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ABSTRACT

In this thesis, we study the value of near infra-red (NIR) optical imaging and spec-
troscopy techniques for breast cancer detection, diagnosis, and staging. In particu-
lar, we develop new mathematical models and computational techniques to investi-
gate the value of endogenous contrast provided by NIR imaging and spectroscopy;
and the pharmacokinetic information provided by optical fluorophores, specifically,
indocyanine green (ICG).

First, we developed three different compartmental models to model the phar-
macokinetics of ICG for healthy and malignant tissue. We introduced a systematic
and robust approach to estimate and analyze ICG pharmacokinetics based on the
extended Kalman filtering (EKF) framework. Additionally, we introduce an infor-
mation theoretic criteria for the best compartmental model order selection. We
tested our approach using the ICG concentration data acquired from four Fischer
rats carrying adenocarcinoma tumor cells. Our animal study indicates that phar-
macokinetic rates are potentially useful parameters for tumor differentiation and
staging.

Secondly, we develop a method of forming pharmacokinetic-rate images of
ICG. To form pharmacokinetic-rate images, we first obtain a sequence of ICG
concentration images using the differential diffuse optical tomography technique.
We next employ a two-compartment model composed of plasma, and extracellular-
extravascular space (EES), and estimate the pharmacokinetic-rates and concentra-
tions in each compartment using the EKF framework. The pharmacokinetic-rate
images of the three patient show that the rates from the tumor region and outside
the tumor region are statistically different. Additionally, the ICG concentrations
in plasma, and the EES compartments are higher around the tumor region agree-
ing with the hypothesis that around the tumor region ICG may act as a diffusible
extravascular flow in compromised capillary of cancer vessels.

Thirdly, we present a new method to form pharmacokinetic-rate images of op-

tical fluorophores directly from NIR boundary measurements. We first derive a map-

Xiv



ping from spatially resolved pharmacokinetic-rates to NIR boundary measurements
by combining compartmental modeling with a diffusion based NIR photon propaga-
tion model. We express this mapping as a state-space equation. Next, we introduce
a spatio-temporal prior model for the pharmacokinetic-rate images and combine it
with the state-space equation. We address the image formation problem using the
EKF framework. We analyzed the computational complexity of the resulting algo-
rithms and evaluate their performance in numerical simulations. Simulation results
show that the resulting algorithms are more robust and lead to higher signal-to-noise
ratio as compared to existing approaches where the reconstruction of concentrations
and compartmental modeling are treated separately. Additionally, we reconstructed
pharmacokinetic-rate images using in vivo data obtained from three patients with
breast tumors. The reconstruction results show that the pharmacokinetic-rates of
ICG are higher inside the tumor region as compared to the surrounding tissue.
Finally, we present a study on the evaluation of a set of optical features ex-
tracted from in vivo NIR spectroscopy data obtained from 116 patients with breast
tumors for breast cancer diagnosis. The in vivo data was collected from 44 patients
with malignant and 72 patients with benign tumors. Three features, relative blood
volume concentration, oxygenation desaturation and the size of the tumor, are used
to differentiate benign and malignant tumors. The diagnostic capability of these
features are evaluated using different classifiers including nearest mean, neural net-
work, support vector machine, Parzen, and normal density-based classifiers. The
area under the receiver operating characteristics curve of the nearest mean classifier
using the three features yields the best value of 0.91. This result suggests that rela-
tive blood volume concentration, oxygenation desaturation and size information can

differentiate malignant and benign breast tumors with a relatively high precision.

XV



CHAPTER 1

1.1 Introduction
1.1.1 Breast Cancer Statistics

American cancer society (ACS) estimates that a total of nearly 200,000 new
cases of invasive breast cancer will occur in women in the United States during the
year 2008 [1]. Currently, there are over 2 million women living in the US who have
been diagnosed with and treated for breast cancer. A total of 40,500 women are
predicted to die from breast cancer in the US during the year 2008 as per ACS
estimates [1]. Breast cancer continues to be the leading cancer among American
women and is second to lung cancer in cancer deaths. Breast cancer is the leading
cause of cancer deaths among women ages 40-59.

Early detection is critical for effective treatment of breast cancer. Patients with
tumors 1 cm or less in size have more than 90% long-term survival [217]. Imaging of
breast tumors plays an important role in the early detection. Although the number
of breast cancer patients continues to increase since 1980, due to the new imaging
and screening modalities, the death rates from breast cancer have declined in the

US by 2.8% every year from 1990 to 2008.

1.1.2 Breast Imaging Modalities

There are a number of well established imaging modalities for breast cancer
screening, diagnosis and staging. These include X-ray mammography, ultrasound,
and magnetic resonance imaging (MRI). There are also emerging modalities such
as positron emission tomography (PET) scan, and near-infrared (NIR) techniques
that are currently being evaluated for breast cancer.

Currently, the most common screening technique is X-ray mammography which
is a specific type of imaging that uses low-dose X-rays to image and examine breast
tumors [3-5,211,212]. Although it is of great importance to breast cancer screening,
it has a number of limitations. Every time a woman undergoes mammography, there

is an 15% chance that the result is false positive, which can lead to additional, and



costly, imaging studies and biopsies. Approximately 15% of breast tumors are un-
detectable by X-ray mammography [213,214]. The method also cannot accurately
distinguish between benign and malignant tumors. Additionally, mammography ex-
poses sensitive tissue to radiation and its exposure is a known risk factor for breast
cancer.

Ultrasound is another imaging modality that is used for breast cancer detec-
tion and diagnosis [6-8,213,214]. The major advantage of ultrasound is its potential
ability to differentiate cyst formations from other types of tumors. Ultrasound, how-
ever, has some drawbacks. Typically, tumor diagnosis is based on the radiologist’s
qualitative evaluation of the morphological features in ultrasound images. This ap-
proach, however, is prone to variability, due to lack of quantitative measures and
degree of experience among radiologists, hence the false-positive rates can go up to
20% [8,213,214]. Additionally, an ultrasound image does not have enough spatial
resolution an therefore does not provide as much detail for deeply located breast
abnormalities.

MRI is also utilized to detect and diagnose breast tumors [9-11, 215, 216].
MRI is based on the principles of nuclear magnetic resonance, a spectroscopic tech-
nique, which is used to obtain microscopic chemical and physical information about
molecules. MRI is often used to investigate breast tumors first detected with mam-
mography, physical exam, or other imaging systems. It can be useful for staging
breast cancer. However, MRI cannot always distinguish between cancerous and non-
cancerous tumors with a false-positive rate of about 23% [215,216]. This can lead to
unnecessary breast biopsies. Another drawback of breast MRI is that, it has been
unable to image micro-calcifications. Furthermore, MRI is a relatively expensive
modality for routine screening and diagnosis.

PET is another imaging modality that is currently being studied for breast
cancer detection and diagnosis [55-58,205]. However PET’s specificity is low. More-
over, conventional imaging techniques, i.e., MRI, X-ray, or ultrasound, are necessary

for exact localization and correct interpretation of PET findings.



1.1.3 NIR Imaging and Spectroscopy for Breast Cancer

NIR optical methods provide complementary functional information that is not
accessible by the imaging methods described above. There are various NIR imaging
and spectroscopy techniques. These include optical spectroscopy [20, 21], diffuse
optical tomography (DOT) [17-19], optical coherence tomograph (OCT) [24, 34],
fluorescence diffuse optical tomograph (FDOT) [13-16], optical fluorescence re-
flectance imaging [36, 37], optical bioluminescence tomography (OBT) [22,23], and
pharmacokinetic-rate imaging of optical fluorophores [25,95-97,150,179]. NIR tech-
niques can provide in vivo measurements of oxygenation and vascularization state,
the uptake and release of optical fluorophores and chromophore concentrations with
high sensitivity. There is considerable evidence that tumor growth is dependent
on angiogenesis [12]- [39], and that tumor aggressiveness can be assessed from its
increased number of new vessels and reduced oxygenation state relative to normal
breast tissue and benign breast lesions [40]- [42]. NIR methods has the potential to
characterize angiogenesis related vessel density as it measures the total hemoglobin
concentration and provide the ability to differentiate between benign and malig-
nant lesions based on oxygen saturation. NIR methods are non-ionizing, relatively
inexpensive and can be made portable.

NIR techniques in conjunction with NIR optical fluorophores have the po-
tential to image (locate) and/or to differentiate between malignant and benign
tumors [62, 63, 71-77,81,85]. One way of locating and diagnosing the tumor is
pharmacokinetic-rate imaging of optical fluorophores [25,95-97,150, 179].

1.1.4 Pharmacokinetics of Optical Fluorophores and Compartmental
Modeling
Pharmacokinetics can be defined as the mathematics of the time course of
absorption, distribution, and excretion of optical fluorophores in the body [105]. The
biological alterations such as cancerous tissues which influence the transfer processes
of these fluorophores also influence the rate of change of absorption and excretion
in the body. Hence, the analysis of pharmacokinetics of optical fluorophores is a

potential means for tumor detection, diagnosis, staging, treatment monitoring, and



feasibility studies [144].

