ECSE 6520: Estimation and Detection Theory Linear Algebra Preliminaries, Signal Subspace Model and Deterministic Least Squares

Class Notes - 2

January 26, 2014

Contents

1	Notation	2
2	Basic Definitions	2
3	Eigen Decomposition of Hermitian Symmetric Matrices	4
4	Quadratic Forms and Positive Definiteness	4
5	Singular value Decomposition of a Matrix	5
6	Vector Differentiation	5
7	Signal Subspace Model	6
8	Deterministic Least Squares	7

1 Notation

- In general upper case letters, e.g. X, Y, Z, from the end of the alphabet denote random variables, i.e. functions on a sample space, and their lower case versions, e.g. x, denote realizations, i.e. evaluations of these functions at a sample point, of these random variables.
- We reserve lower case letters from the beginning of the alphabet, e.g. *a*, *b*, *c*, for constants and lower case letters in the middle of the alphabet, e.g. *i*, *j*, *k*, *l*, *m*, *n*, for integer variables.
- The letter f is reserved for a probability density function and p is reserved for a probability mass function. Finally in many cases we deal with functions of two or more variables, e.g. the density function $f(x;\theta)$ or $f_{\theta}(x)$ of a random variable X parameterized by a parameter θ .
- However, when dealing with multivariate densities for clarity we will prefer to explicitly subscript with the appropriate ordering of the random variables, e.g. $f_{X,Y}(x, y; \theta)$, $f_{\theta}(x, y)$ or $f_{X|Y}(x|y; \theta)$.
- We will define vectors as column vectors unless otherwise specified; and use T to denote its transpose, e.g. x = [x₁, x₂, ..., x_N]^T. We will use H to denote Hermitian transpose, i.e., x^H = [x₁^{*}, x₂^{*}, ..., x_N^{*}] where x_i^{*} denotes complex conjugate.

2 Basic Definitions

- 2-Norm of a vector We will denote the length of a vector $x \in \mathbb{C}^n$ by $||x|| = \sqrt{x^H x} = \sqrt{\sum_{i=1}^n |x_i|^2}$.
- Distance between two vectors We will denote the "distance" between two vectors $x, y \in \mathbb{C}^n$ as $x^H y$. Note that xy^H is called the "outer product" of x and y.

- Orthogonal vectors Two vectors $x \in \mathbb{C}^n$ and $y \in \mathbb{C}^n$ are said to be orthogonal if $x^H y = 0$. In addition, if ||x|| = 1 and ||y|| = 1, then x and y are said to be orthonormal.
- Linear independence of vectors Let $x_1, ..., x_n$ be a set of p dimensional (column) vectors. $x_1, ..., x_n$ is said to be linearly independent if $c_1x_1 + c_2x_2 + ... + c_nx_n = 0$ implies that $c_i = 0$ for all i = 1, ..., n.
- Linear span of a set of vectors Let $x_1, ..., x_n$ be a set of p dimensional (column) vectors and construct the $p \times n$ matrix

$$X = [x_1, \dots, x_n].$$

Let $a = [a_1, ..., a_n]^T$ be a vector of coefficients. Then $y = \sum_{i=1}^n a_i x_i = X_a$ is another p dimensional vector that is a linear combination of the columns of X. The linear span of the vectors $x_1, ..., x_n$, equivalently, the column space or range of X, is defined as the subspace of \mathbb{R}^p that contains all such linear combinations. In other words, when we allow a to sweep over its entire domain \mathbb{R}^n , y sweeps over the linear span of $x_1, ..., x_n$.

- Rank of a matrix The (column) rank of a matrix A is equal to the number its columns which are linearly independent.
- Orthogonal matrices A real square matrix A is said to be orthogonal if all of its columns are orthonormal, i.e.,

$$A^T A = I.$$

Thus if A is an orthogonal matrix, it is invertible and has a very simple inverse $A^{-1} = A^{T}$.

