
SPARSE RECONSTRUCTION METHODS IN
FLUORESCENCE DIFFUSE OPTICAL TOMOGRAPHY

By

An Jin

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: BIOMEDICAL ENGINEERING

Approved by the
Examining Committee:

Birsen Yazıcı, Thesis Adviser

George Xu, Member

Suvranu De, Member

Partha Dutta, Member

Rensselaer Polytechnic Institute
Troy, New York

November 2012
(For Graduation December 2012)



c⃝ Copyright 2012

by

An Jin

All Rights Reserved

ii



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Diffuse Optical Tomography and Fluorescence Diffuse Optical To-
mography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 FDOT Imaging Problem . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 FDOT Forward Problem . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Nonlinear and Linear FDOT Inverse Problems . . . . . . . . . 4

1.2.3 Challenges in FDOT Inverse Problem . . . . . . . . . . . . . . 4

1.3 The Objective of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Regularization Methods for FDOT Image Reconstruction . . . . . . . 5

1.5 Compressive Sensing Framework for FDOT Image Reconstruction . . 5

1.5.1 Overview in Compressive Sensing? . . . . . . . . . . . . . . . 5

1.5.2 The Sparseness of Fluorophore in FDOT Images . . . . . . . . 6

1.5.3 Sparse Signal Recovery Techniques . . . . . . . . . . . . . . . 6

1.5.4 Performance Guarantees in Compressive Sensing . . . . . . . . 7

1.6 Related Literature - Applications of CS in FDOT and DOT . . . . . 8

1.7 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 9

1.8 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. FDOT IMAGING PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Light Propagation Model for FDOT . . . . . . . . . . . . . . . . . . . 15

2.3 FDOT Forward and Inverse Problems . . . . . . . . . . . . . . . . . . 18

2.3.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Linearization of the FDOT Imaging Problem . . . . . . . . . . 18

2.3.2.1 Weak Fluorophore Linear Approximation . . . . . . 18

2.3.2.2 Nonlinear Iterative Perturbation . . . . . . . . . . . 19

iii



2.3.3 Forward Operator Formulation . . . . . . . . . . . . . . . . . 20

2.4 Discretization of the FDOT Imaging Problem . . . . . . . . . . . . . 20

2.4.1 Forward Problem Discretization . . . . . . . . . . . . . . . . . 20

2.4.2 Inverse Problem Discretization . . . . . . . . . . . . . . . . . . 24

2.5 Linear FDOT Statistical Model with Additive Noise . . . . . . . . . . 26

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. REGULARIZATION METHODS IN FDOT . . . . . . . . . . . . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Linear Regularization Techniques in Literature . . . . . . . . . . . . . 29

3.2.1 Truncated Singular Value Decomposition . . . . . . . . . . . . 29

3.2.2 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . 31

3.2.3 Kaczmarz Iteration Method . . . . . . . . . . . . . . . . . . . 32

3.2.4 Tikhonov Regularization Method . . . . . . . . . . . . . . . . 33

3.2.5 The Lp-Norm (1 ≤ p < 2) Regularization . . . . . . . . . . . . 34

3.3 The Combined L2-Lp-Norm Regularization . . . . . . . . . . . . . . . 36

3.3.1 A Priori Information in FDOT . . . . . . . . . . . . . . . . . 36

3.3.2 The Combined L2-lp-Norm Regularization with SpecificA Pri-
ori Information . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Singular Value Spectrum of the Forward Matrix . . . . . . . . 41

3.4.3 Visual Reconstruction Results . . . . . . . . . . . . . . . . . . 42

3.4.3.1 Phantom with Single Heterogeneity . . . . . . . . . . 42

3.4.3.2 Phantom with Two Heterogeneities . . . . . . . . . . 43

3.4.4 Quantitative Performance Measurements . . . . . . . . . . . . 46

3.5 Silicon Phantom Experiment . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. SPARSE SIGNAL RECOVERY TECHNIQUES IN FDOT RECONSTRUC-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Sparse Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Signal Recovery with Sparsity Constraint . . . . . . . . . . . . . . . . 65

4.4 Incoherent Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

iv



4.5 Sparse Signal Recovery Techniques in CS Literature . . . . . . . . . . 67

4.5.1 Greedy Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1.1 Orthogonal Matching Pursuit . . . . . . . . . . . . . 68

4.5.1.2 Gradient Pursuit . . . . . . . . . . . . . . . . . . . . 69

4.5.1.3 Stagewise Orthogonal Matching Pursuit . . . . . . . 70

4.5.1.4 Regularized Orthogonal Matching Pursuit . . . . . . 72

4.5.1.5 Acrostic Compressive Sampling Matching Pursuit . . 73

4.5.2 Convex Relaxation . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2.1 BP-simplex . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2.2 BP-interior . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2.3 Iterative Shrinkage/Thresholding . . . . . . . . . . . 77

4.5.2.4 Gradient Projection for Sparse Reconstruction . . . . 79

4.5.2.5 Focal Underdetermined System Solver . . . . . . . . 80

4.5.3 Non-convex Relaxation . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.2 Imaging Reconstruction - Visual Results . . . . . . . . . . . . 83

4.6.3 Imaging Reconstruction - Quantitative Measurements . . . . . 85

4.7 Silicon Phantom Experiment . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5. FDOT RECONSTRUCTION WITH PRECONDITIONED FORWARD
SENSING MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Preconditioned FDOT Inverse Problem with Sparsity Constraint . . . 95

5.3 Performance Guarantees in Sparse Signal Reconstruction . . . . . . . 96

5.4 Preconditioning Matrix Design . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Elad’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Duarte-Carvajalino and Sapiro’s Method . . . . . . . . . . . . 98

5.4.3 Schnass and Vandergheynst’s Method . . . . . . . . . . . . . . 99

5.4.4 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5.2 Simulation Results - Coherence of the FDOT Forward Matrix 102

v



5.5.3 Simulation Results - Image Reconstruction . . . . . . . . . . . 103

5.6 Silicon Phantom Experiment . . . . . . . . . . . . . . . . . . . . . . . 106

5.6.1 Real Phantom Configuration . . . . . . . . . . . . . . . . . . . 106

5.6.2 Coherence of the FDOT Forward Matrix . . . . . . . . . . . . 108

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6. LIGHT ILLUMINATION AND DETECTION PATTERNS FOR FDOT
BASED ON COMPRESSIVE SENSING . . . . . . . . . . . . . . . . . . . 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 Bounds on the Coherence of the FDOT Forward Matrix . . . . . . . 114

6.3 The FDOT Forward Matrix Optimization . . . . . . . . . . . . . . . 118

6.3.1 Design of the Illumination Patterns - The Optical Mask . . . . 119

6.3.2 Design of Detection Patterns - The Measurement Mask . . . . 122

6.3.3 Forward Sensing Matrix Construction . . . . . . . . . . . . . . 124

6.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.2 Simulation Results - Coherence of the FDOT Forward Matrix 127

6.4.3 Simulation Results - Image Reconstruction . . . . . . . . . . . 128

6.5 Silicon Phantom Experiment . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.1 Real Phantom Configuration . . . . . . . . . . . . . . . . . . . 131

6.5.2 Coherence of the FDOT Forward Matrix . . . . . . . . . . . . 131

6.5.3 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 141

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

APPENDICES

A. Calculation of the Combined l2-lp norm Regularization Coefficients . . . . . 161

B. Upper Bounds for Cumulative Coherence . . . . . . . . . . . . . . . . . . . 163

C. Equivalence of the Normalized Forward Sensing Matrix . . . . . . . . . . . 166

vi



LIST OF TABLES

2.1 Table of notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Spatial resolution of the reconstructed images, r = 0.5 cm, d = 1.0 cm. . 51

3.2 Spatial resolution of the reconstructed images, r = 0.5 cm, d = 1.5 cm. . 52

3.3 Spatial resolution of the reconstructed images, r = 0.5 cm, d = 2.0 cm. . 52

3.4 The CONR and CBNR for different regularization methods. . . . . . . . 53

4.1 NMSE of the reconstructed images (10−4) using different sparse signal
recovery techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 PVR of the reconstructed images using different sparse signal recovery
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 NMSE of the reconstructed images (10−4). . . . . . . . . . . . . . . . . 106

5.2 CBNR of the reconstructed fluorophore images using different algorithms.109

6.1 NMSE of the reconstructed images (10−4). . . . . . . . . . . . . . . . . 130

vii



LIST OF FIGURES

3.1 A comparison of the cost functions of the Tikhonov regularization and
lp-norm regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 A comparison of the cost functions of the Tikhonov regularization and
the combined l2-lp-norm (p = 1) regularization. . . . . . . . . . . . . . . 38

3.3 Digital phantom simulation setup. . . . . . . . . . . . . . . . . . . . . . 40

3.4 Singular value spectrum of the forward matrix. . . . . . . . . . . . . . . 41

3.5 Fluorophore configuration of the Phantom with single heterogeneity of
radius 0.5 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 The SVD reconstruction results (r = 0.5 cm, 50 dB additive noise) of
(a) cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction. . . . . . . . . . . . . . . . . 43

3.7 The CG reconstruction results (r = 0.5 cm, 50 dB additive noise) of
(a) cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction. . . . . . . . . . . . . . . . . 43

3.8 The ART reconstruction results (r = 0.5 cm, 50 dB additive noise) of
(a) cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction. . . . . . . . . . . . . . . . . 44

3.9 The Tikhonov reconstruction results (r = 0.5 cm, 50 dB additive noise)
of (a) cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction. . . . . . . . . . . . . . . . . 44

3.10 The l1-norm reconstruction results (r = 0.5 cm, 50 dB additive noise)
of (a) cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction. . . . . . . . . . . . . . . . . 45

3.11 The lp-norm (p = 1.2) reconstruction results (r = 0.5 cm, 50 dB additive
noise) of (a) cross sectional plane at z = 0; (b) 3D iso-surface at 50%
of the maximum amplitude in the reconstruction. . . . . . . . . . . . . 45

3.12 The combined l2-lp-norm (p = 1) reconstruction results (r = 0.5 cm,
50 dB additive noise) of (a) cross sectional plane at z = 0; (b) 3D
iso-surface at 50% of the maximum amplitude in the reconstruction. . 46

3.13 Fluorophore configuration of phantom with two heterogeneities of radius
0.5 cm (2 cm apart in the center). . . . . . . . . . . . . . . . . . . . . 46

viii



3.14 The SVD reconstruction results (two heterogeneities, r = 0.5 cm, d = 2
cm, 50 dB additive noise) of (a) cross sectional plane at z = 0; (b) 3D
iso-surface at 50% of the maximum amplitude in the reconstruction. . . 47

3.15 The CG reconstruction results (two heterogeneities, r = 0.5 cm, d = 2
cm, 50 dB additive noise) of (a) cross sectional plane at z = 0; (b) 3D
iso-surface at 50% of the maximum amplitude in the reconstruction. . . 47

3.16 The ART reconstruction results (two heterogeneities, r = 0.5 cm, d = 2
cm, 50 dB additive noise) of (a) cross sectional plane at z = 0; (b) 3D
iso-surface at 50% of the maximum amplitude in the reconstruction. . . 48

3.17 The Tikhonov reconstruction results (two heterogeneities, r = 0.5 cm,
d = 2 cm, 50 dB additive noise) of (a) cross sectional plane at z = 0; (b)
3D iso-surface at 50% of the maximum amplitude in the reconstruction. 48

3.18 The l1-norm reconstruction results (two heterogeneities, r = 0.5 cm,
d = 2 cm, 50 dB additive noise) of (a) cross sectional plane at z = 0; (b)
3D iso-surface at 50% of the maximum amplitude in the reconstruction. 49

3.19 The lp-norm (p = 1.2) reconstruction results (two heterogeneities, r =
0.5 cm, d = 2 cm, 50 dB additive noise) of (a) cross sectional plane
at z = 0; (b) 3D iso-surface at 50% of the maximum amplitude in the
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.20 The combined l2-lp-norm (p = 1) reconstruction results (two hetero-
geneities, r = 0.5 cm, d = 2 cm, 50 dB additive noise) of (a) cross
sectional plane at z = 0; (b) 3D iso-surface at 50% of the maximum
amplitude in the reconstruction. . . . . . . . . . . . . . . . . . . . . . . 50

3.21 MSE-SNR plot of six different phantom configurations. . . . . . . . . . 55

3.22 CONR-SNR plot of six different phantom configurations. . . . . . . . . 56

3.23 CONR-SNR plot of six different phantom 6 configurations. . . . . . . . 57

3.24 CE-SNR plot of different phantom configurations. . . . . . . . . . . . . 58

3.25 Examples of the resolutions of heterogeneities. . . . . . . . . . . . . . . 59

3.26 Fluorophore configuration of the real silicon phantom: (a) cross sec-
tional plane at z = 0; (b) 3D surface of the heterogeneity. . . . . . . . 59

3.27 SVD reconstruction results of silicon phantom: (a) cross sectional plane
at z = 0; (b) 3D iso-surface at 50% of the maximum amplitude in the
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



3.28 CG reconstruction results of silicon phantom: (a) cross sectional plane
at z = 0; (b) 3D iso-surface at 50% of the maximum amplitude in the
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.29 ART reconstruction results of silicon phantom: (a) cross sectional plane
at z = 0; (b) 3D iso-surface at 50% of the maximum amplitude in the
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.30 The Tikhonov reconstruction results of silicon phantom: (a) cross sec-
tional plane at z = 0; (b) 3D iso-surface at 50% of the maximum am-
plitude in the reconstruction. . . . . . . . . . . . . . . . . . . . . . . . 61

3.31 The l1-norm reconstruction results of silicon phantom: (a) cross sec-
tional plane at z = 0; (b) 3D iso-surface at 50% of the maximum am-
plitude in the reconstruction. . . . . . . . . . . . . . . . . . . . . . . . 61

3.32 The lp (p = 1.2) norm reconstruction results of silicon phantom: (a)
cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the maximum
amplitude in the reconstruction. . . . . . . . . . . . . . . . . . . . . . 61

3.33 The combined l2 − lp-norm reconstruction results of silicon phantom:
(a) cross sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction. . . . . . . . . . . . . . . . . 62

4.1 Simulation setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 The cross section of the phantom at z = 3 (middle) (r = 0.5 cm). . . . . 83

4.3 The cross sections of the reconstructed images at z = 3 (middle) of the
phantom using different algorithms, r = 0.5 cm, 1% noise. . . . . . . . . 89

4.4 The cross section of the phantom at z = 3 (middle) (r = 0.5 cm, d = 1.5
cm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 The cross sections of the reconstructed images at z = 3 (middle) of the
phantom using different algorithms, r = 0.5 cm, d = 1.5 cm, 1% noise. . 91

4.6 The configuration of the real silicon phantom and the cross section of
the fluorophore yield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 The imaging system used in the silicon phantom experiment. . . . . . 92

4.8 The cross sections of the phantom at z = 1 (middle) using different
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 An illustration of the phantom and source-detector configuration. . . . . 101

5.2 The normalized inner products and cumulative coherence of the forward
matrix before and after applying the preconditioning matrix. . . . . . . 102

x



5.3 The cross section of the phantom at z = 3 (middle) (r = 0.5 cm). . . . . 103

5.4 The cross sections of the reconstructed images at z = 3 (middle) of the
phantom using greedy algorithms, r = 0.5 cm, 1% noise. . . . . . . . . . 104

5.5 The cross sections of the reconstructed images at z = 3 (middle) of the
phantom using convex relaxation algorithms, r = 0.5 cm, 1% noise. . . . 105

5.6 The configuration of the real silicon phantom and the cross section of
the fluorophore yield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 The imaging system used in the silicon phantom experiment. . . . . . 107

5.8 The normalized inner products and cumulative coherence of the forward
matrix before and after applying the preconditioning matrix. . . . . . . 110

5.9 The cross sections at z = 1 (middle) of the reconstructed phantom using
greedy algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10 The cross sections at z = 1 (middle) of the phantom using convex
relaxation techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 The block diagram of the FDOT imaging process with optical and mea-
surement masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 An illustration of the phantom and source-detector configuration. . . . . 126

6.3 The optical and measurement masks used with simulated data. . . . . . 126

6.4 The normalized inner products and cumulative coherence of the forward
matrix before and after applying optical and measurement masks. . . . 127

6.5 The cross section of the phantom at z = 3 (middle) (r = 0.5cm). . . . . 128

6.6 The cross sections of the reconstructed images at z = 3 (middle) of the
phantom using greedy algorithms, r = 0.5 cm, 1% noise. . . . . . . . . . 134

6.7 The cross sections of the reconstructed images at z = 3 (middle) of the
phantom using convex relaxation algorithms, r = 0.5 cm, 1% noise. . . . 135

6.8 The configuration of the real silicon phantom and the cross section of
the fluorophore yield. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.9 The imaging system used in the silicon phantom experiment. . . . . . 136

6.10 The optical and measurement masks used with simulated data. . . . . . 137

6.11 The normalized inner products and cumulative coherence of the forward
matrix before and after applying optical and measurement masks. . . . 138

xi



6.12 The cross sections of the reconstructed phantom at z = 1 (middle) using
greedy algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.13 The cross sections of the phantom at z = 1 (middle) using convex
relaxation techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xii



ACKNOWLEDGMENT

First of all, I have to thank my parents for their unconditional love and support

over all these years. I love them to death, and this Ph.D thesis is dedicated to them.

There is always a lot more than I can say in words.

I would like to specially thank my advisor Dr. Birsen Yazici for inviting me

to her research program. She is a great professor, and a great woman. There are a

number of ups and downs through my Ph.D years, but she has always been patient

and supportive. She taught me so much, helped me to learn, and to mature. Dr.

Yazici, thank you for investing your precious time in me to make me smarter and

stronger. I love you a lot.

I would like to thank my other committee members, Prof. George Xu, Prof.

Partha Dutta, and Prof. Suvranu De for dedicating their precious time on my thesis

work. I appreciate their indispensable advice to my thesis work.

I would like to thank my former colleague, Dr. Lu Zhou, and my current

colleague, Zhengmin Li. Thank you for coming to my life being great colleagues and

great friends. It is my pleasure to know you and work with you.

Finally, thanks to all my friends and my families for always encouraging me

and cheering me up. You are in my heart no matter where I am. I’m proud to have

you all in my life.

xiii



ABSTRACT

Fluorescence diffuse optical tomography (FDOT) is an imaging modality that uses

near infrared (NIR) light to excite the fluorophore injected into the tissue, and to

reconstruct the fluorophore concentration from boundary measurements. FDOT im-

age reconstruction is a highly ill-posed inverse problem. However, the fluorophore

distribution in FDOT images is often very sparse. This thesis aims to develop meth-

ods and algorithms that exploit the sparsity of fluorophore distribution to address

the ill-posedness of the FDOT image reconstruction problem.

The first part of the thesis focuses on designing sparsity promoting regulariza-

tion combined with specific a priori information for FDOT image reconstruction.

The second part of the thesis focuses on addressing the ill-posedness of the FDOT

inverse problem in the compressive sensing (CS) framework. CS theory guarantees

exact recovery of sparse signals if the underlying forward sensing matrix is inco-

herent. We introduce two methods to reduce the coherence of the FDOT forward

sensing matrix, and thereby to improve the image reconstruction performance: (1)

We design a preconditioning matrix applied to the FDOT forward sensing matrix

at the image reconstruction stage. (2) We design CS-based light illumination and

detection patterns that can be applied at the data acquisition stage. We demon-

strate the performance of our methods in 3D numerical simulations, and using real

data obtained from a phantom experiment.

Finally, we note that while our interest lies primarily in the FDOT imaging

problem, the methods and algorithms developed in this thesis are also applicable to

other partial differential equation-based inverse coefficient estimation problems.
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CHAPTER 1

INTRODUCTION

1.1 Diffuse Optical Tomography and Fluorescence Diffuse

Optical Tomography

Diffuse optical tomography (DOT) is an imaging modality that uses light in

the near infrared (NIR) spectrum to provide volumetric views of optical absorption

and scattering coefficients [1–3]. Light in the NIR spectrum (700 − 900 nm) can

propagate through biological tissue for several centimeters before it is totally at-

tenuated. This is due to the significantly lower optical absorption [4] of NIR light

in tissue as compared to the light in the visible range of the spectrum. The NIR

light that propagates through the tissue is either elastically scattered or absorbed

by water, oxygenated hemoglobin (HbO), and deoxygenated hemoglobin (Hb). The

light-tissue interactions, i.e., multiphoton absorption and scattering, corresponds to

photophysical processes at the molecular level. In diseased tissue (e.g., tumor), the

scattering and absorption coefficients are larger than those in the normal tissue.

Thus, DOT offers an opportunity to determine the hemoglobin concentration and

the oxygen saturation in tissue, which can be used for screening or diagnosis of

diseased tissue. However, in DOT, detection and diagnosis of the diseased tissue

are based only on the endogenous chromophores, which does not always provide

sufficient contrast.

Fluorescence diffuse optical tomography (FDOT) is an imaging technique for

small animals or deep tissue based on similar problems as that of DOT. Unlike

DOT, FDOT uses exogenous contrast agents, which are often called fluorescence

probes or fluorophores, to increase the optical contrast [5–8]. These fluorophores

are molecules [9, 10] that can absorb the energy from an external light source and

re-emit light at a lower-energy level at longer wavelengths. In recent years, due to the

increasing availability of fluorescent contrast agents [11,12], the use of fluorophores

as exogenous contrast agents for imaging has shown great promise [13–20]. There

is a wide application of FDOT in the clinical world, such as drug discovery, tumor

1
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detector, etc. The fluorophore probes play a significant role in identifying specific

molecules in drug or diseased tissue that would be otherwise impossible to detect. 3D

imaging of fluorophore concentration map is able to indicate optical heterogeneity

in biological tissue. In experimental studies with animal subjects [13–17, 19], fluo-

rophores have been successfully used to visualize cancerous tissue in vivo near the

skin surface. In addition, Indo-Cyanin Green (ICG) enhanced optical tomography

has been used to image the absorption of a malignant tumor in human tissue [17,20].

As compared to the traditional radiological imaging modalities, such as X-

ray Computer Tomography (X-ray CT) and Magnetic Resonance Imaging (MRI),

FDOT offers several advantages: (1) NIR radiation is minimally invasive, thus can

be safely used for screening and continuous monitoring. Some fluorescence contrast

agents, such as ICG, were experimentally shown to be clinically feasible [21]; (2) the

instrumentation for FDOT is relatively inexpensive and portable; (3) FDOT offers

the capability to study biological function at the molecular level [22].

1.2 FDOT Imaging Problem

In FDOT, NIR light at the fluorophore’s excitation wavelength is directed into

a bounded imaging domain to excite the injected fluorophores inside the domain,

which, in turn, emits light at a longer (emission) wavelength. The FDOT imaging

problem has two arts: the forward and inverse problems. The FDOT forward prob-

lem estimates the photon density field at the excitation and emission wavelengths

given the optical properties, which include fluorophore concentration, diffusion and

absorption coefficients, of the imaging domain. The FDOT inverse problem, on the

other hand, uses the excitation and emission photon density field measured at the

boundary of the imaging domain to estimate the optical properties of the medium.

1.2.1 FDOT Forward Problem

The forward problem of FDOT involves solving for the light field in the imaging

domain based on a mathematical model of light propagation in biological tissue. The

radiation transport equation (RTE) and the diffusion equation are the two main

models commonly used for photon propagation in highly scattering media. RTE
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models the propagation of the multiply scattered light, especially in the vicinity

of the boundary or where the medium properties vary rapidly in a accurate way.

However, the high computational complexity of solving RTE makes it unsuitable for

many problems of practical interest [2]. The diffusion equation is an approximation

to the RTE, when the scattering coefficients are much larger than the absorption

coefficients in the optical domain of interest. It has been shown that there are many

situations where diffusion equation can be used to accurately describe the photon

migration in highly scattering media [23–25].

Depending on the specific FDOT applications, there are three types of ap-

proaches to solve the FDOT forward problem, including analytical, statistical, and

numerical methods:

1. Analytical approach attempts to obtain a closed form solution to the diffusion

equations. However, analytical solutions only exist for simple imaging domain

geometries and homogeneous optical properties [26, 27]. In general, there is

no closed form relationship between the optical coefficients and the photon

density field for arbitrary imaging domain geometries.

2. Statistical approach attempts to solve the forward problem based on the RTE

by simulating a large number of photons. One of the most widely used methods

is the Monte Carlo method [28]. Statistical methods are computationally

intensive. Therefore, they are typically only used for problems where diffusion

equation does not hold [28,29].

3. Numerical approach employs numerical methods, such as finite element method

(FEM), to solve the partial differential equations involved in FDOT forward

model. This approach has the advantages of computational efficiency as com-

pared to statistical methods and the applicability of arbitrary imaging domain

boundaries such as the ones in many practical applications [30–32].

In this thesis, we use two coupled diffusion equations to model the propagation of

the excitation and emission light in the optical domain, and use FEM to solve the

FDOT forward problem [33,34,34–36].
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1.2.2 Nonlinear and Linear FDOT Inverse Problems

In the FDOT inverse problem, the objective is to reconstruct the spatially

varying optical properties of a medium of interest from boundary measurements.

In this thesis, we are primarily interested in reconstructing the fluorophore yield,

which is a quantity proportional to the fluorophore concentration.

In FDOT, the fluorophore yield is nonlinearly related to the measurement

data. The nonlinear forward operator depends on the absorption coefficients of the

imaging domain, which is composed of the endogenous absorption of the tissue and

the exogenous absorption of the fluorophore. For the case of weak fluorophore, the

contribution of the fluorophore absorption to the total absorption is assumed to be

small. Thus, under the assumption that the absorption coefficient is approximately

equal to the the endogenous absorption coefficient, the FDOT inverse problem can

be linearized. For the case of strong fluorophore, where the fluorophore absorp-

tion is not negligible as compared to the total absorption, an iterative linearization

approach can be used to address the FDOT inverse problem.

1.2.3 Challenges in FDOT Inverse Problem

In FDOT, the number of measurements available is often much smaller than

the number of unknowns, which results in the non-uniqueness of the solution. Addi-

tionally, the solution is not stable, i.e., a small perturbation in the measurement data

can lead to large deviations in the reconstructed image. Furthermore, FDOT image

reconstruction is inherently a three dimensional (3D) problem with a large number

of unknowns. Thus, the FDOT inverse problem is an ill-posed and computationally

expensive image reconstruction problem.

1.3 The Objective of the Thesis

The overarching goal of this thesis is to address the ill-posedness of the FDOT

inverse problem. Towards this goal, we pursue two approaches:

1. Developing a novel regularization method that suits to the specific nature of

the FDOT image reconstruction problem within generalized Tikhonov regu-

larization framework.
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2. Exploiting the sparsity of the fluorophore yield in the image domain and ad-

dressing the ill-posedness of the FDOT inverse problem within the compressive

sensing (CS) framework.

Below we explain these two approaches in more details.

1.4 Regularization Methods for FDOT Image Reconstruc-

tion

Regularization techniques are commonly used to address the ill-posedness of

the DOT or FDOT inverse problems. These include the truncated singular value

decomposition (TSVD) method [37], the conjugate gradient (CG) method [38], the

Kaczmarz iteration method [39], the Tikhonov regularization method [40–42], the

lp-norm regularization method [43], and others [44].

We develop a combined l2-lp-norm regularization technique to address the ill-

posedness of the FDOT inverse problem. The new method has the advantage of

preserving the signal in the foreground region from over-smoothing while effectively

removing the background noise. We demonstrate the performance of the new regu-

lation scheme in 3D numerical simulations and real silicon phantom experiment.

