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1 Description

Wiener filtering is the linear MMSE recovery of signals in additive noise under the assumption

of wide sense stationarity. Consider the following problem:

x[n] = s[n] + ω[n]

where

x[n− k], k = 0, ..., p are observations.

x[n] is wide sense stationary (WSS) with autocorrelation

rxx[k] = E[x[n]x[n+ k]].

x[n] and s[n] are jointly WSS with cross correlation

rxs[k] = E[x[n]s[n+ k]].

Assumptions -

• s[n] and ω[n] are zero mean.

• Signal prediction if τ > 0.

• Smoothing if τ < 0.

2 FIR Wiener Filtering

Problem Statement -

Estimate s[n+ τ ] where τ = ...− 1, 0, 1, ..., under the above assumptions using

θ̂ = ŝ[n+ τ ] =

p−1∑
k=0

h[k]x[n− k].

Depending on the value of τ the problem is referred to as:

2



• Filtering if τ = 0.

• Signal prediction if τ > 0.

• Smoothing if τ < 0.

Note that smoothing requires the filter h to be non-causal, i.e., estimation of present signal

requires knowledge of future observations. Filtering and prediction, on the other hand, are

causal.

2.1 Wiener-Hopf Equation

• For simplicity, we focus to the case where τ = 0. However, other cases are also

addressed in a similar fashion.

• From the LMMSE theory we know that the Wiener-Hopf equation is given by

RXXH = RθX

where θ = s[n+ τ ].

• Under the WSS assumption, the ij element of RXX is given by rxx[|i− j|] and the ijth

element of RθX is given by rsx[|i− j|].

• Since RXX and RθX are both Toeplitz, so is H. Therefore, H can be represented as

a linear time-invariant filter. Thus, an alternative representation of the Wiener-Hopf

equation is given by

rxx[0] rxx[1] · · · rxx[p− 1]

rxx[1] rxx[0] · · · rxx[p− 2]

...
...

. . .
...

rxx[p− 1] rxx[p− 2] · · · rxx[0]





h[0]

h[1]

...

h[p− 1]


=



rxs[0]

rxs[1]

...

rxs[p− 1]
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• Since RXX is symmetric, Toeplitz and positive-definite, thus a unique solution for the

Wiener-Hopf equation exists. Furthermore, RXX can be efficiently inverted by the

Generalized Levinson-Durbin algorithm.

3 IIR Wiener Filtering

• So far, we consider the estimation of s[n + τ ] when only finitely may observations

x[n], x[n−1], ... x[n−p+ 1] are available which results in a Wiener filter with finitely

many non-zero taps.

• We will now consider infinite impulse response Wiener filtering. In particular, we

consider

1. The causal IIR Wiener filter

ŝ[n] =
∞∑
k=0

h[k]x[n− k]

2. The non-causal IIR Wiener filter

ŝ[n] =
∞∑

k=−∞

h[k]x[n− k]

3.1 Non-causal IIR Wiener Filter

We will first consider the non-causal IIR Wiener filter.

• Given x[n], n = ...,−1, 0, 1, ..., we want to determine the linear time-invariant filter

h[k], k = ...,−1, 0, 1, ... such that

E[(s[n]−
∞∑

k=−∞

h[k]x[n− k])2]

is minimized.
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• Using the orthogonality relationship, we can show that the filter h satisfies the following

equation:
∞∑

k=−∞

h[k]rxx[n− k] = rxs[n], for all n = ...,−1, 0, 1, ...

• This is the Wiener-Hopf equation for the IIR Wiener smoother.

• To solve the Wiener-Hopf equation, we will use the Discrete-Time Fourier Transform

(DTFT), since DTFT diagonalizes the linear time-invariant filters.

• Let Sxx(f) be the spectral density function of x and Sxs(f) be the cross-spectral density

function of x and s. Then,

rxs = h ∗ rxx ⇔ Sxs(f) = Sxx(f)H(f)

where H(f) is the discrete-time Fourier transform of the h. Thus,

H(f) =
Sxs(f)

Sxx(f)
.

• If the noise process ω[n] and the signal s[n] are uncorrelated, the IIR Wiener filter

becomes

H(f) =
Sss(f)

Sss(f) + Sωω(f)

where Sωω(f) is the power spectral density function of the WSS noise process ω[n].

3.2 Causal IIR Wiener Filter

• We consider the case where we estimate the present signal s[n] based on data from

present and infinite past,i.e.,

ŝ[n] =
∞∑
k=0

h[k]x[n− k].

• We apply the ortogonality principle to arrive at the Wiener-Hopf equation:

∞∑
k=−0

h[k]rxx[n− k] = rxs[n], n = 0, 1, ...
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• However, this time we can not express the Wiener-Hopf equation as a convolution

and make use of the DTFT to solve it since the Wiener-Hopf equation holds only for

non-negative integers.

• It turns out that

H(z) =
1

G(z)

[
Pxs(z)

G(z−1)

]
+

where

Pxx =
∞∑

k=−∞

rxx[k]z−k

= G(z)G(z−1)

where G(z) is the minimum phase causal part and

[Y (z)]+ =
∞∑
k=0

y[k]z−k

is the z-transform of the causal part.
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