ECSE 6520: Estimation and Detection Theory
 Commonly Used Distributions

Class Notes - 5

February 9, 2014

Contents

1 Continuous Distributions 3
1.1 Chi-Square Distribution 3
1.2 Gamma Distribution 3
1.3 Non-central Chi-Square Distribution 4
1.4 Chi-square Mixture 5
1.5 Student-t distribution 5
1.6 Fischer-F 6
1.7 Cauchy Distribution 6
1.8 Beta Distribution 7
1.9 Reproducing Distributions 8
1.10 Fischer-Cochran Theorem 8
2 Discrete Distributions 9
2.1 Binomial Distribution 9
2.2 The Negative Binomial Distribution 10
2.3 Geometric Distribution 10
2.4 Poisson Distribution 11

1 Continuous Distributions

1.1 Chi-Square Distribution

- The (central) Chi-square density with k degrees of freedom is of the form:

$$
\begin{equation*}
f_{\theta}(x)=\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{(k / 2)-1} e^{-x / 2} \quad x>0 \tag{1}
\end{equation*}
$$

where $\theta=k$, a positive integer.

- Here $\Gamma(u)$ denotes the Gamma function,

$$
\begin{equation*}
\Gamma(u)=\int_{0}^{\infty} x^{u-1} e^{-x} d x \tag{2}
\end{equation*}
$$

For n integer valued $\Gamma(n+1)=n!=n(n-1) \ldots 1$ and $\Gamma(n+1 / 2)=\frac{(2 n-1)(2 n-3) \ldots 5 \cdot 3 \cdot 1}{2^{n}} \sqrt{\pi}$.

- If $Z_{i} \sim N(0,1)$ are i.i.d., $i=1 \ldots, n$, then $X=\sum_{i=1}^{n} Z_{i}^{2}$ is distributed as Chi-square with n degrees of freedom.

Some useful properties of the Chi-square random variable are as follows:

- $E\left[x_{n}\right]=n ; \operatorname{var}\left(x_{n}\right)=2 n$
- Asymptotic relation for large $\mathrm{n}: x_{n}=\sqrt{2 n} N(0,1)+n$
- x_{2} an exponential r.v. with mean 2, i.e. $X=x_{2}$ is a non-negative r.v. with probability density $f(x)=\frac{1}{2} e^{-} x / 2$.
- $\sqrt{x_{2}}$ is a Rayleigh distributed random variable.

1.2 Gamma Distribution

- The Gamma density function is

$$
\begin{equation*}
f_{\theta}(x)=\frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x} \quad x>0 \tag{3}
\end{equation*}
$$

where θ denotes the pair of parameters $(\lambda, r), \lambda, r>0$.

- Let $\left\{Y_{i}\right\}_{i=1}^{n}$ be i.i.d. exponentially distributed random variables with mean $1 / \lambda$, specifically Y_{i} has density

$$
\begin{equation*}
f_{\lambda}(y)=\lambda e^{-\lambda y} \quad y>0 \tag{4}
\end{equation*}
$$

Then the sum $X=\sum_{i=1}^{n} Y_{i}$ has a Gamma density $f(\lambda, n)$.
Other useful properties of a Gamma distributed random variable X with parameters theta $=(\lambda, r)$ include:

- $E_{\theta}[X]=r / \lambda$
- $\operatorname{var}_{\theta}(X)=r / \lambda^{2}$
- The Chi-square distribution with k degrees of freedom is a special case of the Gamma distribution obtained by setting Gamma parameters as follows: $\lambda=1 / 2$ and $r=k / 2$.

1.3 Non-central Chi-Square Distribution

- The sum of squares of independent Gaussian r.v.s with unit variances but non-zero means is called a non-central Chi-square r.v.
- Specifically, if $Z_{i} \sim N\left(\mu_{i}, 1\right)$ are independent, $i=1, \ldots, n$, then $X=\sum_{i=1}^{n} Z_{i}^{2}$ is distributed as non-central Chi-square with n degrees of freedom and non-centrality parameter $\delta=\sum_{i=1}^{n} \mu_{i}^{2}$.
- In our shorthand we write

$$
\begin{equation*}
\sum_{i=1}^{n}\left[N(0,1)+\mu_{i}\right]^{2}=\sum_{i=1}^{n}\left[N\left(\mu_{i}, 1\right)\right]^{2}=x_{n, \delta} \tag{5}
\end{equation*}
$$

The non-central Chi-square density has no simple expression of closed form. There are some useful asymptotic relations, however:

- $E\left[x_{n, \delta}\right]=n+\delta, \operatorname{var}\left(x_{n, \delta}\right)=2(n+2 \delta)$
- $\sqrt{x_{2, \mu_{1}^{2}+\mu_{2}^{2}}}$ is a Rician r.v.