One approach to pharmacokinetic-rate analysis is the compartmental mod-
eling [50, 187,188|. In this method, a region of interest consists of a number of
compartments, generally representing a volume of similar tissues into which the flu-
orophores are distributed. The concentration changes in a specific compartment are
modeled as a result of the exchange of fluorophores between connected compart-
ments. These changes are modeled by a collection of coupled ordinary differential
equations (ODE); each equation describing the time change dictated by the biolog-
ical laws that govern the concentration exchanges between the interacting compart-
ments. Coefficients of the ODE’s are called the pharmacokinetic rates that represent
rates of exchange between different compartments. As in MRI [204, 215, 216], and
PET [149, 205] compartmental modeling of optical fluorophores by means of NIR
imaging techniques can provide useful physiological information for tumor detection,
diagnosis, drug delivery and feasibility studies.

In the NIR range, the most widely used optical fluorophore is indocyanine
green (ICG) [44,45,98-102]. ICG is a safe, and US Food and Drug Administration
approved NIR absorbing and fluorescing dye. It is an intravascular contrast agent
that may extravasate through vessels of high permeability, such as cancerous vessels.
Therefore, ICG pharmacokinetic-rate imaging of the breast around tumor region
mainly probes permeability and vascularization.

Several group of researchers reported compartmental modeling of ICG in ani-
mal and human subjects and studied the parameters related to capillary permeabil-
ity as malignancy indicators [25,95-97]. In [95] in vivo fluorescent NIR reflectance
images of ICG were analyzed and the pharmacokinetics of ICG was studied to dis-
criminate spontaneous canine adenocarcinoma from normal mammary tissue using
a two-compartment model. It was concluded that the model parameters show no
difference in the ICG uptake rates between the normal and diseased tissue regions.
In [96] a study of the dynamics of ICG was presented in an adenocarcinoma rat tu-
mor model. A compartmental model describing ICG dynamics was used to quantify
physiologic parameters related to capillary permeability. In [97] the uptake of ICG

by breast tumors was studied using a continuous wave diffuse optical tomography



apparatus. A two-compartment model was used to analyze the pharmacokinetics
of ICG. This study shows that the malignant cases exhibits slower rate constants
(uptake and outflow) compared to healthy tissue.

While the studies described above demonstrate the feasibility of the ICG phar-
macokinetics in tumor characterization; due to the highly non-linear nature of the
pharmacokinetic parameter estimation, variation in parameter values from one sub-
ject to another, and sparse data available in clinical and laboratory settings, a
systematic and robust approach is needed to model, estimate and analyze ICG phar-
macokinetics. Such an approach must include, a method for compartmental model
order selection, a robust method of estimating ICG pharmacokinetic parameters,

and a method of validating the selected model and the estimation results.

1.2 Thesis Outline

In this thesis, we study the value of NIR optical imaging and spectroscopy
techniques for breast cancer detection, diagnosis, and staging. In particular, we
develop mathematical modeling and computational techniques to investigate the
value of 7) pharmacokinetic information provided by ICG; and i) the endogenous
contrast provided by NIR imaging and spectroscopy.

In this thesis, we completed the following work:

1. We developed a method for mathematical modeling and estimation of phar-
macokinetics of ICG using compartmental modeling and extended Kalman
Filtering (EKF) framework. We tested our approach using the ICG data ac-
quired from four Fisher rats carrying adenocarcinoma tumor cells. This work

is presented in our publications [25,137,138].

2. We obtained spatially resolved pharmacokinetic-rate images of ICG using the
NIR data acquired from three patients with breast tumors using a voxel-by-
voxel construction method. This work is presented in our publications [179,

181].

3. We developed a method to reconstruct pharmacokinetic-rate images of optical

fluorophores directly from boundary measurements. We tested our approach



using a simulated data set. We compared the direct reconstruction algorithm
with the voxel-by-voxel reconstruction algorithm in simulation studies. We
directly reconstructed spatially resolved pharmacokinetic-rate images of ICG
using NIR data acquired from three patients with breast tumors, and compare
our results with voxel-by-voxel reconstruction. This work is presented in our

publications [178,180, 183].

4. We evaluated the diagnostic value of total blood volume and oxygen saturation
provided by endogenous NIR chromophores using the in vivo data acquired
from 116 patients with breast tumors. This work is presented in our publica-

tions [184, 185].

1.2.1 EKF for the Modeling and Analysis of ICG Pharmacokinetics in
Cancerous Tumors using NIR Optical Methods

In this work, we presented three different compartmental models for the ICG
pharmacokinetics in cancerous tumors and propose an EKF framework to estimate
the model parameters. The models capture the transportation of ICG between
the vascular and extravascular compartments, including interstitial fluid region,
parenchymal cell, intracellular binding site, and extravascular, extracellular spaces
(EES).

We also presented a method for selecting the optimal compartmental model
order based on Bayesian Information Criterion (BIC), and a statistical validation
method based on residual analysis. We test our approach using the ICG concen-
tration data acquired from four Fisher rats carrying adenocarcinoma tumor cells.
Two-, three- and four-compartment models are fitted to data and pharmacokinetic
model parameters and concentrations in different compartments are estimated using
the EKF framework. The BIC suggests that the two-compartment model provides
a sufficient fit for our data. The estimated model order and the model parame-
ters are further validated by residual analysis. The model parameters are used to
differentiate between two types of cancerous tumors. Our study suggests that the
permeability rates out of the vasculature are higher in edematous tumors as com-

pared to necrotic tumors. Additionally, we observe that in the two-compartment



model, the ICG concentration curve is higher in the EES compartment in edematous
tumors. This suggests that the ratio of the peak value of the ICG concentrations in
different compartments may be a useful parameter to differentiate tumors.

The advantages of EKF for the modeling and analysis of ICG pharmacokinetics

are as follows:

e Effective modeling of multiple compartments, and multiple measurement sys-
tems governed by coupled ordinary differential equations, in the presence of
measurement noise and compartmental model mismatch. This has the advan-
tage of providing better fit than the exponential curve models ( [95,96,150])

for the pharmacokinetics of optical fluorophores.

e Explicit estimation of the pharmacokinetic-rate parameters, volume fractions
and concentrations in different compartments. (Unlike the methods in [95,96,

150)).

e Suitable not just for the deterministic coupled ODEs but also for the stochastic
coupled ODEs for the compartmental modeling.

e Not specific to a particular optical fluorophore, but applicable to the pharma-

cokinetic rate estimation of any optical fluorophore.

e Simultaneous estimation of pharmacokinetic model parameters and ICG con-
centrations in each compartment, which are not accessible in vivo by means

of NIR techniques.

e Statistical validation of estimated concentrations and error bounds on the

pharmacokinetic parameter estimates.

e Potential real-time monitoring of ICG pharmacokinetic parameters and ICG
concentrations in different compartments due to the recursive nature of the

EKF estimation method.



1.2.2 Voxel-by-Voxel Reconstruction of Spatially Resolved Pharmacoki-
netic Rate Images of ICG using Near Infrared Optical Methods

In [25,137,138], we assume that the pharmacokinetic-rates are constant over
a tissue volume that may be as large as the entire imaging domain. However,
pharmacokinetic-rates are expected to be different in healthy and tumor tissue
as reported in PET, and MRI literature. It was shown that the spatially re-
solved pharmacokinetic-rate analysis provides increased sensitivity and specificity
for breast cancer diagnosis [29,32,33]. For example, Sun et al [33] showed that
FAU (1-2’-deoxy-2’-fluoro- -D-arabinfuranosyl urasil, a PET contrast agent) accu-
mulation in tumor region is significantly higher when compared to normal breast
tissue based on pharmacokinetic-rate images. Mussurakis et al [29] showed that
the pharmacokinetics of gadolinium-DTPA (an MRI contrast agent) can be used to
differentiate between malignant and benign breast tumors with a high accuracy. It
has also been shown that the spatially resolved image interpretation is superior to
the isolated use of quantitative pharmacokinetic-rates.

In the area of diffuse NIR spectroscopy and imaging, a number of studies
on spatially resolved pharmacokinetic-rates has been reported [95,150]. Gurfinkel
et al. [95] presented in wvivo NIR reflectance images of ICG pharmacokinetics to
discriminate canine adenocarcinoma (located at 0.5-1 cm depth) from normal mam-
mary tissue. These images were generated by a non-tomographic technique us-
ing a CCD camera that is suitable only to image tumors close to surface. Mil-
stein et al [150] presented a Bayesian tomographic image reconstruction method to
form pharmacokinetic-rate images of optical fluorophores based on FDOT. Numer-
ical simulations show that the method provides good contrast. However, no real
data experiments were presented to study the diagnostic value of spatially resolved
pharmacokinetic-rates.

