̂ − θ)|X = x].

The estimator that minimizes the MSE(θ̂) is called the minimum mean squared error

estimator (MMSE).

• The MMSE estimator is give by the posterior mean

θ̂(x) = E[θ|X].

2.3 Minimum Mean Absolute Error Estimation

Minimum mean absolute error (MMAE) estimator is the conditional median (posterior me-

dian) estimator:

θ̂ = medianθ∈Θ{f(θ|X)}.

medianθ∈Θ{f(θ|X)} = min{u |
∫ u

−∞
f(θ|X)dθ = 1/2}

= min{u |
∫ u

−∞
f(X|θ)f(θ)dθ =

∫ ∞
u

f(X|θ)f(θ)dθ}.
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2.4 Minimum Mean Uniform Error Estimation

• Minimum mean uniform error (MMUE) estimation uses mean uniform error criterion

which only penalizes those errors that exceed a tolerance level ε > 0. This penalty is

uniform.

• For small ε the optimal estimator is the maximum a posteriori (MAP) estimator, which

is called the posterior mode estimator:

θ̂ = arg max
θ∈Θ
{f(θ|X)}

= arg max
θ∈Θ
{f(X|θ)f(θ)

f(X)
}

= arg max
θ∈Θ
{f(X|θ)f(θ)}.

Remarks -

• For all three estimators, the estimate depends on x through the posterior: posterior

mean, posterior median and posterior mode.

• If the posterior is continuous, symmetric and unimodal, then the MMSE, MMAE and

MMUE estimators are equal.

• The MMSE and MMAE estimators require integrating with respect to f(θ|X). Often

the calculation is intractable. We have to use numerical techniques for integration.

• If the posterior mode can not be determined analytically, then many of the numerical

techniques used for MLE can be applied.
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3 The Multivariate Gaussian Linear Model

Consider the following model:

X = Hθ + ω

where

θ is an unknown p× 1 vector

H is known N × p matrix

θ ∼ N (µθ, Rθ)

ω ∼ N (0, Rω)

θ and ω are independent

Rω, Rθ, and µθ are known.

• Then the posterior distribution of θ|X is Gauss:

θ|X ∼ N (µθ|X , Rθ|X)

where

µθ|X = µθ +RθH
T (HRθH

T +Rω)−1(x−Hµθ)

= µθ + (HTR−1
ω H +R−1

θ )−1HTR−1
ω (x−Hµθ)

and

Rθ|X = Rθ −RθH
T (HRθH

T +Rω)−1HTRθ

= (HTR−1
ω H +R−1

θ )−1.
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3.1 Bayes Estimation

The posterior distribution is Gauss, symmetric and unimodal. Therefore, the optimal Bayes

estimator is

θ̂(x) = µθ|X = µθ +RθH
T (HRθH

T +Rω)−1(x−Hµθ)

regardless of which optimality criterion we use. (Recall that MMSE, MMAE and MMUE

estimators are equivalent in this case.)

Remarks -

• The optimal estimator θ̂(x) is a linear function of the data x.

• Consider the case where Rθ = σ2I and let σ2 →∞. Then R−1
θ → 0 and

θ̂(x) = µθ + (HTR−1
ω H)−1HTR−1

ω (x−Hµθ)

= (HTR−1
ω H)−1HTR−1

ω x

Note that this is the same as the maximum likelihood estimator and the minimum

variance unbiased estimator.

• It suffices to focus on the case where µθ = 0. Then the Bayesian estimator is

µθ|X = RθH
T (HRθH

T +Rω)−1x

= (HTR−1
ω H +R−1

θ )−1HTR−1
ω x

If µθ 6= 0, we can apply the above estimator to x−Hµθ and add µθ to the result.

3.2 Simultenously Diagonalizable Covariance Matrices

Consider the problem of estimating a signal in Gaussian noise

x = s+ ω
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where

x : Observed noisy measurements

s : True signal

ω : Noise

• Thus, in the general linear model introduced above H = I and θ = s. Assuming that

s ∼ N (0, Rs)

and

ω ∼ N (0, Rω)

and that s and ω are statistically independent, the Bayesian estimate of s is given by

ŝ = Rs(Rs +Rω)−1x.

• Suppose, Rs and Rω are simultaneously diagonalizable, meaning there is an orthogonal

matrix U such that

Rs = UΣsU
T

and

Rω = UΣωU
T

with Σs and Σω being diagonal.

• Then the estimator becomes

ŝ = Rs(Rs +Rω)−1x

= U [Σs(Σs + Σω)−1]︸ ︷︷ ︸
Σ

UTx
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where

Σ =


λs1

λs1+λω1
. . . 0

...
λs2

λs2+λω2

...

0 · · · λsN
λsN+λωN


• Observations -

– U : Rotation matrix that changes the basis

– y = UTx : Rotated x vector

– z = Σsy : Rescaling of y.

– s = Uz : Projection back into the signal space.

– UT s ∼ N (0, UTRsU) = N (0,Σs) and

UTω ∼ N (0, UTRωU) = N (0,Σω)

– U = [u1, ..., uN ], we have

uTi s ∼ N (0, λsi )

and

uTi ω ∼ N (0, λωi ).

– λi =
λsi

λsi+λωi
: The proportion of the projection onto ui that is due to the signal.
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