• Unitary matrices - The generalization of orthogonality to complex matrices A is the property of being unitary,

$$A^H A = I.$$

3 Eigen Decomposition of Hermitian Symmetric Matrices

If R is arbitrary $n \times n$ symmetric matrix, that is, $R^T = R$, then there exist a set of n orthonormal $v_i^T v_j = \delta(i-j)$ and a set of associated eigenvectors λ_i such that: $Rv_i = \lambda_i v_i$ for i = 1, ..., n. This result extends to Hermitian symmetric matrices, i.e., to matrices where $R^H = R$.

Theorem 1 If $A \in \mathbb{C}^{N \times N}$ is Hermitian, then there exists a unitary matrix U and a diagonal matrix Λ such that

$$A = U\Lambda U^H.$$

If $A \in \mathbb{R}^{N \times N}$ is symmetric, the same result holds where now U is orthogonal.

4 Quadratic Forms and Positive Definiteness

For a square symmetric (or Hermitian symmetric) matrix R and a compatible vector x, a quadratic form is the scalar defined by $x^{H}Rx$. The matrix R is non-negative definite (nnd) if for any x

$$x^H R x \ge 0.$$

R is positive definite (pd) if $x^H R x > 0$. Examples of nnd (pd) matrices:

- $R = B^H B$ for arbitrary matrix B.
- *R* symmetric with only non-negative (positive) eigenvalues.

5 Singular value Decomposition of a Matrix

Theorem 2 Let $A \in \mathbb{C}^{n \times m}$ arbitrary matrix. Then, there exist $m \times m$ and $n \times n$ unitary matrices U and V, and $\lambda_1, ..., \lambda_p$, $p = min\{n, m\}$ positive constant such that

$$A = U\Lambda V^H$$

where Λ is the diagonal matrix with its diagonal elements equal to $\lambda_1, ... \lambda_p$.

- Columns of the matrix U and V are called the left- and right-singular vectors of A, respectively. λ_i , i = 1, ..., p are called the singular values of A.
- Left-singular vectors span the range space of A, whereas right-singular vectors spans the null space of A.
- Let $A \in \mathbb{C}^{n \times m}$ arbitrary matrix. Then, $A^H A$ is an $m \times m$ Hermitian symmetric, nonnegative definite matrix. Similarly, AA^H is an $n \times n$ Hermitian symmetric, non-negative definite matrix. Thus, from the spectral decomposition theorem, there exists $m \times m$ and $n \times n$ unitary matrices U and V, such that $A^H A = U\Lambda_2 U^H \quad AA^H = V\Lambda_1 V^H$.

6 Vector Differentiation

Differentiation of functions of a vector variable often arise in signal processing and estimation theory. If $h = [h_1, ..., h_n]^T$ is an $n \times 1$ vector and g(h) is a scalar function then the gradient of g(h), denoted $\nabla g(h)$ or $\nabla_h g(h)$ when necessary for conciseness, is defined as the (column) vector of partials

$$\nabla g = [\frac{\partial g}{\partial h_1}, ..., \frac{\partial g}{\partial h_n}]^T.$$

- If c is a constant, $\nabla_h c = 0$.
- If $x = [x^1, ..., x^n]^T$, $\nabla_h(h^T x) = \nabla_h(x^T h) = x$.

- If B is an $n \times n$ matrix, $\nabla_h (h x)^T B(h x) = 2B(h x)$.
- For a vector valued function $g(h) = [g_1(h), ..., g_m(h)]^T$, the gradient of g(h) is an $m \times n$ matrix.
- In particular, for a scalar function g(h), the two applications of the gradient $\nabla(\nabla(g))^T$ gives the $n \times n$ Hessian matrix of g, denoted as $\nabla^2 g$. This yields useful and natural identities such as: $\nabla^2(h-x)^T B(h-x) = 2B$. For a more detailed discussion of vector differentiation, see Kay.