In this work, we obtained spatially resolved pharmacokinetic rate images of
ICG, using NIR data acquired from patients with breast tumors using a voxel-by-
voxel reconstruction method. We first developed a set of temporally resolved 2-D
ICG concentration images based on linearized diffusion model. We then estimated

the ICG pharmacokinetic rates and the concentrations in each compartment for each



voxel based on the EKF framework and the two-compartment model. Reconstructed
2-D pharmacokinetic rate images of the three patient show that the rates from
inside and outside the tumor region are statistically different with a p-value of
0.0001. Additionally, the ICG concentrations in plasma and the EES compartments
are higher around the tumor agreeing with the hypothesis that around the tumor
region ICG may act as a diffusible extravascular flow in leaky capillary of cancer
vessels.

The advantages of obtaining spatially resolved pharmacokinetic-rate images

as compared to bulk rates for breast cancer diagnosis are as follows:

e Localization of heterogeneities, i.e., tumors.

e Morphological comparison of pharmacokinetic-rate images and ICG concen-

tration images in different compartments.

e Statistical comparison of pharmacokinetic rates from the inside and the outside

of tumor region.

For all these reasons, spatially resolved pharmacokinetic-rate images lead to
consistent and superior diagnostic information as compared to bulk pharma-

cokinetic rates.

1.2.3 Reconstruction of Spatially Resolved Pharmacokinetic Rate Im-
ages of Optical Fluorophores from NIR Measurements

As a next step, we developed a method to reconstruct spatially resolved phar-
macokinetic rate parameters of fluorophores directly from the boundary measure-
ments using EKF framework [178,180, 183].

We first derived a mathematical model that maps the boundary measure-
ments to the total fluorophore concentrations. We call this map concentration-to-
measurement (CTM) map. For this, we combined the compartmental model with
a NIR photon propagation model which maps the total fluorophore concentrations
to boundary measurements. To model photon propagation, we used the diffusion

approximation to radiative transfer equation where the propagation of excitation
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and emission light are modeled by two coupled diffusion equations [145]. We de-
rived two CTM maps: linear time-invariant CTM map and non-linear time-varying
CTM map for dynamic boundary measurements. In the linear time-invariant CTM
map, the relationship between the total fluorophore concentration and the bound-
ary measurements is linear and does not vary with respect to the time (time which
describes the evolution of the fluorophore concentration). In the non-linear time-
varying CTM map, on the other hand, the relationship between the total luorophore
concentration and the boundary measurements is non-linear at every instant of the
tomographic data collection process and it varies with respect to time. We formed a
state-space model based on the compartmental model equations and the NIR photon
propagation model. Then, we derived a map relating the boundary measurements to
spatially resolved pharmacokinetic-rates. We called this mapping pharmacokinetic-
rates-to-measurement (PTM) map. We introduced a spatio-temporal prior model
for the pharmacokinetic-rate and volume fraction parameters and incorporate this
model to the state-space representation. We utilized the extended Kalman filtering
(EKF) framework to address the resulting image reconstruction problems.

We analyzed the computational complexity of the resulting algorithms (linear
and non-linear) and compare them with that of the voxel-by-voxel algorithm [179].
We evaluated the performance of our algorithms in numerical simulations using a
tissue like numerical phantom. Our numerical study shows that there is a good
agreement between the true and the estimated images in terms of localization of the
heterogeneities and with respect to normalized mean-squared error criterion. Fur-
thermore, the numerical studies show that the new method is more robust than the
voxel-by-voxel algorithm with higher signal-to-noise ratio. Additionally, we present
reconstruction of pharmacokinetic-rate images from in vivo data acquired from three
patients with breast tumors. The reconstructed images show that they are superior
than images reconstructed by voxel-by-voxel reconstruction algorithm.

An important feature of the method introduced here is the direct reconstruc-
tion of the pharmacokinetic-rate images of optical fluorophores as opposed to voxel-
by-voxel reconstruction algorithm that we reported in [179]. The voxel-by-voxel

algorithm does not take into account the temporal correlations due to decoupled
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nature of the two-step algorithm described above. The new method, on the other
hand, makes effective use of the temporal correlations present in the dynamic mea-
surements by coupling the two steps and incorporating a spatio-temporal a priori
model. This has the advantage of improved robustness and signal-to-noise ratio as
compared to the voxel-by-voxel reconstruction method.

EKF framework was previously used to address the reconstruction of optical
parameters [146-148]. In [146], Eppstein et al. utilized EKF to reconstruct images of
absorption coefficient, fluorescence lifetime, and quantum efficiency using simulated
noisy measurements. This study uses a dynamic model to impose spatial smoothing
on the unknown optical parameters, but does not consider dynamic imaging of time-
varying optical parameters. In [147] and [148], Kolehmainen et al., and Prince et al.
used EKF to reconstruct time-varying absorption images of human motor cortex.
These studies demonstrate that EKF provides an effective framework in dynamic
tomography problems in diffuse optical imaging. The underlying dynamic model
in these studies assumes that the unknown optical image, i.e., the state variables,
remains constant up to an additive noise term and the measurement model is given
by the diffusion equation. In our work, on the other hand, the dynamic model is
based on the coupled ODE’s of the compartmental model while the measurement
model is based on the CTM map derived from the two coupled diffusion equation
representing the fluorescence light propagation.

In [150], Milstein et al. presented a direct reconstruction method for the
pharmacokinetic-rate images of optical fluorophores. This work uses an exponential
curve model for compartmental modeling and a linear time-invariant fluorescence
light propagation model derived based on authors’ prior work in [88,89]. The re-
construction of pharmacokinetic-rate images is addressed based on maximum a pos-
teriori (MAP) estimation together with a parametric iterative coordinate descent
optimization technique similar to the approach in [149].

The advantages of direct reconstruction of pharmacokinetic-rate images using

EKF algorithm are as follows:

e Addresses the pharmacokinetic-rate imaging based on both linear time-invariant

and non-linear time-varying CTM maps. Non-linear time-varying CTM map
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provides a more accurate relationship between the total fluorophore concen-

tration and boundary measurements.

e Provides an effective method to address the pharmacokinetic-rate imaging

based on nonlinear time-varying CTM map.

e Provides an effective framework for dynamic tomography within a recursive,
linear estimation framework eliminating the need for numerical optimization.
Furthermore, its noise suppression property can be improved by backward

smoothing [191].
e Allows real time pharmacokinetic-rate imaging.

e Allows incorporation of spatio-temporal a priori models to the estimation

scheme for improved robustness and SNR.

1.2.4 Evaluation of NIR Optical Features for Breast Cancer Diagnosis
using n vivo Patient Data

We study the diagnostic capability of the endogenous flourophores (optical
features) using NIR spectroscopy.

Interpretation of the optical features (i.e. deoxyhemoglobin, oxyhemoglobin,
blood volume, water content, scattering, and absorption) has the capability to cor-
rectly diagnose the tumor, hence has a potential to reduce the number of unnecessary
biopsies [221-227]. In [221], Pogue et al. presented a way of obtaining hemoglobin
concentration, oxygen saturation, water fraction, scattering power, and scattering
amplitude. These features were then investigated for their capability in differen-
tiating benign and malignant tumors. In [222], Grosenick et al. reported on the
diagnostic capability of the optical features, i.e., scattering and absorption coeffi-
cients, hemoglobin concentration, and blood oxygen saturation obtained using NIR
spectroscopic techniques. The results showed that the optical features can be used
to distinguish carcinoma from healthy breast tissue. Khayat et al. [223] presented
classification results of optical features, oxyhemoglobin, deoxyhemoglobin, blood
volume, lipid and water content, scattering and absorption coefficients, using opti-

cal tomography. The results showed the diagnostic capability of features extracted
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from optical images to classify different types of breast lesions. Recently, Xu et
al. [224] presented a study for breast cancer diagnosis using optical features ob-
tained by a handheld NIR spectroscopy probe. 12 features related to blood oxygen
saturation and total hemoglobin concentration are evaluated. The results showed
that NIR features has the potential to differentiate between benign and malignant
tumors with a high accuracy.

We presented the diagnostic capability of the features extracted from in vivo
NIR spectroscopy data obtained from 116 patients with breast tumors [184,185]. In
viwo data was collected from 44 patients with malignant and 72 patients with benign
tumors. Three features, relative blood concentration, oxygen saturation and the size
of the tumor, are used to diagnose benign and malignant tumors. The diagnostic
capability of these features are evaluated using different classifiers including nearest
mean, neural network, support vector machine, Parzen, and normal density-based
classifiers. The area under the receiver operating characteristics curve of the near-
est mean classifier using the three features yields 0.91. This result suggests that
relative blood volume concentration and oxygenation desaturation can differentiate

malignant and benign breast tumors with a relatively high precision.

1.2.5 Organization of the Thesis

The thesis is organized as follows: In Chapter 2, we present EKF for the mod-
eling and analysis of ICG pharmacokinetics in cancerous tumors using, in Chapter 3,
we present voxel-by-voxel reconstruction of pharmacokinetic-rate images of ICG for
breast tumors, in Chapter 4, we present direct reconstruction of pharmacokinetic-
rate images of optical fluorophores using optical boundary measurements, in Chapter
5, we present the evaluation of NIR optical features for breast cancer diagnosis using

in vivo patient data, Chapter 6 presents our conclusion and future work.



