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1 The Multivariate Gaussian Distribution

• A key concept in statistical inference is that of the statistical model which is simply a

hypothesized probability distribution or density function f(x) for the observed data.

• Broadly stated statistical inference explores the possibility of fitting a given model to

the data x.

• To simplify this task it is common to restrict f(x) to a class of parametric models

{fθ(x)}θ∈Θ, where fθ(x) is a known function and θ is a vector of unknown parameters

taking values in a parameter space Θ.

• In this case statistical inference boils down to inferring properties of the true value of

θ parameterizing fθ(x) that generated the data sample x.

The Gaussian distribution play a major role in parametric statistical inference and is widely

employed in statistical signal processing. Some reasons for this include:

• Relative simplicity and tractability.

• Estimators and detectors with intuitive forms and properties.

• Justification in terms of Central Limit Theorem.

2 Characteristic Function

Definition 1 Characteristic Function - The characteristic function of an N dimensional

random variable X is defined as

Φ(ω) = E[ejω
TX ] =

∫
ejω

T xf(x)dx.

• The characteristic function of a random variables uniquely characterizes the random

variable.
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• The characteristic function of a multivariate Gaussian random variable, X ∼ N (µ,Σ),

is given by

Φ(ω) = e−jωµ−
1
2
ωT Σω.

3 Useful Facts about Multivariate Gaussian Distribu-

tion

• Unimodality and symmetry of the Gaussian density: The multivariate Gaus-

sian density is unimodal (has a unique maximum) and is symmetric about its mean

parameter.

• Uncorrelated Gaussian random variables are independent: When the covari-

ance matrix Σ is diagonal, i.e., cov(Xi,Xj) = 0, for i 6= j, then the multivariate

Gaussian density reduces to a product of univariate densities

f(X) =
n∏
i=1

f(Xi).

• Marginals of a multivariate Gaussian density are Gaussian: IfX = [X1, ..., Xn]T

is multivariate Gaussian then any subset of the elements of X is also Gaussian. In par-

ticular X1 is univariate Gaussian and [X1, X2] is bivariate Gaussian.

• Linear combinations are Gaussian: Let X = [X1, ..., Xn]T be a multivariate Gaus-

sian random vector and let H be a p × n non-random matrix. Then Y = HX

is a vector of linear combinations of the Xi’s. The distribution of Y is multivari-

ate (p-variate) Gaussian with mean E[Y ] = HE[X] and p × p covariance matrix

cov(Y ) = Hcov(X)HT .

• The conditional distribution of a Gaussian given another Gaussian is Gaus-

sian: Let the vector X = [X1, ..., Xp]
T and Y = [Y1, ..., Yq]

T be p-variate and q-variate
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Gaussian random variables, respectively. Let the mean value and covariance matrix of

X and Y be µX and µY and ΣX and ΣY , respectfully. Then the conditional density

fY |X(y|x) of Y given X = x is multivariate (q-variate) Gaussian. The conditional

mean, µY |X , is given by

µY |X = E[Y |X = x] = µY + ΣT
X,Y Σ−1

X (x− µX)

where ΣT
X,Y = E[(X − µX)(Y − µY )T ].

The conditional covariance, cov(Y |X = x), is given by

cov(Y |X = x) = E[(Y − µY |X)(Y − µY |X)T |X = x] = ΣY − ΣT
X,Y Σ−1

X ΣT
X,Y .

4 Central Limit Theorem

Theorem 1 Let Xi, i = 1, ..., n be independent identically distributed random vectors in Rp

with common mean E[Xi] = µ and finite positive definite covariance matrix cov(Xi) = Σ.

Then as n goes to infinity the distribution of the random vector

Zn =
n∑
i=1

(Xi − µ)√
n

converges to a p-variate Gaussian distribution with zero mean and covariance Σ.
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