1.5 Compressive Sensing Framework for FDOT Image Re-

construction

1.5.1 Overview in Compressive Sensing?

Recently, the emerging field of compressive sensing has shown that sparse

signals, i.e, signals that have a small number of non-zero entries, can be recovered

from far fewer samples or measurements than required by the traditional Shannon-

Nyquist sampling theorem. The theory of CS was first introduced in [45]. This

study considered signals that have a sparse representation in the Fourier domain.

In subsequent studies [46], the CS theory was generalized to recover sparse signals in

general bases from limited number of measurement data. In nature, a wide range of

signals can be sparsely represented in appropriate basis spaces. Therefore, CS theory
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has been widely applied in many different fields, including compressive imaging [47],

medical imaging [48], radar [49], and computational biology [50].

There are three fundamental aspects of CS theory:

1. Signals to be reconstructed must be sparse.

2. Certain optimization methods, which we refer to as the sparse signal recovery

techniques, can be used to determine sparse signals from an under determined

system of linear equations.

3. Under certain conditions on the forward operator, the CS theory provides

performance guarantees for the exact recovery of the sparse signals (even in

the presence of measurement noise). These conditions are given in terms of

the incoherence of the sensing matrix that maps the unknown signal of interest

to measurements [51–55].

1.5.2 The Sparseness of Fluorophore in FDOT Images

The fluorophores used in FDOT are typically designed to accumulate in cer-

tain regions of interest, i.e., cancerous tumors. The fluorophore concentration is

often localized in relatively small, specific regions as compared to the entire image

domain. For example, early stage tumors tagged with fluorophore are often very

small in size [56]. In some applications, it may be sufficient to model fluorophore

concentration as a single heterogeneous point in the entire imaging domain [57–59].

For example, [59] employs an FDOT system with reflection geometry verifies that

a point-heterogeneity model is sufficient to represent tumors smaller than 1 cm3

in size. Thus, in many practical applications, it is reasonable to assume that the

fluorophore concentration map to be reconstructed is often very sparse in the image

domain. This observation motivates us to address the FDOT image reconstruction

problem as a sparse signal recovery problem within the CS framework.

1.5.3 Sparse Signal Recovery Techniques

Commonly used sparse signal recovery strategies are based on greedy-type

search strategies and relaxation techniques. The greedy approach has many pop-
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ular strategies including orthogonal matching pursuit (OMP) [60], gradient pur-

suit [61], stagewise orthogonal matching pursuit (StOMP) [62], regularized orthog-

onal matching pursuit (ROMP) [63, 64], acrostic compressive sampling matching

pursuit (CoSaMP) [65], and others [66]. Another popular approach is based on

convex relaxation, which often involves solving an l1-norm constraint optimization

problem. A large number of algorithms have been developed to solve the relaxed

convex problem, including the linear programming techniques used in basis pursuit

(BP) [67], the iterative shrinkage/thresholding method [68–70], the gradient pro-

jection for sparse reconstruction (GPSR) method [71], the focal underdetermined

system solver (FOCUSS) [72, 73], and others [66]. Besides convex relaxation, the

non-convex relaxation is also used as a sparsity constraint. A typical non-convex

relaxation is to replace the l1-norm constraint in convex relaxation with the lp-norm

(0 < p < 1) constraint. It has been shown that, as compared to the l1-norm con-

straint optimization, lp-norm constraint optimization can recover sparse signals with

fewer measurements [74].

1.5.4 Performance Guarantees in Compressive Sensing

An important aspect of the CS theory is that it provides performance guaran-

tees for accurate or exact recovery of sparse signals under some conditions. One of

these conditions is the incoherency of the so called sensing matrix or the forward

operator [51,75,76]. Intuitively speaking, incoherency is a degree of the orthogonal-

ity of the forward matrix. In general, CS theory states that if the coherence of the

forward matrix is low enough, a sparse signal can be exactly recovered. However,

NIR light is diffusive in nature, thus the excitation or emission light fields at adja-

cent locations in the imaging domain is similar due to light scattering. As a result,

the columns of the FDOT forward sensing matrix are usually coherent. However,

in many applications, the forward matrix can be designed to be incoherent, which

improves the recovery performance of sparse signals [52–54,66,77,78].

The nature of the forward matrix in FDOT depends on (1) the geometry

of the imaging domain; (2) the endogenous optical properties of the medium; (3)

the source and detector configurations. The geometry and the endogenous optical
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properties are inherent properties of the imaging domain, which cannot be changed.

However, it is possible to improve the incoherence of the FDOT forward matrix by

optimizing the light illumination and detection patterns. In this thesis, we design

light illumination and detection patterns for FDOT based on the CS theory to

improve the quality of reconstructed images.

1.6 Related Literature - Applications of CS in FDOT and

DOT

In FDOT, the imaging domain is often illuminated sequentially by a number

of point sources placed at the boundary of the imaging domain. However, recent

work has demonstrated that the “structured illumination” can be useful in reduc-

ing the ill-posedness of the optical tomography inverse problem, and to improve the

spatial resolution of the reconstructed images [79–86]. In [79], a method is presented

which designs distribution of light intensities over a predetermined set of locations

and modulation frequencies to maximize the detectability of heterogeneities. In [80],

different illumination light patterns including line sources, Gaussian spots, and their

combination are explored to reduce the ill-posedness of the FDOT problem. In [84]

and [85], spatially modulated frequency diversity is explored to improve image re-

construction. In [86], the superiority of wide-field patterned light sources over point

sources is demonstrated using phantom experiments. Note that the concept of struc-

tured illumination is similar to the coded aperture imaging technique, where pre-

determined temporal or spatial masks/patterns are used to encode the illumination

sources to optimize imaging processes, including the ones in medical imaging [87–89],

high energy astronomy [90], spectral imaging [91,92], and others [93, 94].

Recently, CS framework has been utilized to address the inverse problems

of optical tomography [48, 95–98]. In [48], sparse fluorophore concentration is re-

constructed by solving an l1-norm constraint optimization problem. Experimental

results obtained from a milk-based phantom demonstrate that the sparsity pro-

moting signal recovery technique is able to accurately localize a small fluorophore

heterogeneity in deep phantom. In [95], improvements in DOT image reconstruction

is demonstrated in numerical simulations using a greedy-type algorithm in conju-
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gate with a small number of measurements. In [96, 97], the advantages of the CS

based methods over the traditional singular value decomposition (SVD) method are

numerically demonstrated in DOT. In [98], a non-iterative inversion method based

on generalized MUSIC algorithm is introduced, and improvements in DOT image

reconstruction are shown in 3D numerical simulations.

Although sparse signal recovery techniques have shown promising results in

optical tomography, the existing studies in this field is limited in scope and depth.

CS theory has not been explored to improve the incoherence of the FDOT forward

sensing matrix.

1.7 Contributions of the Thesis

The contribution of the thesis can be summarized as follows:

1. We evaluate the performance of existing regularization techniques and propose

a new one that combines specific a priori information with sparsity promoting

constraint on fluorophore concentration:

• We evaluate the existing state-of-art regularization techniques for the

FDOT image reconstruction problem, and extensively compare their per-

formances in 3D numerical simulations and in a real silicon phantom

experiment [99].

• We design a novel regularization scheme, which we refer to as the com-

bined l2-lp-norm regularization, for the FDOT image reconstruction that

takes into account specific a priori information available about the fluo-

rophore distribution in tissue while promoting sparsity.

2. We exploit the sparse nature of the fluorophore concentration map in the imag-

ing domain, and evaluate the performance of different sparse signal recovery

techniques, including greedy type algorithms and relaxation techniques, in

CS literature in FDOT image reconstruction: We show that, in general, the

sparsity promoting algorithms provide better reconstruction results than the

traditional regularization methods without the sparsity constraint [100].
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3. Based on CS framework, we design a preconditioning matrix to improve the

incoherence of the FDOT forward matrix, and address the preconditioned

FDOT inverse problem using different sparse signal recovery methods [101].

4. We design light illumination and detection patterns to improve the incoherence

of the FDOT forward matrix, and hence, improve the FDOT reconstruction

performances [102].

5. We tested the performance of these methods extensively in 3D numerical sim-

ulation and real data obtained from a phantom experiment.

1.8 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, we present the two coupled diffusion equations to model the NIR

light propagation at the excitation and emission wavelengths in a bounded optical

domain. Based on the assumption of weak fluorophore, we linearize the FDOT

imaging problem by assuming that the contribution of the fluorophore absorption

is negligible compared to the total absorption. Next, with an appropriate boundary

condition, we present the discretized FDOT imaging problem using FEM with first

order Lagrange basis functions; and define the FDOT forward sensing matrix.

In Chapter 3, based on the linearized formulation of the FDOT imaging prob-

lem derived in Chapter 2, we apply a number of regularization techniques to address

the ill-posedness of the FDOT inverse problem. In addition, we propose a novel reg-

ularization technique based on a combined l2-lp-norm regularization function.

In Chapter 4, we address the linearized FDOT inverse problem by exploiting

the sparse nature of the fluorophore yield in the imaging domain. The sparsity con-

straints are introduced into the FDOT inverse problem formulation. We have briefly

reviewed a number of sparsity promoting reconstruction techniques in CS literature

and applied these techniques to the reconstruction of the fluorophore concentration

map.

In Chapter 5, in addition to using sparse signal recovery techniques as dis-

cussed in Chapter 4, we improve the incoherence of the FDOT forward sensing
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matrix by applying a preconditioning matrix. We solve the preconditioned FDOT

imaging problem, and show the improvements in image reconstruction when the

preconditioning matrix is applied.

In Chapter 6, we improve the incoherence of the FDOT forward sensing matrix

by designing light illumination and detection patterns. Unlike in Chapter 5, where

the FDOT forward sensing matrix is preconditioned directly, we take an alternative

approach by decomposing the FDOT forward matrix into the Kronecker product

of two underlying matrices, and design two preconditioners to reduce the coherence

of these two matrices. Practical implementation of this preconditioning approach

results in adjusting the intensities of light sources operating simultaneously, and

filtering each set of measurements prior to reconstruction.

Finally, in Chapter 7, we conclude the thesis and provide a discussion on the

potential future work.



CHAPTER 2

FDOT IMAGING PROBLEM

2.1 Introduction

In this chapter, we present the FDOT imaging problem formulation. We fo-

cus on the estimation of the fluorophore concentration map in a bounded optical

domain using the continuous wave method. For the forward problem, the light prop-

agation in this domain is modeled by a pair of coupled frequency-domain diffusion

equations with the Robin-type boundary conditions. In general, the FDOT imaging

problem is nonlinear. However, based on the assumption of weak fluorophore, the

FDOT imaging problem can be linearized by assuming that the contribution of the

fluorophore absorption is negligible compared to the total absorption. When strong

fluorophore is present in the imaging domain, the FDOT imaging problem can be

linearized by applying an iterative perturbation approach. In this thesis, our cal-

culation is based on the linearization approach. We use the FEM and first order

lagrange basis function to discretize the solve the FDOT imaging problem.

We use the following notational conventions throughout the thesis. The bold

symbol, bold italic lower-case letters, Γ,y, etc. are used to denote vector variables,

italic symbol or Roman letters are used to denote scalar variables. The calligraphic

letters, A,B, etc. are used to denote operators. The bold Roman upper-case letters

are used to denote matrices, A,B, etc. We use Ex,m as a shorthand notation for

the quantity E at either excitation or emission wavelengths. Table 2.1 provides a

summary of the key variables and notations used throughout the thesis.

Table 2.1: Table of notations

Symbol Designation

Ω Bounded imaging domain

continued...

12
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continued from previous page

Symbol Designation

ω Angular modulation frequency

N Number of voxels in the imaging domain

Ns Number of light sources

Nd Number of detectors

M Number of measurements

si ith point source

ϕi
x,m Photon density field due to the ith source

ϕ̃i
x,m Finite element approximation of ϕi

x,m

gjx,m Green’s functions corresponding to the jth detector

g̃jx,m Finite element approximation of gjx,m

Dx,m Diffusion coefficients

µax,m Absorption coefficients

µaex,m Endogenous absorption coefficients

µafx,m Fluorophore absorption coefficients

µ Fluorophore yield

µ̃ Finite element approximation of µ

Γ Vector of measurements

Bi Linear operator that maps the fluorophore yield to mea-

surements due to the ith light source

B̃i Finite element approximation of Bi

A Linear forward operator that maps the fluorophore yield

to all the measurements on the detectors

Ã Finite element approximation of A
x Discretized fluorophore yield

Bi Discretized Bi

A Discretized A - forward or sensing matrix

ϵ Vector of measurement noise

σi Variance of ϵi

continued...
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continued from previous page

Symbol Designation

y Vector of measurements contaminated by noise

λ Regularization parameter

S Sparsity of a signal

δS S-restricted isometric constrant

M(·) Mutual coherence of a matrix

M1(·, ·) Cumulative coherence of a matrix

G Matrix composed of the discretized Green’s function of

the emission light

Φ Matrix composed of the discretized excitation light field

rEp,q Normalized inner product between the pth and qth col-

umn of the matrix quantity E

MA The preconditioning matrix of A

M d Digital masks on the detectors

M s Optical masks on the point sources

Qk kth structured illumination pattern

Gnew Matrix composed of the discretized Green’s function of

the emission light field after the application of digital

masks

Φnew Matrix composed of the discretized excitation light field

after the application of the optical masks on sources

Apre Forward/sensing matrix after the application of the pre-

conditioning matrix MA

Anew Forward/sensing matrix after the application of the op-

tical and digital masks

∥ · ∥p lp-norm of a vector quantity

∥ · ∥F Frobenius norm of a matrix quantity

The rest of this chapter is organized as follows: Section 2.2 describes the

light propagation model in FDOT; Section 2.3 and presents the FDOT forward

and inverse problem formulation; Section 2.4 discretizes FDOT imaging problem
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by FEM; Section 2.5 presents the FDOT linear statistic model with additive noise;

Finally, Section 2.6 concludes the chapter.

2.2 Light Propagation Model for FDOT

In this work, we use diffusion approximation of radiative transfer equation to

model photon propagation in the medium. In the frequency domain, the excitation

and emission light propagation in a bounded region Ω ∈ R3 are modeled by two

coupled diffusion equations [5]:

−∇ ·Dx(r)∇ϕi
x(r, ω) +

(
µax(r) +

jω

c

)
ϕi
x(r, ω) = si(r, ω), r ∈ Ω, (2.1)

−∇ ·Dm(r)∇ϕi
m(r, ω) +

(
µam(r) +

jω

c

)
ϕi
m(r, ω) = ϕi

x(r, ω)ηµaxf (r)
1− jωτ(r)
1 + (ωτ(r))2

,

r ∈ Ω, (2.2)

where the subscripts x and m denote the excitation and emission wavelengths, re-

spectively.

For the rest of our discussion, Ex,m is a shorthand notation for the quantity

E at either excitation or emission wavelength. r = [r1, r2, r3] ∈ Ω denotes the

location in the medium; ω denotes the angular modulation frequency; si(r, ω) is the

ith light source of the modulation frequency ω; ϕi
x,m(r, ω) stands for the spatially

varying photon density field at position r due to the source si(r, ω); c is the speed of

light propagating in the medium; Dx,m(r) stands for the diffusion coefficient in the

medium at the excitation or emission wavelength; µax,m(r) stands for the absorption

coefficient of the medium at the excitation or emission wavelength; µaxf (r) is the

absorption coefficient of fluorophore at the excitation wavelength; η is the quantum

yield and is defined as the ratio of the number of photons emitted to the number of

photons absorbed; ηµaxf (r) is the fluorophore yield; τ(r) is the fluorescence lifetime.

The optical absorption coefficients µax and µam are due to both the endogenous

chromophores and exogenous fluorophore. Thus,

µax(r) = µaxe(r) + µaxf (r), (2.3)

µam(r) = µame(r) + µamf (r), (2.4)
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where the subscript e denotes the endogenous chromophores, and the subscript f

denotes the exogenous fluorophore.

We use the Robin-type boundary conditions given as follows [2]:

2Dx(r)n̂ · ∇ϕi
x(r, ω) + ρϕi

x(r, ω) = 0, r ∈ ∂Ω, (2.5)

2Dm(r)n̂ · ∇ϕi
m(r, ω) + ρϕi

m(r, ω) = 0, r ∈ ∂Ω, (2.6)

where ∂Ω denotes the boundary of the region Ω, n̂ denotes the outward normal

of the boundary ∂Ω, and ρ is the boundary mismatch parameter due to the light

reflection at the boundary given as:

ρ = (1−R)/(1 +R), (2.7)

where R is a parameter governing the internal reflection at ∂Ω. It can be approxi-

mated by :

R ≈ −1.4399a−2 + 0.7099a−1 + 0.6681 + 0.0636a, (2.8)

where a is the refractive index inside Ω.

In this thesis, our focus is to reconstruct the spatially varying fluorophore yield

ηµaxf (r), given the boundary measurements of both the excitation and emission

photon density fields. We made the following assumptions to simplify the problem:

1. The diffusion coefficients Dx,m(r) at both the excitation and emission wave-

lengths are independent of the endogenous and exogenous absorption coeffi-

cients. Thus,

Dx,m =
1

3(µ′
sx,m(r) + µax,m(r))

≈ 1

3µ′
sx,m

, (2.9)

where µsx,m denotes the reduced scattering coefficient at the excitation or

emission wavelength. Furthermore, Dx,m(r) are known, and can be spatially

varying over the imaging domain Ω.

2. The endogenous chromophores absorption coefficients µaxe(r) and µaxe(r) at

both the excitation and emission wavelengths are known, and can be spatially

varying over the imaging domain Ω.
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3. The fluorescence life time τ(r) is known.

4. We use a single modulation frequency measurement model. A multi-frequency

measurement model is a straightforward extension of the single-frequency mea-

surement model. Furthermore, for notational brevity, we use ω = 0 for the

rest of our discussion. Thus (2.1-2.2) can be rewritten as follows:

−∇ ·Dx(r)∇ϕi
x(r) + µax(r)ϕ

i
x(r) = si(r), r ∈ Ω, (2.10)

−∇ ·Dm(r)∇ϕi
m(r) + µam(r)ϕ

i
m(r) = ϕi

x(r)ηµaxf (r), r ∈ Ω, (2.11)

and the Robin-type boundary condition in (2.5-2.6) can be rewritten as:

2Dx(r)n̂ · ∇ϕi
x(r) + ρϕi

x(r) = 0, r ∈ ∂Ω, (2.12)

2Dm(r)n̂ · ∇ϕi
m(r) + ρϕi

m(r) = 0, r ∈ ∂Ω. (2.13)

In order to simplify the analysis later on, we make use of the adjoint problem

associated with (2.11) and (2.13):

−∇ ·Dm(r)∇gjm(r) + µam(r)g
j
m(r) = 0, r ∈ Ω (2.14)

2Dm(r)
∂gjm(r)

∂n
+ ρgjm(r) = s∗j(r), r ∈ ∂Ω (2.15)

where gjm(r) is the solution of the adjoint problem due to the jth adjoint point source

s∗j. located at the jth detector position. We use the notation gm(r) to denote the

Green’s function of (2.11) and (2.13), and gjm(r) is the shorthand notation of the

Green’s function of the emission light field evaluated at the jth detector.

The absorption coefficients µax,m of the medium is composed of the endogenous

absorption µaex,m and the exogenous absorption µafx,m of the fluorophore:

µax,m(r) = µaex,m(r) + µafx,m(r). (2.16)

Since the excitation and emission wavelengths are typically close to each other, in

many applications, the absorption coefficients at both wavelengths are assumed to
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be approximately equal [6]. Hence, we set

µa ≈ µax ≈ µam, µaf ≈ µaxf ≈ µamf . (2.17)

2.3 FDOT Forward and Inverse Problems

2.3.1 Measurement Model

We assume that there are Ns light sources and Nd detectors located at the

boundary of the imaging domain. From (2.10) and (2.12), the excitation light field

due to the ith source is given by

ϕi
x(r) =

∫
Ω

gx(r, r
′)si(r′)dr′, i = 1, ..., Ns (2.18)

where gx is the Green’s function of (2.10) and (2.12). The excitation light interacts

with the fluorophore inside the imaging domain and generates the emission light

with a slightly longer wavelength

ϕi
m(r) =

∫
Ω

gm(r, r
′)ϕi

x(r
′)ηµaf (r

′)dr′, i = 1, ..., Ns (2.19)

Note that ϕi
xηµaf acts as the light source for the photon density field at the emission

wavelength. Thus, we write the measurement Γi,j at the j
th detector due to the ith

source as

Γi,j =

∫
Ω

gjm(r)ϕ
i
x(r)ηµaf (r)dr, i = 1, ..., Ns, i = 1, ..., Nd. (2.20)

In general, (2.23) is nonlinear, since both gjm and ϕi
x depend on µa, which in

turn, depends on µaf .

2.3.2 Linearization of the FDOT Imaging Problem

2.3.2.1 Weak Fluorophore Linear Approximation

However, for the case of weak fluorophore [103], (2.23) can be linearized by

assuming that the contribution of the fluorophore absorption to the total absorption
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is negligible, i.e.,

µa = µae + µaf ≈ µae. (2.21)

Using (2.21), (2.23) can be linearized as

Γi,j =

∫
Ω

gjem(r)ϕ
i
ex(r)ηµaf (r)dr (2.22)

where gjem is the Green’s function of (2.2) and (2.6), and ϕi
ex is the excitation field

when µa ≈ µae.

2.3.2.2 Nonlinear Iterative Perturbation

When strong fluorophore presents in the imaging domain, we iteratively lin-

earize (2.23) to reconstruct ηµaf . In each iteration, the green’s function gj
(k)

m and

the excitation light field ϕi(k)

x are updated based on the estimated absorption coeffi-

cient µ
(k−1)
af of the pervious iteration, where the superscript k and k− 1 denotes the

number of iterations. (2.23) can be approximately reformulated as follows:

δΓ
(k)
i,j =

∫
Ω

gj
(k)

m (r)ϕi(k)

x (r)ηδµ
(k)
af (r)dr, i = 1, ..., Ns, i = 1, ..., Nd, (2.23)

where δΓ
(k)
i,j is the difference between the true and the estimated boundary measure-

ment, ηδµ
(k)
af is the perturbation between the estimated fluorophore yield from the

previous iteration and the true fluorophore yield. From (2.23), ηδµ
(k)
ax,mf is linearly

mapped δΓ
(k)
i,j .

The estimated fluorophore yield at the kth iteration is given by

µ
(k)
ax,mf = δµ

(k)
ax,mf + µ

(k−1)
ax,mf . (2.24)

In the following discussion throughout this thesis, we assume weak fluorophore

in the imaging domain, and use the linearization approach.
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2.3.3 Forward Operator Formulation

We assume that there are Ns light sources and Nd detectors at the boundary

of the imaging domain. Let Γi ∈ RNd denote the vector of measurements due to the

ith source:

Γi = [Γi,1,Γi,2, ...,Γi,Nd
]T .

We define the operator Bi: L(Ω)→ RNd as

(Biµ)j :=

∫
Ω

gjem(r)ϕ
i
ex(r)µ(r)dr =

∫
Ω

bij(r)µ(r)dr (2.25)

where µ = ηµaf denotes the fluorophore yield, and bij := g
(j)
emϕi

ex is the kernel of Bi.

Note that Bi linearly maps the fluorophore yield µ to the measurement vector Γi:

Γi = Biµ. (2.26)

We organize all the measurements Γi, i = 1, ..., Ns into a vector Γ of length

M = Ns ×Nd

Γ = [Γ1T , ...,ΓNs
T

]T ∈ RM . (2.27)

Finally, we define the operator A: L(Ω) → RM which maps the fluorophore

yield µ to Γ as

Γ = [B1, ...,BNs ]Tµ

=: Aµ. (2.28)

2.4 Discretization of the FDOT Imaging Problem

2.4.1 Forward Problem Discretization

In this section, we calculate the excitation photon density field by FEM. Our

calculation is based on the linearization approach, which can be easily extended to

the nonlinear iterative perturbation approach. FEM offers the flexibility to deal

with complex geometry and inhomogeneous distribution of absorption or diffusion

coefficients [33]. In the forward problem discretization, we assume that the domain

Ω is divided into P elements jointed at R vertex nodes. We seek for the finite
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element approximation of the ϕi
ex(r) and g

j
em(r), which leads to the solution of the

forward operator B and A.
First, we solve for ϕi

ex(r). Using the first order Lagrange shape function,

ϕi
ex(r) could be approximated by a continuous and piecewise linear function ϕ̃i

ex(r)

as follows:

ϕ̃i
ex(r) =

R∑
k=1

pikψk(r) = ψ(r)
Tpi, (2.29)

where pik is the kth nodal value of ϕi
ex(r), and p

i = [pi1, p
i
2, ..., p

i
R]

T ; ψk(r) is the first

order Lagrange basis function at node k, and ψ(r) = [ψ1(r), ψ2(r), ..., ψR(r)]
T .

The weak formulation of (2.1) is given by∫
Ω

χ(r)[−∇ ·Dx(r)∇ϕ̃i
ex(r) + µax(r)ϕ̃

i
ex(r)dΩ− si(r)]d3r = 0, (2.30)

where χ(r) can be an arbitrary function that belongs to the Sobolev space H1(Ω).

The problem of solving for ϕi
ex(r) in (2.1) is now equivalent to finding a solution

ϕ̃i
ex(r) in (2.30), for all χ(r) ∈ H1(Ω). In FEM, (2.30) is solvable when χ(r) can be

represented by the shape functions ψk, k = 1, 2, ..., R.

χ(r) =
R∑

k=1

lkψk(r) = l
Tψ(r), (2.31)

where lk is the value of χ(r) at the kth node, and l = [l1, l2, ..., lR]
T . Now, the weak

form in (2.30) can be written as follows:

lT
[∫

Ω

(
ψ(r)(−∇ ·Dx(r)∇ψT (r))pi +ψ(r)µax(r)ψ

T (r)pi −ψ(r)si(r)
)
d3r

]
= 0.

(2.32)

Since lT can be an arbitrary vector, (2.32) is equivalent to∫
Ω

ψ(r)(−∇·Dx(r)∇pi
T
(r)d3rpi+

∫
Ω

ψ(r)µax(r)ψ
T (r)d3rΦx =

∫
Ω

ψ(r)si(r)d3r.