CHAPTER 2
EKF for the Modeling and Analysis of ICG

Pharmacokinetics in Cancerous Tumors using NIR Optical

Methods

In this chapter, we investigate three different compartmental models for the ICG
kinetics and determine the optimal model order, based on Bayesian information
criteria. The three models capture the transportation of ICG between the vascular
and extravascular compartments, including interstitial fluid region, parenchymal
cell, intracellular binding site, and extravascular, extracellular spaces (EES). An
extended Kalman filtering (EKF) framework is proposed to estimate the model
parameters and ICG concentrations in different compartments.

The chapter is organized as follows: In Section 2.1, we present an overview
about what ICG is, in Section 2.2, we present the two-, three- and four-compartment
models for ICG pharmacokinetics in tissue. In Section 2.3, we present the state-space
representation of the compartmental models; estimation of ICG pharmacokinetic
parameters and ICG concentrations in the EKF framework; and an optimal model
order selection criterion. In Section 2.4, we present the experimental results obtained

from Fischer rat data.

2.1 Indocyanine Green

Many advances in dye development have accelerated within the past 4 years
but the majority of studies investigating NIR fluorescent-contrast agents have been
limited to indocyanine green (ICG) due to its low toxicity and FDA approval.

ICG an optical dye commonly used in retinopathy and hepatic diagnostics
[44,45,98-102]. It is excited at 730 nm. ICG has strong affinity for blood proteins;
in plasma, ICG is near-completely bound, primarily to albumin. Thus, although
ICG itself has a molecular weight of 700 Da, its in vivo kinetics is similar to those

of a 70 kDa molecule. Its kinetics is governed by the movement of albumin in

14
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and between the vascular and extravascular region. After binding with albumin,
the absorption peak of ICG is shifted to 805nm and fluorescence peak at stays at
830nm well within the diagnostic window of low tissue absorption [46,47]. For
human use, ICG is administered intravenously with a bolus injection; a typical
dosage is 0.25mg/kg (dosage to body weight). ICG is a nonspecific, transient, and
local vascularized contrast agent.

ICG is eliminated from the body primarily through the bile: ICG outside of
the circulatory system is not available for removal until it returns to the system.
The kinetics of this transition offers a possible route to non-invasively determin-
ing the leakiness of large molecules from the microvasculature; this permeability is
characteristic of the poorly developed vasculature observed in angiogenesis. This
increase in local microvasculature density also increases the magnitude of the signal

from inter-capillary 1CG.

2.2 ICG Pharmacokinetic Modeling Using NIR Measure-

ments

There are some differences in the delivery of ICG between normal and can-
cerous vasculature. In normal tissue, ICG acts as a blood flow indicator in tight
capillaries of normal vessels. However in tumors, ICG may act as a diffusible (ex-
travascular) flow in the leaky capillary of cancer vessels. To investigate the validity
of this hypothesis, one has to employ at least a two-compartment model composed
of plasma and EES. Additionally, the permeability rate is expected to increase as
the malignancy advances [96,97]. Fig. 2.1 (a) and (b) illustrates the ICG flow for

healthy and malignant tissue, respectively.

2.2.1 Compartmental Analysis of ICG Pharmacokinetics

Compartmental modeling allows relatively simple and effective mathematical
representation of complex biological responses due to contrast agents. A region of
interest is assumed to consist of a number of compartments, generally representing
a volume or a group of similar tissues into which the contrast agent is distributed.

The concentration change in a specific compartment is modeled as a result of the
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Figure 2.1: An illustration of the ICG flow (a) in tight capillary of normal
vessel, (b) in permeable capillary of tumor tissue.

exchange of contrast agent between connected compartments. These changes are
modeled by a collection of coupled ODEs; each equation describing the time change
dictated by the biological laws that govern the concentration exchanges between the

interacting compartments [50, 105,187, 188].

2.2.1.1 The four-compartment model

Fig. 2.2 illustrates the capillary and extracapillary space relevant to the four
compartment model. The four-compartment model includes capillary region, inter-
stitial fluid region, parenchymal cell region and intracellular binding site as compart-
ments [106]. The ICG, injected intravenously into the subject, can pass from the
capillary into the reversible binding site inside the cell through the interstitial fluid
region and the parenchymal cell region [106-108]. Moreover, in advanced tumor
stages, the leakiness around the tumor vessels is expected to increase, resulting in
higher permeability rates during the transportation of ICG into the compartments.
A block diagram of the four-compartment transport and chemical model of ICG
delivery is shown in Fig. 2.3(a).

Let C,, C;, Cpe, Cy denote the ICG concentrations in plasma, the interstitial
fluid region, the parenchymal cell region and the intracellular binding site, respec-

tively; and let IS k((f), kl()4), k£4) , kff), k£4) and kj(fl) be the constants used as

out)
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Figure 2.2: A simple illustration of the capillary extracapillary structure.

equilibrium coefficients as shown in Fig. 2.3(a). Then the set of differential equa-
tions representing the ICG transition between the four compartments is given as
follows:

The leakage into and the drainage out of plasma:

4G, (1)

=22 = BIC1) — KOC,(1) — KoaCi(t), (2.1)

The leakage into and the drainage out of the interstitial fluid region:

ACi(t) _

= = KIG(0) — KVCi(t) — &

DCi(t) + kS Coe(t). (2.2)

C

The leakage into and the drainage out of the parenchymal cell:

©Corlt) _ 4 00) — KOG — KOO0+ KOG, (2

The leakage into and the drainage out of the intracellular binding site:

dc;lbt(t) = KDCe(t) — KV (2). (2.4)

Physiologically, the equilibrium constants are defined by the permeability surface

area products given as PSp, where P is the capillary permeability constant, S is the
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(4)

out is proportional to the flow

capillary surface area, and p is the tissue density. k
rate into and out of the capillary and k((f), /{:54), /{:§4) , k((f), k:£4), and k](fl) represent
intra-tissue physiologic effects during ICG delivery from the capillary to the binding
site. Note that the superscript denotes the order of the compartmental model.

The actual bulk ICG concentration in the tissue measured by NIR spec-
troscopy, m(t), is a linear combination of the ICG concentrations in the four different
compartments.

m(t) = oV C,(t) + vl Cilt) + i) Coe(t) + 05V Co(), (2.5)

where Uz(,4), 1254), vz(fé), 01(74), are volume fractions of plasma, the interstitial fluid region,

the parenchymal cell region and the intracellular binding site, respectively.

2.2.1.2 The three-compartment model

In this model, the parenchymal cell and intracellular binding site compart-
ments are combined to form a single compartment called parenchymal cell. This
amounts to the assumptions that the transport of ICG into the intracellular binding
site is negligible as compared to the other compartments, and therefore omitted
from the model. A block diagram of the three-compartment transport and chemical
model of ICG delivery is shown in Fig. 2.3(b). The three-compartment transport
equations are given as follows:

The leakage into and the drainage out of plasma:

dCy(t)

— O, (t) — ki Cy(t) (2.6)

out

= kP Ci(t) — k

The leakage into and the drainage out of the interstitial space:

—d(’:;;t) = KICy (1) — kD Ci(t) — KDCi(t) + k) Cre(t) (2.7)

The leakage into and the drainage out of the parenchymal cell:
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The total ICG concentration measured by NIR:

m(t) = 0P Cp(t) + v Cilt) + v Che(t) (2.9)

p

where vfg?’), vi(?’), vﬁ) and C), Cj, C)p are as defined in the four-compartment model.
2.2.1.3 The two-compartment model

In the two-compartment model, the tumor region is assumed to be composed
of two compartments, namely the plasma and the extra-cellular extra-vascular space
(EES) [96,109,110]. The EES is defined as the region that lies outside of both the
vascular region and the tumor cells. The transport of the ICG to the third and fourth
compartments are assumed to be negligible. Therefore the last two compartments
in the four compartment model is omitted. We consider transcapillary leakage to
occur only at the tumor site. We also assume that a small perturbation of the
global plasma concentration does not affect the bulk removal. Fig. 2.3(c) shows
the block diagram of the two-compartment model for the ICG kinetics. Let C), and
C, denote the ICG concentrations in plasma and the EES, respectively. Then the
two-compartment ICG chemical transport equations are given as follows:

The leakage into and the drainage out of plasma:

= K20 (t) — EDC, (1) — K20, (). (2.10)

out

The leakage into and the drainage out of the EES:

dC.(t
W) _ ke, 0) - P00, (2.11)
The parameters E2 and kéz) govern the leakage into and the drainage out of

((,i)t describes the ICG elimination from the

the EES, respectively. The parameter k
body through kidneys and liver.
Actual bulk ICG concentration in the tissue measured by NIR is a linear

combination of plasma and EES ICG concentrations given by:

m(t) = v@C,(t) + vP C.(t), (2.12)
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where the parameters v,(f) and véQ) denote the plasma and EES volume fractions,

respectively.

