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1 The Multivariate Gaussian Distribution

e A key concept in statistical inference is that of the statistical model which is simply a

hypothesized probability distribution or density function f(z) for the observed data.

e Broadly stated statistical inference explores the possibility of fitting a given model to

the data z.

e To simplify this task it is common to restrict f(z) to a class of parametric models
{fo(x) }oco, where fp(z) is a known function and 6 is a vector of unknown parameters

taking values in a parameter space O.

e In this case statistical inference boils down to inferring properties of the true value of

0 parameterizing fp(z) that generated the data sample z.

The Gaussian distribution play a major role in parametric statistical inference and is widely

employed in statistical signal processing. Some reasons for this include:
e Relative simplicity and tractability.
e Estimators and detectors with intuitive forms and properties.

e Justification in terms of Central Limit Theorem.

2 Characteristic Function

Definition 1 Characteristic Function - The characteristic function of an N dimensional

random variable X is defined as
O(w) = E[eijX] = /ej”Txf(x)dx.

e The characteristic function of a random variables uniquely characterizes the random

variable.



e The characteristic function of a multivariate Gaussian random variable, X ~ N (u, X),
is given by

CD(W) — efjw,uféwTEw.

Useful Facts about Multivariate Gaussian Distribu-
tion

¢ Unimodality and symmetry of the Gaussian density: The multivariate Gaus-
sian density is unimodal (has a unique maximum) and is symmetric about its mean

parameter.

e Uncorrelated Gaussian random variables are independent: When the covari-
ance matrix 3 is diagonal, i.e., cov(Xi, Xj) = 0, for i # j, then the multivariate

Gaussian density reduces to a product of univariate densities
F(X) =T rexi.
i=1
e Marginals of a multivariate Gaussian density are Gaussian: If X = [X1, ..., X,,]7

is multivariate Gaussian then any subset of the elements of X is also Gaussian. In par-

ticular X; is univariate Gaussian and [X7, X5] is bivariate Gaussian.

e Linear combinations are Gaussian: Let X = [X, ..., X,,]T be a multivariate Gaus-
sian random vector and let H be a p X n non-random matrix. Then ¥ = HX
is a vector of linear combinations of the X;’s. The distribution of Y is multivari-
ate (p-variate) Gaussian with mean E[Y] = HFE[X] and p X p covariance matrix

cov(Y) = Hcov(X)HT.

e The conditional distribution of a Gaussian given another Gaussian is Gaus-

sian: Let the vector X = [X1,..., X,|T and Y = [V1,...,Y,]" be p-variate and g-variate



Gaussian random variables, respectively. Let the mean value and covariance matrix of
X and Y be px and py and X x and Xy, respectfully. Then the conditional density
fyix(ylr) of Y given X = x is multivariate (q-variate) Gaussian. The conditional

mean, [ly|x, iS given by
pyix = EY|X = 2] = py + 3%y 25 (2 — px)

where %y = E[(X — ux)(Y — py)7].

The conditional covariance, cov(Y|X = z), is given by

cov(YX =2) = E[(Y — pyix)(Y — pyx)"|X = 2] =8y — S5 55 5%y

4 Central Limit Theorem

Theorem 1 Let X;, 1 = 1,...,n be independent identically distributed random vectors in RP
with common mean E[X;] = p and finite positive definite covariance matriz cov(X;) = X.

Then as n goes to infinity the distribution of the random vector

Zn:;( \/ﬁu)

converges to a p-variate Gaussian distribution with zero mean and covariance .



