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1 Notation

• In general upper case letters, e.g. X, Y , Z, from the end of the alphabet denote

random variables, i.e. functions on a sample space, and their lower case versions, e.g.

x, denote realizations, i.e. evaluations of these functions at a sample point, of these

random variables.

• We reserve lower case letters from the beginning of the alphabet, e.g. a, b, c, for

constants and lower case letters in the middle of the alphabet, e.g. i, j, k, l, m, n, for

integer variables.

• The letter f is reserved for a probability density function and p is reserved for a

probability mass function. Finally in many cases we deal with functions of two or

more variables, e.g. the density function f(x; θ) or fθ(x) of a random variable X

parameterized by a parameter θ.

• However, when dealing with multivariate densities for clarity we will prefer to explicitly

subscript with the appropriate ordering of the random variables, e.g. fX,Y (x, y; θ),

fθ(x, y) or fX|Y (x|y; θ).

• We will define vectors as column vectors unless otherwise specified; and use T to denote

its transpose, e.g. x = [x1, x2, ..., xN ]T . We will use H to denote Hermitian transpose,

i.e., xH = [x∗1, x
∗
2, ..., x

∗
N ] where x∗i denotes complex conjugate.

2 Basic Definitions

• 2-Norm of a vector - We will denote the length of a vector x ∈ Cn by ‖x‖ =
√
xHx =√∑n

i=1 |xi|2.

• Distance between two vectors - We will denote the “distance” between two vectors

x, y ∈ Cn as xHy. Note that xyH is called the “outer product” of x and y.
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• Orthogonal vectors - Two vectors x ∈ Cn and y ∈ Cn are said to be orthogonal if

xHy = 0. In addition, if ‖x‖ = 1 and ‖y‖ = 1, then x and y are said to be orthonormal.

• Linear independence of vectors - Let x1, ...xn be a set of p dimensional (column)

vectors. x1, ...xn is said to be linearly independent if c1x1 +c2x2 + ...+cnxn = 0 implies

that ci = 0 for all i = 1, ..., n.

• Linear span of a set of vectors - Let x1, ...xn be a set of p dimensional (column)

vectors and construct the p× n matrix

X = [x1, ..., xn].

Let a = [a1, ...an]T be a vector of coefficients. Then y =
∑n

i=1 aixi = Xa is another p

dimensional vector that is a linear combination of the columns of X. The linear span

of the vectors x1, ..., xn, equivalently, the column space or range of X, is defined as the

subspace of Rp that contains all such linear combinations. In other words, when we

allow a to sweep over its entire domain Rn, y sweeps over the linear span of x1, ..., xn.

• Rank of a matrix - The (column) rank of a matrix A is equal to the number its

columns which are linearly independent.

• Orthogonal matrices - A real square matrix A is said to be orthogonal if all of its

columns are orthonormal, i.e.,

ATA = I.

Thus if A is an orthogonal matrix, it is invertible and has a very simple inverse A−1 =

AT .

• Unitary matrices - The generalization of orthogonality to complex matrices A is the

property of being unitary,

AHA = I.
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3 Eigen Decomposition of Hermitian Symmetric Ma-

trices

If R is arbitrary n × n symmetric matrix, that is, RT = R, then there exist a set of n

orthonormal vi
Tvj = δ(i − j) and a set of associated eigenvectors λi such that: Rvi = λivi

for i = 1, ..., n. This result extends to Hermitian symmetric matrices, i.e., to matrices where

RH = R.

Theorem 1 If A ∈ CN×N is Hermitian, then there exists a unitary matrix U and a diagonal

matrix Λ such that

A = UΛUH .

If A ∈ RN×N is symmetric, the same result holds where now U is orthogonal.

4 Quadratic Forms and Positive Definiteness

For a square symmetric (or Hermitian symmetric) matrix R and a compatible vector x, a

quadratic form is the scalar defined by xHRx. The matrix R is non-negative definite (nnd)

if for any x

xHRx ≥ 0.

R is positive definite (pd) if xHRx > 0. Examples of nnd (pd) matrices:

• R = BHB for arbitrary matrix B.

• R symmetric with only non-negative (positive) eigenvalues.
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5 Singular value Decomposition of a Matrix

Theorem 2 Let A ∈ Cn×m arbitrary matrix. Then, there exist m ×m and n × n unitary

matrices U and V , and λ1, ...λp, p = min{n,m} positive constant such that

A = UΛV H

where Λ is the diagonal matrix with its diagonal elements equal to λ1, ...λp.

• Columns of the matrix U and V are called the left- and right-singular vectors of A,

respectively. λi, i = 1, ..., p are called the singular values of A.