2.3 Extended Kalman Filtering for the ICG Pharmacoki-

netics

For the rest of our discussion in this chapter, we shall use the explicit form
of the two-compartment model as a running example to clarify our notation. Note
that for the rest of the paper, all matrices and vectors will be in boldface and scalar

quantities will be in non-boldface notation.

2.3.1 State-space Representation of the ICG Pharmacokinetics
Coupled differential equations resulting from the two-compartment modeling
of the ICG pharmacokinetics can be expressed in state-space representation as fol-

lows:

dC.(t A k((f) (t
v (5) (2) (2) () + dB(t), (2.13)
dC,(t) k, — (ko 4 Kgt) C,(t
C.(t
m(t) = [ o P } ®) +(t)

where dB(t) is the Wiener process increment, dB(t) = w(t)dt. Here, w(t)and n(t)
can be thought of as uncorrelated zero mean Gaussian processes with covariance
matrix Q, and variance o2, respectively.

In vector-matrix notation, the continuous time state-space representation for

the n—compartment model is given by:

dC(t) = k(aw)C(t)dt + dB(t),

m(t) = V(a,)C(t) + n(t). (2.14)
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In (2.14), C(t) denotes the concentration vector; k(a,) is the system matrix,
V(o) is the measurement matrix and a, is the parameter vector whose elements
are the pharmacokinetic constants and the volume fractions for the n—compartment
model. For example the parameter vector a for the two-compartment model is
given by

oy = [k kéz) E2 0@ v, (2.15)

a out e p

The ICG measurements in (2.14) are collected at discrete time instances, ¢ =
ET, k= 0,1,..., where T is the sampling period. Therefore, the continuous model
described in (2.14) has to be discretized. To simplify our notation, we shall use
C(k) = C(kT) and m(k) = m(kT). The discrete state space system and the

measurement models are given as follows:
Ck+1) = re(a,)C(k) + w(k)

m(k) = Va(an)C(k) +n(k), (2.16)

) — els',(an)T

where Kq4(a, is the discrete-time system matrix and Vy(a,) = V(a,)

is the discrete-time measurement matrix. w(k) and n(k) are zero mean Gaussian
white noise processes with covariance matrix Q, and variance o3, respectively. Dis-
cretization of state-space models can be found in various system theory books, see
for example [111].

An explicit form of the discrete state space model for the two-compartment

case is given as follows:

e(k 1) . 11 T12 Ce(k) w
P ]{3 + ]_) B T21 T922 Op(k?> " (k) (217>
m(k) = | @ L@ Ce(k)

(k)= [ o of? | o | T

where 7;; is the " row and j™ column entry of the system matrix rq(c). Note

that the matrix entry 7;; is an exponential function of the parameters IS , kl(,z) and
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k(2)

out*

To simplify the estimation process, we shall first estimate the matrix entries,
7,5, of the discrete-time system matrix k4(c,) and then compute the pharmacoki-

netic parameters for each compartmental model.

2.3.2 Modeling of ICG Pharmacokinetic Parameters and Concentra-
tions in an Extended Kalman Filter Framework

The Kalman filter provides a recursive method to estimate the states in state-
space models, in which the states are driven by noise, and the measurements are
collected in the presence of measurement noise [112,114,191]. In the case of non-
linear state-space models, the extended Kalman filter linearizes the model around
the current state estimate, and then applies the KF to the resulting linear model.
The EKF framework is also utilized for the joint estimation of the unknown system
and/or measurement parameters and states. In a linear state-space model when
both states and system parameters are unknown, the linear state-space model can
be regarded as a non-linear model in which the linear system parameters and states
are combined to form the new states of the non-linear model. This system is then
linearized and solved for the unknown states using the KF estimator. We consider a
linear Taylor approximation of the non-linear model. The details of the linearization
procedure and a general discussion on EKF can be found in [115-117,191].

In our problem, the objective is to simultaneously estimate the states, i.e.,
the ICG concentrations in each compartment, and the system and measurement
parameters, i.e., the pharmacokinetic parameters and the volume fractions. Let 6,
denote the discrete-time parameter vector of the pharmacokinetic rates and volume

fractions. For example, in the two-compartment model, 85 is given by
2 2) 17
0, = [ Tl Ti2 T21 T22 Ué) U;(z) . (2'18)

Note that the parameter vector ,,, derived from the state space model (2.17),

is time independent. In order to estimate 6, within the EKF framework, the fol-
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lowing dynamic model is introduced:

0,.(k+1)=80,(k)+c(k), (2.19)

where (k) is a zero mean white noise process with covariance matrix S, [191]. Here,
0,.(k) can be thought of as the k' update of the parameter rather than its value at
time k.

We append the parameter vector 6,,(k 4+ 1) to the ICG concentration vector

C(k + 1) to form the new non-linear state-space model given by

corn) | [wogow | [ww )
0,(k+1) 0, (k) <(k)
m(k) = | Va(6,) 0 | L S

d\YUn On(k) )

where K(0,,) = kq(a,).

2.3.3 EKF Joint Estimation of ICG Concentrations, Pharmacokinetic

Parameters, and Volume Fractions

In this section we will summarize the major steps of the EKF estimator for
the joint estimation of ICG concentrations and compartmental model parameters.

Let the subscript k|t denote the estimate at time k given all the measurements
up to time t. Then the 1-step ahead prediction of the ICG concentrations and the

compartmental model parameters are given as follows:

A A A

C K(6,)C
. _ | K ) ) . (2.21)
6 6,

klk—1 k—1]k—1

For the two-compartment model, (2.21) becomes
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Tilée + Tigép
- 7_éch’e + T§2C’p . (222)
2

klk—1 k—1|k—1

®

>
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[

The error covariance matrix, Py,_;, of the 1-step ahead predictions is given as

follows:

Q; 0

P11 = Jk—1Pk71|k71J£_1 +
Sa

(2.23)

where Jy, is the Jacobian of the non-linear EKF system function at time k. Explicitly,

it is given by:

J, = 90, , (2.24)
K|k
where 0 and I denote zero and identity matrices, respectively. The Jacobian matrix

for the two-compartment model becomes

T Ti2 C. ép 0O 0 00
Jp = To1  Tao 0 C. ép 00 , (2.25)
O(6x2) L6x6)

k|k

where Ogx2) is a 6 X 2 zero matrix, and Isxe) is a 6 X 6 identity matrix.
The 1-step ahead predictions are updated to the k'"-step estimates by means

of the Kalman gain matrix which is given by
Gy = P AT[APy 1 AT + 077, (2.26)
where A is the following vector

Va0) ZVa0)E] | (2.27)
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For the two-compartment model the A vector becomes

~ A

6@ 5P 0000 G G (2.28)

k-1

The k"-step estimate of the concentrations and the parameters are obtained

recursively using

o I e CEZO ) (2.29)
k|k klk—1

For the two-compartment case, the k*-step estimate of the concentrations and the

parameters is

>
>

AP - Ap + Gi(m(k) — (ﬁe@)ée - ﬁp(2)ép)k|k_1)). (2.30)
0, e 0 -

The error covariance matrix, Py, of the kth-step estimates is updated as
Pijp = I — GrAIPp—1, (2.31)

where 1 is the identity matrix.

In general, the convergence of EKF depends on proper choices of the initial
values of the parameters, @, initial values of the concentrations, C, and proper
selection of the noise covariance matrices Sy, Q,, and the variance o3 [171]. The
parameter o2 controls the convergence of the Kalman gain Gy. To ensure stability,
we set o2 much higher than the APy A" term in (2.26). However, setting very
high values of o2 leads to slow convergence of the Kalman gain Gj. The main
cause of divergence in EKF can be tracked down to the fact that a change in the
parameter vector has no direct effect on the Kalman gain; in other words, there is
no coupling term between the Kalman gain and the parameter vector [172]. Based

on this observation, we improved the convergence of the EKF by modifying the term
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J(1,2) = ZK(0)C in (2.24), as described in [172].

It has been shown that if Q,, Sy and o2 are selected less than the actual values,
it leads to overconfidence in the accuracy of the estimates of the error covariance
matrix [170]. Therefore, we regarded these matrices as tuning parameters and not
as the estimates of the true covariance matrices, as suggested in [170].

Theoretically, the state estimates can be initialized at the expected value of
the ICG concentrations, i.e. E[C(0)]. One approach to the initialization of the
parameters is to utilize the state-space presentation given in (2.16). Since E(m(0)) =
V4(0,(0))E[C(0)], m(0) — V4(6,(0))E[C(0)] is a zero mean random variable. If we
express the variance of the measurement m(0) in terms of the variance of C(0) using
the measurement model in (2.16), and solve for 8,,, we get the estimate 8,,(0) as the
most appropriate value for initialization. The details of the selection of the initial
values for the parameters can be found in [191].

