# ECSE 6520: Detection and Estimation Theory Homework 4 

Due February 27th, 2014

Read Textbook Chp. 3, pages 27-62 and Chp. 4 pages 83-97.

1. Textbook Problem 3.2.
2. Textbook Problem 3.15.
3. Let $\mathbf{X}=\left[X_{1}, X_{2}, \ldots, X_{N}\right]^{T}$ denote a vector of $N$ i.i.d. exponential random variables with unknown parameter $\theta$.

$$
f_{\theta}\left(x_{n}\right)=\frac{1}{\theta} e^{-x_{n} / \theta}, \quad 0 \leq x_{n} \leq \infty, \quad 0<\theta<\infty
$$

Compute the Fisher information matrix.
4. Let $\mathbf{Y} \sim \mathcal{N}\left[\mathbf{x}, \sigma^{2} \mathbf{I}\right]$ denote a normal vector with mean $\mathbf{x}$ and covariance $\sigma^{2} \mathbf{I}$. Write $\mathbf{x}$ as $\beta \mathbf{u}_{x}$, where $\beta$ is the norm of $\mathbf{x}$ and $\mathbf{u}_{x}$ is a unit vector in direction of $\mathbf{x}$. Compute the Fisher information matrix of
a. $\beta$ when $\mathbf{u}_{x}$ is known ( $\sigma^{2}$ can be known or unknown);
b. $\mathbf{u}_{x}$ ( $\beta$ and $\sigma^{2}$ can be known or unknown);
c. $\beta$ and $\mathbf{u}_{x}\left(\sigma^{2}\right.$ can be known or unknown);
d. $\sigma^{2}$ when $\beta$ and $\mathbf{u}_{x}$ are known;
e. $\sigma^{2}$ and $\beta$ when $\mathbf{u}_{x}$ is known;
f. $\sigma^{2}$ and $\mathbf{u}_{x}$ when $\beta$ is known;
g. $\sigma^{2}, \beta$, and $\mathbf{u}_{x}$.

