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1 Introduction

• Maximum likelihood (ML) is one of the most commonly adopted parametric estimation

principle in signal processing.

• Unlike other methods, ML usually results in unique estimators and is straightforward

to apply to many problems.

• ML estimators have desirable properties.

Definition 1 Likelihood Function - For a measurement x we define the likelihood func-

tion for θ as

• L(θ;x) = fθ(x)

and the log-likelihood function as

• `(θ;x) = logL(θ;x) = log fθ(x).

• Note that sometimes L(θ;x) is referred to as the likelihood of θ given the measurements

x.

• We can view L(θ;x) as a function of θ parametrically described by the measurements

x, whereas fθ(x) is a function of x, parametrically described by θ.

• Thus sometimes, the x dependency of the likelihood function is ignored and the nota-

tion L(θ) or `(θ) notations are used.

Definition 2 Score Function - If the gradient of the likelihood function

s(θ, x) =
∂

∂θ
L(θ;x)

exists, it is called the score function.
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2 Maximum Likelihood Principle

ML principle states that the set of model parameters that maximize the apparent probability

of a set of observations is the “best set” possible. Maximum likelihood estimator is the

implementation of the ML principle.

Definition 3 Maximum Likelihood Estimator (MLE) - The estimator θ̂ is called the

maximum likelihood estimator if

θ̂ = arg max
θ∈Θ

fθ(x)

= arg max
θ∈Θ

L(θ;x)

= arg max
θ∈Θ

`(θ;x).

• The ML estimator θ̂ is defined as the value of θ which causes the data x to become

“most likely,” i.e., θ̂ makes it most likely that x was generated from f(x; θ).

• If the log-likelihood function is differentiable then, the MLE θ̂ satisfies s(θ̂) = 0. We

also need to verify that such a solution is a local maximum, not a local minimum or a

saddle point. We have to verify that the Hessian, ∇2
θL(θ;x), is negative semi-definite

at θ̂.

• If several local maximums exists, the MLE is the one with largest likelihood.

• For many members of the exponential family of distributions, it is possible to find

a closed form solution for the ML estimator. However, in many cases MLE can not

be expressed in closed form. We need to resort to numerical techniques to determine

MLE. These techniques include:

– Newton-Raphson iteration.

– Expectation Maximization (EM)algorithm.
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3 Properties of ML Estimator

• Property 1. MLE’s are asymptotically unbiased. The proof requires additional tech-

nical conditions.

• Property 2. MLE’s are consistent. The proof requires additional technical conditions.

• Property 3. MLE’s are asymptotically MVUE in the sense that

lim
n→∞

nV ar(θ̂) = F(θ)−1

where F is the Fisher information matrix defined as

F(θ) = −E[∇2
θ log fθ(x)].

For a scalar estimate 1
F(θ)

specifies the fastest possible asymptotic rate of decay of any

unbiased estimator’s variance. The proof requires additional technical conditions.

• Property 4. MLE’s are asymptotically Gaussian in the sense

√
n(θ̂n − θ)→ Z, in distribution

where Z ∼ N (0, F(θ)−1). This means that the cumulative distribution function (cdf) of

√
n(θ̂n− θ) converges to the (standard normal) cdf of Z. The proof requires additional

technical conditions.

• Property 5. Unlike many other estimators, e.g. maximum a posteriori (MAP) and

MVUE estimators, MLE’s are invariant to any transformation of the parameters, i.e.,

ϕ = g(θ) ⇒ ϕ̂ = g(θ̂).

• Property 6. The MLE is equivalent to the maximum a posteriori (MAP) estimator

(we will cover this topic later) for a uniform prior f(θ) = c.

4



• Property 7. If the MLE is unique, the MLE is a function of the data only through

the sufficient statistic.

Efficient Estimators are usually MLE -

Theorem 1 Assume that the likelihood function L(θ;x) has at most one local maximum.

If θ̂ is efficient, that is E[θ̂] = θ and Cov(θ̂) = F(θ)−1, for all θ, where F(θ) is the Fisher

information matrix, then θ̂ is an MLE.

4 Application - Estimation of Parameters in Sinusoidal

Models

Consider the following model:

xt = st + nt; t = 0, 1, . . . , N − 1

st = Acos(ωt− φ); A > 0.