The initialization of the error covariance matrix is also important for the per-
formance of the EKF. The error covariance matrix is the matrix which provides
information about the error bounds for the estimates. Theoretically, the initial er-

ror covariance matrix is a diagonal matrix where the diagonal entries are the initial

estimates of the variance of concentrations and pharmacokinetic parameters, i.e.

Cov(C
P = (0 (0)) ;L . (2.32)

In depth discussion on the convergence properties of the EKF can be found

in [170-172,191].

2.3.4 Compartmental Model Order Selection

We adopted the Bayesian information criterion (BIC) for the optimal model
order selection. BIC is a well known information theoretic criterion, in which the
optimal model order is selected by minimizing a cost function to avoid over-fitting.
The cost function depends on the number of observations, the number of unknown

parameters to be estimated and the likelihood function. A detailed discussion of the

BIC can be found in [121-123].
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In order to calculate the BIC for different compartmental models, we first
derived a likelihood function for the extended Kalman filter. The derivation is
based on maximum likelihood estimation of the parameters in the Kalman filtering
framework given as in [124], [125]. We then modified this likelihood function for the
extended Kalman filter estimator for the joint estimation of compartmental model
parameters and concentrations.

The cost function for the BIC is given by
oprc(p) = pIn N —2In L(0,,m(1), m(2), ......,m(N)), (2.33)

where p is the dimension of 8,, which is related to the number of compartments in
the model, N is the data length, and L(0,m(1),m(2),.......,m(N)) is the likelihood
function.

The likelihood function for the EKF is given by

N

N
1 1 Try—1
L(6,m(1),m(2), ..., m(N)) = =3 ;1: In[det (Fy)] — 5 ;1 ATH'A,,  (2.34)
where the matrix H is defined as:
Hk = APk|k_1AT + O'Iz, (235)

and o7, A, and Pji—1 are as defined in Section 2.3.3. The vector A is defined as:

~

Ay = m(k) = Va(0)Clip—1, (2.36)

where m(k) is the ICG concentration data collected from Fisher rats at time £,
and [Vd(é)é]m,l is the 1-step ahead estimate of the volume fractions and concen-
trations. The explicit form of the likelihood function for BIC calculation is given

by

N
Z h’l[det(APMk,lAT + O']%)]
k=1
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> [m(k) = [Va(0)Clyjr] [APrp1 AT + 07] !

1

N —

) [m(k) = [Va(8)Clyji_1]- (2.37)

where all the parameters and matrices are as defined in Section 2.3.3.

2.4 Experimental Results - ICG Pharmacokinetics in Fis-

cher Rat Data

We applied the proposed EKF framework to the pharmacokinetic analysis of
ICG data obtained from four Fischer rats with adenocarcinoma. R3230ac adeno-
carcinoma cells were injected below the skin into four Fischer rats 3 weeks prior to
measurements. The tumor size for the rats varies in diameter from 5 to 30 mm.
Measurements were conducted with a combined frequency-domain and steady-state
optical technique that facilitates rapid measurement of tissue absorption. Frequency
domain measurements were obtained at 674, 800, 849, 898, and 915 nm, modulated
at frequencies from 50 to 601 MHz, sweeping a total of 233 frequencies. Tumors
were also imaged by use of contrast-enhanced magnetic resonance imaging and co-
registered with the location of the optical probe. In addition, a broadband continu-
ous wave reflectance measurement spanning the range 650-1000 nm was performed
with a spectrometer. With the reduced-scattering coefficient spectrum and diffu-
sion theory, the broadband reflectance spectra were converted to absorption coef-
ficient spectra. The absolute concentration of ICG, together with oxy-hemoglobin,
deoxy-hemoglobin, and water were calculated by using multiple linear regressions of
ICG extinction coefficient spectra to the calculated absorption spectrum at approx-
imately every second for ten minutes. A detailed discussion of the measurement
process and apparatus can be found in [126,127].

Fig. 2.4 presents the ICG concentrations (uM) from four different rats. Tu-
mors in Rat 1 and 2 are classified as necrotic because of their low tissue oxy-
hemoglobin, low total hemoglobin, and low gadolinium-diethylene-triamine penta-
acetic acid (Gd-DTPA) enhancement levels. Tumors in Rat 3 and 4 are classified as

edematous due to their high water content [128]. It can be observed from Fig. 2.4



29

that the necrotic cases display low peak ICG concentration values and slowly rising
slopes unlike the edematous cases with high peak values and sharp rising slopes.
We estimated the pharmacokinetic rates for the four-, three- and two-compartment

models. Each data set has 504 measurements. The reported parameter estimates
are the asymptotic values obtained when the extended Kalman filter has converged.
In other words, the predicted parameter values corresponding to the final estimate,
ie., kI = k2 (k=s04)- T he results are given in Tables 2.1, 2.2, and 2.3, respectively.
The error bounds on the estimates are derived from the covariance matrix of the
EKF estimator. The estimated pharmacokinetic rates for all compartmental models
indicate that the exchange rates between the capillary and the adjacent compart-
ment (ISS or EES), k2, k!, n = 2, 3,4, are significantly different for the necrotic and
edematous tissue. We observe that for the four- and three-compartment models,
the estimated exchange rates between the ISS and parenchymal cell compartments,

kI, k7, n = 3,4, are comparable. Similarly, the estimated rate of drainage out of

n
out?

the plasma, £ ., n = 2, 3,4, are consistent for all models.

Based on the model parameter estimates, we computed the BIC values for
each rat data to reveal over-fitting. The BIC values and the number of unknown
parameters for each rat data are tabulated in Table 2.4. The BIC suggests that the
two-compartment model is sufficient for all four measurement sets.

We further analyze the goodness-of-fit of the compartmental models by means
of residual analysis. The basic idea of residual analysis is to compare the actual
measurements m(k) with their 1-step ahead predictions, r(k),,_,, based on the
estimated parameters. A detailed discussion on residual analysis can be found in
[112,129]. The mean and variance of the residual error for the four-, three- and
two-compartmental models are tabulated in Table 2.5. To normalize the error with
respect to the magnitude of the actual measurements, we calculated the signal-to-
noise ratio (SNR) using the median value of the measurements and the mean of the
residual errors for each rat data. As seen from the results in Table 2.6, the SNR
values are higher for the two-compartment case for all data sets. These results show
that the two-compartment model provides the minimum bias and the best statistical

efficiency. Fig. 2.5 shows the measured total concentration data and its 1-step ahead



30

Table 2.1: Four-Compartment Model:Estimated pharmacokinetic para-
meters using EKF algorithm

k?5(14) k154) k§4) k'((;l)
(sec™'1072) (sec'107%) (sec™'1072) (sec™t107%)
Rat 1 (Necrotic) 1.45+0.013 1.2240.019 1.86£0.017 2.024+0.026
Rat 2 (Necrotic) 3.48£0.048  2.77£0.034 4.284+0.048 4.33£0.040
Rat 3 (Edematous) 4.9440.052 5.16+£0.067 4.2240.052 4.134+0.067
Rat 4 (Edematous) 5.2540.053 5.31+£0.063 5.07+0.068 5.22+0.063
i ” K
(sec™107?)  (sec™'107%) (sec™'1073)
Rat 1 (Necrotic) 2.7440.041 2.41£0.051 4.05+0.059
Rat 2 (Necrotic) 2.984+0.048 3.03£0.061 4.7640.062
Rat 3 (Edematous) 4.144+0.070 4.2740.078  5.3940.085
Rat 4 (Edematous) 4.4340.075 4.03+£0.072  3.854+0.056

Table 2.2: Three-compartment Model:Estimated pharmacokinetic para-
meters using EKF algorithm

3 3 3 3 3
T RN U
(sec™'1072)  (sec'1072) (sec™'1072) (sec'107%) (sec™'1073)
Rat 1 (Necrotic) 1.93£0.061 1.284£0.049 1.824+0.032 2.02+0.041 3.89+0.052
Rat 2 (Necrotic) 4.414£0.074  2.48+0.067 4.87£0.066 5.03£0.057 5.45+0.071
Rat 3 (Edematous) 4.7140.085 3.88+£0.077 4.954+0.059 4.68+0.050 4.42+0.040
Rat 4 (Edematous) 5.2940.091 6.48+0.096 4.4840.062 4.20+0.048 5.014+0.055

Table 2.3: Two-compartment Model:Estimated pharmacokinetic parame-
ters and volume fractions using EKF algorithm

L R

(sec™1072)  (sec™'1072) (sec™'107%)  (1072%) (1072)
Rat 1 (Necrotic) 2.47+0.043 1.06£0.052 4.61+£0.073 21.841.92 1.41+0.053
Rat 2 (Necrotic) 3.54+0.082 2.9840.086 4.83+0.092 25.4+3.49 2.42+0.088
Rat 3 (Edematous) 6.904+0.101 4.93+0.072 3.9540.048 30.4+2.81 4.84+0.120
Rat 4 (Edematous) 8.404+0.114 7.77+£0.091 4.024+0.068 53.0+4.73 7.03£0.321
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Table 2.4: Test for model order selection for three different compartmen-

tal models for four different data sets
Ratl Rat2 Rat3 Rat4

Model p  ¢pic(p) épic(p) ¢Bic(p) ¢Bic(p)
Two-compartment Model 7 -178.242 -198.367 -202.81 -172.098

Three-compartment Model 11 -71.615 -83.849 -92.182 -63.912
Four-compartment Model 15 -39.719  -45.121 -56.340 -30.023

prediction based on the two-compartment model for each rat data. Clearly, there is
a good agreement between the actual and the predicted values.