(2.33)

Using the following identity:

∇ · (f g) = f∇g + g∇f, (2.34)
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we get

∇ ·
(
Dx(r)ψ(r)∇ψT (r)

)
= ψ(r)∇ ·

(
Dx(r)∇ψT (r)

)
+Dx(r)∇ψ(r) · ∇ψT (r),

(2.35)

and applying the divergence theorem∫
Ω

∇ ·
(
Dx(r)ψ(r)∇ψT (r)

)
d3r =

∫
∂Ω

Dx(r)ψ(r)n̂ · ∇ψT (r)ds, (2.36)

we can rewrite the first term in equation (2.33) as follows:∫
Ω

ψ(r)(−∇ ·Dx(r)∇ψT (r))d3rpi =

∫
∂Ω

−Dx(r)ψ(r)n̂ · ∇ψT (r)dspi

+

∫
Ω

Dx(r)∇ψ(r) · ∇ψT (r)d3rpi. (2.37)

Recall from the boundary condition in (2.12),

Dx(r)n̂ · ∇ψT (r)pi = −ρ
2
ψT (r)pi, r ∈ ∂Ω, (2.38)

substituting (2.38) into (2.37), we get∫
Ω

ψ(r)(−∇ ·Dx(r)∇ψT (r))d3rpi =

∫
∂Ω

ρ

2
ψ(r)ψT (r)dspi

+

∫
Ω

Dx(r)∇ψ(r) · ∇ψT (r)d3rpi. (2.39)

Substituting (2.39) back into (2.33), we get[∫
Ω

Dx(r)∇ψ(r) · ∇ψT (r)d3r +

∫
Ω

ψ(r)µax(r)ψ
T (r)d3r

+

∫
∂Ω

ρ

2
ψ(r)ψT (r)ds

]
pi =

∫
Ω

ψ(r)si(r)d3r. (2.40)

The (2.40) can be rewritten in the matrix form as follows:

(K +C +
ρ

2
F )pi = ui (2.41)
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where K is an R×R matrix,

K =

∫
Ω

Dx(r)∇ψ(r) · ∇ψT (r)d3r, (2.42)

with the (t, k)th entry given by

Kt,k =

∫
Ω

Dx(r)∇ψt(r)∇ψk(r)d
3r. (2.43)

C is an R×R matrix,

C =

∫
Ω

ψ(r)µax(r)ψ
T (r)d3r, (2.44)

where the (t, k)th entry is given by

Ct,k =

∫
Ω

µax(r)ψt(r)ψk(r)d
3r. (2.45)

F is an R×R matrix,

F =

∫
∂Ω

ρ

2
ψ(r)ψT (r)ds, (2.46)

where the (t, k)th entry is given by

Ft,k =

∫
∂Ω

ψt(r)ψk(r)ds. (2.47)

ui is a vector of length R,

ui =

∫
Ω

ψ(r)si(r)d3r, (2.48)

where the tth entry is given by

uit =

∫
Ω

si(r)ψt(r)d
3r. (2.49)

Then, pi in (2.41) can be solved by matrix inversion:

pi = (K +C +
ρ

2
F )−1ui, (2.50)
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Combining (2.50) and (2.29), we obtain the excitation photon density field as follows:

ϕ̃i
ex(r) = ψ

T (r)pi = ψT (r)(K +C +
ρ

2
F )−1ui (2.51)

The Green’s function gjem(r) can be calculated in a similar way as ϕi
ex(r). We

first approximate gjem(r) by a continuous and piecewise linear function g̃jem(r) as

follows:

g̃jem(r) =
R∑

k=1

qkψk(r) = ψ
T (r)q, (2.52)

where qk is the kth nodal value of gjem(r), and q = [q1, ..., qR]
T . For convenience,

we use the same element shape functions ψk, k = 1, 2, ..., R as that if the excitation

field in (2.29). However, note that the finite element shape functions do not need

to be the same for both the excitation and emission fields. Similar as the excitation

light field, we use the adjoint problem formulation in (2.14) and (2.15), and solve

for q.

The finite element approximation of bij(r) in (2.25) is given by

b̃ij = g̃jem(r)ϕ̃
i
ex(r). (2.53)

Thus, the finite element approximation of the forward operator Bi and A are given

by

(B̃iµ)j :=

∫
Ω

b̃ij(r)µ(r)dr, (2.54)

and

Ã = [B̃1, B̃2, ..., B̃Ns ]T . (2.55)

2.4.2 Inverse Problem Discretization

In this work, our goal is to reconstruct the fluorophore yield µ(r) in the imaging

domain Ω. We decompose the imaging domain Ω into Q elements jointed at N

vertex nodes. The fluorophore yield µ(r) can be approximated by its finite element

counterparts µ̃(r):

µ̃(r) =
N∑
k=1

xkφk(r) = x
Tφ(r) (2.56)
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where φk(r) is the kth Lagrange shape function, φ(r) = [φ1(r), ..., φN(r)]
T , and

xk is the fluorophore yield coefficient at the kth vertex node, x = [x1, ..., xN ]
T .

Similarly, ˜̃bij is the finite element approximation of b̃ij,

˜̃bij(r) =
N∑
k=1

vkφk(r) = φ(r)
Tv (2.57)

where vk is the kth vertex node of ˜̃bij, given by

vk = gjem,kϕ
i
ex,k. (2.58)

gjem,k is the discretized Green’s function evaluated at the jth detector due to the kth

voxel; and ϕi
ex,k is the discretized excitation light field at the kth voxel due to the

ith source. Substitute (2.56) and (2.57) back into (2.25), we have

Γi,j =

∫
Ω

˜̃bij(r)µ(r)dr

=

∫
Ω

vTφ(r)φ(r)Tx

= vTx. (2.59)

The last equality comes from the orthonormal property of the Lagrange shape func-

tion, ∫
Ω

φk1(r)φk2(r)dr =

 1 k1 = k2

0 k1 ̸= k2
. (2.60)

Thus, from (2.26) (2.58) and (2.59), we obtain:

Γi = Bix, (2.61)

where

Bi =


g1em,1ϕ

i
ex,1 . . . g1em,Nϕ

i
ex,N

...
...

gNd
em,1ϕ

i
ex,1 . . . gNd

em,Nϕ
i
ex,N

 ∈ RNd×N (2.62)
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Taking into account all the measurements due to all the light sources, the discretized

form of (2.28) becomes

Γ = Ax, (2.63)

where

A =


B1

B2

...

BNs

 =



g1em,1ϕ
1
ex,1 . . . g1em,Nϕ

1
ex,N

...
...

gNd
em,1ϕ

1
ex,1 . . . gNd

em,Nϕ
1
ex,N

g1em,1ϕ
2
ex,1 . . . g1em,Nϕ

2
ex,N

...
...

gNd
em,1ϕ

Ns
ex,1 . . . gNd

em,Nϕ
Ns
ex,N


∈ RM×N (2.64)

is the vector-valued forward operator. Note that we refer to A as the sensing or

forward operator interchangeably for the rest of the thesis.

2.5 Linear FDOT Statistical Model with Additive Noise

Now, the discretized version of the linear model in (2.28) is given as

Γ = Ax. (2.65)

Consider the noisy measurements:

y = Γ+ ϵ = Ax+ ϵ, (2.66)

where y ∈ RM is the measurement data with the additive noise ϵ,

ϵ = [ϵ1, ϵ2, ..., ϵM ]T . (2.67)

We model ϵi, i = 1, 2, ...,M , as independent Gaussian random variables, i.e.,

ϵi ∼ N (0, σ2
i ), (2.68)

where σi is the variance of ϵi.
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2.6 Conclusion

In this chapter, we modeled the light propagation in the imaging domain

by two coupled diffusion equations. We addressed the nonlinearity of the FDOT

imaging problem by weak fluorophore assumption, which can be easily extend to an

iterative perturbation approach when strong fluorophore is present. Next, we gave

a brief description of the FDOT forward and inverse problem, and use FEM for

discretization. Finally, we presented the formulation of the vector-valued forward

operator, which can be used in the fluorophore map reconstruction in Chapter 3-6.



CHAPTER 3

REGULARIZATION METHODS IN FDOT

3.1 Introduction

In this chapter, we exploit various regularization techniques to reconstruct

the sparse fluorophore map in the imaging domain. The focus of the FDOT in-

verse problem is to estimate the fluorophore yield in the imaging domain given the

boundary measurements. One of the challenges in the FDOT inverse problem is

that the forward sensing matrix A is highly ill-posed, in the sense that the number

of fluorophore yield coefficients that we estimate is much larger than the number

of measurements available. Thus, it is necessary to use regularization techniques to

address the ill-posedness of the linear inverse problem.

A number of regularization techniques have been reported for the inverse prob-

lem of DOT or FDOT [37–44]. In this chapter, we give a brief introduction various

state-of-art regularization techniques, and apply the regularization techniques to the

FDOT inverse problem. The performances of different regularization techniques are

quantitatively evaluated using synthetic data generated by 3D numerical simulation

and real silicon phantom experiment.

In addition, we propose a combined l2-lp-norm regularization method for the

FDOT inverse problem. In the FDOT inverse problem, the true fluorophore yield

map is often piecewise constant, where the fluorophore is concentrated within a small

foreground region. Thus, the fluorophore yield coefficients have large amplitudes

in the foreground region, and are close to zero in the large background region.

We note that the Tikhonov regularization method, which penalizes the l2-norm of

the fluorophore yield coefficients that we want to reconstruct, often leads to an

over-smoothed solution [104]. One way to fix the problem of over-smoothing is to

replace the quadratic penalty function with a function that increases less rapidly

for large argument values, such as the lp-norm penalty function where 1 ≤ p <

2. Unfortunately, lp (1 ≤ p < 2) norm penalty function preserves large spikes of

noise in the reconstructed image. A potential solution to this problem is to use a

28
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combined l2-lp-norm regularization. In this work, we examine the improvements in

the image resolution and contrast as a result of application of the combined l2-lp-

norm regularization in image reconstruction.

The rest of this chapter is organized as follows: Section 3.2 reviews a number

of widely used regularization techniques; Section 3.3 presents the novel combined

l2-lp-norm regularization method; Section 3.4 presents the numerical simulation;

Section 3.5 shows the real phantom experiment results; Finally, Section 3.6 reaches

the conclusion.

3.2 Linear Regularization Techniques in Literature

Recall from Chapter 2, we present a linear relationship between the measure-

ments y and the fluorophore coefficients,

y = Γ+ ϵ = Ax+ ϵ. (3.1)

The linear system in (3.1) is ill-posed, thus regularization techniques are required

to recovery x from y.

3.2.1 Truncated Singular Value Decomposition

In linear algebra, the Singular Value Decomposition (SVD) is the generaliza-

tion of the spectral factorization of an arbitrary matrix.

The forward matrix A is an M ×N matrix, and the SVD of A is given by,

A = UAΣAV
T
A, (3.2)

where UA is an M × M unitary matrix, V A is an N × N unitary matrix, the

superscript T denotes the conjugate transpose, the matrix ΣA is anM×N diagonal

matrix whose diagonal elements are the singular values of A,

ϱ1 ≥ ϱ2 ≥ · · ·ϱM ≥ 0. (3.3)

Let p, 1 ≤ p ≤ M , be the largest index for which ϱp > 0. The minimum norm
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solution of y = Ax is given as:

x = V AΣA
†UT

Ay, (3.4)

where

ΣA
† =



1/ϱ1 0 . . . 0

0 1/ϱ2

. . .
... 1/ϱp

...

0

0 . . . 0


∈ RN×M . (3.5)

In practice, we have y ≈ Ax, and the forward matrix A is ill-posed, with

its smallest positive singular values very close to zero. Thus the minimum norm

solution is very sensitive to measurement errors in the vector y, and we often have

to choose a truncation parameter k ≤ p. We refer to the discrepancy principle

to choose k, which states that the approximate solution can not yield a smaller

residual error than the measurement noise level, since otherwise the solution would

fit to the noise. The measurement vector y is a noisy approximation of the noiseless

measurement vector Γ, and the measurement noise level is given by:

∥y − Γ∥2 = ∥y −Ax∥2 = ∥ϵ∥2. (3.6)

From the discrepancy principle, we choose the truncation parameter k to be the

largest index that satisfies:

∥y −Axk∥22 ≤ ∥ϵ∥22 =
N∑
i=1

σ2
i , (3.7)

where xk is the solution when the truncation parameter is k.
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3.2.2 Conjugate Gradient Method

CG is an iterative solver of large linear equation systems [38, 105]. CG works

well with sparse systems that are too large to be handled by matrix inversion meth-

ods such as Cholesky decomposition. It is guaranteed to find a solution if the forward

matrix A is symmetric and positive definite. Thus, we first multiply both sides of

(3.1) by AT :

ATy = ATAx+ATϵ, (3.8)

using notation y′ to denote ATy, A′ to denote ATA, and ϵ′ to denote ATϵ, we

rewrite (3.8) as follows:

y′ = A′x+ ϵ′, (3.9)

where A′ is now a symmetric and positive definite N ×N matrix.

The linearly independent vectors s1, ..., sk are said to be A′-conjugate, if

< si, sj >A= sTi A
′sj = 0, for i ̸= j. (3.10)

In other words, the vectors si, i = 1, 2, ..., k, are orthogonal to each other with

respect to the inner product. Roughly, the idea of CG is to produce a sequence of

approximate solutions as linear combinations of the vectors s1, ..., sk.

If we have an approximate solution xk which is a linear combination of s1, s2, ..., sk−1,

xk =
k−1∑
i=1

αisi, (3.11)

where αi is the coefficient of si. The residual after the kth iteration is given by

ek = y
′ −A′xk, (3.12)

where

ek ⊥ span{s1, ..., sk−1}. (3.13)

We choose the next search direction sk to be A′-conjugate with the previous ones,

sk = ek + βk−1sk−1, (3.14)
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where βk−1 = ∥rk∥2
∥rk−1∥2

. Hence, given a sequence {sk} of directions, we produce a

sequence xk of the approximate solutions by setting

xk+1 = xk + αksk, αk =
sTk ek
sTkA

′sk
, ek = ek−1 − αk−1A

′sk−1, (3.15)

repeat this process until convergence.

From the discrepancy principle, the iterations are terminated as soon as the

residual error is equal to or smaller than the measurement noise level.

The Pseudocode for Conjugate Gradient method is given in Algorithm 1:

Algorithm 1 Conjugate Gradient Method

input: A′, y′;
output: x̂
Pick x1. Set k = 1, e1 = y

′ −A′x1,s1 = e1;
Repeat until convergence:

αk =∥ ek ∥22 /sTkA′sk;
xk+1 = xk − αksk;
ek+1 = ek − αkA

′sk;
βk =∥ ek+1 ∥22 / ∥ ek ∥22;
sk+1 = ek+1 + βksk;
k ← k + 1

end
x̂ = xk;

3.2.3 Kaczmarz Iteration Method

The Kaczmarz iteration method is also known as the algebraic reconstruction

technique (ART). The idea in the Kaczmarz iteration method is to successively

project an estimated solution onto subspaces defined by the rows of the forward

matrix A.

Let A be partitioned as follows:

A =


A1

...

Al

 ∈ RM×N , Aj ∈ Rkj×N , (3.16)
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where Aj is of rank kj, and k1 + k2 + ...+ kl =M . We consider the systems:

Ajx = yj, 1 ≤ j ≤ l, (3.17)

where yj ∈ Rkj . Let Xj denote the solution space of (3.17):

Xj = {x ∈ Rn|Ajx = yj}, (3.18)

and let Pj : RN → Xj denote the orthogonal projection of an arbitrary vector

s ∈ RN onto Xj,

Pjs = s+A
T
j (AjA

T
j )

−1(yj −Ajs). (3.19)

We further define the sequential projection:

P = PlPl−1 . . . P2P1. (3.20)

Let xk be the solution in the kth iteration, the Kaczmarz sequence {xk} is defined
recursively as

xk+1 = Pxk, x0 = 0. (3.21)

where xk converges to the minimum norm solution of the equation y = Ax.

In practice, we have y = Ax+ε ≈ Ax. From the discrepancy principle, the it-

erations are terminated when the residual error ∥y−Ax∥2 reaches the measurement

noise level ∥ϵ∥2.
The Pseudocode of Kaczmarz iteration is given in Algorithm 2:

3.2.4 Tikhonov Regularization Method

When solving for the fluorophore yield coefficient vector x, problems occur

when the singular values of the matrix A are very close to zero, causing the norm of

the approximate solution to go to infinity. The idea in the Tikhonov regularization

scheme is to control simultaneously the square residue error ∥y − Ax∥22 and the

l2-norm of the approximate solution ∥x∥22, which seeks a minimizer of the function,

J(x) = ∥y −Ax∥22 + λ∥x∥22, (3.22)
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Algorithm 2 Kaczmarz Iteration

input: A′, y′;
output: x̂
Set k = 0, x0 = 0;
Repeat until convergence:

z0 = xk;
for j = 1: M repeat
zj = zj−1 + (1/ ∥ Aj ∥22)(yj −AT

j zj−1)Aj;
end
xk+1 = zM ;
k ← k + 1;

end
x̂ = xk;

where the parameter λ > 0 is called the regularization parameter. A unique analyt-

ical solution of (3.22) is given by:

xλ = arg min
x

J(x) = (ATA+ λI)−1ATy. (3.23)

We define the l2-norm of the residual error as follows:

f(λ) = ∥y −Axλ∥22, (3.24)

where f(λ) is a strictly increasing function in λ. The discrepancy principle states

that the residual error should not be smaller than the measurement noise level, thus

we choose the regularization parameter δ when the residual error equals to the noise

level,

f(λ) = ∥y −Axλ∥22 = ∥ϵ∥22. (3.25)

3.2.5 The Lp-Norm (1 ≤ p < 2) Regularization

In practice, the Tikhonov regularization often tends to produce an over-smoothed

solution, which is incapable of recovering discontinuities in the presence of noise.

One scheme to address the problem of over-smoothing is to replace the quadratic

penalty function in (3.22) with a non-quadratic function that increases less rapidly

for sufficiently large arguments, such as the lp-norm (1 ≤ p < 2) penalty function

λp∥x∥p, (1 ≤ p < 2).
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Figure 3.1: A comparison of the cost functions of the Tikhonov regular-
ization and lp-norm regularization.

Let

Rp(x) = λlp∥x∥pp =
N∑
i=1

rp(xi) =
N∑
i=1

λlp |xi|p (3.26)

denotes the lp (1 ≤ p < 2) norm penalty function with the regularization parameter

λlp , and rp(xi) = λlp |xi|p is the cost function for the ith fluorophore yield coefficient.

Let

R2(x) = λl2∥x∥22 =
N∑
i=1

r2(xi) =
N∑
i=1

λl2 |xi|2 (3.27)

denotes the Tikhonov penalty function with the regularization parameter λl2 , and

r2(xi) = λl2 |xi|2 is the cost function for the ith fluorophore yield coefficient.

When |xi| < (
λlp

λl2
)
p−2

, we have rp(xi) > r2(xi) (1 ≤ p < 2), thus for small

arguments in the vector x, lp-norm regularization imposes more penalty than the

Tikhonov regularization. On the other hand, when |xi| ≥ (
λlp

λl2
)
p−2

, we have rp(xi) ≤
r2(xi) (1 ≤ p < 2). Thus, for large arguments in the vector x, lp-norm regularization

imposes less penalty than the the Tikhonov regularization. In addition, when p→ 1,

the lp-norm regularization leads to a sparse solution [106]. The solution can be

obtained from Iterative Ridge Regression [107]. A comparison of the Tikhonov and

the lp-norm penalty functions is shown in Figure 3.1, where λl2 = λl1.5 = λl1 = 1. It
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is shown that for |x| < 1 , r2(x) < r1.5(x) < r1(x), and for |x| ≥ 1, r1(x) ≤ r1.5(x) ≤
r2(x).

In the FDOT inverse problem, the fluorophore is often concentrated within a

small foreground region, where the fluorophore yield coefficients have large ampli-

tudes, while in the large background region, the fluorophore yield coefficients are

close to zero. In this case, the fluorophore yield coefficients that we want to recon-

struct are sparse in the imaging domain. Therefore, the lp-norm regularization is

a natural choice for the FDOT inverse problem. Compared to the Tikhonov reg-

ularization, the lp-norm regularization suppresses small values in the fluorophore

yield coefficients due to the background noise, and preserves large values due to the

fluorophore concentration.

3.3 The Combined L2-Lp-Norm Regularization

3.3.1 A Priori Information in FDOT

In FDOT, the use of a priori information improves the FDOT reconstruction

both visually and quantitatively [20, 108–116]. The most commonly used a priori

information is the anatomical structure information obtained from another imaging

modality, such as X-ray CT [108, 109], MRI [20, 110, 111] and others [112, 113].

These multi-modality developments are motivated by the fact that the contrast

from high resolution anatomical imaging modalities correlate well with the optical

properties [20,108].

There are a number of approaches to incorporate structural a priori informa-

tion to FDOT image reconstruction. The most straightforward one is to assume that

the perturbations in optical properties are present only in small regions of interest

(ROI) which can be determined by an anatomical image [114, 115]. A second ap-

proach involves segmenting the whole imaging domain into different types of regions

according to anatomical a priori information and assuming that each region has ho-

mogeneous optical properties [116]. Both methods rely on accurate co-registration

of the optical and anatomical images, and thus, are referred to as “hard prior”.

In practice, it is possible that the anatomical a priori information does not

correlate well with the optical properties. As a result, the “hard prior” approach
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can lead to erroneous and strongly biased images. As an alternative, “soft prior”

methods are proposed to represent optical-anatomy correlation, where the anatom-

ical a priori information usually interpreted as coefficients in the regularization

term [117–119]. However, although “soft prior” approach was proposed to represent

optical-anatomy correlation, where the anatomical a priori information usually in-

cluded as parameters in the regularization term [117–119]. Compared with “hard

prior” approach, “soft prior” approach introduces some flexibilities in dealing with

the correlation between anatomical prior and optical properties.

In this section, we take an alternative approach in incorporating the prior

information. Instead of characterizing the foreground region of fluorophore in the

imaging domain, we use a quantitative range of the amplitudes of fluorophore coeffi-

cients in the foreground region is used as a priori information. We design the regu-

larization term to incorporate the estimated amplitudes of fluorophore coefficients.

The range of fluorophore coefficients can be simply obtained by first reconstructing

the fluorophore yield using the Tikhonov regularization. This specific a prior infor-

mation is able to quantitatively improve the FDOT reconstruction without any bias

towards anatomical structure information. The detailed methods are described in

the following subsection.

3.3.2 The Combined L2-lp-Norm Regularization with Specific A Priori

Information

The lp-norm regularization tends to preserve the fluorophore yield coefficients

of large amplitudes, however, it also produces large spikes due to noise or the ill-

conditioning of the forward matrix. Suppose we know a prior that the ampli-

tudes of the real fluorophore coefficients in the foreground region are in the range

[α, β]. Thus if the reconstructed fluorophore yield coefficient at the ith voxel is

too large, i.e., xi > xβ, it is probably due to the noise in the measurement or the

ill-conditioning of the forward matrix A. The drawback of the lp-norm regulariza-

tion is that it is less effective in smoothing out such large spikes compared to the

Tikhonov regularization.

We propose a penalty function combining the lp and l2-norm regularization,
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Figure 3.2: A comparison of the cost functions of the Tikhonov regular-
ization and the combined l2-lp-norm (p = 1) regularization.

which imposes small penalty when xi is within the range [α, β], and large penalty

when xi is out of [α, β], compared to the Tikhonov regularization. Let Rcom(x)

denote the combined l2-lp-norm penalty function:

Rcom(x) =
N∑
i=1

rcom(xi), (3.28)

where rcom(xi) is the cost function for the ith fluorophore yield coefficient. rcom(xi)

has the following properties:

1. rcom(xi) is continuous and differentiable, ∀xi ∈ R.

2. When |xi| ≤ α, rcom(xi) ≥ r2(xi).

3. When α < |xi| < β, rcom(xi) < r2(xi).

4. When |xi| ≥ β, rcom(xi) ≥ r2(xi).
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The cost function is given as follows:

rcom(x) =


c1x

2, |x| ≤ κ1;

c2|x|p + c3, κ1 ≤ |x| ≤ κ2;

c4x
2 + c5|x|p + c6, |x| > κ2.

(3.29)

where κ1 and κ2 are two constants satisfying 0 < κ1 < α < κ2 < β. (A.1) could

satisfy all the four properties if the coefficients c1, c2, c3, c4, c5, c6 are chosen as

follows:

c1 =
pα2κp−2

1

2αp + (p− 2)κp1
, (3.30)

c2 =
2α2

2αp + (p− 2)κp1
, (3.31)

c3 =
(p− 2)α2κp1

2αp + (p− 2)κp1
, (3.32)

c4 =
pκp−1

2 (β2 − c2βp − c3)
pκp−1

2 β2 + (2− p)κp+1
2 − 2κ2βp

, (3.33)

c5 = c2 −
2κ2−p

2 c4
p

, (3.34)

c6 = β2 − β2c4 − βpc5. (3.35)

The detailed calculation of the coefficients in the cost function is given in the Ap-

pendix A. Since R(x) is continuous and differentiable, the solution can be obtained

by standard gradient based optimization techniques, such as generalized conjugate

gradient or Quasi-Newton method [44,120]. Figure 3.2 shows a comparison of rcom(x)

with the l2-norm constraint, when p = 1, κ1 = 0.1, α = 1, κ2 = 1.5, β = 2. It’s clear

that for |x| ≤ α or |x| ≥ β, rcom(xi) ≥ r2(xi), else rcom(xi) < r2(xi).

3.4 Numerical Simulations

In this section, numerical simulations results are presented to compare the

performances of different regularization techniques for FDOT inverse problem. The

regularization techniques we used here include: SVD, CG, ART, the Tikhonov reg-

ularization, the lp-norm regularization (p = 1 and p = 1.2) and the combined
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(a) Single heterogeneity

(b) Double heterogeneity

Figure 3.3: Digital phantom simulation setup.

l2 − l1-norm regularization. Both visual images and quantitative measurements are

used to compare the reconstruction results of different regularization techniques.

3.4.1 Simulation Setup

The simulated imaging domain is a 6 cm × 6 cm × 6 cm cubic region with

25 sources (marked as circles) and 25 detectors (marked as squares) uniformly dis-

tributed on the top and bottom surfaces, respectively, as shown in Figure 3.3. The

spacing between adjacent sources (detectors) is 1 cm. We first reconstructed the flu-

orophore concentration of the phantom with single heterogeneity, as shown in Figure

3.3(a). The fluorophore heterogeneity has 3 different radii, r = 0.25, 0.5, 0.75 cm,
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respectively. Next, we reconstructed the fluorophore concentration of the phantom

with two heterogeneities, both have radius r = 0.5 cm, and the distances between

the centers of the heterogeneity are d = 1.0, 1.5, 2.0 cm respectively.

We assume homogeneous diffusion coefficient and endogenous absorption co-

efficient over the imaging domain, µ′
s,x = µ′

s,m = 10 cm−1 (D = 1/3(µa + µ′
s)),

and µae = 0.05 cm−1; the fluorophore absorption coefficient inside the spheres are

µaf = 0.005 cm−1. We define the signal-to-noise ratio (SNR) as follows:

SNR = 20 log10
∥Γ∥2
∥ϵ∥2

. (3.36)

Four different noise levels were added to the measurement, with SNR= 20, 30, 40, 50

dB respectively.

3.4.2 Singular Value Spectrum of the Forward Matrix
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Figure 3.4: Singular value spectrum of the forward matrix.

We calculated the forward matrix A using the finite element method men-

tioned in Chapter 2. Figure 3.4 shows the singular value spectrum of the forward

matrix A in the digital phantom simulation. The forward matrix is ill-posed with

a large range of singular values very close to 0, which indicates the necessity of

regularization techniques for the reconstruction.
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3.4.3 Visual Reconstruction Results

3.4.3.1 Phantom with Single Heterogeneity

(a) Cross sectional plane at z = 0 (b) 3D surface of the heterogeneity

Figure 3.5: Fluorophore configuration of the Phantom with single het-
erogeneity of radius 0.5 cm.

In this section, we show some examples of the visual reconstruction results

using different regularization techniques. Figure 3.5 shows the true fluorophore

configuration of the phantom with one heterogeneity of 0.5 cm radius. Figure 3.5(a)

shows a 2D cross-sectional image of the phantom at the center (z = 0) plane, and

Figure 3.5(b) shows the surface of the spherical heterogeneity in 3D.