The signal parameters (A, φ, ω) are unknown. The noise terms are a sequence of i.i.d. N [0, σ2]

random variables, the measurements are a sequence of i.i.d, N [st, σ
2] random variables. The

noise variance is unknown.

The input signal-to-noise-ratio is given by

SNRin =
1
N

∑N−1
t=0 s2

t

σ2
' A2

2σ2
(large N).

The output signal-to-noise-ratio SNR=N(SNR)in.

4.1 Joint Density

The joint density function for the random sample x = (x0, x1, . . . , xN−1) is the product

density

fθ(x) =
N−1∏
t=0

fθ(xt) = (2πσ2)−N/2exp

{
− 1

2σ2

N−1∑
t=0

(xt − st)2

}
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st = Acos(ωt− φ)

θ = (A, φ, ω, σ2).

The problem is to find the maximum likelihood estimate of θ.

4.2 Likelihood

The log-likelihood of θ is given by

L(θ,x) = lnfθ(x).

Maximization of likelihood with respect to σ2 is given by:

∂

∂σ2
L(θ,x) = − N

2σ2
+

1

2σ4

N−1∑
t=0

(xt − st)2 = 0.

The maximum likelihood estimate of σ2 is given by:

σ̂2 =
1

N
v2

where

v2 =
N−1∑
t=0

(xt − st)2.

When likelihood is jointly maximized with respect to (A, φ, ω), then σ̂2 becomes the minimum

average squared residuals.

Substitute the expression for σ̂2 into likelihood:

l̂(θ,x) = (2πv2/N)−N/2exp−N/2.

4.2.1 Approximation of v2

The squared residuals may be approximated as follows:

v2 =
N−1∑
t=0

x2
t − 2A

N−1∑
t=0

xtcos(ωt− φ) + A2

N−1∑
t=0

cos2(ωt− φ)

'
N−1∑
t=0

x2
t − 2A

N−1∑
t=0

cos(ωt− φ) +
A2N

2

=
N−1∑
t=0

x2
t − 2ReAejφ

N−1∑
t=0

xte
−jωt +

A2N

2
.

6



4.2.2 Minimization with respect to φ

Differentiate with respect to phase to obtain

∂

∂φ
Re

{
ejφ

N−1∑
t=0

xte
−jωt

}
= Re

{
jejφ

N−1∑
t=0

xte
−jωt

}
= 0.

The maximum likelihood estimate of φ is:

φ̂ = −argX(ω)

X(ω) =
N−1∑
t=0

xte
−jωt.

where X(ω) is the discrete-time Fourier transform of the measurements.

4.2.3 Minimization with respect to A

Substitute the solution for φ to further compress the likelihood to produce:

AN − 2|X(ω)| = 0

which produces the following maximum likelihood estimate of A:

Â =
2

N
|X(ω)|.

4.2.4 Minimization with respect to ω

Substitute the solution for A to obtain:

v2 =
N−1∑
t=0

x2
t − 2

2

N
|X(ω)|2 +

4

2N2
|X(ω)|2N

=
N−1∑
t=0

x2
t −

2

N
|X(ω)|2. (1)

This is minimized by maximizing |X(ω)|. Therefore, the maximum likelihood estimate of ω

is

ω̂ = arg max
ω
|X(ω)|2.
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4.3 Summary

ω̂ = arg max
ω
|X(ω)|2

Â =
2

N
|X(ω̂)|

φ̂ = −argX(ω̂)

σ̂2 =
1

N

N−1∑
t=0

[
xt − Âcos(ω̂t− φ̂)

]2

.

4.4 Cramer-Rao Bounds

Let θ̂ be nay unbiased estimator of θ. The Cramer-Rao Bound says that the error covariance

matrix for θ̂ is bounded as

C = E(θ̂ − θ)(θ̂ − θ)T ≥ J−1,

where J is the Fisher information matrix:

J = [Jij]

Jij = −E ∂2

∂θiθj
lnfθ(x)

For this example, θ = (A, φ, ω, σ2).

The natural logarithm of the random variable fθ(x) is

lnfθ(x) = −N
2

lnσ2 − 1

2σ2

N−1∑
t=0

(xt − st)2.

From this formula for log likelihood we may differentiate with respect to A, φ, ω, and σ2 to

compute the Fisher information matrix. Its inverse is the Cramer-Rao Bound.
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