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1 Introduction

• Wiener filtering assumes that the underlying processes are wide sense stationary,

whereas in Kalman filtering the underlying processes are assumed to be Gauss-Markov.

• Wiener filtering uses data from infinite past and also from future (non-causal filter).

Kalman filter, on the other hand, uses finite set of observations from past.

• Finally, in Kalman filtering the model (state and measurement models) can evolve over

time whereas in Wiener filtering, the underlying model is fixed.

2 Evolution-Observation Model

• We consider two stochastic processes:

– {X[k]}∞k=0, where X[k] = [X1[k], X2[k], ...Xp[k]]T is a random vector, represents

the primary quantities we wish to estimate. This random vector is called the state

vector.

– {Y [k]}∞k=1, where Y [k] = [Y1[k], Y2[k], ...YM [k]]T , represents the measurements.

We refer to Y [k] as the observation at the kth time instant.

• We postulate the following three properties for these processes:

1. The process {X[k]}∞k=0 is a Markov process, that is

f(x[k + 1] | x[0], x[1], ..., x[k]) = f(x[k + 1] | x[k]) for all k = 0, 1, ....

2. The process {Y [k]}∞k=1 is a Markov process with respect to the history of {X[k]}∞k=0,

that is

f(y[k] | x[0], x[1], ..., x[k]) = f(y[k] | x[k]) for all k = 0, 1, ....
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3. The process {X[k]}∞k=0 depends on the past observations only through its own

history, that is,

f(x[k + 1] | x[k], y[1], ..., y[k]) = f(x[k + 1] | x[k]) for all k = 0, 1, ....

If the stochastic process {X[k]}∞k=0 and {Y [k]}∞k=1 satisfy conditions 1 to 3 above, the

pair is called an evolution-observation model.

• However, for the evolution-observation model to be complete, we need to specify the

following:

– The pdf of the initial state X[0].

– The Markov transition pdf f(x[k + 1] | x[k]), for k = 0, 1, ....

– The likelihood function f(y[k] | x[k]), for k = 1, 2, ....

To better understand the assumptions above, consider the case that is often the starting

point in practice:

• Assume that we have a Markov model describing the evolution of the states X[k] and

an observation model for vectors Y [k] depending on the current state X[k],

X[k + 1] = Fk+1(X[k],W [k + 1]), k = 0, 1, 2, . . . (1)

Y [k] = Gk(X[k], V [k]) k = 1, 2, . . . (2)

– We assume the functions Fk+1 and Gk are known.

– The random vectors W [k+ 1] and V [k] are called the state noise and observation

noise, respectively. The equation (1) is called the state evolution equation and

(2) is called the observation equation.
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• In order that the processes {X[k]}∞k=0 and {Y [k]}∞k=1 are an evolution-observation

model, we make the following assumptions concerning the state noise and observa-

tion noise processes:

1. For k 6= l, the noise vectors W [k] and W [l] as well as V [k] and V [l] are mutually

independent and also mutually independent of the initial state X[0].

2. The noise vectors W [k] and V [l] are mutually independent for all k, l.

• Our objective is to estimate X[k] based the measurements Y [k]. Let

Dk = {y[1], y[2], . . . , y[k]}.

In general, the problem of determining the pdf of

– X[k + 1] given Dk is called the prediction problem;

– X[k] given Dk is called filtering problem and;

– X[k] given Dk+p p ≥ 1 is called the smoothing problem.

Our objective is to develop a recursive scheme where we first solve the filtering problem

and next the prediction problem by making use of the solution of the filtering problem

and the Markov model (evolution model) and finally use the solution of the prediction

problem to update the filtering problem when a new observation becomes available

using the observation model. Therefore, we need to find the formulas for the following

updating steps:

1. Time evolution updating: Given f(x[k] | Dk), find f(x[k + 1] | Dk) based on

f(x[k + 1] | x[k]).

2. Observation updating: Given f(x[k + 1] | Dk), find f(x[k + 1] | Dk+1) based on

the new observation y[k + 1] and the likelihood function f(y[k + 1] | x[k + 1]).

These updating equations are given in the following theorem.
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Theorem 1 Assume that the pair {X[k]}∞k=0 and {Y [k]}∞k=1 of stochastic processes is an

evolution-observation model. Then the following updating formulas apply:

1. Time evolution updating:

f(x[k + 1] | Dk) =

∫
f(x[k + 1] | x[k])f(x[k] | Dk)dx[k] (3)

2. Observation updating:

f(x[k + 1] | Dk+1) =
f(y[k + 1] | x[k + 1])f(x[k + 1] | Dk)

f(y[k + 1] | Dk)
(4)

where

f(y[k + 1] | Dk) =

∫
f(y[k + 1] | x[k + 1])f(x[k + 1] | Dk)dx[k + 1]

3 Kalman Filter for the Linear Gaussian Model

Consider the following model:

X[k + 1] = Fk+1X[k] +W [k + 1] k = 0, 1, ...

Y [k] = GkX[k] + V [k] k = 1, 2, ...

where

1. Y [k], k = 1, 1, ... - observation/measurement vectors.

2. X[k], k = 0, 1... - unknown state vectors.

3. Fk and Gk are deterministic and known state and observation matrices, respectively.

4. W [k] and V [k] are Gaussian state noise and observation noise vectors with known

mean and covariance matrices. Without loss of generality, we assume that they are
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zero mean with covariance matrices, RWk
and RVk

, respectively. Furthermore, we

assume that they are mutually statistically independent, i.e.,

E[WkW
T
l ] = RWk

δkl

E[VkV
T
l ] = RVk

δkl

E[WkV
T
l ] = 0.

Note that the covariance matrices of W [k] and V [k] may vary wrt to k.

4. Finally, the probability distribution of X[0] is known and Gaussian and without loss

of generality, X[0] is zero mean with covariance matrix R0.

- Notation - Define

• xk|l = E[X[k] | Dl].

• Rk|l = Cov(X[k] | Dl).

• f(X[0]) = f(X[0] | D0).

Theorem 2 Assume that the above assumptions are valid. Then the time evolution and

observation updating formulas take the following forms:

1. Time evolution updating : Assume that we know the Gaussian distribution

X[k] | Dk ∼ N (xk|k, Rk|k).

Then,

X[k + 1] | Dk ∼ N (xk+1|k, Rk+1|k),

where

xk+1|k = Fk+1xk|k, (5)

Rk+1|k = Fk+1Rk|kF
T
k+1 +RWk+1

. (6)
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2. Observation updating : Assume that we know the Gaussian distribution

X[k + 1] | Dk ∼ N (xk+1|k, Rk+1|k).

Then,

X[k + 1] | Dk+1 ∼ N (xk+1|k+1, Rk+1|k+1),

where

xk+1|k+1 = xk+1|k +Kk+1(y[k + 1]−Gk+1xk+1|k), (7)

Rk+1|k+1 = (1−Kk+1Gk+1)Rk+1|k, (8)

and the matrix Kk+1, known as the Kalman gain matrix, is given by

Kk+1 = Rk+1|kG
T
k+1(Gk+1Rk+1|kG

T
k+1 +RVk+1

)−1.
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