Figure 3.6-3.12 show the reconstructed images of the phantom with 50 dB noise

using different regularization techniques mentioned above respectively. From all of

the reconstructed images using different regularization techniques, we were able to

detect a single heterogeneity at the center of the phantom. However, compared with

the true fluorophore configuration in Figure 3.5, sizes of the reconstructed spherical

heterogeneities from TSVD, CG, ART and the Tikhonov regularization are over-

estimated, while the amplitude of the fluorophore coefficients are underestimated

as shown in Figure 3.6-3.9. These results are due to the over-smoothing effect in

the regularizations. On the other side, the size of the reconstructed spherical het-

erogeneity by the lp (p = 1 and p = 1.2) norm regularization is underestimated

and the amplitudes of the fluorophore coefficients at some voxels are overestimated.

Because the lp (p = 1 and p = 1.2) norm regularization tend to preserve large values

in the solution and smooth out small values, the resultant solution has only a few

fluorophore yield coefficients above 50% of the maximum amplitude, as shown in
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Figure 3.10 and Figure 3.11. Finally, the size of the reconstructed fluorophore het-

erogeneity by the combined l2-lp-norm regularization look closest to the true size.

There is an overestimation of the fluorophore yield coefficients in some voxels, how-

ever, the overestimation is small compared with the lp (p = 1 and p = 1.2) norm

regularization, as shown in Figure 3.12.
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Figure 3.6: The SVD reconstruction results (r = 0.5 cm, 50 dB additive
noise) of (a) cross sectional plane at z = 0; (b) 3D iso-surface
at 50% of the maximum amplitude in the reconstruction.
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Figure 3.7: The CG reconstruction results (r = 0.5 cm, 50 dB additive
noise) of (a) cross sectional plane at z = 0; (b) 3D iso-surface
at 50% of the maximum amplitude in the reconstruction.

3.4.3.2 Phantom with Two Heterogeneities

Next, we reconstructed the fluorophore yield coefficients in the second-type

phantoms which have two spherical heterogeneities each of radius 0.5 cm. Figure

3.13 shows the true fluorophore configuration of the phantom with the centers of the
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Figure 3.8: The ART reconstruction results (r = 0.5 cm, 50 dB additive
noise) of (a) cross sectional plane at z = 0; (b) 3D iso-surface
at 50% of the maximum amplitude in the reconstruction.
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Figure 3.9: The Tikhonov reconstruction results (r = 0.5 cm, 50 dB ad-
ditive noise) of (a) cross sectional plane at z = 0; (b) 3D
iso-surface at 50% of the maximum amplitude in the recon-
struction.

two spherical heterogeneities 2 cm apart. Figure 3.13(a) shows a 2D cross-sectional

image of the phantom at z = 0 plane, and Figure 3.13(b) shows the surface of the

spherical heterogeneity in 3D.

Figure 3.14-3.20 show the reconstructed images of the phantom with 50 dB ad-

ditive noise using different regularization techniques, respectively. We noticed that

the SVD reconstruction in Figure 3.14 results in an over-smoothed image, where the

two heterogeneities are merged together and can hardly be identified clearly. In the

ART reconstruction, the two heterogeneities are merged, but are still identifiable,

as shown in Figure 3.16. In the reconstruction results of CG and the Tikhonov

regularization, the two heterogeneities are separated and can be identified as shown
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Figure 3.10: The l1-norm reconstruction results (r = 0.5 cm, 50 dB ad-
ditive noise) of (a) cross sectional plane at z = 0; (b) 3D
iso-surface at 50% of the maximum amplitude in the recon-
struction.
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Figure 3.11: The lp-norm (p = 1.2) reconstruction results (r = 0.5 cm,
50 dB additive noise) of (a) cross sectional plane at z = 0;
(b) 3D iso-surface at 50% of the maximum amplitude in the
reconstruction.

in Figure 3.15 and Figure 3.17. However, the images look over-smoothing, where

the sizes of the heterogeneities look overestimated, and the amplitudes of the re-

constructed fluorophore yield coefficients are underestimated. In the lp (p = 1 and

p = 1.2) norm reconstruction, the sizes of the reconstructed heterogeneities look

smaller than the true size, and the fluorophore coefficients at some voxels are over-

estimated. Compared with the true fluorophore yield map shown in Figure 3.13, we

noticed that the reconstruction results by the combined l2-lp-norm regularization

best approximate the true fluorophore yield map, in the sense that the two het-

erogeneities are clearly separated, the sizes and the amplitudes of the fluorophore
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Figure 3.12: The combined l2-lp-norm (p = 1) reconstruction results (r =
0.5 cm, 50 dB additive noise) of (a) cross sectional plane at
z = 0; (b) 3D iso-surface at 50% of the maximum amplitude
in the reconstruction.

(a) Cross sectional plane at z = 0 (b) 3D surface of the heterogeneity

Figure 3.13: Fluorophore configuration of phantom with two hetero-
geneities of radius 0.5 cm (2 cm apart in the center).

heterogeneities are close to the true case.

3.4.4 Quantitative Performance Measurements

In this section, we used several quantitative measurements to evaluate different

regularization techniques.

We first evaluated the mean square error (MSE) between the real fluorophore

yield and the reconstructed image over the entire image domain,

MSE =
∥xtrue − xrecon∥2

# of voxels
. (3.37)

Figure 3.21 shows the MSE versus SNR for all the six different phantom
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Figure 3.14: The SVD reconstruction results (two heterogeneities, r = 0.5
cm, d = 2 cm, 50 dB additive noise) of (a) cross sectional
plane at z = 0; (b) 3D iso-surface at 50% of the maximum
amplitude in the reconstruction.

2

4

6

8

10

12

14

16

246810121416

z= 0

y

x

−4

−2

0

2

4

6

8

10

x 10
−5

(a) (b)

Figure 3.15: The CG reconstruction results (two heterogeneities, r = 0.5
cm, d = 2 cm, 50 dB additive noise) of (a) cross sectional
plane at z = 0; (b) 3D iso-surface at 50% of the maximum
amplitude in the reconstruction.

configurations. The MSE in ART is the largest in all of the six phantoms when

SNR<40dB, which indicates that ART reconstruction is sensitive to the noise.

The second performance measure is the contrast-to-object noise ratio (CONR),

defined as the ratio of the mean value of the image in the true fluorophore region to

the mean image standard deviation in the same region [109]. The true fluorophore

yield map is piece wise constant, where the standard deviation in the foreground

region is close to zero, thus large CONR is expected. Figure 3.22 shows the CONR

versus SNR for all of the six phantoms we tested respectively. The Tikhonov reg-

ularization and the TSVD have the largest CONR, which indicates that the recon-
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Figure 3.16: The ART reconstruction results (two heterogeneities, r = 0.5
cm, d = 2 cm, 50 dB additive noise) of (a) cross sectional
plane at z = 0; (b) 3D iso-surface at 50% of the maximum
amplitude in the reconstruction.
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Figure 3.17: The Tikhonov reconstruction results (two heterogeneities,
r = 0.5 cm, d = 2 cm, 50 dB additive noise) of (a) cross
sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction.

structed images are smooth in the foreground region. On the other side, the lp-norm

(p = 1 and p = 1.2) regularization has small CONR, which indicates large standard

deviations in the foreground region. The reconstructed images by the combined

l2-lp-norm regularization, ART and CG have much larger CONR than the lp-norm

(p = 1 and p = 1.2) regularization, but are less smooth compared with the Tikhonov

regularization and TSVD.

The third performance measure is the contrast-to-background noise ratio (CBNR),

defined as the ratio of the mean value of the image in the true fluorophore region to

the mean image standard deviation in the background region [109]. The true fluo-
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Figure 3.18: The l1-norm reconstruction results (two heterogeneities, r =
0.5 cm, d = 2 cm, 50 dB additive noise) of (a) cross sectional
plane at z = 0; (b) 3D iso-surface at 50% of the maximum
amplitude in the reconstruction.
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Figure 3.19: The lp-norm (p = 1.2) reconstruction results (two hetero-
geneities, r = 0.5 cm, d = 2 cm, 50 dB additive noise) of (a)
cross sectional plane at z = 0; (b) 3D iso-surface at 50% of
the maximum amplitude in the reconstruction.

rophore yield map has large mean value in the foreground region, while the standard

deviation in the background is zero, thus will have large CBNR. Generally speaking,

the larger CBNR indicates better fluorophore contrast between the foreground and

background. Figure 3.23 shows the CBNR versus SNR for all the six phantoms we

tested respectively. The lp-norm (p = 1 and p = 1.2) and the combined l2-lp-norm

regularization have higher CBNR than other regularization method. Specifically,

at high SNR level, the l1-norm regularization has the largest CBNR value, and the

combined l2-lp-norm regularization is suboptimal. This is because the reconstructed

image by the l1-norm regularization tends to preserve large spikes in the recon-
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Figure 3.20: The combined l2-lp-norm (p = 1) reconstruction results (two
heterogeneities, r = 0.5 cm, d = 2 cm, 50 dB additive noise)
of (a) cross sectional plane at z = 0; (b) 3D iso-surface at
50% of the maximum amplitude in the reconstruction.

struction, which directly increases the CBNR. However, as the SNR level decreases,

the combine l2-lp-norm regularization has higher CBNR than the l1-norm regular-

ization, which indicates that the combined l2-lp has lower background standard

deviation compared with the l1-norm regularization. We noticed that although the

Tikhonov regularization and TSVD have the largest CONR, they have rather poor

fluorophore contrast (much smaller CBNR) compared with the combined l2-lp-norm

regularization.

The fourth performance measure we used is the center error (CE), which is

defined as the distance between the center of the true fluorophore concentration

and that of the reconstructed fluorophore. We calculated the CE for the phantom

configurations with a single heterogeneity. To find the center of the reconstructed

fluorophore map, we first found the voxel of the maximum amplitude and classified

it as the heterogeneity. Next, we iteratively increased the heterogeneity size by

including the neighboring voxels which have amplitudes above 50% of the maximum

amplitude value. Once we had classified all the heterogeneity voxels, we computed

the centroid as the weighted average of the position of the object voxels, and used the

amplitude of these voxels as the weights. Figure 3.24 shows the CE the reconstructed

images. As the size of the heterogeneity increases, the overall level of CE also

increases. In addition, we noticed that the CE for ART is large at low SNR level,

which indicates that ART is sensitive to the increasing noise. This result is consistent
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with the result in the MSE measurement.

The last performance measure is to evaluate the spacial resolution (SR) when

multiple heterogeneities are presented in the imaging domain. From the visual

results, we classified the reconstructed images into 4 cases:

Case A. The two heterogeneities are clearly separated, such as shown in Fig. 3.25(a).

Case B. The two heterogeneities are not well-separated but still differentiable as shown

in Figure 3.25(b).

Case C. The two heterogeneities are well-separated and can be easily identified, but ar-

tifacts in the form of small heterogeneities appear in the reconstructed images

as shown in 3.25(c).

Case D. The two heterogeneities cannot be detected because, either (i) the two hetero-

geneities are totally merged together as shown in Figure 3.25(d); or (ii) more

than two smaller sized heterogeneities appear as shown in Figure 3.25(e).

The classification of the reconstruction results of Phantom 4-6 using different reg-

ularization techniques are shown in Table 3.1-3.3 respectively, each reconstruction

at different noise level is classified as Case A, B, C or D. We noticed that the lp

(p = 1.2) norm regularization and the combine l2-lp-norm regularization give the

best resolution of the object. The l1-norm regularization is likely to produce a num-

ber of small heterogeneities at low SNR level, which is due to the large noise in the

reconstruction. The reconstruction images by TSVD CG, ART and the Tikhonov

regularization are likely to show two large heterogeneities merged together, which is

due to the over-smoothing effect.

Table 3.1: Spatial resolution of the reconstructed images, r = 0.5 cm,
d = 1.0 cm.

SNR-Method TSVD CG ART Tikhonov l1 l1.2 Combined
50 D D D D C C B
40 D D D D D D D
30 D D D D D D D
20 D D D D D D D
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Table 3.2: Spatial resolution of the reconstructed images, r = 0.5 cm,
d = 1.5 cm.

SNR-Method TSVD CG ART Tikhonov l1 l1.2 Combined
50 D B D B C A A
40 D B D B C A A
30 D D D D D C C
20 D D D D D D D

Table 3.3: Spatial resolution of the reconstructed images, r = 0.5 cm,
d = 2.0 cm.

SNR-Method TSVD CG ART Tikhonov l1 l1.2 Combined
50 D A B A A A A
40 D B B B C A A
30 D D D D D C C
20 D D D D D D D

3.5 Silicon Phantom Experiment

In this section, we show the 3D reconstruction results of a silicon phantom,

which has a cylindrical hole in the center filled with a mixture of intralipid, ink

and Cy7. The imaging domain is approximated as a 2 cm×2 cm×2 cm rectangular

region, and the diameter of the hole in the center of the phantom is approximately

3mm, as shown in Figure 3.26. The optical property for the phantom is : µa = 0.2

cm−1 and µ′
s = 12 cm−1 (D = 1/3(µa + µ′

s)). The concentration of Cy7 inside the

cylindrical hole is 1µ M and 0 outside the hole. We use 48 sources and 12 detectors

on the top and bottom of the phantom respectively.

Figure 3.27-3.33 show the reconstruction results using different regularization

techniques respectively. Compared with Figure 3.26, the reconstruction results by

TSVD, CG, ART and the Tikhonov regularization show over-smoothed solutions in

Figure 3.27-3.30, that the reconstructed tubes are much larger than that in Figure

3.26. While the reconstructed fluorophore tube by the l1-norm regularization look

small in size, as shown in Figure 3.31. The size of the reconstructed fluorophore tube

by the l1.2-norm regularization is slight larger than that of the l1-norm regulariza-

tion. The combined l2-lp-norm regularization produces less over-smoothed images

compared with TSVD, CG, ART and the Tikhonov regularization, and the size of
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the reconstructed fluorophore tube looks slightly larger than the true size, as shown

in Figure 3.33.

The CONR and CBNR for different regularization methods are given in Table

3.4. The combined l2-lp-norm regularization has the largest CBNR, which indicates

that it produces the highest image contrast. We notice that the lp-norm (p = 1 and

p = 1.2) regularization also have large CBNR values, but they have the smallest

CONR as well, which indicates less smoothness in the foreground region. The TSVD

and the Tikhonov regularization produce smooth images (the largest CONR) in the

expense of low image contrast (the smallest CBNR). We notice that although the

combined l2-lp-norm regularization have slight smaller CONR than the TSVD and

the Tikhonov regularization, it gives much larger CBNR. This result is consistent

with the results from digital phantom simulation in Section 3.4.

Table 3.4: The CONR and CBNR for different regularization methods.

Method TSVD CG ART Tikhonov l1 l1.2 Combined
CONR 4.43 3.35 3.26 4.03 1.08 1.39 3.97
CBNR 4.77 4.65 5.07 6.79 7.98 7.93 8.21

3.6 Conclusion

In this chapter, we proposed a combined l2-lp-norm regularization method to

reconstruct the fluorophore yield in the FDOT inverse problem. Different from

the l2 norm regularization or the l1-norm regularization, the proposed method is

able to preserve the fluorophore yield coefficients that have large amplitudes in the

foreground region, while smooth out large spikes due to the measurement noise

or the ill-conditioning of the forward matrix. We tested the combined l2-lp-norm

regularization using both synthetic data generated by 3D numerical simulation and

real silicon phantom experiment. We also compared the proposed regularization

method with other commonly used regularization techniques, including TSVD, CG,

the Kaczmarz iteration method, the Tikhonov regularization and the lp norm (p = 1

and p = 1.2) regularization. A number of quantitative measurements were compared

for different regularization techniques.
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We showed that the proposed method gives the best estimate to the size of the

fluorophore heterogeneity and provides the highest visual resolution. It also has low

errors in all of the quantitative error measurements, provides high fluorophore con-

trast between the foreground and background region, and preserves the smoothness

of the reconstructed image.
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(a) Single heterogeneity, r = 0.25 cm (b) Single heterogeneity, r = 0.5 cm

(c) Single heterogeneity, r = 0.75 cm (d) Double heterogeneities, r = 0.5 cm, d = 1.0
cm

(e) Double heterogeneities, r = 0.5 cm, d = 1.5
cm

(f) Double heterogeneities, r = 0.5 cm, d = 2.0
cm

Figure 3.21: MSE-SNR plot of six different phantom configurations.
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(a) Single heterogeneity, r = 0.25 cm
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(b) Single heterogeneity, r = 0.5 cm
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(c) Single heterogeneity, r = 0.75cm
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(d) Double heterogeneities, r = 0.5 cm, d = 1.0
cm
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(e) Double heterogeneities, r = 0.5 cm, d = 1.5
cm
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(f) Double heterogeneities, r = 0.5 cm, d = 2.0
cm

Figure 3.22: CONR-SNR plot of six different phantom configurations.
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(a) Single heterogeneity, r = 0.25 cm
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(b) Single heterogeneity, r = 0.5 cm
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(c) Single heterogeneity, r = 0.75 cm
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(d) Double heterogeneities, r = 0.5 cm, d = 1.0
cm
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(e) Double heterogeneities, r = 0.5 cm, d = 1.5
cm
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(f) Double heterogeneities, r = 0.5 cm, d = 2.0
cm

Figure 3.23: CONR-SNR plot of six different phantom 6 configurations.
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(a) Single heterogeneity, r = 0.25 cm
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(b) Single heterogeneity, r = 0.5 cm
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(c) Single heterogeneity, r = 0.75 cm

Figure 3.24: CE-SNR plot of different phantom configurations.
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(a) Case A (b) Case B (c) Case C

(d) Case D (i) (e) Case D (ii)

Figure 3.25: Examples of the resolutions of heterogeneities.

(a) (b)

Figure 3.26: Fluorophore configuration of the real silicon phantom: (a)
cross sectional plane at z = 0; (b) 3D surface of the hetero-
geneity.
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Figure 3.27: SVD reconstruction results of silicon phantom: (a) cross
sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction.
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Figure 3.28: CG reconstruction results of silicon phantom: (a) cross sec-
tional plane at z = 0; (b) 3D iso-surface at 50% of the maxi-
mum amplitude in the reconstruction.
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Figure 3.29: ART reconstruction results of silicon phantom: (a) cross
sectional plane at z = 0; (b) 3D iso-surface at 50% of the
maximum amplitude in the reconstruction.
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Figure 3.30: The Tikhonov reconstruction results of silicon phantom: (a)
cross sectional plane at z = 0; (b) 3D iso-surface at 50% of
the maximum amplitude in the reconstruction.
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Figure 3.31: The l1-norm reconstruction results of silicon phantom: (a)
cross sectional plane at z = 0; (b) 3D iso-surface at 50% of
the maximum amplitude in the reconstruction.
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Figure 3.32: The lp (p = 1.2) norm reconstruction results of silicon phan-
tom: (a) cross sectional plane at z = 0; (b) 3D iso-surface at
50% of the maximum amplitude in the reconstruction.
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Figure 3.33: The combined l2 − lp-norm reconstruction results of silicon
phantom: (a) cross sectional plane at z = 0; (b) 3D iso-
surface at 50% of the maximum amplitude in the reconstruc-
tion.



CHAPTER 4

SPARSE SIGNAL RECOVERY TECHNIQUES IN FDOT

RECONSTRUCTION

4.1 Introduction

In FDOT, the fluorophore concentration typically targets on a small region

of interest, e.g., tumors, rather than smoothly distributed over the whole imaging

domain [48,96,97]. As a result, the fluorophore concentration (or fluorophore yield,

which is proportional to the fluorophore concentration) to be reconstructed is of-

ten very sparse in the imaging domain. Thus, the FDOT inverse problem can be

formulated as recovering sparse signal from an under-determined linear system.

In CS framework, sparse signals, i.e., signals that have a relatively small num-

ber of non-zero entries, can be exactly recovered from limited number of measure-

ments [45]. In CS literatures, a wide range of sparsity promoting recovery tech-

niques have been developed [60–65, 67–74], which typically base on greedy algo-

rithms [60–65] or relaxation methods [67–74]. Recently, various sparsity promoting

recovery techniques in CS framework has been applied to the inverse problem of

optical tomography [48,48,95–97], and have shown promising results.

In this chapter, we address the ill-posed FDOT inverse problem by exploit-

ing the sparse nature of the fluorophore yield in the imaging domain. We review

a number of sparsity promoting recovery techniques in CS literature. We apply

various sparsity promoting recovery techniques to reconstruct the fluorophore yield

in the FDOT inverse problem. In the 3D numerical simulation and real phantom

experiment, we show that compared with the traditional Tikhonov regularization,

most sparsity promoting reconstruction techniques have better reconstruction per-

formance both visually and quantitatively. In addition, we show that in general,

relaxation techniques outperforms greedy algorithms in FDOT reconstruction.

The rest of this chapter is organized as follows: Section 4.2 describes the

sparse representation of signal; Section 4.3 introduces the sparsity constraint into

the FDOT inverse problem formulation; Section 4.4 reviews the basic incoherent

63
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sampling property in CS theory; Section 4.5 reviews various sparse signal recovery

techniques in the CS literature; In Sections 4.6 and 4.7, we present the performance

of different sparse signal recovery techniques in 3D numerical simulations and in a

real silicon phantom experiment; Section 4.8 is the discussion; Finally, Section 4.9

concludes the chapter.

4.2 Sparse Representation

The primary interest of compressive sensing is to recover sparse signals, i.e.,

a large portion of the signal is zero or negligible. Many signals are either naturally

sparse or they are sparse when they are projected onto some basis.

Let θ ∈ RK be an K dimensional signal. Let di ∈ RK , (i = 1, ..., K), be K

orthogonal basis, such that

θ =
K∑
i=1

xidi =Dx, (4.1)

where D = [d1, ...,dK ] ∈ RK×K with its columns being the basis vectors, and

x = [x1, ..., xK ]
T ∈ RK is a vector of coefficients to represent the signal θ on D. D

is often called a dictionary in CS theory since the vectors di, i = 1, ..., K are able

to represent any signal in RK by choosing appropriate coefficients.

We say that the vector x is sparse if most of the entries in x are zero or can be

neglected. Alternatively, we say that and the signal θ has a sparse representation if

x is sparse. The the number of non-zero or significant entries in x is defined as the

sparsity of x. If the sparsity of x is S (S ≪ K), x is called an S-sparse vector, i.e.,

S = ∥x∥0, (4.2)

where ∥ · ∥0 denotes the l0-norm of a vector, which counts the number of non-zero

entries. Similarly, we denote the lp-norm of a vector by ∥ · ∥p, i.e.,

∥x∥p =

(
K∑
i=1

|xi|p
) 1

p

. (4.3)
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In some cases, the signal can be sparsely represented more effectively by an

overcomplete dictionary. An overcomplete dictionary is defined asD = [d1, ...,dN ] ∈
RK×N (K < N), where the columns of D span the whole RK space. Since the

number of basis in D is larger than the dimension of the space, the basis in an

overcomplete dictionary can not be all orthogonal to each other. Any signal in RK

can be represented by a subset of the basis in D.

4.3 Signal Recovery with Sparsity Constraint

Recall from Chapter 2, recovering the sparse signal x from

Γ = Ax (4.4)

involves solving the following optimization problem,

min
x
∥x∥0 such that Γ = Ax, (4.5)

where ∥x∥0 measures the sparsity of x. In the noisy setting

y = Ax+ ϵ, (4.6)

(4.5) is replaced by

min
x
∥x∥0 such that ∥y −Ax∥2 ≤ ε. (4.7)

4.4 Incoherent Sampling

CS offers a sampling technique for sparse signals. An important concept as-

sociated with the sensing matrix A is the mutual coherence, which is defined as

follows [51,75]:

M(A) = max
p,q,p ̸=q

|aT
p aq|

∥ap∥2∥aq∥2
, (4.8)

where ap and aq are two different columns in A. Clearly, 0 ≤ M(A) ≤ 1. Note

that the mutual coherence is the largest normalized inner product of two different
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columns. We say that the two column vectors ap and aq are incoherent if they are

orthogonal or close to being orthogonal, i.e., the absolute value of their normalized

inner product is close to zero.

Mutual coherence is used as a measure of the incoherence of the columns in

the matrix A. An orthogonal matrix has mutual coherence equals to 0. On the

other hand, if two columns in A are parallel to each other, the mutual coherence is

1. In CS theory, exact reconstruction of a sparse signal generally requires that the

mutual coherence of the sensing matrix to be small, i.e., the columns of A are as

orthogonal as possible.

Suppose that x0 is a solution to (4.4), and x0 satisfies

∥x0∥0 ≤
1

2
(1 +

1

M(A)
). (4.9)

Then, x0 is necessarily the unique solution of (4.4) with smallest number of nonzero

entries [51,75]. In other words, the linear system (4.4) can mostly have one solution

whose sparsity is less than or equal to 1
2
(1 + 1

M(A)
). Mathematically, x0 is the

solution of the following optimization problem in (4.5). In practice, for the noise

measurement y, there is also a substantial body of work in CS focusing on the noisy

setting [55, 121–123]. In case ∥ϵ∥2 < ε, it has been proved that if the quantity in

(5.8) is satisfied, the difference between the solution to (4.7) and real signal to be

reconstructed is within a constant multiple of the noise level [55].

The mutual coherence ofA is determined by the two least “incoherent” columns,

which shows the worst-case analysis of the orthogonality of the columns ofA. While

it provides a strong theoretical guarantee for the unique recovery of sparse signals,

it is not a necessary condition for the sparse signal recovery. It was observed that

conditions based on some “average” measure of the orthogonality of the forward

matrix is more likely to describe the typical performance of the sparse signal recov-

ery methods in a large number of cases [52–54, 66, 77, 78, 124–126]. A number of

alternative measures to quantify the “average” coherence of a sensing matrix has

been proposed [54, 77, 78]. One of these is the cumulative coherence or the Babel
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function, which is defined as [77]

M1(k,A) = max
p

max
|Q|=k,p/∈Q

∑
q∈Q

| < ap,aq > |
∥ap∥2∥aq∥2

, (4.10)

where Q is a subset of the columns in A. It was shown that, if

M1(k,A) +M1(k + 1,A) < 1, (4.11)

then, the signal x0 with ∥x0∥0 ≤ k can be exactly recovered using greedy algorithms

or basis pursuit [77]. Note thatM1(k,A) is an monotonically non-decreasing func-

tion in k, and M1(1,A) = M(A). If M1(k,A) increase slowly, A in said to be

quasi-incoherent.

Another important concept in CS related to the average coherence is the re-

stricted isometry property (RIP) [127, 128] . A matrix A satisfies RIP of order S if

there exists a restricted isometric constant δS ∈ (0, 1), such that for every submatrix

AS which is composed of any S columns of A satisfies

(1− δS)∥x∥22 ≤ ∥ASx∥22 ≤ (1 + δS)∥x∥22, (4.12)

where x is an arbitrary S-sparse vector. If (4.12) is satisfied, any S sparse signal

can be exactly recovered from (4.5) and (4.31) (or (4.7) and (4.32) in the noisy

setting) [127, 128]. RIP focuses on every S columns of the sensing matrix, which

reflects the average incoherence of S columns inΨ. The restricted isometric constant

δS is related to the mutual coherence, which is bounded by δS ≤ (S − 1)M(A).

