ECSE 6520: Detection and Estimation Theory Homework 4

Due February 27th, 2014

Read Textbook Chp. 3, pages 27-62 and Chp. 4 pages 83-97.

- 1. Textbook Problem 3.2.
- 2. Textbook Problem 3.15.
- 3. Let $\mathbf{X} = [X_1, X_2, \dots, X_N]^T$ denote a vector of N i.i.d. exponential random variables with unknown parameter θ .

$$f_{\theta}(x_n) = \frac{1}{\theta} e^{-x_n/\theta}, \quad 0 \le x_n \le \infty, \quad 0 < \theta < \infty.$$

Compute the Fisher information matrix.

- 4. Let $\mathbf{Y} \sim \mathcal{N}[\mathbf{x}, \sigma^2 \mathbf{I}]$ denote a normal vector with mean \mathbf{x} and covariance $\sigma^2 \mathbf{I}$. Write \mathbf{x} as $\beta \mathbf{u}_x$, where β is the norm of \mathbf{x} and \mathbf{u}_x is a unit vector in direction of \mathbf{x} . Compute the Fisher information matrix of
 - a. β when \mathbf{u}_x is known (σ^2 can be known or unknown);
 - b. \mathbf{u}_x (β and σ^2 can be known or unknown);
 - c. β and \mathbf{u}_x (σ^2 can be known or unknown);
 - d. σ^2 when β and \mathbf{u}_x are known;
 - e. σ^2 and β when \mathbf{u}_x is known;
 - f. σ^2 and \mathbf{u}_x when β is known;
 - g. σ^2 , β , and \mathbf{u}_x .