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1 Continuous Distributions

1.1 Chi-Square Distribution

• The (central) Chi-square density with k degrees of freedom is of the form:

fθ(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0 (1)

where θ = k, a positive integer.

• Here Γ(u) denotes the Gamma function,

Γ(u) =

∫ ∞
0

xu−1e−xdx, (2)

For n integer valued Γ(n+1) = n! = n(n−1) . . . 1 and Γ(n+1/2) = (2n−1)(2n−3)...5.3.1
2n

√
π.

• If Zi ∼ N(0, 1) are i.i.d., i = 1 . . . , n, then X =
∑n

i=1 Z
2
i is distributed as Chi-square

with n degrees of freedom.

Some useful properties of the Chi-square random variable are as follows:

• E[xn] = n; var(xn) = 2n

• Asymptotic relation for large n: xn =
√

2nN(0, 1) + n

• x2 an exponential r.v. with mean 2, i.e. X = x2 is a non-negative r.v. with probability

density f(x) = 1
2
e−x/2.

• √x2 is a Rayleigh distributed random variable.

1.2 Gamma Distribution

• The Gamma density function is

fθ(x) =
λr

Γ(r)
xr−1e−λx x > 0 (3)
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where θ denotes the pair of parameters (λ, r), λ, r > 0.

• Let {Yi}ni=1 be i.i.d. exponentially distributed random variables with mean 1/λ, specif-

ically Yi has density

fλ(y) = λe−λy y > 0 (4)

Then the sum X =
∑n

i=1 Yi has a Gamma density f(λ, n).

Other useful properties of a Gamma distributed random variable X with parameters

theta = (λ, r) include:

• Eθ[X] = r/λ

• varθ(X) = r/λ2

• The Chi-square distribution with k degrees of freedom is a special case of the Gamma

distribution obtained by setting Gamma parameters as follows: λ = 1/2 and r = k/2.

1.3 Non-central Chi-Square Distribution

• The sum of squares of independent Gaussian r.v.s with unit variances but non-zero

means is called a non-central Chi-square r.v.

• Specifically, if Zi ∼ N(µi, 1) are independent, i = 1, . . . , n, then X =
∑n

i=1 Z
2
i is

distributed as non-central Chi-square with n degrees of freedom and non-centrality

parameter δ =
∑n

i=1 µ
2
i .

• In our shorthand we write

n∑
i=1

[N(0, 1) + µi]
2 =

n∑
i=1

[N(µi, 1)]2 = xn,δ (5)

The non-central Chi-square density has no simple expression of closed form. There are

some useful asymptotic relations, however:
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• E[xn,δ] = n+ δ, var(xn,δ) = 2(n+ 2δ)

• √x2,µ21+µ22 is a Rician r.v.

1.4 Chi-square Mixture

• The distribution of the sum of squares of independent Gaussian r.v.s with zero mean

but different variances is not closed form either.

• However, many statisticians have studied and tabulated the distribution of a weighted

sum of squares of i.i.d. standard Gaussian r.v.s Z1, . . . , Zn, Zi ∼ N(0, 1).

• Specifically, the following has a (central) Chi-square mixture with n degrees of freedom

and mixture parameter c = [c1, . . . , cn]T , ci ≥ 0:

n∑
i=1

ci∑
j cj

Z2
i = xn,c (6)

An asymptotic relation of interest to us will be:

• E[xn,c] = 1, , var(xn,c) = 2
∑N

i=1

(
ci∑
j ci

)2
• Furthermore, there is an obvious a special case where the Chi-square mixture reduces

to a scaled (central) Chi-square: xn,c1 = 1
n
xn for any c 6= 0.

1.5 Student-t distribution

• For Z ∼ N(0, 1) and Y ∼ xn independent r.v.s the ratio X = Z/
√
Y/n is called a

Student-t r.v. with n degrees of freedom, denoted Tn.

• In shorthand notation:

N(0, 1)√
xn/n

= Tn (7)
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• The density of Tn is the Student-t density with n degrees of freedom and has the form

fθ(x) =
Γ([n+ 1]/2)

Γ(n/2)

1√
nπ

1

(1 + x2/n)(n+1)/2
(8)

where θ = n is a positive integer.

Properties of interest are:

• E[Tn] = 0(n > 1), var(Tn) = n
n−2(n > 2)

• Asymptotic relation for large n: Tn ≈ N(0; 1).

• For n = 1 the mean of Tn does not exist and for n ≤ 2 its variance is infinite.

1.6 Fischer-F

• For U ∼ xm and V ∼ xn independent r.v.s the ratio X = (U/m)/(V/n) is called a

Fisher-F r.v. with m,n degrees of freedom, or in shorthand:

xm/m

xn/n
= Fm,n (9)

• The Fisher-F density with m and n degree of freedom is defined as

fθ(x) =
Γ([m+ n]/2)

Γ(m/2)Γ(n/2)

(m
n

)m/2 x(m−2)/2

(1 + (m/n)x)(m+n)/2
x > 0 (10)

where θ = [m,n] is a pair of positive integers.

• It should be noted that moments E[Xk] of order greater than k = n/2 do not exist.

• A useful asymptotic relation for n large and n >> m is Fm,n ≈ xm.

1.7 Cauchy Distribution

• The ratio of independent N(0, 1) r.v.’s U and V is called a standard Cauchy r.v.