1.4 Chi-square Mixture

- The distribution of the sum of squares of independent Gaussian r.v.s with zero mean but different variances is not closed form either.
- However, many statisticians have studied and tabulated the distribution of a weighted sum of squares of i.i.d. standard Gaussian r.v.s $Z_{1}, \ldots, Z_{n}, Z_{i} \sim N(0,1)$.
- Specifically, the following has a (central) Chi-square mixture with n degrees of freedom and mixture parameter $c=\left[c_{1}, \ldots, c_{n}\right]^{T}, c_{i} \geq 0$:

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{c i}{\sum_{j} c_{j}} Z_{i}^{2}=x_{n, c} \tag{6}
\end{equation*}
$$

An asymptotic relation of interest to us will be:

- $E\left[x_{n, c}\right]=1, \operatorname{var}\left(x_{n, c}\right)=2 \sum_{i=1}^{N}\left(\frac{c i}{\sum_{j} c_{i}}\right)^{2}$
- Furthermore, there is an obvious a special case where the Chi-square mixture reduces to a scaled (central) Chi-square: $x_{n, c_{1}}=\frac{1}{n} x_{n}$ for any $c \neq 0$.

1.5 Student-t distribution

- For $Z \sim N(0,1)$ and $Y \sim x_{n}$ independent r.v.s the ratio $X=Z / \sqrt{Y / n}$ is called a Student-t r.v. with n degrees of freedom, denoted T_{n}.
- In shorthand notation:

$$
\begin{equation*}
\frac{N(0,1)}{\sqrt{x_{n} / n}}=T_{n} \tag{7}
\end{equation*}
$$

- The density of T_{n} is the Student-t density with n degrees of freedom and has the form

$$
\begin{equation*}
f_{\theta}(x)=\frac{\Gamma([n+1] / 2)}{\Gamma(n / 2)} \frac{1}{\sqrt{n \pi}} \frac{1}{\left(1+x^{2} / n\right)^{(n+1) / 2}} \tag{8}
\end{equation*}
$$

where $\theta=n$ is a positive integer.
Properties of interest are:

- $E\left[T_{n}\right]=0(n>1), \operatorname{var}\left(T_{n}\right)=\frac{n}{n-2}(n>2)$
- Asymptotic relation for large $n: T_{n} \approx N(0 ; 1)$.
- For $n=1$ the mean of T_{n} does not exist and for $n \leq 2$ its variance is infinite.

1.6 Fischer-F

- For $U \sim x_{m}$ and $V \sim x_{n}$ independent r.v.s the ratio $X=(U / m) /(V / n)$ is called a

Fisher-F r.v. with m, n degrees of freedom, or in shorthand:

$$
\begin{equation*}
\frac{x_{m} / m}{x_{n} / n}=F_{m, n} \tag{9}
\end{equation*}
$$

- The Fisher-F density with m and n degree of freedom is defined as

$$
\begin{equation*}
f_{\theta}(x)=\frac{\Gamma([m+n] / 2)}{\Gamma(m / 2) \Gamma(n / 2)}\left(\frac{m}{n}\right)^{m / 2} \frac{x^{(m-2) / 2}}{(1+(m / n) x)^{(m+n) / 2}} \quad x>0 \tag{10}
\end{equation*}
$$

where $\theta=[m, n]$ is a pair of positive integers.

- It should be noted that moments $E\left[X^{k}\right]$ of order greater than $k=n / 2$ do not exist.
- A useful asymptotic relation for n large and $n \gg m$ is $F_{m, n} \approx x_{m}$.

1.7 Cauchy Distribution

- The ratio of independent $N(0,1)$ r.v.'s U and V is called a standard Cauchy r.v. $X=U / V \sim C(0,1)$.
- It's density has the form

$$
\begin{equation*}
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad x \in \mathbb{R} \tag{11}
\end{equation*}
$$

- If $\theta=[\mu, \sigma]$ are location and scale parameters $(\sigma>0) f_{\theta}(x)=f((x-\mu) / \sigma)$ is a translated and scaled version of the standard Cauchy density denoted $C\left(\mu, \sigma^{2}\right)$.

Some properties of note:

- The Cauchy distribution has no moments of any (positive) integer order.
- The Cauchy distribution is the same as a Student-t distribution with 1 degrees of freedom.

1.8 Beta Distribution

- For $U \sim x_{m}$ and $V \sim x_{n}$ independent Chi-square r.v.s with m and n degrees of freedom, respectively, the ratio $X=U /(U+V)$ has a Beta distribution, or in shorthand

$$
\begin{equation*}
\frac{x_{m}}{x_{m}+x_{n}}=B(m / 2, n / 2) \tag{12}
\end{equation*}
$$

where $B(p, q)$ is a r.v. with Beta density having parameters $\theta=[p, q]$.

- The Beta density has the form

$$
\begin{equation*}
f_{\theta}(x)=\frac{1}{\beta}_{r, t} x^{r-1}(1-x)^{t-1} \quad x \in[0,1] \tag{13}
\end{equation*}
$$

where $\theta=[r, t]$ and $r, t>0$.