Based on the BIC and residual analysis, we conclude that the two-compartment
model provides the best statistical fit for the rat data and investigate the estimated
model parameters in more detail.

In the two-compartment model, the rate of leakage into the EES from the
capillary, k:t(f), range from 0.0247 to 0.0840 sec™! and the rate of drainage out of the
EES and into the capillary, kl(f), range from 0.0106 to 0.0777 sec™!. Note that the
permeability rates for the necrotic cases are lower than the ones observed for the
edematous cases. Additionally, the estimated values for the pharmacokinetic rates
are much higher than the normal tissue values due to the increased leakiness of
the blood vessels around the tumor region [96,130]. The estimated plasma volume
fractions agrees with the values reported earlier [96], and the values presented in the
literature [131,132]. These results confirm that 1)7(,2) can be large in tumors and that
its magnitude varies with respect to the stage of the tumor [110]. The estimated
values of the EES volume fraction, v£2), range from 0.218 to 0.53, in agreement with
the 0.2 to 0.5 range reported earlier [109]. Note that these results are valid only for
the ICG pharmacokinetics in tumor cells R3230ac, adenocarcinoma and may not be
generalized for other types of contrast agents or tumor types.

Fig. 2.6 shows the estimated ICG concentrations in plasma and the EES
compartments for the two-compartment model for Rats 1 to 4. Note that the con-
centration curves in Fig. 2.5 and Fig. 2.6 follow a similar time course since the

curves in Fig. 2.6 is a linear combination of the curves in Fig. 2.5. Note that initial

estimates of concentrations are noisy due to the limited data used in the recursive
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Table 2.5: The mean and variance of the error between the estimates and

measurements
Four-compartment Three-compartment Two-compartment
Mean Variance Mean Variance Mean Variance
Ratl 0.0987 7.641e-004  0.0605 4.732e-004 0.0072  2.567e-005
Rat2 0.1043  9.152e-004  0.0767 3.017e-004 0.0057  4.829e-005
Rat3 0.1204 8.905e-004  0.0883 4.921e-004 0.0041  3.021e-005
Rat4 0.0904 5.977e-004  0.0589 6.839¢-004 0.0076  8.618e-005

Table 2.6: SNR values for three different compartmental models for four
different data sets

Rat1l Rat2 Rat3 Rat4

Model SNR (dB) SNR (dB) SNR (dB) SNR (dB)
Two-compartment Model 73.2 68.1 108.3 107.9
Three-compartment Model 30.7 36.1 23.9 47.0
Four-compartment Model 20.8 29.9 27.7 18.4

EKF estimation. This can be improved by Kalman backward smoothing [133]. The

peak values of the plasma concentration, C,,, range from 2.72 pM to 4.28 pM. The

absolute value of the concentrations may not be very useful. However, concentration

of ICG in a compartment relative to the one in another compartment may provide

useful information. We consider the ratio of the peak concentrations in plasma and

the EES as a potential parameter to discriminate different tumors. The peak C,/C.
ratio for Rats 1 to 4 is 0.551, 0.593, 0.787, 1.151, respectively. This ratio is higher

in edematous cases consistent with the fact that ICG-albumin leaks more into the

EES in edematous tumors. Additionally, the ICG concentration in plasma decays

faster than the ICG concentration in the EES due to its elimination through the

liver and kidneys.
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Figuré 3.3: Block diagram of (a) the four-compartment, (b) the three-
compartment, and (c¢) the two-compartment models for ICG
pharmacokinetics.
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Figure 2.4: ICG concentrations measured in tissue for four different rats.
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Figure 2.6: ICG concentrations in plasma, C,(t) and EES, C.(t), for four
different rats. (a) Ratl, (b) Rat2, (c) Rat3, and (d) Rat4.



CHAPTER 3

Pharmacokinetic-rate Images of Indocyanine Green for

Breast Tumors using Near Infrared Optical Methods

In the studies described in Chapter 1 and Chapter 2 [25,96,97], the pharmacokinetic-
rates are assumed to be constant over a tissue volume that may be as large as the
entire imaging domain. However, pharmacokinetic-rates are expected to be different
in healthy and tumor tissue as reported in positron emission tomography (PET),
and magnetic resonance imaging (MRI) literature. It was shown that the spatially
resolved pharmacokinetic-rate analysis provides increased sensitivity and specificity
for breast cancer diagnosis [29, 32, 33].

In the area of diffuse NIR spectroscopy and imaging, a number of studies
on spatially resolved pharmacokinetic-rates has been reported [95,150]. Gurfinkel
et al. [95] presented in wvivo NIR reflectance images of ICG pharmacokinetics to
discriminate canine adenocarcinoma (located at 0.5-1 cm depth) from normal mam-
mary tissue. These images were generated by a non-tomographic technique using
a CCD camera that is suitable only to image tumors close to surface. Milstein et
al [150] presented a Bayesian tomographic image reconstruction method to form
pharmacokinetic-rate images of optical fluorophores based on fluorescence diffuse
optical tomography. Numerical simulations show that the method provides good
contrast. However, no real data experiments were presented to study the diagnostic
value of spatially resolved pharmacokinetic-rates.

In this chapter, we present a method of forming pharmacokinetic-rate images
and report spatially resolved pharmacokinetic-rates of ICG using in vivo NIR data
acquired from three patients with breast tumors. To the best of our knowledge,
our work is the first study presenting the pharmacokinetic-rate images of an optical
contrast agent using in vivo breast data based on tomographic techniques. We
first develop a set of spatio-temporally resolved ICG concentration images based on
differential diffuse optical tomography. We model the ICG pharmacokinetics by a

two-compartment model composed of plasma and extracellular-extravascular space

37
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(EES) compartments. We then estimate the ICG pharmacokinetic-rates and the
concentrations in different compartments based on the EKF framework [25]. We
show that the pharmacokinetic-rates from the tumor region and outside the tumor
region are statistically different. We also estimate a single set of pharmacokinetic-
rates (bulk pharmacokinetic-rates) for the entire breast tissue. Our study indicates
that spatially resolved pharmacokinetic-rates provide more consistent and superior
diagnostic information as compared to the bulk pharmacokinetic-rates.

The rest of the chapter is organized as follows: In Section 3.1, we present the
reconstruction of ICG concentration images. In Section 3.2, we present modeling
and estimation of ICG pharmacokinetic-rate images using the EKF framework. In
Section 3.3, we present the spatially resolved ICG pharmacokinetic-rate analysis of

in vivo breast data. Section 3.4 summarizes our results.

3.1 Reconstruction of Bulk ICG Concentration Images

In our data collection process, a sequence of boundary measurements are col-
lected over a period of time. Each set of measurements are used to form a frame of
the ICG concentration images. The resulting sequence of ICG concentration images
are then used to form pharmacokinetic-rate images. To reconstruct each frame of
the ICG concentration images, we follow a static reconstruction approach and use
differential diffuse optical tomography (DDOT) technique [97,189).

In DDOT, two sets of excitation measurements are collected corresponding to
before and after the ICG injection, and the ICG concentration is determined by
the perturbation method [97,189]. The photon propagation before and after the

injection is modeled by the following diffusion equations:
V- D,(r)VOE(r,w) — (,uffz(r) —I—jw/c) dE(r,w) =0, reQcCR? (3.1)

with Robin-type boundary conditions:

0% (r,w)

2D,(r) 5

+ p®E(r,w) = —S(r,w), r € oS (3.2)

where x stands for the excitation, ¢ is the speed of light inside the medium 2; w
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denotes the modulation frequency of the source, u_ (r) and p () are the absorption
coefficients before and after the ICG injection, D, is the diffusion coefficient which is
assumed independent of pZ , known but not necessarily constant, ®=(r,w) denotes
optical field at location r before and after the ICG injection. Here, v denotes
the outward normal to the boundary 92 of €2, p is a constant representing the
refractive index mismatch between the two regions separated by 0€2, and S(r,w) is
the excitation source on the boundary.

The absorption coefficient after the injection p, are modeled as a sum of the

absorption coefficient of the medium before the ICG injection p_, and the pertur-

bation caused by the ICG Ap,(7):
AN(MC(T) = H’t—zi_x(r) - /“’L(;$(T)7 r e Q g Rg' (33)

In the forward model, the analytical solutions of the heterogonous diffusion
equation given in (3.1) is derived using first order Rytov approximation [97]. The
sample volume is divided into a set of voxels and the measurements are related to
the relative absorption coefficients of each voxel by a system of linear equations. The
shape of the breast was approximated as a cylinder and the Kirchhoff approximation
[139,140] for diffuse waves was used to model the interaction of light with boundaries.
In order to minimize optode-tissue coupling mismatch due to breathing motion, the
forward model was augmented with the coupling coefficient technique as described
in Boas et al [141].