7 Signal Subspace Model

• Let $x_1, x_2, ..., x_p \in \mathbb{R}^n$ be linearly independent $(p \leq N)$, and consider the $N \times p$ matrix

$$X = [x_1, x_2, \dots, x_p].$$

Let \mathcal{A} denotes the column space of X, then the dimension of \mathcal{A} is p. Let \mathcal{B} denote the space orthogonal to \mathcal{A} . Then

$$\mathbb{R}^n = \mathcal{A} \oplus \mathcal{B}.$$

• In the subspace model, we assume our observed signal $y \in \mathbb{R}^n$ has the form

$$y = s + \omega$$

where $s \in \mathcal{A}$ is the signal of interest to be recovered and ω is noise. We say \mathcal{A} is the signal subspace and \mathcal{B} is the noise subspace.

- How do we estimate s from y knowing that s lies in the column space of X? Answer:
 Do an orthogonal projection onto A.
- The orthogonal projection onto \mathcal{A} is given by

$$X(X^T X)^{-1} X^T.$$

It turns out that the orthogonal projection is closely related to the least squares solution.

8 Deterministic Least Squares

Postulate an "input-output" relationship:

$$y = \sum_{i=1}^{p} x_i a_i + \omega$$

where $y = [y_1, ..., y_n]$ is the vector of observation/measurements; $x_i = [x_{i1}, x_{i2}, ..., x_{in}]^T$, i = 1, ..., p are the independent vectors; ω is the $1 \times n$ noise vector; and $a = [a_1, ..., a_p]$ is unknown $1 \times p$ coefficient vector to be estimated.

• Our objective is to estimate *a* from noisy measurements by means of least squares, i.e., by minimizing the squared error (SE) (SSE): The estimation criterion can be stated as

$$SE(a) = (y - Xa)^T (y - Xa).$$

- Least squared error solution of *a*:
 - Identify vector space containing y: \mathbb{R}^n . The inner product $\langle y, z \rangle = y^T z$.
 - Identify the solution subspace containing Xa: $\mathcal{A} = \text{span}\{\text{columns of } X\}$ which contains vectors of the form $Xa = \sum_{k=1}^{p} a_k [x_{1k}, x_{2k}, ..., x_{nk}]^T$.
 - Differentiate $(y Xa)^T(y Xa)$ with respect to a and set it equal to zero.

$$0^T = (y - Xa)^T X = y^T X - a^T X^T X.$$

If X has full column rank of p, then $X^T X$ is invertable and

$$\hat{a} = (X^T X)^{-1} X^T y.$$

 $(X^T X)^{-1} X^T$ is called the pseudo-inverse of X.

We next specify the projection operator form of predicted output response

$$\hat{y} = X\hat{a}$$

which using above can be represented as the orthogonal projection of y onto \mathcal{A} , the column space of X.

$$\hat{y} = X\hat{a} = \underbrace{X(X^T X)^{-1} X^T}_{P_t} y$$

Properties of the orthogonal projection operator -

$$\Pi_X = X(X^T X)^{-1} X^T.$$

• Π_X projects vectors onto the column space of X. Define decomposition of y into components y_X in column space of X and y_X^{\perp} orthogonal to the column space of X:

$$y = y_X + y_X^{\perp}.$$

Then for some vector $\boldsymbol{\alpha} = [\alpha_1,...,\alpha_p]^T$

$$y_X = X\alpha, \quad X^T y_X^{\perp} = 0.$$

$$\Pi_X y = \Pi_X (y_X + y_X^{\perp})$$
$$= X \underbrace{(X^T X)^{-1} X^T X}_I \alpha + X (X^T X)^{-1} X^T y_X^{\perp}$$

Thus

$$y = \Pi_X y + (I - \Pi_X) y$$

and that $I - \prod_X$ projects onto the subspace orthogonal to the column space of X.

- Π_X is symmetric and idempotent: $\Pi_X^T \Pi_X = \Pi_X$.
- $(I \Pi_X)\Pi_X = 0.$