4.5 Sparse Signal Recovery Techniques in CS Literature

To look for sparse solutions of under-determined linear systems, commonly

used sparse signal recovery strategies are typically based on greedy search strategies

[60–65], convex relaxation [67–73], and non-convex relaxation [74]. This section

briefly reviews sparsity promoting algorithms in the literature.
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4.5.1 Greedy Algorithms

4.5.1.1 Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a heuristic greedy algorithm to find

sparse solutions [60]. For a system Γ = Ax, if A is incoherent, and x satisfies (5.8),

OMP is guaranteed to find the exact reconstruction. In the presence of small noise,

the reconstruction error is within a constant multiple of noise level [55].

OMP iteratively selects columns from A to represent the measurements in a

greedy fashion. In each iteration, the measurement y is approximated by a small

set of columns A
(j)
T , where the subscript T ⊂ {1, 2, ....N} denotes the index set of

the column indices of A, and superscript j denotes the number of iterations. Thus

OMP attempts to solve

y ≈ A(j)
T x

(j)
T . (4.13)

The coefficients x
(j)
T is given as follows:

x
(j)
T = Argmin

xT

∥y −A(j)
T xT∥2. (4.14)

Here x
(j)
T is a sub-vector of x(j) only containing indices in T . All the entries in x

(j)
T c

are zero (where T c is the complimentary set of T ). The residue is given by

r(j) = y −A(j)
T x

(j)
T . (4.15)

In the next iteration, a new column from AT c that has the largest correlation with

r(j) is added to represent the y.

i = Argmax
i

(ãT
i r̃

(j))i,

T (j+1) = T (j) ∪ i (4.16)

where ·̃i denotes the normalized vector.

In OMP, the residue r(j) is always orthogonal to A
(j)
T x

(j)
T so that no single

columns can be selected twice in subsequent iterations. The expected number of

iterations equals to the sparsity of x. If the S-sparse signal x meets the sparsity
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requirement in (5.8), the reconstructed x̂ from OMP satisfies [55]

∥x− x̂∥2 ≤
∥ϵ∥2√

1−M(1− S)
.

The primary computational burden of OMP lies in calculating the correla-

tion of the residual and the columns in A, which requires a computational time of

O(MN). Solving the coefficients xT involves solving a least square problem as in

(4.14). If A is any arbitrary matrix, the running time is O(S2M). However, when

A has low coherence or satisfies RIP, an iterative method such as conjugate gradient

(CG) reduces the computational time of solving xT to just O(SM) [120]. In case

N ≥ S2, the running time of each iteration in OMP is O(MN). To recover an

S-sparse signal, S iterations are generally needed. Thus, the total computational

bound of OMP is O(SMN).

4.5.1.2 Gradient Pursuit

The gradient pursuit (GP) is developed to approximate the OMP algorithm,

and is more computationally efficient than OMP [61]. In each iteration, the measure-

ment y is approximated by a small set of columns A
(j)
T . Same as OMP, the column

indices set T is updated by adding a new element at each iteration as in (4.16).

However, in instead of adding only one non-zero entry to x(j) at each iteration, the

GP algorithm performs a directional update at each iteration,

x
(j)
T = x

(j−1)
T + c(j)d

(j)
T , (4.17)

where c(j) is the step size, d(j) is the update direction, and d
(j)
T is a sub-vector of

d(j) containing only those entries of d(j) with indices in T . Three different ways to

estimate d(j) are proposed in [61]:

1. Gradient pursuit directly calculate the gradient of ∥y−Ax∥22 with respect to

x as the update direction,

d
(j)
T = A

(j)
T

T
(y −A(j)

T x
(j−1)
T ). (4.18)
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The calculation in (4.18) is fast and straight forward, which leads to expedited

approximation to OMP.

2. Conjugate gradient pursuit is the second directional optimization scheme [120].

The updated direction d(j) is calculated to be conjugate to all the previous

directions d(1),d(2), ...,d(j−1) with respect to the Gramm matrix (A
(j)
T

T
A

(j)
T ),

i.e.,

d(j)A
(j)
T

T
A

(j)
T d

(k) = 0, ∀ k < j. (4.19)

[61] showed that the conjugate gradient pursuit leads to a novel implemen-

tation of OMP. However, the computational complexity and storage required

are higher compared to the gradient pursuit algorithm.

3. An approximately conjugate gradient pursuit algorithm was also used to calcu-

late d
(j)
T in [61]. Instead of calculating a new update direction that is conjugate

with all the previous directions, approximated conjugate gradient pursuit cal-

culates the update direction that is conjugate with only a limited number of

previous directions. The benefit of the approximate conjugate gradient pur-

suit is that it is much easier to calculate and the memory requirements are

significantly reduced.

GP requires computation of correlation between the residual and the columns in

A, which uses a computational time of O(MN). Three directional update methods

in [61] are provided for the GP algorithm, and the computational time for calculating

the directional update by these three methods are O(S2M). In practice, the running

time of the directional update step in each iteration using conjugate gradient pursuit

is similar as that of solving the least square problem (4.14) in OMP, but the running

time of the directional update using gradient pursuit and approximately conjugate

pursuit is much faster [61]. If S2 ≤ N , the computational bound in each iteration

is O(MN).

4.5.1.3 Stagewise Orthogonal Matching Pursuit

In large underdetermined linear systems, the number of iterations required by

OMP is large. To make the recovery computationally efficient, one can select more
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than one columns in each iteration. This is the primary motivation of the stagewise

orthogonal matching pursuit (StOMP) procedure [62].

In StOMP, the initial residual r(0) = y, and the initial estimate x = 0. In each

iteration, the correlation between the columns in A and the redidual is calculated,

ci =
aT
i

∥ai∥2
r(j−1)

∥r(j−1)∥
, for i = 1, ..., N. (4.20)

If ci is larger than a threshold value t(j), then ai is selected to add to the set of

columns to present the measurement, i.e.,

Is = {i|ci > h(j)}, (4.21)

T (j) = T (j−1) ∪ Is. (4.22)

A new approximation x(j) supported in T (j) is given by

x
(j)
T = (AT

TAT )
−1AT

Ty. (4.23)

A critical parameter of StOMP is the threshold value h(j) which is calculated in each

iteration. It is given by

h(j) = c∥r(j−1)∥2/
√
M, (4.24)

where c is a constant parameter. [62] suggests that c to be between 2 and 3. The

iteration stops after a fixed number of stages. [62] proved that if A is a random

matrix with each element generated from the uniform spherical ensemble, a sparse

signal can be exactly recovered in noiseless setting, and is stable under Gaussian

noise.

in A, and solving least squares systems in (4.23). Unlike OMP, StOMP adds

more than one entries into the set T in each iteration as in (4.21)-(4.22), which

enables fast implementation. This feature makes StOMP suitable for large scale

problems. The computational bound of each iteration in StOMP is O(MN).
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4.5.1.4 Regularized Orthogonal Matching Pursuit

Regularized orthogonal matching pursuit (ROMP) is a modified extension of

OMP [63, 64]. ROMP provides a strong theoretical guarantee for sparse signal

recover if the sensing matrix A satisfies RIP. Different from OMP, ROMP requires

prior knowledge about the sparsity S of x. To deal with this problem, one can

conduct empirical studies using different sparsity levels and selects the one that

minimizes ∥y −Ax∥2.
Similar to StOMP, the correlations between the columns ofA and the redidual

are calculated as in (4.20). At each iteration, ROMP selects S columns that have the

largest correlation with the redidual, or all the columns with non-zero correlation,

whichever set is smaller. Let Is denote the selected columns, and Ir is a subset of

Is that satisfies

ci ≤ 2cj,∀ i, j ∈ I0, (4.25)

where ci and cj are as defined in (4.20). Then, choose Ir such that

Ir = Argmax
Ir

∑
Ir

c2i , i ∈ Ir. (4.26)

The set of columns selected to represent the signal is updated as follows:

T (j) = T (j−1) ∪ Ir. (4.27)

Once the columns are updated, new estimator x
(j)
T is calculated as in (4.23). ROMP

stops when the iteration number reaches the sparsity of the signal S, or the number

of entries in T (j) is larger than 2S.

When the sensing matrix A has the Restricted Isometry constant satisfying

δ4S < 0.01/
√
logS, the ROMP is guaranteed to recover the exact sparse signal if no

noise is present [63,64]. In the noisy setting, Then ROMP produces an approxima-

tion x̂ to S-sparse signal x that satisfies:

∥x− x̂∥2 ≤ 104 logS∥ϵ∥2.

Each iteration of ROMP requires calculation of the correlation between the
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residual and the columns in A, which needs running time bound of O(MN). The

selection of the index set Is can be done by sorting the value of ci in a nonincreasing

order, and selecting S biggest entries. Many sorting algorithms such as Mergesort or

Heapsort provide running times of O(N logN). Selecting a subset Ir from Is as in

(4.26) requires running time O(logS). In the next step, solving xT in (4.23) requires

O(S2M) operations in general, and O(SM) operations when A is incoherent or

satisfies RIP. ROMP terminates in at most 2S iterations. Therefore, in case M ≥
logN and N ≥ S2, the total running time of ROMP is O(SMN). This is the same

bound as that of OMP.

4.5.1.5 Acrostic Compressive Sampling Matching Pursuit

Inspired from ROMP, acrostic compressive sampling matching pursuit (CoSaMP)

is another iterative greedy algorithm which seeks a sparse solution from an under-

determined linear system [65]. CoSaMP is based on OMP. It accelerates OMP, and

therefore, it is computationally more efficient [65].

At each iteration, CoSaMP selects 2S columns that have the largest correlation

with the redidual, and the index set T (j) is updated as follows,

T (j) = support of x(j−1) ∪ Is. (4.28)

xT is estimated as

x
(j)
T = (AT

TAT )
−1AT

Ty. (4.29)

Then, only the S largest coefficients in x
(j)
T are kept and the rest of the coefficients

are pruned to zero. CoSaMP stops after a fixed number of iterations, or when the

residual or the correlation between the columns A and the residual is small enough.

If the sensing matrix A has restricted isometry constant δ2S ≤ 1, for a given

precision parameter η, the algorithm CoSaMP produces an S-sparse approximation

x̂ that satisfies [65]

∥x− x̂∥ ≤ C ·max{η, 1√
S
∥x− xS/2∥1 + ∥ϵ∥2}.

In the absence of noise, CoSaMP can recover x with an arbitrarily high precision.
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Similar as OMP, the major obstacle to fast implementation of CoSaMP comes

from calculation of the correlation between the residual and the columns in A and

the least square estimation in (4.29). The computational bound of each iteration in

CoSaMP is O(MN).

4.5.2 Convex Relaxation

The optimization problems in (4.5) and (4.7) are NP hard. Therefore, the

l0-norm constraint is often relaxed to some convex sparsity constraint f(x).

min
x

f(x) such that Γ = Ax. (4.30)

The most popular choice of f(x) is the following l1-norm constraint,

min
x
∥x∥1 such that Γ = Ax. (4.31)

The optimization problem in (4.31) is also known as the basis pursuit (BP) [67].

BP poses a convex optimization problem, and can be solved by a number of linear

programming techniques [67]. In the noisy setting, BP is reformulated as a denoising

problem as follows:

min
x
∥x∥1 such that ∥y −Ax∥2 ≤ ε. (4.32)

The solution to (4.32) differs from the true sparsest solution by at most a constant

multiple of the noise level [55]. The solution to BP is based on decomposing a

signal into an optimal superposition of elements which have the smallest l1-norm of

coefficients.

BP is closely related to least absolute shrinkage and selection operator (LASSO)

approach, which has the following form,

min ∥y −Ax∥2 such that ∥x∥1 < t, (4.33)

where t is some predetermined threshold value. Another variation of BP and LASSO

is to solve an optimization problem by trading off a quadratic error of the measure-
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ments with an l1-norm of the signal,

min
x
∥y −Ax∥22 + λ∥x∥1, (4.34)

where λ is the regularization parameter.

The convex relaxation are closely related to linear programming, and can be

solved by a number of algorithms. We briefly review some these algorithms in the

following subsections.

4.5.2.1 BP-simplex

The simple algorithm to solve BP is the BP-simplex [67]. The sensing matrix

A is assumed to be an M ×N matrix with M ≪ N . The algorithm first chooses M

linearly independent columns from A. Let T denote the index set of the M selected

columns and AT be the submatrix which consists of the M selected columns. The

initial solution is then

xT = A−1
T y. (4.35)

Next, the algorithm iteratively improves the current basis by swapping one selected

column of AT with the one outside AT so that ∥x∥1 is reduced at each step. It was

shown that there is always a swap that improves or maintains the objective value

except at the optimal solution [67].

Each iteration of BP-simplex requires computing the inverse problem (4.35).

The inversion of the M ×M matrix A costs running time of O(M3). If the columns

of A are incoherent, some iterative methods such as CG can reduce this bound

to O(M2). The number of iterations in BP-simplex is limited by the number of

columns in A.

4.5.2.2 BP-interior

The formula in (4.34) is an l1-norm regularized least squares problem which is

convex quadratic, and can be solved by standard interior point methods [67,129,130].

The implementation of interior point methods requires calculation of a lower

bound of the objective function (4.34). To do that, first a dual feasible point ν is
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introduced,

ν = 2s(Ax− y), s = min
i

λ

|2(Ax− y)i|
. (4.36)

Let z = Ax− y. The Lagrangian of (4.34) associated with the dual variable ν is

L(x,z,ν) = zTz + λ∥x∥1 + νT (Ax− y − z). (4.37)

Thus, the inferior of (4.37) is given by

inf
x,z

L(x,z,ν) = −1

4
νTν − νTy. (4.38)

infx,z L(x, z,ν) gives a lower bound of the objective function (4.37), and the dif-

ference between the primary objective function (4.34) and the lower bound is called

the duality gap, denoted by η,

η = ∥Ax− y∥22 + λ∥x∥1 − inf
x,z

L(x,z,ν). (4.39)

The optimization problem in (4.34) can be equivalently written as a quadratic op-

timization problem with inequality constraint,

min
x

∥y −Ax∥22 + λ
N∑
i=1

ui, such that − ui ≤ xi ≤ ui, i = 1, ...N, (4.40)

where ui ≥ 0 (i = 1..., N) are constraints for xi. A logarithmic barrier for the bound

constraints is defined as follows:

Ξ(x,u) = −
N∑
i=1

log(ui + xi)−
N∑
i=1

log(ui − xi). (4.41)

Ξ(x,u) approaches +∞ when |xi| approaches the bound ui. The solution of (4.40)

can be obtained by minimizing the following objective function

Φ(x,u)p = p(∥y −Ax∥22 + λ

N∑
i=1

ui) + Ξ(x,u). (4.42)

where the parameter p > 0 is a constant parameter. As p increases, the minimizer



77

of (4.42) approaches the solution of (4.40). (4.42) is a convex and differentialable

function with unique minimizer at (xp,up), which can be solved by the gradient

approach, such as Newton’s method. The algorithm seeks a sequence of minimizers

(xp,up) of increasing p value, and terminates when the duality gap in (4.39) is small

enough.

For a large scale problem, minimizing (4.42) by Newton’s method is compu-

tationally expensive. For large scale problems, interior point methods use conjugate

gradient (CG) [130], or the preconditioned conjugate gradient (PCG) methods [129]

for efficient implementation.

The computational complexity of BP-interior depends on the duality gap η.

When η is small, the minimizer of (4.42) is close to the solution of (4.40). There-

fore, the value of p in (4.42) is large, and the number of log-barrier iterations goes

up. Each log-barrier iteration seeks the minimizer of (4.42) by iterative gradient ap-

proach, such as CG. Each iteration of CG has computational complexity of O(MN).

In [129], a preconditioner was used to accelerate the convergence rate of CG and

shows a great reduction in running time for large scale problems. The empirical

complexity BP-interior using PCG iteration is O(N1.2) [129].

4.5.2.3 Iterative Shrinkage/Thresholding

The iterative shrinkage/thresholding algorithm (IST) is an iterative algorithm

that amounts to a Landweber iteration with shrinkage or thresholding at each iter-

ation [68–70].

The IST algorithm first picks a constant C > ∥A∥2, where ∥ · ∥2 denotes the

spectral norm 1, and then defines a function which depends on an auxiliary vector

u as follows:

Ξ(x,u) = C∥x− u∥22 − ∥A(x− u)∥22. (4.43)

Since C > ∥ATA∥2, Ξ(x,u) is strictly convex in x with any choice of u. Without

loss of generality, assuem ∥A∥2 < 1 and set C = 1, sinceA can always be normalized.

1The spectral norm of a matrix A is the largest singular value of A, or the square root of the
largest eigenvalue of the positive-semidefinite matrix ATA
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By adding (4.43) to (4.34), a surrogate function is defined as follows:

Φ(x,u) = ∥Ax− y∥22 + λ∥x∥1 + C∥x− u∥22 − ∥A(x− u)∥22
= ∥x∥22 − 2xT (u+ATy −ATAu) + λ∥x∥1 + ∥y∥22 + ∥u∥22
−∥Au∥22 (4.44)

Since Ξ(x,u) is strictly convex in x, Φ(x,u) is also strictly convex in x with any

u. Compared with the original objective function in (4.34), (4.44) removes the

quadratic term ∥Ax∥22 which leads to simplicity in implementation.

Φ(x,u) is differentialable at xi if xi ̸= 0, the gradient of Φ(x,u) with respect

to xi is given as

∇xi
Φ(x,u)xi = (u+ATy−ATAu)i + λ/2sign(xi), ∀ 1 ≤ i ≤ N, xi ̸= 0. (4.45)

Thus, since (4.44) is convex, the solution to (4.44) is given when the gradient of

Φ(x,u) with respect to x equals zero, and the x that minimize (4.44) is given by

xi =


(u+ATy −ATAu)i − λ/2 (u+ATy −ATAu)i > λ/2

(u+ATy −ATAu)i + λ/2 (u+ATy −ATAu)i < −λ/2
0 otherwise.

(4.46)

IST solves (4.44) iteratively, the auxiliary variable at the jth iteration u(j) is chosen

as the solution x(j−1) from the last iteration,

x(j) = Argmin
x

Φ(x,x(j−1)). (4.47)

Starting from an arbitrary u(0), the sequence x(j), j = 1, 2, ... converges to the unique

minimizer of (4.34) [69].

From (4.46), the main computation effort in each iteration of IST comes from

the the matrix-matrix multiplication ATA, and matrix-vector multiplication ATy,

which has running time of O(MN2) and O(MN), respectively. The thresholding

step uses a running time of O(N). Therefore, the overall computational bound of

each iteration in IST is O(MN2).



79

4.5.2.4 Gradient Projection for Sparse Reconstruction

Gradient projection for sparse reconstruction (GPSR) seeks a solution of (4.34)

iteratively. It projects the negative-gradient direction of the objective function onto

the solution from last iteration [71].

The GPSR approach splits the variable x into its positive and negative parts,

x = u− v, u ≥ 0, v ≥ 0. (4.48)

These relationships are satisfied by ui = (xi)+ and vi = (−xi)+ for all i = 1, 2, ..., N ,

where (·)+ denotes the positive-part operator defined as (xi)+ = max{0, xi}. Thus,
∥x∥1 can be written in the following equation,

∥x∥1 = 1Tu+ 1Tv, (4.49)

where 1 is the vector consisting of N ones. The objective function in (4.34) can be

rewritten as the following bound-constrained quadratic program (BCQP):

min
u,v

F (z) =
1

2
∥y−A(u−v)∥22+λ1Tu+λ1Tv, such that u ≥ 0,v ≥ 0. (4.50)

where z = [uT ,vT ]T .

[71] proposes two ways to update z iteratively and solve (4.50): (1) GPSR-

Basic algorithm, and (2) GPSR-BB algorithm. The first algorithm searches from

each iterate z(j) along the negative gradient

z(j+1) = (z(j) − α(j)∇F (z(j)))+. (4.51)

The (·)+ keeps the solution nonnegative. The second algorithm replaces ∇F (z(j))
in (4.51) by H−1(z(j))∇F (z(j))),

z(j+1) = (z(j) − α(j)H−1(z(j))∇F (z(j))))+, (4.52)

where H(z(j)) is an approximation to the Hessian of F (z(j)). H(z(j)) can be cal-

culated efficiently by the Barzilai and Borwein (BB) approach [131]. The solution
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x is derived directly from z.

It is not possible to accurately predict the number of GPSR-Basic and GPSR-

BB iterations required to find an approximate solution. In each iteration, the main

computational cost requires calculation of ∇F (z(j)) as in (4.51) for GPSR-Basic, or

H−1(z(j))∇F (z(j)) as in (4.52) for GPSR-BB. A number of matrix-matrix multipli-

cation and matrix-vector multiplication and are needed. The computational bound

in each iteration of GPSR is O(MN2).

4.5.2.5 Focal Underdetermined System Solver

Focal underdetermined system solver (FOCUSS) is an iterative reweighted

minimum norm algorithm [72,73] which is able to solve the l1-norm constraint opti-

mization problem. It first derives a low resolution initial estimate of the signal, then

refines the initial estimator iteratively by obtaining a reweighted minimum norm

solution.

For an underdetermined system y = Ax, the minimum norm solution, i.e.,

the solution with minimum ∥x∥2, is given by

x = AT (AAT )−1y = A†y, (4.53)

where A† = AT (AAT )−1 is the Moore-Penrose pseudoinverse.

In FOCUSS, the objective is to find a solution with minimum weighted norm

x = Argmin
x
∥W−1x∥2, such that y = Ax, (4.54)

whereW is the weight matrix. WhenW is diagonal with diagonal entries equals to

x, (4.54) is equivalent to an l1-norm constraint optimization problem. The solution

to (4.54) is given by

x =W (AW )†y. (4.55)

In basic FOCUSS, W (j) is a diagonal matrix with diagonal entries equal to the

solution from the last iteration, i.e., x(j−1). Thus, the algorithm is able to reinforce

large entries in x(j−1) in the following iteration while suppressing the small entries.

The zero entries in W (j) can be eliminated from the product AW . However, the
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matrix (AW )† might be ill-conditioned, Tikhonov regularization or singular value

decomposition might be used to calculate (4.55). In FOCUSS, an initial estimate

which is close to the final solution improves the convergence rate and the final

estimate [72,73].

The computational effort of FOCUSS involves solving a sequence of quadratic

least square problems. In each iteration, the weight matrixW can be easily derived

from the solution of the last iteration, and the computational time is O(N). The

heaviest computational burden in each iteration is calculating the pseudoinverse

in (4.55), which needs a computational time of O(M2N). Therefore, the total

computational bound in each iteration of FOCUSS is O(M2N). The number of

iterations in FOCUSS depends on the initial estimate. If the initial estimate is close

to the final solution, only a small number of iterations are needed for convergence

[73].

4.5.3 Non-convex Relaxation

Non-convex sparsity constraints are used to relax with the lp-norm, 0 ≤ p < 1,

constraint,

min
x
∥x∥p such that ∥y −Ax∥2 ≤ ε. (4.56)

In CS theory, it was shown that lp-norm, 0 ≤ p < 1, constraint optimization leads

to the exact solution. Some recent research shows that the lp-norm constraint op-

timization is able to reconstruct signal with fewer measurements compared with

l1-norm constraint optimization (4.32) [74]. The optimization problem in (4.56) can

be solved by FOCUSS in a similar fashion as described in Section 1.5.2.4, with the

diagonal entries of W (j)

w
(j)
i = |x(j−1)

i |2−p, for 1 ≤ i ≤ N, (4.57)

where x(j−1) is the solution at the j − 1th iteration. Note that with this choice of

W , the constraint term ∥W−1x∥2 is ∥x∥p.
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4.6 Numerical Simulations

This section uses numerical simulation to test the performances of various

sparse promoting reconstruction algorithms in the FDOT inverse problem. For com-

parison purpose, we also give the reconstruction results by commonly used Tikhonov

regularization. Both visual results and quantitative measurements are given to eval-

uate the performance different reconstruction algorithms.

4.6.1 Simulation Setup

Figure 4.1: Simulation setup.

The simulated imaging domain is a 6 cm × 6 cm × 6 cm cubic region, with

48 sources and 48 detectors uniformly distributed on the top and bottom surfaces,

respectively, as shown in Figure 4.1. The fluorophore is concentrated in the red

spherical region. We set the background absorption coefficient to µam = 0.05 cm−1,

and the diffusion coefficient toD(r) = 0.04 cm−1 at both the excitation and emission

wavelengths. The circular heterogeneity with radius r simulates the fluorophore

concentration with fluorophore absorption coefficient µaxf = 0.005 cm−1. In Figure

4.1(a), a single spherical heterogeneity is located at the center of the imaging domain.

In Figure 4.1(b), there are two separated spherical heterogeneities of the same sizes,

and the distance between their centers is dcm.

We discretized the imaging domain into 20×20×20 voxels. Thus, the forward

sensing matrix is 2304 by 8000. For the phantom with single heterogeneity, we
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simulated different data sets corresponding to 3 different values of the radius r :

0.5, 0.75, and 1.0 cm. For the phantom with double heterogeneities, we simulated 3

different distances d between two heterogeneities: 1.0, 1.5, and 2.0 cm.

To simulate the measurement noise, we assumed that, when a sufficiently large

number of photons are detected, the noise at each detector can be approximated by

a Gaussian random variable with its variance proportional is to the magnitude of

the detector reading. The SNR of the measurements is defined as

SNR = 20 log10
∥Γ∥2
∥ϵ∥2

. (4.58)

We simulated three sets of noise contaminated measurements with approximately

10%, 3% and 1% noise, corresponding to the SNR value of 20 dB, 30 dB and 40 dB,

respectively.

4.6.2 Imaging Reconstruction - Visual Results

Figure 4.2: The cross section of the phantom at z = 3 (middle) (r = 0.5
cm).

In this simulation, we first reconstructed the fluorophore concentration of the

phantom with single heterogeneity, as shown in Figure 4.1(a). The fluorophore

heterogeneity is set at 3 different sparsity levels corresponding to 3 different radii.

Next, we reconstructed the fluorophore concentration of the phantom with two het-

erogeneities, and simulated 3 different distance between the two heterogeneities. In
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each case, we used different sparsity promoting reconstruction methods including

both greedy algorithms and relaxation techniques. The reconstruction results of

Tikhonov regularization is also presented for comparative purpose.

Figure 4.2 shows the cross sections of the simulated phantom with a single het-

erogeneity of radius 0.5cm. The reconstruction results using different algorithms are

shown in Figure 4.3. Figure 4.3(b) shows the reconstruction result of the commonly

used Tikhonov regularization method. The result has a severe oversmoothing effect.

Figure 4.3(a)-4.3(f) are the reconstruction results by different greedy algorithms. In

all of these figures, the reconstructed fluorophore maps appear much smaller than

the original simulated phantom, and large spikes of noise are presented. In general,

the reconstruction results of greedy algorithms do not look as good as those of re-

laxation techniques as in Figure 4.3(g)-4.3(l). Because accurate reconstruction from

greedy algorithms typically requires the columns of the sensing matrix highly inco-

herent to each other. However, in FDOT imaging problem, the diffusive nature of

NIR light makes the columns of the forward matrix less incoherent. Comparatively,

although relaxation algorithms also benefit from an incoherent sensing matrix, they

work well with less incoherent matrix as well. Relaxation algorithms have more

accurately reconstructed the size and the location of the heterogeneity, and less

background noise is present.

