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1 Bias-Variance Trade off

e The MSE of and estimator 6 can be broken down into two components, the bias of 0

and the variance of . In particular

MSE(0) = ||Bias()||> + tr(Cov(0)).

e This means when designing an estimator, you can trade off bias and variance. De-
creasing the bias of an estimator will increase the variance, while increasing the bias

will decrease variance.

e How practical is the MSE as a design criterion? MSE estimate may depend on unknown

parameters. An alternative is the minimum variance unbiased estimator.

2 Minimum Variance Unbiased Estimation

e In general minimum MSE has non-zero bias and variance. However, in many situations,

only the bias depends on the unknown parameters.
e This suggests the following alternative:

— Constrain the estimator to be unbiased and minimize the variance.

— Equivalently, minimize the MSE among all unbiased estimators.

Definition 1 Minimum Variance Unbiased Estimator (MVUE) - 0 is called a

(uniformly) Minimum Variance Unbiased Estimator (MVUE) estimate of 6 if
o E[f] =0 forall € ©
o IfE[f] =0 for all € O, then Var(d) < Var(f) for all § € ©.

e Note that the MVUE criterion requires all estimators to be optimal for all values of

0 eco.



Existence of MVUE

e The MVUE does not always exist. In fact, there may not exist an unbiased estimator.

3 Methods of Finding MVUEs

There is no systematic way of finding MVUE. There are three potential ways of finding
MVUE.

e Restrict the possible class of estimators to be linear.

e Calculate the Cramer-Rao lower bound (we will cover this later) and see if some esti-
mator achieves the bound. Note that the Cramer-Rao lower bound gives a necessary
and sufficient condition for the existence of an efficient estimator. However, MVUE’s

are not necessarily efficient.

e Apply the Rao-Blackwell theorem with a complete sufficient statistic. Rao-Blackwell
theorem, when applied in conjunction with a complete sufficient statistics, gives another

way to find MVUEs that applies even when CRLB is not defined.

Recall the Rao-Blackwell theorem:

Theorem 1 Rao-Blackwell Theorem - Let fy(x) be the pdf or the pmf of the random
variable X. Let T = 7(X) be a sufficient statistic for 0. Let 6,(x) be an estimator of 6 and

define the mean square error

MSE(d) = El|6:(x) — 0]
Define
Ox(z) = E[0) ()| T = 7()].

Then

MSE(6,) < MSE(6,)
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with equality if and only if 61 = 0y with probability 1.
We can apply this theorem to reduce the variance of an unbiased estimator -

e Let 6; be an unbiased estimator for 6 and let T = 7(X) be a sufficient statistic for 6.

Apply Rao-Blackwell theorem:

o Consider the new estimator

b() = g(7(x)) = E[6r()|T = (x)).
e Then, E[f(z)] = E[6;(z)] = 6 and 6,(z) is an unbiased estimator.

e Then by Rao-Blackwell theorem, we can conclude that

A A~

Var(fy(x)) < Var(6,(x)).

e Thus, if 0, is any unbiased estimator, then smoothing 6, with respect to a sufficient

statistics decreases the variance while preserving unbiasedness.

e Thus, we can restrict our search for the MVUE to functions of sufficient statistics.

The Rao-Blackwell theorem describes how to reduce the variance of an estimator. But, how
do we know that we have an MVUE? Answer: 7" = 7(X) should be a complete sufficient

statistics.

Theorem 2 Lehmann-Scheffe - IfT is complete, there is at most one unbiased estimator

that is a function of T.
e Find a complete sufficient statistic T = 7(X).

e Find any unbiased estimator 6 and set

b = E[|T = (2)]



e Find a function ¢ such that

is unbiased.

e Recall that the sufficient statistics arising from exponential family are complete. How-

ever, for this family MVUEs can also be found via CRLB.

e Rao-Blackwell theorem’s strength comes from the fact that even if CRLB is not defined,

it can produce MVUEs.

Application

e Assume that we transmit a sequence of radar/sonar waveforms s;, i = 1, ..., N to probe
an environment to check if there is any target. Assume that the signals scatted from
a point target are attenuated by the reflectivity, «, of the target, where « is a non-
random, scalar constant. Furthermore, assume that the scattered signal at the receiver
is contaminated by additive Gaussian white noise with zero mean and known variance

o2,

e Our objective is to estimate the reflectivity of the target o using the MVUE criterion.

e We set up the following model for our received signal y;, © = 1, ..., N.
Y = wi T as; 1=1,....N

where w; are i.i.d. and ~ N(0,0?), 02 is known and s;, i = 1,..., N are deterministic

and known.

e Define s = [sy, ..., sy|T and y = [yy, ..., yn]*.



e We are going to use the method suggested by Rao-Blackwell and Lehmann-Scheffe

theorems in deriving the MVUE for «.

N
1 1 ,
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i=1

T(y) = Zf\il s;y; 1s a complete sufficient statistic for o. Why?

Let & = i’—i Then, a; is unbiased. Why?

Define

Gy = g(7(y)) = Elda | 7(y)].

We need to determine g(7(y)). What is the conditional pdf of @ given 7(y)? Condi-

tional Gauss ... Why?

e Thus, conditional mean of &; given 7(y) is

A sz\il Sili
Qo = g(T ===
= o(rl) = S5

Let’s consider the case where both « and ¢? is unknown.

e Define 0 = [, %7,

e From the pdf of y above

N N

() = M), )] = D_siwir D]

=1

is a complete sufficient statistic for §. Why?

6



e We need to determine an unbiased estimate of 6 first. &; defined above is an unbiased

estimator of . Since és does not involve o2, dy is still an MVUE for a.

e Show that

2

Elraly) — AW _ (v~ 1)02,

25\21 5?

e Thus, we have an unbiased estimator of 0% as a function of the complete sufficient

statistic 7(y). As a result

is MVUE for 2. Why?

i)~ s ]

1 N
N1 Z(yi — as;)?

i=1



