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1 Sufficient Statistics

Many detection/estimation/classification problems have the following common structure.A

continuous time waveform {x(t)|t ∈ R} is measured at n time instants t1, ..., tn producing

the vector x = [x1, ..., xn]T where xi = x(ti). The vector x is modelled as a realization of a

random vector X with a joint distribution which is of known form but depends on a handful

(p) of unknown parameters θ = [θ1, ..., θp]
T .

• X = [X1, ..., Xn]T , Xi = X(ti), is a vector of random measurements or observations

taken over the course of the experiment

• X is sample or measurement space of realizations x of X.

• B is the event space induced by X, e.g., the Borel subsets of Rn.

• θ ∈ Θ is an unknown parameter vector of interest.

• Θ is parameter space for the experiment.

• Pθ is a probability measure on B for given θ. {Pθ}θ∈Θ is called the statistical model

for the experiment. Note that the probability model induces the joint cumulative

distribution function of X.

• Our objective is to infer properties of θ knowing only the parametric form of the

statistical model, i.e, the pdf fθ(x) of X, given a realization x of X. In other words, we

want to come up with a function, called inference function, which maps X to a subset

of the parameter space, say for the purpose of designing an estimator, classifier or a

detector.

• Is it possible to compress the measurement x into a low dimensional statistic without

effecting the quality of the inference about θ?
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• In other words, does there exist T = τ(X), where the dimension of T is M < N , such

that T carries all the useful information on θ?

• If so, for the purpose of studying θ, we could discard the raw measurements x and

retain only the compressed statistics t.

Definition 1 Sufficient Statistics - Let fθ(x) be the pdf of the random variable X. The

statistic T = τ(X) is a sufficient statistics for θ if the conditional distribution of X given T

is independent of θ. Equivalently, the functional form of fX|T (x|t) does not involve θ.

1.1 The Fisher-Neyman Factorization Theorem

In general, it is difficult to verify the definition of sufficient statistic directly since it involves

derivation of the conditional probability. The Fisher-Neyman Factorization theorem allows

us to verify sufficient statistics more readily.

Theorem 1 The Fisher-Neyman Factorization Theorem - Let fθ(x) be the pdf or

the pmf of the random variable X. The statistic T = τ(X) is a sufficient statistics for θ iff

there exists functions bθ(t) and a(x) such that

fθ(x) = bθ(τ(x))a(x).

• The theorem gives us a formula for fX|T (x|t), namely

fX|T (x|t) =
a(x)∑

{x′|τ(x′)=t} a(x′)
.

• The theorem states that τ(X) is sufficient for θ if and only if the pdf or pmf of X may

be written as a scale constant, dependent on x and t, but independent on θ, times the

pdf or pmf of T .

• The theorem also shows that the scale constant is the conditional density of x, given

t, and it shows how to compute the pdf or pmf for the sufficient statistics T .
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• If an invertible function is applied to a sufficient statistics, the result is again a sufficient

statistic.

1.2 Rao-Blackwell Theorem

The importance of the sufficient statistics is reflected in the following theorem.

Theorem 2 Rao-Blackwell Theorem - Let fθ(x) be the pdf or the pmf of the random

variable X. Let T = τ(X) be a sufficient statistic for θ. Let θ̂1(x) be an estimator of θ and

define the mean square error

MSE(θ̂1) = E[‖θ̂1(x)− θ‖2].

Define

θ̂2(x) = E[θ̂1(x)|T = τ(x)].

Then

MSE(θ̂2) ≤MSE(θ̂1)

with equality if and only if θ̂1 = θ̂2 with probability 1.

Remarks -

• Given any estimate θ̂1 that is NOT a function of a sufficient statistic, there exist a

better estimate with respect to MSE.

• We may restrict out search for estimators to functions of sufficient statistic.

2 Minimal Sufficient Statistics

• What is the maximum possible amount of reduction one can apply to the data sample

without losing information concerning how the model depends on θ? The answer to

this question lies in the notion of a minimal sufficient statistic.
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• Minimal sufficient statistic cannot be reduced any further without loss in information.

In other words, any other sufficient statistic can be reduced down to a minimal sufficient

statistic without information loss. Since reduction of a statistic is accomplished by

applying a functional transformation we have the following definition:

Definition 2 Minimal Sufficient Statistics -: Tmin is a minimal sufficient statistic if it

can be obtained from any other sufficient statistic T by applying a functional transformation

to T . Equivalently, if T is any sufficient statistic there exists a function q such that Tmin =

q(T ).

Minimal sufficient statistics are not unique: if Tmin is minimal sufficient h(Tmin) is also

minimal sufficient if h is any invertible function. Minimal sufficient statistics can be found

in a variety of ways. One way is to find a complete sufficient statistic.

3 Complete Sufficient Statistic

Definition 3 Complete Sufficient Statistic - A sufficient statistic T is complete if

Eθ[g(T )] = 0, for all θ ∈ Θ

implies that the function g is identically zero, i.e., g(t) = 0 for all values of t.

Theorem 3 Under general conditions, if T is a complete sufficient statistic, then T is min-

imal.

4 The Exponential Family

In general, sufficient statistics, especially ones that are minimal and complete, can be difficult

to find. For a special family of distributions, however, we can immediately identify a complete

minimal sufficient statistic.
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Definition 4 The Exponential Family - The distribution of the random variable X is

said to belong to the exponential family of distributions if its pmf/pdf can be expressed as

fθ(x) = a(θ)b(x) exp{c(θ)T τ(x)}

for some a, b, c, and τ , where the dimension p of θ is also the dimension of c(θ) and τ(x).

• Many common distributions belong to the exponential family, including Gaussian with

unknown mean and/or variance, Poisson, exponential, gamma, binomial, and multino-

mial.

Theorem 4 If the distribution of X belongs to the exponential family, then T = τ(X) is a

sufficient statistic.

Note the τ(x) in the above theorem is the τ(x) in the definition of the exponential family.

Theorem 5 Under certain “reasonable” conditions, T = τ(x) is a complete and minimal

sufficient statistic for θ.
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