- Here $\beta(r, t)$ is the Beta function:

$$
\begin{equation*}
\beta_{r, t}=\int_{0}^{1} x^{r-1}(1-x)^{t-1} d x=\frac{\Gamma(r) \Gamma(t)}{\Gamma(r+t)} \tag{14}
\end{equation*}
$$

Some useful properties:

- The special case of $m=n=1$ gives rise to X an \arcsin distributed r.v.
- $E_{\theta}[B(p, q)]=p /(p+q)$
- $\operatorname{var}_{\theta}(B(p, q))=p q /\left((p+q+1)(p+q)^{2}\right)$

1.9 Reproducing Distributions

- A random variable X is said to have a reproducing distribution if the sum of two independent realizations, say X_{1} and X_{2}, of X have the same distribution, possibly with different parameter values, as X.
- A Gaussian r.v. has a reproducing distribution:

$$
\begin{equation*}
N\left(\mu_{1}, \sigma_{1}^{2}\right)+N\left(\mu_{2}, \sigma_{2}^{2}\right)=N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) \tag{15}
\end{equation*}
$$

which follows from the fact that the convolution of two Gaussian density functions is a Gaussian density function.

- Noting the stochastic representations of the Chi-square and non-central Chi-square distributions, respectively, it is obvious that they are reproducing distributions:
- $x_{n}+x_{m}=x_{m+n}$, if x_{m}, x_{n} are independent.
- $x_{m, \delta_{1}}+x_{n, \delta_{2}}=x_{m+n, \delta_{1}+\delta_{2}}$, if $x_{m, \delta_{1}}$ and $x_{n ; \delta_{2}}$ are independent.
- The Chi square mixture, Fisher-F, and Student-t are not reproducing densities.

1.10 Fischer-Cochran Theorem

- This result gives a very useful tool for finding the distribution of quadratic forms of Gaussian random variables.
- Theorem: Let $X=\left[X 1, \ldots, X_{n}\right]^{T}$ be a vector of iid. $N(0,1)$ rv's and let \mathbf{A} be a symmetric idempotent matrix $(\mathbf{A A}=\mathbf{A})$ of rank p. Then

$$
X^{T} \mathbf{A} X=x_{p}
$$

2 Discrete Distributions

2.1 Binomial Distribution

- An experiment which follows a binomial distribution will satisfy the following requirements (think of repeatedly flipping a coin as you read these):
- The experiment consists of n identical trials, where n is fixed in advance.
- Each trial has two possible outcomes, S or F, which we denote "success" and "failure" and code as 1 and 0 , respectively.
- The trials are independent, so the outcome of one trial has no effect on the outcome of another.
- The probability of success, $p=P(S)$, is constant from one trial to another. The random variable X of a binomial distribution counts the number of successes in n trials.
- The probability that X is a certain value x is given by the formula

$$
\begin{equation*}
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \tag{16}
\end{equation*}
$$

where $0 \leq p \leq 1, x=0,1, \ldots, n$.

- Recall that the quantity, "n choose x " above is

$$
\binom{n}{x}=\frac{n!}{x!(n-x)!}
$$

- $E(x)=n p$.
- $\operatorname{var}(x)=n p(1-p)$.

2.2 The Negative Binomial Distribution

- The negative binomial distribution is used when the number of successes is fixed and we are interested in the number of failures before reaching the fixed number of successes.
- An experiment which follows a negative binomial distribution will satisfy the following requirements:
- The experiment consists of a sequence of independent trials.
- Each trial has two possible outcomes, S or F.
- The probability of success, $p=P(S)$, is constant from one trial to another.
- The experiment continues until a total of r successes are observed, where r is fixed in advance.
- A random variable X which follows a negative binomial distribution is denoted $X=\mathrm{NB}(r, p)$.
- Its probabilities are computed with the formula

$$
\begin{equation*}
P(X=x)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x} \tag{17}
\end{equation*}
$$

where $0 \leq p \leq 1, x=0,1,2 \ldots$.

- $E(x)=\frac{r(1-p)}{p}$.
- $\operatorname{var}(x)=\frac{r(1-p)}{p^{2}}$.

2.3 Geometric Distribution

- The geometric distribution is a discrete distribution having probability function

$$
\begin{equation*}
P(X=x)=p(1-p)^{x} \tag{18}
\end{equation*}
$$

for $0 \leq p \leq 1, x=0,1,2 \ldots$.

- X is the number of failures before the first success in a sequence of independent Bernoulli trials.
- The geometric random variable X is the only discrete random variable with the memoryless property.
- $E(x)=\frac{1-p}{p}$.
- $\operatorname{var}(x)=\frac{1-p}{p^{2}}$.

2.4 Poisson Distribution

- The Poisson distribution is most commonly used to model the number of random occurrences of some phenomenon in a specified unit of space or time. For example,
- The number of phone calls received by a telephone operator in a 10-minute period.
- The number of flaws in a bolt of fabric.
- The number of typos per page made by a secretary.
- For a Poisson random variable, the probability that X is some value x is given by the formula

$$
\begin{equation*}
P(X=x)=\frac{\mu^{x} e^{-\mu}}{x!} \tag{19}
\end{equation*}
$$

where $x=0,1,2 \ldots$, and μ is the average number of occurrences in the specified interval.

- $E(x)=\mu$.
- $\operatorname{var}(x)=\mu$.