Figure 4.4 shows the cross sections of the simulated phantom with two het-

erogeneities in the imaging domain. The diameter of each heterogeneity is 1.0cm

and the distance between the centers of the two heterogeneities is 1.5cm. Figure

4.5 demonstrates how different reconstruction algorithms can differentiate multiple

heterogeneities in the imaging domain. The reconstruction result of the commonly

used Tikhonov regularization is shown in Figure 4.5(a), where severer oversmooth-

ing makes the two heterogeneities hard to differentiate. The reconstruction results

from sparse signal recovery algorithms show two separated heterogeneities in the

reconstructed images. The reconstruction results of greedy algorithms have large

background noise in the images, as shown in Figure 4.5(b)-4.5(f). The reconstruc-

tion results of relaxation algorithms, as shown in Figure 4.5(g)-4.5(l), seem to have

better agreement with the original phantom.
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Table 4.1: NMSE of the reconstructed images (10−4) using different
sparse signal recovery techniques.

Algorithm r = 0.5 cm r = 0.75 cm r = 1.0 cm
SNR (dB) 40 30 20 40 30 20 40 30 20
Tikhonov 13.3 20.7 31.7 19.0 29.1 48.4 27.8 79.1 129
OMP 5.02 5.92 19.0 8.03 17.8 29.6 19.7 50.3 70.1
GP 6.08 8.03 15.9 5.21 15.3 33.1 13.6 36.7 68.9

StOMP 2.05 6.47 12.1 3.87 14.5 28.0 9.44 31.8 63.7
ROMP 1.66 5.85 13.2 3.68 13.0 31.6 8.01 29.0 64.2
CoSaMP 2.11 6.35 13.0 5.97 14.5 28.9 11.8 34.7 67.8

BP-simplex 2.31 4.21 10.8 6.22 8.08 20.3 7.99 30.0 49.2
BP-interior 1.56 3.03 7.05 2.44 7.13 15.3 5.03 20.8 39.1

IST 1.20 3.55 7.49 3.51 6.97 19.2 6.38 23.3 49.9
GPSR 1.29 3.28 7.07 3.41 7.13 17.1 5.51 22.2 46.6

Focuss(l1) 1.81 4.31 9.89 3.01 8.37 29.8 6.00 28.9 63.8
Focuss(lp) 1.95 3.76 11.1 4.08 7.38 22.3 4.98 27.4 59.0

4.6.3 Imaging Reconstruction - Quantitative Measurements

We measured the accuracy of the reconstructed images using the normalized

mean square error (NMSE) given by

NMSE =
∥xtrue − xrecon∥2

# of voxels
. (4.59)

We averaged the NMSE of the reconstructed images over 50 realizations of noise.

The results were tabulated in Table 4.1. We observed that all sparse promoting

algorithms has a lower NMSE compared to the Tikhonov regularization. The NMSE

increases when the radius of the heterogeneity increases. For different sparse signal

recovery algorithms, the NMSE from relaxation algorithms are smaller than that

of greedy algorithms in general. However, greedy algorithms have the advantage of

straight-forwardness, which are typically faster and easier in implementation.

To quantify the resolvability of two closely spaced heterogeneities in the re-

constructed images, we referred to the peak-to-valley-ratio (PVR). PVR is defined

as the ratio between the average reconstructed absorption coefficient of the fluo-

rophore at the two peak values corresponding to the true fluorophore locations and

that at the lowest value between the two peaks. We summarized the PVR of the

reconstructed images in Table 4.2. PVR results show that the reconstructed images
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Table 4.2: PVR of the reconstructed images using different sparse signal
recovery techniques.

Algorithm d = 1.0 cm d = 1.5 cm d = 2.0 cm
SNR (dB) 40 30 20 40 30 20 40 30 20
Tikhonov 1.87 1.22 0.97 2.53 2.37 2.30 2.73 2.32 2.52
OMP 2.00 1.00 0.84 3.06 2.26 1.93 6.59 5.78 4.90
GP 1.64 0.73 0.67 2.54 1.48 1.33 6.94 4.35 3.87

StOMP 4.32 3.33 3.13 8.38 6.50 5.06 20.0 16.0 11.4
ROMP 2.53 1.56 1.31 12.4 11.8 8.57 25.7 32.2 21.9
CoSaMP 3.66 2.93 2.73 47.8 35.6 33.1 98.2 69.0 31.0

BP-simplex 2.96 2.54 2.33 13.7 10.8 8.97 39.9 31.5 21.3
BP-interior 2.11 1.48 1.36 28.8 22.1 18.7 55.1 47.1 40.0

IST 4.43 3.90 3.65 23.8 19.1 15.5 103 65.5 50.8
GPSR 5.49 4.53 4.38 27.7 26.1 20.3 41.4 40.1 38.8

Focuss(l1) 8.51 3.36 2.15 102 50.8 18.9 123 89.3 30.9
Focuss(lp) 6.69 3.09 2.96 113 46.9 31.1 175 97.8 42.1

by the relaxation algorithms generally have higher resolvability compared to those

by the greedy-type algorithms. The sparse signal recovery algorithms provide better

PVR compared to the traditional Tikhonov regularization.

4.7 Silicon Phantom Experiment

Figure 4.6(a) shows an illustration of the cylindrical phantom used in the

experiment. The phantom was made of silicone rubber with diameter of about 2

cm, and length of 4 cm. The phantom had homogeneous absorption coefficient

µa = 0.2 cm−1 and scattering coefficient µ′
s = 12 cm−1 (D = 1/3(µa + µ′

s)) at

both the excitation and emission wavelengths (743 nm and 767 nm). The silicon

phantom contained a hollow cylindrical tube in the middle with approximately 3

mm in diameter. which was filled with intralipid and ink to mimic the same optical

properties as the background. The intralipid and ink contained 1 micromolar of Cy7

as the fluorophore. The cross section of the fluorophore yield at z = 1 is shown in

Figure 4.6(b).

The FDOT measurements were collected using the FDOT imaging system

reported in [132], as illustrated in Figure 4.7. Specifically, focused collimated laser

beams were used as point light sources to excite the fluorophore. We had 60 point
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sources in total. The fluorescence measurements were collected by an electrically

cooled CCD camera. The reading of the detector was recorded as the mean value of

a subregion with 5×5 pixels around each detector location. We selected 60 detector

locations. We discretized the imaging domain into 20 × 20 × 20 voxels. Thus, the

forward sensing matrix is of dimension 3600 by 8000.

Figure 4.8 shows the cross sections of the real phantom and the reconstruction

results using different reconstruction techniques. Compared with Figure 4.6(b), the

reconstruction results of the Tikhonov regularization in Figure 4.8(a) shows severer

oversmoothing, which is similar as the visual results in the numerical simulation.

The reconstruction from greedy algorithms are in Figure 4.8(b)-4.8(f). The images

are not oversmoothing, but look discrete and large noise is present in the background.

The reconstruction results of relaxation algorithms are in Figure 4.8(g)-4.8(l). The

images have small oversmoothing effect at the boundary of the fluorophore. The

reconstruction results of the relaxation algorithms look better than that of the greedy

algorithms according to the real phantom in Figure 4.6(b).

4.8 Discussion

In this chapter, we reviewed a number of sparse signal recovery techniques

available in the literature. In Section 3.3 of Chapter 3, we introduced a combined

l2-l1-norm regularization technique for FDOT image reconstruction. We note that

the combined l2-l1-norm regularization can be considered as a sparse signal recovery

technique combined with specific a priori information. The recovery of the fore-

ground region of the imaging domain was regularized by the l1-norm constraint,

and the l2-norm constraint smoothes out the background noise and suppresses large

spikes of artifacts due to the ill-posedness of the FDOT forward sensing matrix.

The performances of FDOT reconstruction using l1-norm regularization and the

combined l2-l1-norm regularization were presented in numerical simulation and us-

ing real data obtained from a silicon phantom experiment in Chapter 3. The results

indicate that the application of prior information combined with sparsity promoting

regularization improves the quantitative accuracy of FDOT image reconstruction.
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4.9 Conclusion

This chapter applied the sparse signal techniques from CS literature to ad-

dress the FDOT inverse problem. The basic theory of CS and a number of sparse

promoting algorithms were reviewed. We reconstructed the fluorophore yield in

FDOT inverse problem by various sparse promoting techniques in CS literature.

We used both numerical simulation and real phantom data to test the performances

of different algorithms, and compared them with the traditional Tikhonov regular-

ization. We showed that in general, the sparse promoting algorithms provide better

reconstruction results than the Tikhonov regularization. The relaxation algorithms

usually have better performance compared to the greedy algorithms. Because the

accurate reconstruction of greedy algorithms typically requires the columns of the

sensing matrix highly incoherent, however, the diffusive nature of the NIR light in

the imaging domain makes the columns in FDOT forward matrix less incoherent.

Compared to the greedy algorithms, the relaxation algorithms are less dependent

on the incoherency of the sensing matrix, thus can work better with FDOT forward

matrix.
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(a) OMP (b) Tikhonov (c) GP

(d) StOMP (e) ROMP (f) CoSaMP

(g) BP-simplex (h) BP-interior (i) IST

(j) GPSR (k) FOCUSS (l1) (l) FOCUSS (lp)

Figure 4.3: The cross sections of the reconstructed images at z = 3 (mid-
dle) of the phantom using different algorithms, r = 0.5 cm,
1% noise.
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Figure 4.4: The cross section of the phantom at z = 3 (middle) (r = 0.5
cm, d = 1.5 cm).
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(a) Tikhonov (b) OMP (c) GP

(d) StOMP (e) ROMP (f) CoSaMP

(g) BP-simplex (h) BP-interior (i) IST

(j) GPSR (k) FOCUSS (l1) (l) FOCUSS (lp)

Figure 4.5: The cross sections of the reconstructed images at z = 3 (mid-
dle) of the phantom using different algorithms, r = 0.5 cm,
d = 1.5 cm, 1% noise.
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(a) The silicon phantom (b) The cross section of the fluorophore
yield at z = 1 (middle) of the silicon phan-
tom

Figure 4.6: The configuration of the real silicon phantom and the cross
section of the fluorophore yield.

Figure 4.7: The imaging system used in the silicon phantom experiment.
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(a) Tikhonov (b) OMP (c) GP

(d) StOMP (e) ROMP (f) CoSaMP

(g) BP-simplex (h) BP-interior (i) IST

(j) GPSR (k) FOCUSS (Convex) (l) FOCUSS (Non-convex)

Figure 4.8: The cross sections of the phantom at z = 1 (middle) using
different algorithms.



CHAPTER 5

FDOT RECONSTRUCTION WITH PRECONDITIONED

FORWARD SENSING MATRIX

5.1 Introduction

In CS framework, sparse signals can be exactly recovered from limited number

of measurements. In Chapter 4, we have reviewed a number of sparse signal re-

covery techniques in CS literature, and apply them in FDOT image reconstruction.

A fundamental property that ensures accurate signal recovery is that the forward

sensing matrix, which linearly projects the signal to the measure, is incoherent, i.e,

the normalized inner products between two different columns of the sensing matrix

are small [51–55]. However, in the FDOT inverse problem, although the fluorophore

yield that we want to reconstruct is usually sparse in the imaging domain, the for-

ward matrix, which maps the fluorophore yield to the boundary measurements, is

often coherent. This is because of the diffusive nature of the optical domain, where

the photon density of adjacent locations are similar due to mass scattering.

In many applications, the forward matrix can be designed to improve the re-

covery of sparse signals [52–54,66,77,78]. Recent work has demonstrated that using

a carefully designed preconditioning matrix can improve the performance of com-

pressed sensing. In particular, a well-designed preconditioning matrix can reduce

the coherence between the atoms of the equivalent dictionary, and as a consequence,

reduce the reconstruction error.

In this chapter, we address the incoherence of the FDOT forward sensing

matrix. We design a preconditioning matrix to reduce the coherence of the FDOT

forward matrix. In 3D numerical simulation and real phantom experiment, we

demonstrate the performance of the preconditioned sensing matrix in conjunction

with the convex relaxation and greedy-type sparse signal recovery algorithms.

The rest of the chapter is organized as follows: Section 5.2 presents the pre-

conditioned FDOT inverse problem formulation as a sparse signal recovery problem;

Section 5.3 briefly reviews the coherence properties of the forward sensing matrix in

94
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CS theory; In Section 5.4, we design the preconditioning matrix; In Sections 5.5 and

5.6, we present the performance of our approach in 3D numerical simulations and

in a real silicon phantom experiment; Finally, Section 5.7 concludes this chapter.

5.2 Preconditioned FDOT Inverse Problem with Sparsity

Constraint

Recall from Chapter 2 and Chapter 4, the linearized FDOT imaging problem

with additive noise is

y = Ax+ ϵ. (5.1)

To recover sparse vector x, we solve the l0-norm or l1-norm constraint optimization

problem

min
x
∥x∥0 such that ∥y −Ax∥2 ≤ ε, (5.2)

or

min
x
∥x∥1 such that ∥y −Ax∥2 ≤ ε. (5.3)

We design a preconditioning matrix to apply on A to improve the incoherence

of the forward sensing matrix A. Let MA be the preconditioning matrix. When

MA is applied, (5.1) becomes

MAy =MAAx+MAϵ = Apre +MAϵ (5.4)

where Apre denotes the preconditioned forward sensing matrix. Next, instead of

solving (5.2) or (5.3), we solve the following minimization problem to reconstruct

the fluorophore yield,

min
x
∥x∥0 such that ∥ypre −Aprex∥2 ≤ εpre, (5.5)

or

min
x
∥x∥1 such that ∥ypre −Aprex∥2 ≤ εpre (5.6)

where ypre =MAy and ∥MAϵ∥2 ≤ εpre.
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5.3 Performance Guarantees in Sparse Signal Reconstruc-

tion

In Chapter 4, we have reviewed the incoherence properties of the forward

sensing matrix in CS literature. In this section, we recap the concept of mutual

coherence and cumulative coherence relevant to our subsequent discussion.

In CS literature, many of the sufficiency conditions have been proposed to

specify the incoherence of the forward matrix [51, 54, 55, 66, 77]. One of the most

commonly used conditions is the mutual coherence [51],

M(A) = max
p,q,p ̸=q

|⟨ap,aq⟩|
∥ap∥2∥aq∥2

. (5.7)

M(A) is the largest normalized inner product of two different columns, which has

a small value only if the columns of A are almost orthogonal to each other.

It was shown in [51, 55] that, if x0 is a vector that satisfies ∥y −Ax0∥2 ≤ ε
with

∥x0∥0 ≤
1

2
(1 +

1

M(A)
), (5.8)

then, x0 is necessarily the unique vector that satisfies ∥y−Ax0∥2 ≤ ε whose number

of nonzero entries satisfies (5.8) [52,55]. Furthermore, the difference between x0 and

the solutions of the sparsity constraint optimization problems in (5.2) and (5.3) are

only within a constant multiple of ε [52,55].

The mutual coherence of A shows the worst-case analysis of the orthogonal-

ity of the columns of A. To measure the average-case coherence of a matrix, the

cumulative coherence or the Babel function has been proposed [77],

M1(k,A) = max
p

max
|Q|=k,p/∈Q

∑
q∈Q

| < ap,aq > |
∥ap∥2∥aq∥2

, (5.9)

where Q is a subset of the columns in A. It was shown that, if

M1(k,A) +M1(k + 1,A) < 1, (5.10)

then, the signal x0 with ∥x0∥0 ≤ k can be exactly recovered using greedy algorithms
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or basis pursuit [77]. Note thatM1(k,A) is an monotonically non-decreasing func-

tion in k, and M1(1,A) = M(A). If M1(k,A) increase slowly, A in said to be

quasi-incoherent.

More generally, a matrix with N columns have N(N−1)
2

normalized inner prod-

ucts between different pairs of columns. It was observed that as the average value of

the normalized inner products between different columns decreases, the performance

of sparse signal recovery methods typically improves [52,53,66,77]. In particular, it

was shown that a well-designed preconditioning matrix can reduce the normalized

inner products between the columns of the sensing matrix, and as a consequence,

reduce the mean square error of the reconstructed images [52,53,124,133].

5.4 Preconditioning Matrix Design

A majority of works on CS design a random preconditioning matrix with an

orthogonal dictionary, such that the resultant sensing matrix Apre simply satisfies

the incoherence or RIP property with high probability. However, in the case where

the dictionary is overcomplete and thus unorthogonal, a random matrix does not

lead to optimal CS property. Recently, some researches have shown that a carefully

designed deterministic projection matrix achieved better incoherence property of

the sensing matrix [52, 53, 124, 133]. To minimize the coherence of Apre, we seek

to determine MA such that the Gramm type matrix Ã
T

preÃpre approximates the

identity matrix,

GA = Ã
T

preÃpre ≈ I (5.11)

where Ãpre is an equivalent form of Apre with all the columns normalized.

Without loss of generality for the rest of this chapter, we assume that the

columns of A and Apre are normalized to unity and drop tilde to simplify our

notation for rest of the chapter.

5.4.1 Elad’s Method

In [52], the authors proposed to minimize its t-averaged mutual coherence,

which was defined as the average of all absolute and normalized inner products
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between different columns in A above some fixed threshold value t,

Mt(A) =

∑
p,q,p ̸=q(|gAp,q | > t) · |gAp,q |∑

p,q,p ̸=q(|gAp,q | > t)
. (5.12)

The object is to reduce the off diagonal entries of GA with an absolute value larger

than t, which in turns reduces µt(A). The reduction of µt(A) was done iteratively. In

each iteration, gAp,q > t is shrinked by a small amount using the following function:

gAp,q =


γgAp,q |gAp,q | > t

γtsign(gAp,q) γt ≤ |gAp,q | ≤ t

gAp,q |gAp,q | < γt

. (5.13)

The next steps forces the rank to be M and find the matrix MA that could best

fit the new shrinked Gram-type matrix. The process could be realized using SVD.

The details can be found in [52].

5.4.2 Duarte-Carvajalino and Sapiro’s Method

In [53], the authors proposed an alternative algorithm to design the precondi-

tioning matrix MA. Instead of reducing µt(A), the authors sought the solution of

the following optimization problem,

min
MA

∥AT
preApre − I∥F = ∥(MAA)TMAA− I∥F , (5.14)

where the subscription F denotes the Frobenius norm.

Multiplying both sides of (5.11) with A on the left and AT on the right, it

becomes

AATMT
AMAAA

T ≈ AAT . (5.15)

Consider the eigenvalue decomposition AAT = UΛUT , (5.15) is equivalent to

ΛUTMT
AMAUΛ ≈ Λ. (5.16)
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Thus, (5.14) can be reduced to the following optimization problem

min
MA

∥ΛUTMT
AMAUΛ− Λ∥F (5.17)

The details can be found in [53].

The authors also compared their work with the method described [52] to show

that their algorithm was more computationally efficient, and the learned projection

matrix lead to better incoherence property of the sensing matrix Apre.

5.4.3 Schnass and Vandergheynst’s Method

In [124], the authors defined the cumulative cross-coherence or cross Babel

function of original and the preconditioned forward matrix as follows,

M1(k,Apre,A) = max
p

max
|Q|=k,p/∈Q

aT
p apreq

∥ap∥2∥apreq∥2
. (5.18)

The author tried to find Apre that minimize M1 in (5.18). This is equivalent as

findingApre such that the Gram-type matrixG′ = ApreA is close to identity matrix.

Two sets of matrices were defined as follows:

G := {G′ = ApreA}

H := {H , an N ×N matrix with Hp,p = 1 and |Hp,q < t for p ̸= q}. (5.19)

Apre can be found by solving the following optimization problem iteratively,

min
Apre

∥G′ −H∥F such that G′ ∈ G,H ∈ H, (5.20)

see [124] for details.

5.4.4 Our Approach

In this chapter, we use an approach similar to the one described in [53] to

precondition the FDOT forward sensing matrix. We look for MA that solves the

optimization problem in (5.14), and consider multiplying both sides ofAT
preApre ≈ I
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with A on the left and AT on the right,

AAT
preApreA

T = AATMT
AMAAA

T ≈ AAT . (5.21)

Let

A = UAΣAV
T
A (5.22)

be the singular value decomposition of A, and substitute (5.22) into (5.21), we

obtain

UAΣAV
T
AV AΣ

T
AU

T
AM

T
AMAUAΣAV

T
AV AΣ

T
AU

T
A ≈ UAΣAV

T
AV AΣ

T
AU

T
A (5.23)

(5.23) can be simplified as follows,

(ΣAΣ
T
A)U

T
AM

T
AMAUA(ΣAΣ

T
A) ≈ (ΣAΣ

T
A) (5.24)

Thus, we choose MA as

MA = (ΣAΣ
T
A)

−1/2UT
A. (5.25)

In practice, A is usually ill-conditioned with a large number of singular values

equal or close to 0. Therefore,MA in (6.34) is also ill-conditioned with a condition

number approaching to infinity. To mitigate this, we regularize (6.34) and write:

MA = (ΣAΣ
T
A + λI)−1/2UT

A (5.26)

where λ is small a regularization constant.

5.5 Numerical Simulations

In this section, we present numerical simulations to demonstrate the effects of

preconditioning matrix on the coherence of the FDOT forward sensing matrix as

well as on the quality of the reconstructed FDOT images.



101

Figure 5.1: An illustration of the phantom and source-detector configu-
ration.

5.5.1 Simulation Setup

We set up a 6 × 6 × 6 cm3 cubic phantom shown in Figure 5.1. We set the

background absorption coefficient to µam = 0.05 cm−1, and the diffusion coefficient

to D(r) = 0.04 cm−1 at both the excitation and emission wavelengths. The circular

heterogeneity with radius r simulated the fluorophore concentration with fluorophore

absorption coefficient µaxf = 0.005 cm−1. 48 sources (shown in squares) and 48

detectors (shown in triangles) are uniformly placed at the top and bottom of the

imaging domain. We discretized the imaging domain into 20 × 20 × 20 voxels.

Thus, the forward sensing matrix is 2304 by 8000. We simulated different data sets

corresponding to 3 different values of the radius r : 0.5, 0.75, and 1.0 cm.

To simulate the measurement noise, we assumed that, when a sufficiently large

number of photons are detected, the noise at each detector can be approximated by

a Gaussian random variable with its variance proportional to the magnitude of the

detector reading. The SNR of the measurements is defined as

SNR = 20 log10
∥Γ∥2
∥ϵ∥2

. (5.27)

We simulated three sets of noise contaminated measurements with approximately

10%, 3% and 1% noise, corresponding to the SNR value of 20 dB, 30 dB and 40 dB,

respectively.
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(a) Top 40% values of all the normalized inner products

(b) Cumulative coherence

Figure 5.2: The normalized inner products and cumulative coherence of
the forward matrix before and after applying the precondi-
tioning matrix.

5.5.2 Simulation Results - Coherence of the FDOT Forward Matrix

We evaluated the coherence of the forward matrix before and after the appli-

cation of the preconditioning matrix. Figure 5.2(a) shows the largest 40% of all the

normalized inner products between different columns of the forward sensing matrix,

arranged in a descending order. The remaining 60% of the normalized inner prod-

ucts between different columns are close to 0. The application of preconditioning

matrix reduces the large correlations between different columns of A. To quantify



103

the improvement, we computed the area under the curves (AUC) for each case, and

the relative percentages of AUC with respect to the no-mask case. The results of

relative AUC are given in the box in Figure 5.2(a). We see that the preconditioning

matrix reduces the AUC to 46.3%.

Figure 5.2(b) shows the plot of the cumulative coherenceM1(k,A) as a func-

tion of k. As stated before, the cumulative coherence is a nondecreasing function

of k. When M1(k,A) increases slowly, the forward matrix is said to be quasi-

incoherent [77]. From Figure 5.2(b), when preconditioning matrix is applied to the

light sources and detectors, the cumulative coherence increases much slower as a

function of k than that of no-mask case. The average slopes of the curves are shown

in the box in Figure 5.2(b) for a quantitative comparison.

Figure 5.3: The cross section of the phantom at z = 3 (middle) (r = 0.5
cm).

5.5.3 Simulation Results - Image Reconstruction

In this simulation, we reconstructed the fluorophore concentration map at

3 different sparsity levels corresponding to 3 different radii using measurements

at 3 different noise levels. In each case, we used the forward matrix with and

without application of the preconditioning matrix. We used six different sparsity

promoting reconstruction methods available in the CS literature (See Chapter 4 for

more details). Specifically, we used: StOMP [62], ROMP [63], CoSaMP [65], BP-

interior [67], IST [69], and GPSR [71]. The first three are greedy type algorithms,

and the last three are convex relaxation based algorithms.
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(a) StOMP (no MA) (b) StOMP (MA)

(c) ROMP (no MA) (d) ROMP (MA)

(e) CoSaMP (no MA) (f) CoSaMP (MA)

Figure 5.4: The cross sections of the reconstructed images at z = 3 (mid-
dle) of the phantom using greedy algorithms, r = 0.5 cm, 1%
noise.

We used NMSE to measure the accuracy of the reconstructed images,

NMSE =
∥xtrue − xrecon∥2

# of voxels
. (5.28)

We averaged the NMSE of the reconstructed images over 30 realizations of noise.

The results are tabulated in Table 5.1. The results show that, in general, the NMSE

of the reconstructed images increases as the sparsity level of the signal increases. By
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(a) BP-interior (no MA) (b) BP-interior (MA)

(c) IST (no MA) (d) IST (MA)

(e) GPSR (no MA) (f) GPSR (MA)

Figure 5.5: The cross sections of the reconstructed images at z = 3
(middle) of the phantom using convex relaxation algorithms,
r = 0.5 cm, 1% noise.

applying the preconditioning matrixMA, the NMSE reduced for all reconstructions.

Table 5.1 shows a greater reduction in NMSE for greedy-type algorithms than that

of convex relaxation techniques.

Figure 5.3 shows the cross sections of the reconstructed images at the middle

of the imaging domain when the radius of the heterogeneity is r = 0.5 cm. The cross

sections of the reconstructed fluorophore yield maps using greedy type algorithms
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Table 5.1: NMSE of the reconstructed images (10−4).

Algorithm r = 0.5 cm r = 0.75 cm r = 1.0 cm

StOMP

SNR (dB) 40 30 20 40 30 20 40 30 20
No MA 2.05 6.47 12.1 3.87 14.5 28.0 9.44 31.8 63.7
MA 1.40 4.20 8.51 2.74 9.65 20.6 6.94 22.2 45.2

ROMP

SNR (dB) 40 30 20 40 30 20 40 30 20
No MA 1.66 5.85 13.2 3.68 13.0 31.6 8.01 29.0 64.2
MA 1.26 3.76 8.13 2.09 11.8 16.4 5.77 22.4 38.5

CoSaMP

SNR (dB) 40 30 20 40 30 20 40 30 20
No MA 2.11 6.35 13.0 5.97 14.5 28.9 11.8 34.7 67.8
MA 1.24 3.28 8.18 3.78 9.73 22.0 6.26 23.7 49.1

BP-interior

SNR (dB) 40 30 20 40 30 20 40 30 20
No MA 1.56 3.03 7.05 2.44 7.13 15.3 5.03 20.8 39.1
MA 1.04 2.07 5.96 1.87 6.09 13.2 4.31 18.7 37.2

IST

SNR (dB) 40 30 20 40 30 20 40 30 20
No MA 1.20 3.55 7.49 3.51 6.97 19.2 6.38 23.3 49.9
M a 1.07 2.98 4.74 2.43 5.50 11.8 5.80 20.7 45.1

GPSR

SNR (dB) 40 30 20 40 30 20 40 30 20
No MA 1.29 3.28 7.07 3.41 7.13 17.1 5.51 22.2 46.6
MA 1.06 2.24 6.14 2.10 5.67 13.5 4.40 16.4 39.4

are shown in Figure 5.4, and those using convex relaxation techniques are shown in

Figure 5.5. For each type of algorithm, the application of the preconditioning matrix

MA leads to better reconstruction. The visual improvements are more obvious for

the greedy algorithms than the relaxation algorithms. In the greedy type algorithms,

the support of the signal is determined by selecting the columns of the forward

matrix that have the greatest correlation with the measurements. The reduction of

the normalized inner products between different columns in the forward matrix has

a direct effect on the column selection procedure at each iteration.

