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1 Importance of Cramer-Rao Lower Bound

• CRLB is the minimum achievable variance for an unbiased estimator. Hence, if an

unbiased estimator achieves CRLB, it is MVUE. (But, the opposite is not necessarily

true.)

• CRLB provides a benchmark against which we can check the performance of any

estimator.

• The CRLB can be defined for both random and non-random parameters. However

the CRLB is more useful for non-random parameters as it can be used to establish

optimality or near optimality of an unbiased candidate estimator.

• The theory behind CRLB tells us exactly when CRLB is achievable.

2 Fisher Information Matrix and Cramer-Rao Lower

Bound

For the rest of this topic, we will make the following assumptions:

• Θ is an open subset in Rp.

• fθ(x) is smooth and differentiable in θ.

Definition 1 Score Function - Let fθ(x) be the pdf of X and let fθ(x) be smooth and

differentiable in θ. We call

s(θ, x) =
∂

∂θ
ln fθ(x)

the score function.

Note that ln fθ(x) is referred to as the log-likelihood function.
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Definition 2 Fisher Information Matrix - Let fθ(x) be the pdf of X and let fθ(x) be

smooth and differentiable in θ. We call

F(θ) := E[(
∂

∂θ
ln fθ(x))(

∂

∂θ
ln fθ(x))T ]

the Fisher information matrix.

Theorem 1 Cramer-Rao Lower Bound - Let X ∈ X ⊆ RN , θ ∈ Θ and let Θ be an

open subset of Rp. Let the pdf of X, fθ, be a smooth differentiable function of θ and θ̂ be an

unbiased estimate of θ. Assume that the covariance of θ̂ and the Fisher information matrix

F(θ) are non-singular. Then

Cov(θ̂) = E[(θ̂ − θ)(θ̂ − θ)T ] ≥ F−1(θ).

Furthermore, an unbiased estimate is efficient, that is,

E[θ̂] = θ

Cov(θ̂) = E[(θ̂ − θ)(θ̂ − θ)T ] = F−1(θ)

if and only if

F(θ)(θ̂ − θ) = s(θ, x).

The CRLB for the scalar parameter can be stated as follows:

Theorem 2 CRLB for the scalar case - Let the pdf of X, fθ(x) be a smooth differen-

tiable function of θ. If θ̂ is an unbiased estimate of θ, then

V ar(θ̂) ≥ 1

F(θ)

where F(θ) = E[( ∂
∂θ

ln fθ(x))2] is the Fisher information.
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Some Facts relevant to the proof of CRLB theorem

• Note that X ∈ X can be discrete or continuous.

• Cov(θ̂) ≥ F−1(θ) means Cov(θ̂)− F−1(θ) is non-negative definite.

• The score function s(θ, x) has zero mean, i.e.,

E[
∂

∂θ
ln fθ(x)] = 0.

(This is true only if a certain integration and differentiation operators can be inter-

changed. For most pdf’s this is true.)

• The covariance of the score function

F(θ) := E[s(θ, x)s(θ, x)T ] = E[(
∂

∂θ
ln fθ(x))(

∂

∂θ
ln fθ(x))T ]

is equal to the Fisher information matrix.

• The Fisher information matrix F(θ) can be alternatively expressed as

F(θ) = −E[
∂

∂θ
(
∂

∂θ
ln fθ(x))T ].

• The ijth element of the Fisher information matrix is given by

Fij = E[(
∂

∂θi
ln fθ(x))(

∂

∂θj
ln fθ(x))]

= E[− ∂2

∂θiθj
ln fθ(x)].

• The cross-covariance between the score function and the error between the unbiased

estimate and the parameter is identity, that is

E[s(θ, x)(θ̂(x)− θ)T ] = I.

• An efficient estimate does not always exist.

• If an efficient estimate exists, then it is MVUE.
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3 Properties of CRLB

It is insightful to study the properties of the CRLB in the scalar case.

• Property 1: The Fisher information is a measure of the average curvature profile of

the log likelihood function ln fθ(x) near θ.

• Property 2: Let FN(θ) be the Fisher information matrix for a sample of N i.i.d.

random variables X1, X2, ..., XN . Then,

FN(θ) = NF1(θ).

As a result, V ar[θi] = O(1/N) is expected for “good” estimators.

• Property 3: Asymptotic Efficiency - If an estimator is asymptotically unbiased and

its covariance decays with optimal rate

lim
N→∞

NCov(θ̂) = [F1(θ)]
−1,

then, θ̂ is said to be asymptotically efficient.

In particular, if fθ(x) = a(θ)b(x) exp{cT (θ)τ(x)} and E[τ(x)] = θ, then

θ̂ =
1

N

N∑
i=1

τ(xi)

is an unbiased and efficient estimator of θ.

• Property 4: Under the assumptions of the CRLB,

∑
ij

Cov(θ̂) ≥
∑
ij

[F−1(θ)]ij

and

V ar(θ̂i) ≥ F−1(θ)ii.

The vector CRLB implies scalar lower bounds on each component of θ̂.
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• Property 5: If an estimator θ̂ satisfies

∇θ ln fθ(x) = Kθ(θ̂ − θ),

then we can immediately conclude the followings:

1. θ̂ is unbiased.

2. θ̂ is efficient and thus its components are UMVE.

3. The covariance of θ̂ is given by the inverse of the Fisher information matrix F(θ).

4. Kθ = F(θ) and Cov(θ̂) = K−1θ .
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