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1 Estimation: Main Ingredients

We will use the following notion as in the previous lectures:

• X ∈ X is random measurements or observation

• X ⊆ RN is the sample space of measurement realizations x.

• θ ∈ Θ is the unknown parameter vector of interest.

• Θ ⊆ Rp is the parameter space.

• fθ(x) or f(x; θ) is the pdf of X for given θ (a known function).

• With these definitions, the objective of parameter estimation is to design a function

θ̂ : X → Θ

called estimator that maps measurements into parameter space.

– The function θ̂ is the estimator and

– The point θ̂(x) for a particular measurement x is called the estimate. Note that

estimate θ̂(x) is a random variable.

2 Estimation Categories

There are several ways we can classify estimators and estimation strategies. Here are some

of the main ones:

• Optimality Criterion - The primary element in an optimality criterion is whether

the unknown parameter is viewed as random or deterministic.

θ is deterministic: Classical (frequentist) estimation

– Minimum variance unbiased estimation
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– Maximum likelihood estimation

– Method of moments (We will not cover this topic.)

– Least squares

θ is random : Bayesian estimation

– Minimum mean square error estimation

– Minimum absolute deviation estimation

– Maximum a posteriori estimation

• Form of the estimator - The primary distinction regarding the form of the estimator

is whether it is linear or nonlinear. A linear estimator has the form

θ̂(x) = cTx.

Such estimates arise frequently in conjunction with multivariate Gaussian density func-

tion. Because of their simplicity, sometimes the estimator design criterion is con-

strained with the linear case.

• Off-line vs On-line estimators - On-line estimators are those that can be updated

with the incoming data, i.e, they are recursive. Off-line estimators require all data to

be available upfront to produce an estimate.

3 Classical Estimation

In classical estimation, we assume θ is non-random, that is, unknown but fixed.

Definition 1 Bias of an estimator - The bias of θ̂ is

Bias(θ̂) = E[θ̂]− θ.
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Definition 2 Unbiased estimator - We say θ̂ is unbiased if

Bias(θ̂) = 0 for all θ ∈ Θ.

Otherwise, we say θ̂ is biased.

• An unbiased estimate has a probability distribution where the mean equals the actual

value of the parameter.

• If many unbiased estimates are computed from statistically independent sets of obser-

vations having the same parameter value, the average of these estimates will be close

to this value.

• This property does not mean that the estimate has less error than a biased one; there

exist biased estimates whose mean-squared errors (see below) are smaller than unbiased

ones.

• Lack of bias is good, but that is just one aspect of how we evaluate estimators.

Definition 3 Mean Squared Error - Let θ̂ be an estimate of θ. The mean square error

(MSE) of θ̂ is

MSE(θ̂) := E[‖θ̂ − θ‖2]

= EX [‖θ̂(x)− θ‖2].

The estimation error ε is equal to the estimate minus the actual parameter value: ε(x) =

θ̂ − θ. The MSE equals the trace of the mean-squared error matrix EX [ε(x)ε(x)T ], i.e.,

MSE(θ̂) = tr{EX [ε(x)ε(x)T ]}.

Definition 4 Covariance of an estimator - The covariance of θ̂ is

Cov(θ̂) = E[(θ̂ − E[θ̂])(θ̂ − E[θ̂])T ].
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Note that in the textbook page 94, the “variance” of a random vector θ̂ is defined as

E[‖θ̂ − E[(θ̂)‖2].

This is an unusual convention. To be exact

E[‖θ̂ − E[(θ̂)‖2] = tr{Cov(θ̂)} =

p∑
i=1

V ar(θ̂i).

Definition 5 Variance of an scalar estimator - The variance of θ̂ is

V ar(θ̂) = E[(θ̂ − E[θ̂])2].

Definition 6 Asymptotically unbiased and consistent estimator - Let {θ̂N}∞N=1 be

a family of estimators. We say that θ̂N is asymtotically unbiased if

Bias(θ̂N)→ 0 as N →∞ for all θ ∈ Θ

and consistent (in the mean squared sense) if

MSE(θ̂N)→ 0 as N →∞ for all θ ∈ Θ.

Consistent estimator means MSE tends to zero as the number of observations/measurements

becomes large.

Definition 7 Efficient estimator - An estimator is said to be efficient if it is unbiased

and its covariance achieves a particular lower bound: the Cramer-Rao lower bound (CRLB).

This is the definition adapted by the book. In other books, you may find the definition of

“efficiency” in terms of MSE which is given below.

Definition 8 Efficient estimator - An efficient estimate has a MSE that equals a par-

ticular lower bound: the Cramer-Rao lower bound (CRLB).

Comments below apply to the definition of efficiency with respect to MSE.
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• If an efficient estimate exists (the Cramer-Rao bound is the greatest lower bound), it

is optimum in the mean-squared sense: No other estimate has a smaller mean-squared

error.

• For many problems no efficient estimate exists. In such cases, the Cramer-Rao bound

remains a lower bound, but its value is smaller than that achievable by any estimator.

How much smaller is usually not known.

• Practitioners frequently use the CRLB in comparisons with numerical error calcula-

tions.

• Another issue is with the choice of the mean-squared error as the estimation criterion;

this criterion may not be sufficient or suitable to assess estimator performance in

a particular problem. Nevertheless, every problem is usually subjected to a CRLB

computation and the existence of an efficient estimate considered.
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