5.6 Silicon Phantom Experiment

5.6.1 Real Phantom Configuration

Figure 5.6(a) shows an illustration of the cylindrical phantom used in the

experiment. The phantom was made of silicone rubber with diameter of about 2

cm, and length of 4 cm. The phantom had homogeneous absorption coefficient

µa = 0.2 cm−1 and scattering coefficient µ′
s = 12 cm−1 (D = 1/3(µa + µ′

s)) at
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(a) The silicon phantom (b) The cross section of the fluorophore yield
at z = 1 (middle) of the silicon phantom

Figure 5.6: The configuration of the real silicon phantom and the cross
section of the fluorophore yield.

Figure 5.7: The imaging system used in the silicon phantom experiment.

both the excitation and emission wavelengths (743 nm and 767 nm). The silicon

phantom contained a hollow cylindrical tube in the middle with approximately 3

mm in diameter. which was filled with intralipid and ink to mimic the same optical

properties as the background. The intralipid and ink contained 1 micromolar of Cy7

as the fluorophore. The cross section of the fluorophore yield at z = 1 is shown in

Figure 5.6(b).

The FDOT measurements were collected using the FDOT imaging system

reported in [132], as illustrated in Figure 5.7. Specifically, focused collimated laser

beams were used as point light sources to excite the fluorophore. We had 60 point

sources in total. The fluorescence measurements were collected by an electrically

cooled CCD camera. The reading of the detector was recorded as the mean value of
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a subregion with 5×5 pixels around each detector location. We selected 60 detector

locations. We discretized the imaging domain into 20 × 20 × 20 voxels. Thus, the

forward sensing matrix is of dimension 3600 by 8000.

5.6.2 Coherence of the FDOT Forward Matrix

We evaluated the coherence of the forward matrix with and without the pre-

conditioning matrixMA. Figure 5.8(a) shows the largest 40% of all the normalized

inner products between different columns of the forward sensing matrix, arranged in

a descending order. The remaining 60% of the normalized inner products between

different columns are close to 0. Clearly, application ofMA reduces the large corre-

lations between different columns of A. To quantify the improvement, we computed

the relative area under the curves (AUC), which is given in the box in Figure 5.8(a).

We see that the preconditioning matrix reduces the AUC to 39.59%. Figure 5.8(b)

shows the plot of the cumulative coherence. When MA is applied, the cumulative

coherence increases much slower. The average slope of each curve is provided in the

box in Figure 5.8(b).

The cross sections of the reconstructed fluorophore yield maps using greedy-

type algorithms are shown in Figure 5.9, and those using convex relaxation tech-

niques are shown in Figure 5.10. We observe that the application of the precon-

ditioning matrix results in reconstructed images that are in better agreement with

the original fluorophore yield map. However, there exists some background noise in

the reconstructed images. This is due to the large condition number of MA which

amplifies the measurement noise. The visual improvements are most obvious for the

greedy-type algorithms. In simple greedy-type algorithms, the support of the signal

is determined by selecting the columns of the forward matrix that have the greatest

correlation with the measurements. The reduction of the coherence in the forward

matrix has a direct effect on the column selection procedure at each iteration.

To quantitatively assess the sparse reconstruction results, we calculated the

contrast to background noise ratio (CBNR) of the reconstructed fluorophore yield

map. CBNR is defined as the ratio between the mean value of the foreground

fluorophore region and the standard deviation of the background. The results,
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Table 5.2: CBNR of the reconstructed fluorophore images using different
algorithms.

Greedy StOMP ROMP CoSaMP
MA 20.9 28.6 32.3

No MA 16.5 18.8 26.7
Relaxation BP-interior IST GPSR
MA 23.8 19.8 22.1

No MA 14.9 17.1 12.3

summarized in Table 5.2, indicate the improvements in the image contrasts due

to application of the preconditioning matrix using different sparse signal recovery

algorithms.

5.7 Conclusion

In this chapter, we demonstrated the application of the preconditioning ma-

trix in sparse FDOT reconstruction based on CS framework. In CS theory, accurate

recovery of a sparse signal from an underdetermined linear system requires the un-

derlying forward matrix to be incoherent. We showed that the application of the

preconditioning matrix is able to reduce the coherence of the FDOT forward sensing

matrix. To reconstruct the fluorophore concentration map, we used sparse signal re-

covery techniques, including both the greedy type and convex relaxation algorithms.

We showed that the application of the preconditioning matrix in conjunction with

sparse signal recovery techniques improves the visual quality of reconstructed im-

ages and reduces the mean square error in both numerical simulations and in a real

phantom experiment.
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(a) Top 40% values of all the normalized inner products

(b) Cumulative coherence

Figure 5.8: The normalized inner products and cumulative coherence of
the forward matrix before and after applying the precondi-
tioning matrix.
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(a) StOMP (no MA) (b) StOMP (MA)

(c) ROMP (no MA) (d) ROMP (MA)

(e) CoSaMP (no MA) (f) CoSaMP (MA)

Figure 5.9: The cross sections at z = 1 (middle) of the reconstructed
phantom using greedy algorithms.
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(a) BP-interior (no MA) (b) BP-interior (MA)

(c) IST (no MA) (d) IST (MA)

(e) GPSR (no MA) (f) GPSR (MA)

Figure 5.10: The cross sections at z = 1 (middle) of the phantom using
convex relaxation techniques.



CHAPTER 6

LIGHT ILLUMINATION AND DETECTION PATTERNS

FOR FDOT BASED ON COMPRESSIVE SENSING

6.1 Introduction

In Chapter 5, we have applied a preconditioning matrix to improve the incoher-

ence of the FDOT forward sensing matrix A. In this chapter, we use an alternative

approach to improve the incoherence of A by designing the light illumination and

detection patterns.

In FDOT, the imaging domain is often illuminated sequentially by a number

of point sources placed at the boundary of the imaging domain. However, recent

work has demonstrated that the “structured illumination” can be useful in reducing

the ill-posedness of the optical tomography inverse problem, and to improve the

spatial resolution of the reconstructed images [79–86].

In this chapter, unlike the conventional FDOT imaging where point sources

with constant intensity are time-multiplexed, i.e., turned on one at a time, we assume

that multiple spatially distributed light sources illuminate the medium simultane-

ously and the corresponding boundary measurements are linearly filtered prior to

image reconstruction. We show that the FDOT forward matrix can be expressed

as a columnwise Kronecker product of two matrices. The first one is determined by

the excitation light field which depends on the spatial configuration of light sources

and their intensities as well as the Green’s function of the endogenous background.

The second matrix is determined by the emission light field which depends on the

spatial configuration of the detectors and the Green’s function of the emission light

field. The incoherence of the FDOT forward sensing matrix is related to the in-

coherence of these two underlying matrices. We design two preconditioners, which

we refer to as optical and measurement masks, to reduce the coherence of these

two matrices. The optical mask is an intensity matrix, with each of its row being

an intensity/illumination pattern applied to the point sources. The measurement

masks is a linear filter applied to the measured data collected by the detectors in

113
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each illumination.

We present extensive numerical simulations and a real silicon phantom exper-

iment to show that the application of optical and measurement masks reduces the

coherence of the FDOT forward matrix. We use a number of sparse signal recov-

ery techniques, including greedy type and convex relaxation algorithms to demon-

strate the improvements in fluorophore reconstruction when optical and measure-

ment masks are applied.

Our approach can be used to determine not only the optimal source intensities,

but also the location of sources and detectors. Given a fluorophore designed to

accumulate in certain regions and anatomical a priori information, optimal source

detector locations and source intensities can be determined via numerical simulations

assuming a large array of sources and detectors prior to the imaging process. This

may eliminate unnecessary illumination, optimize imaging process and result in

better image quality than the conventional FDOT imaging process.

The rest of this chapter is organized as follows: In Section 6.2, we derive

bounds on the incoherence of the FDOT forward matrix; In 6.3, we present the

design of the optical and measurement masks; In Sections 6.4 and 6.5, we present

the performance of our approach in 3D numerical simulations and in a real silicon

phantom experiment; Finally, Section 6.6 concludes the chapter.

6.2 Bounds on the Coherence of the FDOT Forward Matrix

In this section, we present the inherent structure of the FDOT forward matrix

and show that it is the column-wise Kronecker product of two matrices: A ma-

trix that is composed of the discretized excitation light fields; and another matrix

composed of the discretized Green’s function of the diffusion equation governing

the emission light field propagation. We show that the normalized inner product

between two different columns of the FDOT forward matrix can be expressed as a

product of the normalized inner products between the columns of these two underly-

ing matrices. We next derive upper bounds on the mutual coherence and cumulative

coherence of the FDOT forward matrix. These observations are essential in the de-

sign and optimization of the FDOT forward matrix.
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Recall that the FDOT forward matrix A is given by

A =



g1em,1ϕ
1
ex,1 g1em,2ϕ

1
ex,2 . . . g1em,Nϕ

1
ex,N

...
...

gNd
em,1ϕ

1
ex,1 gNd

em,2ϕ
1
ex,2 . . . gNd

em,Nϕ
1
ex,N

g1em,1ϕ
2
ex,1 g1em,2ϕ

2
ex,2 . . . g1em,Nϕ

2
ex,N

...
...

gNd
em,1ϕ

Ns
ex,1 gNd

em,2ϕ
Ns
ex,2 . . . gNd

em,Nϕ
Ns
ex,N


.

We see that the entries of the A is the product of two quantities: (1) the discretized

excitation light field; and (2) the discretized Green’s function of the emission light

field. To further analyze the structure of the FDOT forward matrix, we define two

new matrices. The first one is an Ns×N matrix with its ith row being the excitation

light field due to the ith source:

Φ :=


ϕ1
ex,1 . . . ϕ1

ex,N

... . . .
...

ϕNs
ex,1 . . . ϕNs

ex,N

 ∈ RNs×N . (6.1)

The second one is an Nd ×N matrix with its jth row being the Green’s function of

the emission light field corresponding to the jth detector:

G :=


g1em,1 . . . g1em,N

... . . .
...

gNd
em,1 . . . gNd

em,N

 ∈ RNd×N . (6.2)

Let ak, k = 1, ..., N be the kth column of the FDOT forward matrix A; and let

ϕk = [ϕ1
ex,k, ..., ϕ

Ns
ex,k]

T

gk = [g1em,k, ..., g
Nd
em,k]

T (6.3)

be the kth column of Φ andG, respectively. We observe ak is the Kronecker product
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of ϕk and gk, and write

ak = ϕk ⊗ gk, k = 1, ..., N. (6.4)

Thus, A is the columnwise Knocker product of Φ and G:

A = Φ ∗G = [ϕ1 ⊗ g1,ϕ2 ⊗ g2, ...,ϕN ⊗ gN ] (6.5)

where ∗ denotes the columnwise Kronecker product. As a result of (6.4), we have

∥ak∥22 = ak · ak = (ϕk ⊗ gk) · (ϕk ⊗ gk)

= ∥ϕk∥22∥gk∥22. (6.6)

Furthermore,

⟨ap, aq⟩ = ap · aq = (ϕp ⊗ gp) · (ϕq ⊗ gq)

= (ϕp · ϕq)(gp · gq)

= ⟨ϕp, ϕq⟩⟨gp, gq⟩. (6.7)

Let rAp,q , rϕp,q and rgp,q be the normalized inner product of the pth and qth

columns of A, Φ and G, respectively. Combining (6.6) and (6.7), we obtain

rAp,q = rϕp,qrgp,q . (6.8)

Below we summarize two results on the coherence of the FDOT forward matrix.

Observation 12:

The mutual coherence of A is upper bounded by the product of the mutual

2Note that since Φ is composed of the excitation light field andG is composed of the discretized
Green’s function of the diffusion equation for the emission light field. Therefore, every entry in Φ
and G is non-negative. As a result, rϕp,q ≥ 0 and rgp,q ≥ 0.
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coherence of G and Φ.

M(A) = max
p,q
|rAp,q |

= max
p,q
|rϕp,qrgp,q | = max

p,q
rϕp,qrgp,q

≤ (max
p,q

rϕp,q)(max
p,q

rgp,q) =M(G)M(Φ). (6.9)

�.

Observation 2 :

M(A) ≤ M1(k,A)

≤ K(N,Ns, Nd, k)(∥Φ̃
T
Φ̃− IN∥2F + ∥G̃T

G̃− IN∥2F ),

for k = 1, ..., N − 1. (6.10)

where ∥E∥F =
√∑

i,j e
2
i,j denotes the Frobenius norm of the matrix quantity E;

K(N,Ns, Nd, k), i = 1, 2 is a constant that depends on N , Ns,Nd and k; Φ̃ and G̃

are Φ and G matrices whose columns are normalized to unity, and IN denotes the

N -by-N identity matrix.

�.
See Appendix B for the derivation of (6.10), and an explicit expression for K.

We summarize the implications of the results and observations made in this

section in the following list of remarks:

Remarks -

• The normalized inner product rAp,q of the pth and qth columns of the FDOT

forward matrix is the product rϕp,q and rgp,q , the normalized inner product of

the pth and qth columns of Φ and G matrices, respectively.

• To reduce the mutual coherence and cumulative coherence of the FDOT for-

ward matrix A, we wish to minimize rAp,q , which is equivalent to minimizing

rgp,q and rϕp,q .

• The mutual coherence of the FDOT forward matrix is upper bounded by the
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product of the mutual coherence of Φ and G, i.e.,M(A) ≤M(Φ)M(G).

• The sum of all the normalized inner products of the columns of the FDOT

forward matrix is upper bounded by the sum of ∥Φ̃T
Φ̃− IN∥2F and ∥G̃T

G̃−
IN∥2F . Thus, reducing ∥Φ̃

T
Φ̃−IN∥2F and ∥G̃T

G̃−IN∥2F , reduces rAp,q , which

in turn, reduces the cumulative coherence,M1(k,A), and mutual coherence,

M(A), of the FDOT forward matrix.

Without loss of generality for the rest of this chapter, we assume that the

columns of G and Φ are normalized to unity and drop tilde from G̃ and Φ̃ to

simplify our notation for rest of the chapter (see Appendix C for the equivalence of

the underlying inverse problem).

6.3 The FDOT Forward Matrix Optimization

In this section, we focus on the optimization of the FDOT forward matrix

using the results in the previous section. In particular, we minimize ∥ΦTΦ− IN∥F
and ∥GTG − IN∥2F by designing two preconditioners on Φ and G to reduce both

the mutual coherence and average coherence of the FDOT forward matrix. Our

preconditioner design follows a method similar to the one in [53].

The entries of the matrix Φ represent the excitation field at each voxel location

due to light sources. They are determined by the source function, the Green’s

function of (2.1) and (2.5) and the endogenous optical properties of the imaging

domain. Thus, Φ is a source related term. We refer to the preconditioner on Φ

as the optical mask. The optical mask is an Ns × Ns intensity matrix, with each

row being a different intensity pattern applied to Ns point sources for Ns different

illumination patterns.

The entries of the matrixG represent the emission field at the detectors due to

a point source at each voxel location. They are determined by the Green’s function of

(2.2) and (2.6), and the endogenous optical properties of the imaging domain. Thus,

G can be viewed as a measurement-related term. We refer to the preconditioner

on G as the measurement mask. The measurement mask is an Nd × Nd linear

filter applied to the measured data collected by Nd detectors corresponding to each
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illumination pattern.

In Subsection 6.3.1 we present the design of the optical mask; and in Sub-

section 6.3.2, we present the design of measurement mask. In Subsection 6.3.3, we

describe the practical, algorithmic implementation of the FDOT imaging process

with structured illumination and detection patterns.

6.3.1 Design of the Illumination Patterns - The Optical Mask

In diffuse optical tomography, the light sources are typically time multiplexed,

i.e., operated one at a time, and the scattered light field due to each source is

measured at the detectors. In designing the optical mask, we assume that all Ns

sources transmit simultaneously into the imaging domain according to some intensity

patterns designed to optimize the FDOT forward matrix. Furthermore, we assume

that the number of illumination patterns is the same as the number of point sources.

Thus, our objective is to determine Ns×Ns different light intensities to precondition

Φ, and hence the FDOT forward matrix.

Let M s denote the Ns × Ns optical mask. Let mk denote each row of M s,

i.e.,

M s = [m1
T ,m2

T , ...mNs

T ]T . (6.11)

We refer to mk, k = 1, ..., Ns as the kth illumination pattern for reasons that will

be made clear below.

Recall that the excitation light field due to the ith point source is given by

ϕi
x(r) =

∫
Ω

gx(r, r
′)si(r′)dr′. (6.12)

Without loss of generality, we assume that the initial light sources, si(r), are unit

impulse functions,

si(r) = δ(r − ri) (6.13)

where ri denotes the location of the ith point source.

Let mk,i be the intensity of the ith source, i = 1, ..., Ns, for the k
th illumination

pattern, i.e.,

mk = [mk,1,mk,2, ...mk,Ns ]. (6.14)
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Then, if all point sources transmit simultaneously, the source illuminating the imag-

ing domain can be expressed as

Qk(r) =
Ns∑
i=1

mk,is
i(r). (6.15)

Thus, the resulting excitation light field due to the kth illumination pattern becomes

ϕk
pre(r) =

∫
Ω

gx(r, r
′)Qk(r′)dr′

=
Ns∑
i=1

mk,i

∫
Ω

gx(r, r
′)si(r′)dr′

=
Ns∑
i=1

mk,iϕ
i
x(r). (6.16)

Reexpressing (6.16) in matrix notation introduced in (6.11) and (6.14), we write the

new matrix composed of the excitation light field due to sources Qk (k = 1, ..., Ns)

as follows:

Φpre =M sΦ, (6.17)

where Φpre is now the preconditioned Φ matrix. From (6.17), clearly the optical

mask M s can be designed to precondition Φ. We design M s to minimize the

normalized inner products between different columns of Φpre. Or equivalently, we

seek to find M s such that the Gramm matrix Φpre
TΦpre is as close to identity as

possible,

Φpre
TΦpre = ΦTMT

sM sΦ ≈ IN . (6.18)

To find such a matrix M s, we consider the following optimization problem:

min
M s

∥(M sΦ)TM sΦ− IN∥F . (6.19)

Note that (6.19) attempts to minimize not only the greatest normalized inner prod-

uct between two columns of Φpre, but all the normalized inner products between

different columns of Φpre.
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To solve (6.19), we multiply (6.18) by Φ and ΦT on both sides,

ΦΦTMT
sM sΦΦT ≈ ΦΦT , (6.20)

and consider the singular value decomposition of Φ,

Φ = U sΣsV s, (6.21)

where Σs is the Ns ×Ns diagonal matrix containing the singular values of Φ. Let

Λs = ΣsΣ
T
s . Substituting (6.21) into (6.20), and simplifying (6.20), we obtain

ΛsU
T
sM

T
sM sU sΛs ≈ Λs. (6.22)

Thus, we choose M s as

M s = Λ−1/2
s UT

s . (6.23)

The new Φ matrix after the application of M s becomes

Φpre =M sΦ = Λ−1/2
s UT

sU sΣsV s = Λ−1/2
s ΣsV s. (6.24)

The matrix M s may have negative entries. However, since the intensity of

each light source must be non-negative, we decompose M s into two parts:

M s =M
(+)
s − (−M (−)

s ), (6.25)

whereM (+)
s andM (−)

s contain the non-negative and negative entries inM s, respec-

tively. Instead of applying the illumination patterns given by M s, we sequentially

apply the rows ofM (+)
s and (−M (−)

s ), and take the differences of the measurements.

Let m
(±)
k,i denote the (k, i)th entry of M (±)

s , which is the intensity of the ith

point source in the kth illumination pattern. Thus, the light source generated by

the kth illumination pattern is given by

Qk(r) =
Ns∑
i=1

(m
(+)
k,i − (−m(−)

k,i ))s
i(r), (6.26)
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and the resulting excitation light field due to the kth illumination pattern becomes

ϕ(k)
pre(r) =

Ns∑
i=1

m
(+)
k,i ϕ

i
x(r)−

Ns∑
i=1

(−m(−)
k,i )ϕ

i
x(r), k = 1, ..., N r ∈ Ω. (6.27)

6.3.2 Design of Detection Patterns - The Measurement Mask

In this section, our objective is to design a measurement mask, or a linear

filter, that will be applied to the measured data to reduce the normalized inner

product between the columns of G, i.e., rgp,q .

Recall from Chapter 2 that the measurements Γi due to the ith light source is

given as Γi = Bix where

Bi = [g1ϕ
i
ex,1, g2ϕ

i
ex,2, ..., gNϕ

i
ex,N ].

If a linear transform is applied to the measurements, the new set of measure-

ments becomes:

Γi
pre =M dΓ

i =M dB
ix (6.28)

whereM d ∈ RNd×Nd is the linear (not necessarily Toeplitz) filter, which we refer to

as the measurement mask. We note that

M dB
i = [M dg1ϕ

i
ex,1,M dg2ϕ

i
ex,2, ...,M dgNϕ

i
ex,N ]. (6.29)

Let

Gpre =M dG (6.30)

be the preconditioned G matrix. We choose to design M d so that the normalized

inner products between different columns of G are minimized.

Designing the measurement mask, M d, is similar to designing the optical

mask. Following a step similar to the one in (6.20), we obtain

GGTMT
dM dGG

T ≈ GGT . (6.31)
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Let G = U dΣdV
T
d be the singular value decomposition of G. We choose

M d = Λ
−1/2
d UT

d (6.32)

where Λd = ΣdΣ
T
d . The preconditioned G matrix after the application of M d

becomes

Gpre =M dΦ = Λ
−1/2
d UT

dU dΣdV d = Λ
−1/2
d ΣdV d. (6.33)

Note that we have designed an Nd ×Nd measurement mask M d by precondi-

tioning G. In Chapter 5, an alternative approach in designing a measurement mask

is to directly precondition the forward sensing matrix A. Recall from Chapter 5,

the measurement mask becomes

MA = (ΣAΣ
T
A)

−1/2UT
A (6.34)

where UAΣAV
T
A is the singular value decomposition of A. Note that applyingMA

on A results in the pseudo-inverse solution of the linear system y ≈ Ax. While

applyingMG andM s on G and Φ, respectively, does not result in the the pseudo-

inverse of A. Unlike G, A usually has a large number of singular values equal or

close to 0 in practice. This can be intuitively understood as follows: The elements

of G represents the emission light field at each detector due to a unit point source at

each voxel location. The elements of A, on the other hand, represents the emission

light field at each detector due to a source at each voxel location whose intensity

is proportional to the excitation light field generated by a unit light source at the

boundary. Thus, if the fluorophore is not sufficiently excited at all locations, A

may have singular values close to zero resulting in zero emission field at all detector

locations due to a non-zero fluorophore concentration. On the other hand, G is

less likely to have singular values close to zero, since all voxel locations are assumed

to be excited uniformly. As a result, the measurement mask MA is typically ill-

conditioned with its condition number approaching to infinity. Therefore, applying

MA is likely to severely amplify the additive noise. M d, on the other hand, is well-

conditioned with a much smaller condition number. Additionally, designing M d is
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computationally more efficient than designing MA, since M d is N2
s times smaller

in dimension than MA.

Figure 6.1: The block diagram of the FDOT imaging process with optical
and measurement masks.

6.3.3 Forward Sensing Matrix Construction

Fig. 6.1 summarize Section 6.3.1 and 6.3.2 and shows the algorithmic descrip-

tion of the imaging process with optical and measurement masks. An overview of

our method is demonstrated in Algorithm 3. The new forward sensing matrix Apre

composed of the columnwise Kronocker product of Φpre and Gpre ,

Apre = [ϕpre,1 ⊗ gpre,1, ...,ϕpre,N ⊗ gpre,N ] (6.35)

where ϕpre,i and gpre,i, i = 1, ..., N denote the columns of Φpre and Gpre.
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Algorithm 3 Optical and measurement masks design and application.

STEP 1: Design the optical masks:
· Calculate the excitation light fields, and form the matrix Φ;
· Singular value decomposition of Φ: Φ = U sΣsV

T
s ;

· Calculate the optical maskS: M s = (ΣsΣ
T
s )

−1/2UT
s ;

· Decompose M s into positive and negative parts: M s =M
(+)
s − (−M (−)

s ).
STEP 2: Design the measurement masks:

· Calculate the Green’s function, and form the matrix G;
· Singular value decomposition of G: G = UdΣdV

T
d ;

· Calculate the measurement masks: Md = (ΣdΣ
T
d )

−1/2UT
d .

STEP 3: Application of the optical and measurement masks:
while k ≤ Ns do

Get the kth row m
(+)
k (m

(−)
k ) from M

(+)
s (−M (−)

s );

Set the intensity of point sources as the values in m
(+)
k (m

(−)
k ), and illuminate the

imaging domain;
Collect the measurements Γk+ (Γk−), Γ

k = Γk+ − Γk−;
Γk
pre =MdΓ

k;
end while
STEP 4: Forming the forward sensing matrix and measurement vector:

· Φpre =M sΦ, Gpre =MdG.
· Apre = [ϕpre,1 ⊗ gpre,1, ...,ϕpre,N ⊗ gpre,N ];

· Γpre = [Γ1
pre

T
, ...ΓNs

pre
T
]T .

6.4 Numerical Simulations

In this section, we extensive present numerical simulations to demonstrate

the effects of the optical and measurement masks on the coherence of the forward

sensing matrix as well as on the quality of the reconstructed FDOT images.

6.4.1 Simulation Setup

We set up a 6 × 6 × 6 cm3 cubic phantom shown in Fig.6.2. We set the

background absorption coefficient to µam = 0.05 cm−1, and the diffusion coefficient

to D(r) = 0.04 cm−1 at both the excitation and emission wavelengths. The circular

heterogeneity with radius r simulated the fluorophore concentration with fluorophore

absorption coefficient µaxf = 0.005 cm−1. 48 sources (shown in squares) and 48

detectors (shown in triangles) are uniformly placed at the top and bottom of the

imaging domain. We discretized the imaging domain into 20 × 20 × 20 voxels.

Thus, the forward sensing matrix is 2304 by 8000. We simulated different data sets

corresponding to 3 different values of the radius r : 0.5, 0.75, and 1.0 cm.
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Figure 6.2: An illustration of the phantom and source-detector configu-
ration.
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Figure 6.3: The optical and measurement masks used with simulated
data.

To simulate the measurement noise, we assume that, when a sufficiently large

number of photons are detected, the noise at each detector can be approximated by

a Gaussian random variable with its variance proportional to the magnitude of the

detector reading. The SNR of the measurements is defined as

SNR = 20 log10
∥Γ∥2
∥ϵ∥2

. (6.36)

We simulated three sets of noise contaminated measurements with approximately

10%, 3% and 1% noise, corresponding to the SNR value of 20 dB, 30 dB and 40 dB,

respectively.



127

0 2 4 6 8 10 12

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r A
p,

q

Both masks
Optical masks
Measurement masks
No masks

Both masks: 47.5%
Optical masks: 76.5%
Measurement masks: 62.1%
No masks: 100%

Relative AUC

(a) Top 40% values of all the normalized inner products

(b) Cumulative coherence

Figure 6.4: The normalized inner products and cumulative coherence of
the forward matrix before and after applying optical and mea-
surement masks.