X = U/V ∼ C(0, 1).
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• It’s density has the form

f(x) =
1

π

1

1 + x2
x ∈ R (11)

• If θ = [µ, σ] are location and scale parameters (σ > 0)fθ(x) = f((x − µ)/σ) is a

translated and scaled version of the standard Cauchy density denoted C(µ, σ2).

Some properties of note:

• The Cauchy distribution has no moments of any (positive) integer order.

• The Cauchy distribution is the same as a Student-t distribution with 1 degrees of

freedom.

1.8 Beta Distribution

• For U ∼ xm and V ∼ xn independent Chi-square r.v.s with m and n degrees of freedom,

respectively, the ratio X = U/(U + V ) has a Beta distribution, or in shorthand

xm
xm + xn

= B(m/2, n/2) (12)

where B(p, q) is a r.v. with Beta density having parameters θ = [p, q].

• The Beta density has the form

fθ(x) =
1

β r,t
xr−1(1− x)t−1 x ∈ [0, 1] (13)

where θ = [r, t] and r, t > 0.

• Here β(r, t) is the Beta function:

βr,t =

∫ 1

0

xr−1(1− x)t−1dx =
Γ(r)Γ(t)

Γ(r + t)
(14)

Some useful properties:

• The special case of m = n = 1 gives rise to X an arcsin distributed r.v.
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• Eθ[B(p, q)] = p/(p+ q)

• varθ(B(p, q)) = pq/((p+ q + 1)(p+ q)2)

1.9 Reproducing Distributions

• A random variable X is said to have a reproducing distribution if the sum of two

independent realizations, say X1 and X2, of X have the same distribution, possibly

with different parameter values, as X.

• A Gaussian r.v. has a reproducing distribution:

N(µ1, σ
2
1) +N(µ2, σ

2
2) = N(µ1 + µ2, σ

2
1 + σ2

2) (15)

which follows from the fact that the convolution of two Gaussian density functions is

a Gaussian density function.

• Noting the stochastic representations of the Chi-square and non-central Chi-square

distributions, respectively, it is obvious that they are reproducing distributions:

• xn + xm = xm+n, if xm, xn are independent.

• xm,δ1 + xn,δ2 = xm+n,δ1+δ2 , if xm,δ1 and xn;δ2 are independent.

• The Chi square mixture, Fisher-F, and Student-t are not reproducing densities.

1.10 Fischer-Cochran Theorem

• This result gives a very useful tool for finding the distribution of quadratic forms of

Gaussian random variables.

• Theorem: Let X = [X1, . . . , Xn]T be a vector of iid. N(0, 1) rv’s and let A be a

symmetric idempotent matrix (AA = A) of rank p. Then

XTAX = xp
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2 Discrete Distributions

2.1 Binomial Distribution

• An experiment which follows a binomial distribution will satisfy the following require-

ments (think of repeatedly flipping a coin as you read these):

– The experiment consists of n identical trials, where n is fixed in advance.

– Each trial has two possible outcomes, S or F , which we denote “success” and

“failure” and code as 1 and 0, respectively.

– The trials are independent, so the outcome of one trial has no effect on the outcome

of another.

– The probability of success, p = P (S), is constant from one trial to another. The

random variable X of a binomial distribution counts the number of successes in n

trials.

• The probability that X is a certain value x is given by the formula

P (X = x) =

 n

x

 px(1− p)n−x (16)

where 0 ≤ p ≤ 1, x = 0, 1, . . . , n.

• Recall that the quantity, “n choose x” above is n

x

 =
n!

x!(n− x)!

• E(x) = np.

• var(x) = np(1− p).
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2.2 The Negative Binomial Distribution

• The negative binomial distribution is used when the number of successes is fixed and we

are interested in the number of failures before reaching the fixed number of successes.

• An experiment which follows a negative binomial distribution will satisfy the following

requirements:

– The experiment consists of a sequence of independent trials.

– Each trial has two possible outcomes, S or F .

– The probability of success, p = P (S), is constant from one trial to another.

– The experiment continues until a total of r successes are observed, where r is fixed

in advance.

– A random variable X which follows a negative binomial distribution is denoted

X =NB(r, p).

• Its probabilities are computed with the formula

P (X = x) =

 x+ r − 1

r − 1

 pr(1− p)x (17)

where 0 ≤ p ≤ 1, x = 0, 1, 2 . . ..

• E(x) = r(1−p)
p

.

• var(x) = r(1−p)
p2

.

2.3 Geometric Distribution

• The geometric distribution is a discrete distribution having probability function

P (X = x) = p(1− p)x (18)

for 0 ≤ p ≤ 1, x = 0, 1, 2 . . ..
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• X is the number of failures before the first success in a sequence of independent

Bernoulli trials.

• The geometric random variable X is the only discrete random variable with the mem-

oryless property.

• E(x) = 1−p
p

.

• var(x) = 1−p
p2

.

2.4 Poisson Distribution

• The Poisson distribution is most commonly used to model the number of random

occurrences of some phenomenon in a specified unit of space or time.

For example,

– The number of phone calls received by a telephone operator in a 10-minute period.

– The number of flaws in a bolt of fabric.

– The number of typos per page made by a secretary.

• For a Poisson random variable, the probability that X is some value x is given by the

formula

P (X = x) =
µxe−µ

x!
(19)

where x = 0, 1, 2 . . ., and µ is the average number of occurrences in the specified

interval.

• E(x) = µ.

• var(x) = µ.
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