• Left-singular vectors span the range space of A, whereas right-singular vectors spans

the null space of A.

• Let A ∈ Cn×m arbitrary matrix. Then, AHA is an m×m Hermitian symmetric, non-

negative definite matrix. Similarly, AAH is an n×n Hermitian symmetric, non-negative

definite matrix. Thus, from the spectral decomposition theorem, there exists m ×m

and n× n unitary matrices U and V , such that AHA = UΛ2U
H AAH = V Λ1V

H .

6 Vector Differentiation

Differentiation of functions of a vector variable often arise in signal processing and estimation

theory. If h = [h1, ..., hn]T is an n× 1 vector and g(h) is a scalar function then the gradient

of g(h), denoted ∇g(h) or ∇hg(h) when necessary for conciseness, is defined as the (column)

vector of partials

∇g = [
∂g

∂h1
, ...,

∂g

∂hn
]T .

• If c is a constant, ∇hc = 0.

• If x = [x1, ..., xn]T , ∇h(h
Tx) = ∇h(x

Th) = x.
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• If B is an n× n matrix, ∇h(h− x)TB(h− x) = 2B(h− x).

• For a vector valued function g(h) = [g1(h), ..., gm(h)]T , the gradient of g(h) is an m×n

matrix.

• In particular, for a scalar function g(h), the two applications of the gradient ∇(∇(g))T

gives the n × n Hessian matrix of g, denoted as ∇2g. This yields useful and natural

identities such as: ∇2(h− x)TB(h− x) = 2B. For a more detailed discussion of vector

differentiation, see Kay.

7 Signal Subspace Model

• Let x1, x2, ..., xp ∈ Rn be linearly independent (p ≤ N), and consider the N × p matrix

X = [x1, x2, ..., xp].

Let A denotes the column space of X, then the dimension of A is p. Let B denote the

space orthogonal to A. Then

Rn = A⊕ B.

• In the subspace model, we assume our observed signal y ∈ Rn has the form

y = s+ ω

where s ∈ A is the signal of interest to be recovered and ω is noise. We say A is the

signal subspace and B is the noise subspace.

• How do we estimate s from y knowing that s lies in the column space of X? Answer:

Do an orthogonal projection onto A.

• The orthogonal projection onto A is given by

X(XTX)−1XT .
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It turns out that the orthogonal projection is closely related to the least squares solu-

tion.

8 Deterministic Least Squares

Postulate an “input-output” relationship:

y =

p∑
i=1

xiai + ω

where y = [y1, ..., yn] is the vector of observation/measurements; xi = [xi1, xi2, ..., xin]T , i =

1, ..., p are the independent vectors; ω is the 1×n noise vector; and a = [a1, ..., ap] is unknown

1× p coefficient vector to be estimated.

• Our objective is to estimate a from noisy measurements by means of least squares, i.e.,

by minimizing the squared error (SE) (SSE): The estimation criterion can be stated as

SE(a) = (y −Xa)T (y −Xa).

• Least squared error solution of a:

– Identify vector space containing y: Rn. The inner product < y, z >= yT z.

– Identify the solution subspace containing Xa: A = span{columns of X} which

contains vectors of the form Xa =
∑p

k=1 ak[x1k, x2k, ..., xnk]
T .

– Differentiate (y −Xa)T (y −Xa) with respect to a and set it equal to zero.

0T = (y −Xa)TX = yTX − aTXTX.

If X has full column rank of p, then XTX is invertable and

â = (XTX)−1XTy.

(XTX)−1XT is called the pseudo-inverse of X.
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We next specify the projection operator form of predicted output response

ŷ = Xâ

which using above can be represented as the orthogonal projection of y onto A, the column

space of X.

ŷ = Xâ = X(XTX)−1XT︸ ︷︷ ︸
P.

y

Properties of the orthogonal projection operator -

ΠX = X(XTX)−1XT .

• ΠX projects vectors onto the column space of X. Define decomposition of y into

components yX in column space of X and y⊥X orthogonal to the column space of X:

y = yX + y⊥X .

Then for some vector α = [α1, ..., αp]
T

yX = Xα, XTy⊥X = 0.

ΠXy = ΠX(yX + y⊥X)

= X (XTX)−1XTX︸ ︷︷ ︸
I

α +X(XTX)−1XTy⊥X

Thus

y = ΠXy + (I − ΠX)y

and that I − ΠX projects onto the subspace orthogonal to the column space of X.

• ΠX is symmetric and idempotent: ΠT
XΠX = ΠX .

• (I − ΠX)ΠX = 0.
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