6.4.2 Simulation Results - Coherence of the FDOT Forward Matrix

We evaluated the coherence of the forward matrix for four different cases: (1)

no masks corresponding to the time-multiplexed point source configuration with

unit intensity; (2) only optical maskM s; (3) only measurement maskM d; and (4)

both optical and measurement masks. Fig. 6.3(a) and 6.3(b) show M s and M d

matrices, respectively. Fig. 6.4(a) shows the largest 40% of all the normalized inner
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products between different columns of the forward sensing matrix, arranged in a

descending order. The remaining 60% of the normalized inner products between

different columns are close to 0. Clearly, application of either or both masks re-

duce the large correlations between different columns of A. We observe that the

measurement mask is more effective than the optical mask alone in reducing the

coherence of the forward matrix. However, the application of both masks provides

significantly better improvement than that of either masks alone. To quantify the

improvement, we computed the area under the curves (AUC) for each case, and the

relative percentages of AUC with respect to the no-mask case. The results of relative

AUC are given in the box in Fig. 6.4(a). We see that the optical and measurement

masks alone reduce the AUC to 76.5% and 62.1%, respectively as compared to the

no-mask case. When both masks are applied, the AUC reduces to 47.5%.

Fig. 6.4(b) shows the plot of the cumulative coherenceM1(k,A) as a function

of k. As stated before, the cumulative coherence is a nondecreasing function of k.

WhenM1(k,A) increases slowly, the forward matrix is said to be quasi-incoherent

[77]. From Fig. 6.4(b), when optical or measurement masks are applied to the light

sources and detectors, the cumulative coherence increases much slower as a function

of k than that of no-mask case. The average slope of each curve is provided in the

box in Fig. 6.4(b) for a quantitative comparison.

Figure 6.5: The cross section of the phantom at z = 3 (middle) (r =
0.5cm).

6.4.3 Simulation Results - Image Reconstruction

In this simulation, we reconstructed the fluorophore concentration map at 3

different sparsity levels corresponding to 3 different radii using measurements at 3
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different noise levels. In each case, we used the forward matrix without applying any

masks, with either optical or measurement masks alone, and with both masks applied

simultaneously. We used six different sparsity promoting reconstruction methods

available in the CS literature (See Chapter 4 for more details.). Specifically, we used

StOMP [62], ROMP [63], CoSaMP [65], BP-interior [67], IST [69], and GPSR [71].

The first three are greedy type algorithms, and the last three are convex relaxation

based algorithms.

We used NMSE to measure the accuracy of the reconstructed images,

NMSE =
∥xtrue − xrecon∥2

# of voxels
. (6.37)

We averaged the NMSE of the reconstructed images over 50 realizations of noise.

The results are tabulated in Table 6.1. The results show that, in general, the NMSE

of the reconstructed images increases as the sparsity level of the signal increases.

By applying the optical or measurement masks, the NMSE can be reduced for

all reconstructions. Table 6.1 shows a greater reduction in NMSE for greedy-type

algorithms than that of convex relaxation techniques.

Fig. 6.5 shows the cross sections of the reconstructed images at the middle

of the imaging domain when the radius of the heterogeneity is r = 0.5 cm. The

cross sections of the reconstructed fluorophore yield maps using greedy type algo-

rithms are shown in Figure6.6, and those using convex relaxation techniques are

shown in Figure6.7. For each type of algorithm, the application of the optical and

measurement masks results in reconstructed images that are in better agreement

with the original fluorophore yield map. The visual improvements are most obvious

for the greedy algorithms, consistent with the NMSE results. In the greedy type

algorithms, the support of the signal is determined by selecting the columns of the

forward matrix that have the greatest correlation with the measurements. The re-

duction of the normalized inner products between different columns in the forward

matrix has a direct effect on the column selection procedure at each iteration.
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Table 6.1: NMSE of the reconstructed images (10−4).

Algorithms r = 0.5 cm r = 0.75 cm r = 1.0 cm
StOMP 40 dB 30 dB 20dB 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB
No masks 2.05 6.47 12.1 3.87 14.5 28.0 9.44 31.8 63.7
M s 0.98 2.05 7.04 1.90 6.47 13.9 5.00 13.2 33.3
M d 0.90 1.95 6.41 1.76 5.77 9.26 4.37 11.7 33.0

Both masks 0.55 1.31 2.58 0.93 2.63 5.55 2.12 7.67 16.4
ROMP 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB

No masks 1.66 5.85 13.2 3.68 13.0 31.6 8.01 29.0 64.2
M s 0.68 2.45 6.97 2.19 6.39 19.8 3.16 15.4 38.1
M d 0.54 2.54 6.62 1.89 5.19 16.9 3.71 13.9 35.3

Both masks 0.35 1.55 2.49 0.80 2.58 5.82 1.76 8.40 19.9
CoSaMP 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB
No masks 2.11 6.35 13.0 5.97 14.5 28.9 11.8 34.7 67.8
M s 1.69 2.11 5.98 3.69 8.96 13.4 4.29 16.1 35.6
M d 1.13 2.08 6.30 3.08 7.37 11.9 5.35 15.9 32.1

Both masks 0.61 1.37 3.45 1.31 2.77 6.08 2.66 8.06 18.5
BP-interior 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB
No masks 1.56 3.03 7.05 2.44 7.13 15.3 5.03 20.8 39.1
M s 1.18 2.31 4.85 1.97 5.07 10.2 4.02 10.8 23.4
M d 0.93 2.03 4.50 2.08 4.37 9.93 3.68 8.91 20.1

Both masks 0.39 1.28 1.98 1.09 2.06 3.85 1.84 5.18 9.11
IST 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB

No masks 1.20 3.55 7.49 3.51 6.97 19.2 6.38 23.3 49.9
M s 0.89 2.05 3.91 2.31 5.32 11.8 5.06 11.7 26.9
M d 0.92 1.79 3.61 1.93 4.19 10.0 4.41 9.95 24.3

Both masks 0.46 1.19 2.38 0.81 1.86 4.36 2.03 6.28 12.5
GPSR 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB 40 dB 30 dB 20 dB

No masks 1.29 3.28 7.07 3.41 7.13 17.1 5.51 22.2 46.6
M s 0.97 2.27 4.08 2.03 5.01 13.5 4.92 11.3 29.0
M d 0.82 1.76 3.26 1.50 3.76 10.0 4.83 8.74 24.8

Both masks 0.40 1.23 2.56 0.88 1.68 3.82 2.15 5.45 10.2

6.5 Silicon Phantom Experiment

In this section, we present the effect of using optical and measurement masks

on the coherence of the forward sensing matrix and the reconstructed images using

real data collected in a silicon phantom experiment.
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6.5.1 Real Phantom Configuration

Figure6.8(a) shows an illustration of the cylindrical phantom used in the ex-

periment. The phantom was made of silicone rubber with diameter of about 2 cm,

and length of 4 cm. The phantom had homogeneous absorption coefficient µa = 0.2

cm−1 and scattering coefficient µ′
s = 12cm−1 (D = 1/3(µa+µ

′
s)) at both the excita-

tion and emission wavelengths (743 nm and 767 nm). The silicon phantom contained

a hollow cylindrical tube in the middle with approximately 3mm in diameter. which

was filled with intralipid and ink to mimic the same optical properties as the back-

ground. The intralipid and ink contained 1 micromolar of Cy7 as the fluorophore.

The cross section of the fluorophore yield at z = 1 is shown in Figure 6.8(b).

The FDOT measurements were collected using the FDOT imaging system

reported in [132], as illustrated in Figure6.9. Specifically, focused collimated laser

beams were used as point light sources to excite the fluorophore. We had 60 point

sources in total. The fluorescence measurements were collected by an electrically

cooled CCD camera. The reading of the detector was recorded as the mean value of

a subregion with 5×5 pixels around each detector location. We selected 60 detector

locations. When the imaging domain is excited by an illumination pattern, i.e.,

multiple point sources of different intensities, we retrospectively approximated the

measurements at the detectors by a combination of the measurements due to each

point sources. We discretized the imaging domain into 20 × 20 × 20 voxels. Thus,

the forward sensing matrix is of dimension 3600 by 8000.

6.5.2 Coherence of the FDOT Forward Matrix

We evaluated the effect of the optical and measurement masks on the coherence

of the forward matrix and on the quality of reconstructed images. Figure 6.10(a) and

6.10(b) show the optical and measurement masks, respectively. Figure 6.11(a) shows

the largest 40% of all the normalized inner products between different columns of the

forward sensing matrix, arranged in a descending order. Note that the remaining

60% of the normalized inner products between different columns are close to 0.

Both the optical and measurement masks decrease the normalized inner products

between different columns. The relative percentages of the AUC as compared to the
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no-masks case are given in the box in Figure 6.11(a). We see that the optical and

measurement masks alone reduce the AUC to 74.4% and 64.1% as compared to the

no-mask case. When both masks are applied, the AUC reduces to 45.0%.

Figure 6.11(b) shows the cumulative coherenceM1(k,A) of the forward ma-

trix. We see a reduction in the average slope of each curve as shown in the box in

Figure 6.11(b).

6.5.3 Image Reconstruction

The cross section of the original phantom at z = 1 (middle) is shown in Figure

6.8(b). The cross sections of the reconstructed fluorophore concentration maps of the

silicon phantom using different greedy algorithms are shown in Figure6.12 and those

using convex relaxation techniques are shown in Figure6.13. We observe that the

application of optical and measurement masks improves the reconstruction results

for all algorithms. Similar to the numerical simulation results, the improvements in

the visual quality are most noticeable when the greedy algorithms are used.

6.6 Conclusion

In this chapter, we presented a method of designing illumination and detection

patterns for FDOT imaging to optimize the reconstruction of sparse fluorophore

concentration maps. We showed that the FDOT forward matrix can be represented

as the Kronecker product of two matrices. The first matrix is determined by the

excitation light field, and the second matrix is determined by the Green’s function

of the emission light field. We showed that the incoherence of the FDOT forward

matrix is related to the incoherence of these two matrices and design preconditioners

to reduce the incoherence of these matrices. The preconditioners result in a set of

intensity patterns for multiple spatially distributed sources illuminating the imaging

domain simultaneously and a linear filter applied to the corresponding measurements

collected at multiple spatially distributed detectors. To reconstruct the fluorophore

concentration map, we used sparse signal recovery techniques, including both the

greedy type and convex relaxation algorithms. We showed that the application

of intensity patterns and filtering of the measurements in conjunction with sparse
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signal recovery techniques improves the visual quality of reconstructed images and

reduces the mean square error in both numerical simulations and in a real phantom

experiment.

Our approach can be viewed as a method of determining the optimal source

and detector locations and source intensities. Given a fluorophore designed to accu-

mulate in certain regions and anatomical a priori information, optimal geometry for

source-detector locations and source intensities can be determined via numerical sim-

ulations prior to the imaging process. This may eliminate unnecessary illumination,

optimize imaging process and result in better image quality than the conventional

FDOT imaging process.
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(a) StOMP (no masks) (b) ROMP (no masks) (c) CoSaMP (no masks)

(d) StOMP (optical masks) (e) ROMP (optical masks) (f) CoSaMP (optical masks)

(g) StOMP (measurement
mask)

(h) ROMP (measurement
mask)

(i) CoSaMP (measurement
mask)

(j) StOMP (both masks) (k) ROMP (both masks) (l) CoSaMP (both masks)

Figure 6.6: The cross sections of the reconstructed images at z = 3 (mid-
dle) of the phantom using greedy algorithms, r = 0.5 cm, 1%
noise.
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(a) BP-interior (no masks) (b) IST (no masks) (c) GPSR (no masks)

(d) BP-interior (optical masks) (e) IST (optical masks) (f) GPSR (optical masks)

(g) BP-interior (measurement
masks)

(h) IST (measurement masks) (i) GPSR (measurement masks)

(j) BP-interior (both masks) (k) IST (both masks) (l) GPSR (both masks)

Figure 6.7: The cross sections of the reconstructed images at z = 3
(middle) of the phantom using convex relaxation algorithms,
r = 0.5 cm, 1% noise.
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(a) The silicon phantom (b) The cross section of the fluorophore yield
at z = 1 (middle) of the silicon phantom

Figure 6.8: The configuration of the real silicon phantom and the cross
section of the fluorophore yield.

Figure 6.9: The imaging system used in the silicon phantom experiment.



137

1 10 20 30 40 50 60
1

5

10

15

20

25

30

35

40

45

50

55

60

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(a) Optical mask

1 10 20 30 40 50 60
1

5

10

15

20

25

30

35

40

45

50

55

60

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(b) Measurement mask

Figure 6.10: The optical and measurement masks used with simulated
data.
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(a) StOMP (no masks) (b) ROMP (no masks) (c) CoSaMP (no masks)

(d) StOMP (optical masks) (e) ROMP (optical masks) (f) CoSaMP (optical masks)

(g) StOMP (measurement
masks)

(h) ROMP (measurement
masks)

(i) CoSaMP (measurement
masks)

(j) StOMP (both masks) (k) ROMP (both masks) (l) CoSaMP (both masks)

Figure 6.12: The cross sections of the reconstructed phantom at z = 1
(middle) using greedy algorithms.
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(a) BP-interior (no masks) (b) IST (no masks) (c) GPSR (no masks)

(d) BP-interior (optical masks) (e) IST (optical masks) (f) GPSR (optical masks)

(g) BP-interior (measurement
masks)

(h) IST (measurement masks) (i) GPSR (measurement masks)

(j) BP-interior (both masks) (k) IST (both masks) (l) GPSR (both masks)

Figure 6.13: The cross sections of the phantom at z = 1 (middle) using
convex relaxation techniques.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we addressed the ill-posedness of the FDOT inverse problem by

(1) applying traditional regularization methods that suits to the specific nature of

the fluorophore map reconstruction problem, and (2) exploiting the sparse nature of

the fluorophore yield in the imaging domain based on CS framework. We modeled

the light propagation in the imaging domain by two coupled diffusion equations

in the frequency domain at the excitation and emission wavelength respectively.

Based on the assumption of weak fluorophore, we formulated the FDOT image re-

construction as a linearized inverse problem, and used FEM to discritize the imaging

domain.

In Chapter 3, we have reviewed a number of state-of-art regularization tech-

niques in literature, and proposed a combined l1-l2-norm regularization technique.

The proposed algorithm is capable of preserving the foreground region while smooth-

ing out noise in the background region, which has improved upon state-of-the-art

approaches.

In Chapter 4-6, we exploited the sparsity of the fluorophore concentration

map and applied the CS framework for FDOT reconstruction. We noticed that

the fluorophore distribution in the imaging domain is often very sparse. This is

because that most optical fluorophore are “targeted probes” that are designed to

accumulate in relatively small, specific regions in tissue. To summarize the results,

we have covered the following topics:

1. In Chapter 4, we first studied various sparse signal recovery techniques in CS

literature, and applied these techniques to reconstruct the fluorophore yield

in the FDOT inverse problem. The results from both numerical simulation

and real phantom data have shown that in general, the sparse signal recovery

algorithms provide better reconstruction results compared to the traditional

non-sparsity promoting regularization techniques. The relaxation algorithms

141
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usually have better performances compared to the greedy-type algorithms.

2. Next, we addressed the incoherence property of the FDOT forward sensing

matrix based on CS framework, and improved the incoherence of the FDOT

forward sensing matrix for better FDOT reconstruction performance. In chap-

ter 5, we designed a preconditioning matrix to apply on the FDOT forward

sensing matrix. We have shown that the application of the preconditioning

matrix reduces the coherence of the forward sensing matrix. The fluorophore

concentration maps recovered from the preconditioned FDOT imaging sys-

tem is more accurate compared to those recovered from the un-preconditioned

imaging system.

3. In Chapter 6, we improved the incoherence of the FDOT forward sensing

matrix by designing the light illumination and detection patterns. We decom-

posed the FDOT forward matrix into the Kronecker product of two underlying

matrices. The first matrix depends on the excitation light fields and the con-

figuration of light sources, and the second matrix depends on the emission

light fields and the configuration of detectors. The incoherence of the FDOT

forward sensing matrix is related to the incoherence of these two underlying

matrices. By designing the light illumination and detection patterns, we ap-

plied two preconditioners to reduce the coherence of these two matrices, which,

in turn, reduces the coherence of the FDOT forward matrix. We showed the

improvement of the FDOT reconstruction performances using the illumination

and detection patterns in 3D numerical simulation and real phantom experi-

ments.

Different from Chapter 5 where the FDOT forward sensing matrix is precon-

ditioned directly, the method we used in Chapter 6 decomposes the forward

matrix into two matrices with much smaller dimensions and condition numbers

compared to the original one. This design is able to avoid noise amplification

due to large condition number of the preconditioning matrix, thus is more

robust to measurement noise.
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7.2 Future Work

Based on the perspectives, methods, and algorithms developed in this thesis,

we propose some future work in the following directions:

1. In this thesis, we focused on the linearized FDOT inverse problem. We note

that the approach introduced in this thesis can be easily extended to nonlinear

FDOT inverse problem within an iterative perturbation approach.

2. In FDOT reconstruction, we focused on estimating the fluorophore concentra-

tion using the zero frequency continuous wave method. However, the approach

we presented in this thesis can be generalized to multiple frequency FDOT

imaging system. The frequency information is related to the forward sensing

matrix configuration, and can be utilized to improve the incoherence of the

FDOT forward sensing matrix.

3. The discretization method has a directly impact on the FDOT forward sensing

matrix formulation. In this thesis, we used finite element method with uniform

mesh for discretization. An alternative approach is to use the adaptive mesh

techniques. With adaptive mesh techniques, it is possible to eliminate coherent

columns in the forward matrix which correspond to adjacent locations in the

imaging domain, and thus improve the sparse fluorophore concentration map

reconstruction.

4. In this thesis, we designed light illumination and detection patterns based on

a number of point sources and detectors with pre-determined locations. How-

ever, the locations of light sources and detectors are also important factor in

formulating the forward sensing matrix, which can be modeled as random vari-

ables. The incoherence of the forward sensing matrix can be further improved

by optimization over these locations.

5. The fluorophore distribution map is typically sparse in nature, however, it

can be further sparsified by a number of basis functions, e.g., the first order

derivative basis functions, or the shape based basis functions. The sparse
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signal recovery techniques developed in this thesis can be extended to combine

various basis functions for sparse FDOT image reconstruction.
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APPENDIX A

Calculation of the Combined l2-lp norm Regularization

Coefficients

The penalty function rcom(x) is given as

rcom(x) =


c1x

2, |x| ≤ κ1;

c2|x|p + c3, κ1 ≤ |x| ≤ κ2;

c4x
2 + c5|x|p + c6, |x| > κ2.

(A.1)

rcom(x) is continuous and differentiable ∀x ∈ R, which consists of three parts. Let

r
(1)
com(x), r

(2)
com(x) and r

(3)
com(x) denote the three parts respectively:

r(1)com(x) = c1x
2, |x| ≤ κ1; (A.2)

r(2)com(x) = c2|x|+ c3, κ1 ≤ |x| ≤ κ2; (A.3)

r(3)com(x)c4x
2 + c5|x|+ c6, |x| > κ2. (A.4)

rcom(x) is continuous and differentiable at the joint points x = κ1, κ2:

r(1)com(κ1) = r(2)com(κ2) (A.5)

dr
(1)
com(x)

dx
|x=κ1 =

dr
(2)
com(x)

dx
|x=κ1 (A.6)

r(2)com(κ2) = r(3)com(κ2), (A.7)

r
(2)
com(x)

dx
|x=κ2 =

dr
(3)
com(x)

dx
|x=κ2 . (A.8)

The penalty function rcom(x) is impose smaller penalty than the quadratic penalty

when x ∈ [α, β], and larger penalty when x /∈ [α, β]. Since both rcom(x) and r2(x)

are continuous functions, thus

rcom(α) = r2(α) = α2. (A.9)
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Similarly, we have

rcom(β) = r2(β) = β2 (A.10)

From (A.5)-(A.10), we have six equations to solve for six unknown coefficients c1,

c2, c3, c4, c5 and c6, and the solution is given as:

c1 =
pα2κp−2

1

2αp + (p− 2)κp1
, (A.11)

c2 =
2α2

2αp + (p− 2)κp1
, (A.12)

c3 =
(p− 2)α2κp1

2αp + (p− 2)κp1
, (A.13)

c4 =
pκp−1

2 (β2 − c2βp − c3)
pκp−1

2 β2 + (2− p)κp+1
2 − 2κ2βp

, (A.14)

c5 = c2 −
2κ2−p

2 c4
p

, (A.15)

c6 = β2 − β2c4 − βpc5. (A.16)



APPENDIX B

Upper Bounds for Cumulative Coherence

We recall that the definition of the cumulative coherence,

M1(k,A) = max
p

max
|Q|=k,p/∈Q

∑
q∈Q

| < ap,aq > |
∥ap∥2∥aq∥2

= max
p

max
|Q|=k,p/∈Q

∑
q∈Q

|rAp,q |. (B.1)

Let

R(p,Qk) =
∑

|Qk|=k,p/∈Qk,q∈Qk

|rAp,q |, (B.2)

and we assume that

R(p0, Qk0) = max
p,Qk

R(p,Qk) =M1(k,A), such that |Qk| = k and p /∈ Qk. (B.3)

We note that

R(p0, Qk0) =
∑
q∈Qk0

rAp0,q
=
∑
q∈Qk0

rϕp0,q
rgp0,q ≤

1

2

∑
q∈Qk0

(r2ϕp0,q
+ r2gp0,q). (B.4)

Let Φ̃ and G̃ denote the Φ and G matrices with each column normalized to unit

respectively. Φ̃Qk0
is the Ns × k submatrix of Φ̃ composed the columns in Qk0 , and

G̃Qk0
is the Nd × k submatrix of G̃ composed the columns in Qk0 . Thus, we have

∑
q∈Qk0

(r2ϕp0,q
+ r2gp0,q) = ∥Φ̃T

Qk0
ϕ̃p0∥

2
2 + ∥G̃

T

Qk0
ϕ̃p0∥

2
2

≤ λmaxϕk
∥ϕ̃p0∥

2
2 + λmaxgk

∥g̃p0∥
2
2 = λmaxϕk

+ λmaxgk
,(B.5)

where λmaxϕk
is the maximum eigenvalue of the k × k matrix Hϕ = Φ̃

T

Qk0
Φ̃Qk0

,

and λmaxgk
is the maximum eigenvalue of the k × k matrix Hg = G̃

T

Qk0
G̃Qk0

. The

maximum value of λmaxϕk
and λmaxgk

is k. From (B.3)-(B.5),

M1(k,A) ≤ 1

2
(λmaxϕk

+ λmaxgk
) (B.6)
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LetHϕ = Φ̃
T
Φ̃ andHg = G̃

T
G̃ denote the Gram type matrix, and let λϕ1 ≥

λϕ2 ≥ ... λϕNs
≥ 0 denote the nonzero eigenvalues of Hϕ, λg1 ≥ λg2 ≥ ... λgNd

≥ 0

denote the nonzero eigenvalues of Hg, we have

∥Φ̃T
Φ̃− IN∥2F =

Ns∑
i=1

λ2ϕi
−N and ∥G̃T

G̃− IN∥2F =

Nd∑
i=1

λ2gi −N. (B.7)

We derive the ratio r1 between λmaxϕk
and ∥Φ̃T

Φ̃− IN∥2F as follows,

r1 =
λmaxϕk

∥Φ̃T
Φ̃− IN∥2F

=
λmaxϕk∑Ns

i=1 λ
2
ϕi
−N

≤
λmaxϕk
N2

Ns
−N

≤ k
N2

Ns
−N

. (B.8)

The first inequality is because if all the eigenvalues λϕi
(i = 1, ..., Ns) are equal to

each other (λϕi
= N

Ns
), their square summation is minimum. The second inequality

is because that λmaxϕk
has maximum value k.

However, for large k values, the upper bound derived in (B.8) seem to be too

large for the ratio r1. In this case, we notice that Φ̃Qk0
is a submatrix of Φ̃, thus

λϕ1 ≥ λmaxϕk
, we have

r1 =
λmaxϕk

∥Φ̃T
Φ̃− IN∥2F

=
λmaxϕk∑Ns

i=1 λ
2
ϕi
−N

≤ λϕ1∑Ns

i λ2ϕi
−N

≤ λϕ1

λ2ϕ1
+

(N−λϕ1
)2

Ns−1
−N

≤ Ns − 1

2(
√
NsN2 −N2

sN +NsN −N)
.(B.9)

From both (B.8) and (B.9),

r1 =
λmaxϕk

∥Φ̃T
Φ̃− IN∥2F

≤ min{ kNs

N2 −NNs

,
Ns − 1

2(
√
NsN2 −N2

sN +NsN −N)
}.

(B.10)
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Similarly, we derive the ratio between λmaxgk
and ∥G̃T

G̃− IN∥2F is,

r2 =
λmaxgk

∥G̃T
G̃− IN∥2F

≤ min{ kNd

N2 −NNd

,
Nd − 1

2(
√
NdN2 −N2

dN +NdN −N)
}.

(B.11)

SinceM1(k,A) ≤ 1
2
(λmaxϕk

+ λmaxgk
),

M1(k,A) ≤ r1
2
∥Φ̃T

Φ̃− IN∥2F +
r2
2
∥G̃T

G̃− IN∥2F

≤ max{r̄1, r̄2}
2

(∥Φ̃T
Φ̃− IN∥2F + ∥G̃T

G̃− IN∥2F ), (B.12)

where

r̄1 = min{ kNs

N2 −NNs

,
Ns − 1

2(
√
NsN2 −N2

sN +NsN −N)
}, (B.13)

and

r̄2 = min{ kNd

N2 −NNd

,
Nd − 1

2(
√
NdN2 −N2

dN +NdN −N)
}. (B.14)



APPENDIX C

Equivalence of the Normalized Forward Sensing Matrix

Consider normalizing every column of the matrices Φ and G to unit,

Φ̃ = ΦD−1
ϕ and G̃ = GD−1

g (C.1)

where Dϕ and Dg are two diagonal matrices, with diagonal entries equal to the

l2-norms of the columns of Φ and G, i.e.,

dϕk,k
= ∥ϕk∥2 and dgk,k = ∥gk∥2, for k = 1, 2, ..., N.

Let ϕ̃k = 1
dϕk,k

ϕk denote the kth column of Φ̃, and g̃k = 1
dgk,k

gk denote the kth

column of the matrix G̃, the forward sensing matrix A can be reformulated as

A = [(dϕ1,1dg1,1)ϕ̃1 ⊗ g̃1, ..., (dϕN,N
dgN,N

)ϕ̃N ⊗ g̃N ]

= ÃDϕDg (C.2)

where Ã = [ϕ̃1⊗ g̃1, ..., ϕ̃N ⊗ g̃N ] is the forward sensing matrix with all the columns

normalized to unit.

The objective is to recovery the fluorophore yield x from the linear measure-

ment system,

y = Ax+ ϵ, (C.3)

which can be reformulated as

y = ÃDϕDgx+ ϵ = Ãx̃+ ϵ, (C.4)

where x̃ = DϕDgx. We recover x̃ instead of x from the equivalent normalized

forward sensing matrix Ã. Note that x̃ has the same sparsity level as x. The
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original fluorophore yield x can be easily derived by

x =D−1
ϕ D

−1
g x̃. (C.5)