Here, the Rytov-type measurements, which are defined by the natural log-
arithm of the ratio of the post-ICG measurements to the pre-ICG measurements
were used [189]. Let W, (74, w;7s) denote the Rytov-type measurements at location
rq due to source at r. The linearized relationship between the differential absorption

coefficient and measurements is given by [166],

1
U, (rg,w;rs) = —W/QG;(T — rd,w;rs)_fm(r)CI);(r,w;rs)dgr (3.4)

where ®_ (7, w; r4) is the photon density obtained at the excitation wavelength before

ICG injection, I,(r) = c¢Apar(r)/ Dy, and G (1 —rg,w;rs) is the Green’s function of



40

(3.1) for a source at r, before the injection describing the propagation of light from
the heterogeneity r to the detector at r,.

We address the inverse problem of recovering Ay, from Rytov-measurements
U, based on the forward model (3.4) using the singular value decomposition of the
Moore-Penrose generalized system. We use a zeroth-order Tikhonov regularization
to stabilize the inversion procedure. The regularization parameter was determined
by L-curve analysis [142] using the data obtained from a phantom study previously
employed to validate the apparatus [97]. The optimal regularization parameter was
found to be 6 x 10~* and set to be the same for all patient images and time instances.
A detailed discussion of the forward and inverse models used for the reconstruction
of differential absorption coefficients (Afi,,) can be found in Intes et al [97].

To construct a set of ICG concentration images, we use the linear relationship

between the differential absorption coefficients and ICG concentrations [46]:
Ao (r) = Inl0 ey m(r) (3.5)

where €, is the extinction coefficient of ICG at the wavelength 805nm, m(r) is the
bulk ICG concentration in the tissue, and Ap,(r) is as defined in (3.3).
Note that the method described here is applicable for frequency domain case

but for simplicity we set the frequency to zero, i.e. w = 0.

3.2 Modeling and Estimation of ICG Pharmacokinetics
3.2.1 Two-compartment Model of ICG Pharmacokinetics

Using the method outlined in Section 3.2, we reconstruct a sequence of ICG
concentration images. As an example, Fig. 3.1-3.3 shows a set of images recon-
structed from in vivo breast data.

Our objective is to model the pharmacokinetics of ICG at each voxel of ICG
concentration images using compartmental modeling. To do so, we first extracted
the time varying ICG concentration curves for each voxel from the sequence of ICG
concentration images. An example of such a curve is shown in Fig. 3.4. We next fit

a two-compartment model to each ICG concentration curve [25,95].
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Using the two-compartment model introduced by Alacam et al [25], ICG tran-

sition between plasma and extracellular-extravascular space (EES) can be modeled

as follows:
Ce t _kou kzn Ce t
‘ (t) - t (t) +w(t), t e [Ty, T1] (3.6)
Cp(t) kout _(kzn + kelm) Cp (t)

where C,(t) and C.(t) represent the ICG concentrations in plasma and EES at time
t, respectively. The rates ki, kouw, and ke, have a unit of sec™t. They are defined
as the permeability surface area products given by PS7y, where P is the capillary
permeability constant, S is the capillary surface area, and -y is the tissue density. k;,
and k,,; govern the leakage into and the drainage out of the EES. The parameter k.,
describes the ICG elimination from the body through kidneys and liver. Here, w(t)
is uncorrelated zero-mean Gaussian process with covariance matrix Q representing
the model mismatch.

The actual total ICG concentration in the tissue is a linear combination of

plasma and the EES ICG concentrations, and modeled as:

m(t) = {ve vp} +at), te [T, T] (3.7)

where m(t), C.(t), and C,(t) are defined in (3.5) and (3.6); v, and v, are plasma and
the EES volume fractions, respectively; and 7n(t) is uncorrelated zero-mean Gaussian

process with covariance matrix R, representing the measurement noise.

3.2.2 Estimation of ICG Pharmacokinetics using Extended Kalman Fil-
tering

In matrix-vector notation, (3.6) and (3.7) can be expressed as:

C(t) = K(a)C(t) + w(t), (3.8)
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where C(t) denotes the concentration vector with elements C.(t), and C,(t); K()
is the system matrix, V(a) is the measurement matrix as defined in equation (3.7),

and « is the parameter vector given by
o = [kout kin kelm Ve vp]T- (39)

The ICG measurements in (3.8) are collected at discrete time instances, ¢t =
ET, k= 0,1,..., where T is the sampling period. Therefore, the continuous model
described in (3.8) is discretized. We can express the discrete compartmental model

as follows:

m(k) = Va(0)Ca(k) +ngy(k),

where K4(0) = K@) i5 the discrete time system matrix; V4(0) = V(a) is the
discrete measurement matrix; wy(k) and n,(k) are zero-mean Gaussian white noise
processes with covariances matrix Q, and variance Ry, respectively. The vector @
is composed of parameters 7;; which are functions the pharmacokinetic-rates and
volume fractions:

T
9:[711 Ti2 T21 T22 Ve Up] . (3-11)

We first estimate 7;5’s, 4,7 = 1,2 and then compute the pharmacokinetic-rates ki,

kouwt and ke, [25,111]. The explicit form of the discrete state-space model is given

as follows:
C.(k+1 C.(k
(B} _ | 7 B 4 k) (3.12)
Cp(k’ —|- 1) T21 T22 Op(k
Ce(k)
mk) = ve v, | + 14(k).

We estimate the parameter vector @ and concentration vector C,; by using
the EKF framework. The EKF is a recursive modeling and estimation method
with numerous advantages in ICG pharmacokinetic modeling [25]. These include
effective modeling of multiple compartments, and multiple measurement systems in

the presence of measurement noise and uncertainties in the compartmental model



43

dynamics, simultaneous estimation of model parameters and ICG concentrations
in each compartment, statistical validation of estimated concentrations and error
bounds on the model parameter estimates, and incorporation of available a priori
information about the initial conditions of the permeability rates into the estimation
procedure.

When both states (ICG concentrations) and model parameters (pharmacokinetic-
rates and volume fractions) are unknown, a linear state-space model can be regarded
as a non-linear model; the linear system parameters and states combine to form the
new states of the non-linear model. This system is then linearized and the new un-
known states are found using the EKF estimator [25,115-117]. In EKF framework,

0 can be treated as a random process with the following model:
O(k+1)=0(k)+ cq(k), (3.13)

where ¢4(k) is a zero-mean Gaussian process with covariance matrix Sg.

Table 3.1 summarizes the joint estimation of pharmacokinetic-rates and ICG
concentration in different compartments. In Table 3.1, Cy(k|k — 1) is the state es-
timate propagation at step k£ given all the measurements up to step k — 1; Cd(k)
is the state estimate update at step k; Py j_1 denotes the error covariance prop-
agation at step k given all the measurements up to step k& — 1; Py is the error
covariance update at step k; S, is the preassigned covariance matrix of ¢4(k); Jy
is the Jacobian matrix due to iterative linearization of the state equation at step
k; Gy is the recursive Kalman gain at step k; Ry is the covariance matrix of the
measurements; Q, is the covariance matrix of the concentration vector; and I is the
identity matrix. A detailed discussion of the extended Kalman filtering algorithm,
and the initialization of the parameters, concentrations, and covariance matrices can

be found in Alacam et al [25].
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Table 3.1: EKF algorithm for simultaneous estimation of states and pa-

rameters.

Initial Conditions

State Estimate Propagation

Error Covariance Propagation

State Estimate Update

Error Covariance Update

Kalman Gain

ol =[] =[G )
[Ca(klk — 1)} _ {Kxé(k: —1))Ca(k — 1)}

| O(k|k—1) O(k—1)

Pri1 = 1 PersJb  + {Qod SOCJ

[Cﬂ(m] _ {Cq(mk— 1) }
(k) O(k|k—1)

+Gy(m(k) — Va(B(klk — 1))Cq(klk — 1))
Pk,k = [I - GkAk|k71]Pk,k71

G, = Pk,k—lAak_l[Ak|k—1Pk,k—1A;€\k_1 + Rd]_l

Definitions J, = Kd(éo(k)) %[Kd(é(k))cd(k)]
Agjp—1= [Vd(é(kgk B 1))}

3.3 Spatially Resolved ICG Pharmacokinetic-rate Analysis

of 2n viwo Breast Data

3.3.1 Apparatus

In this work, we use the data collected with a continuous wave (CW) NIR
imaging apparatus. The apparatus has 16 light sources, which are tungsten bulbs
with less than 1 watt of output power. They are located on a circular holder at an
equal distance from each other with 22.5 degrees apart. Sixteen detectors, namely,
silicon photodiodes, are situated in the same plane. The breast is arranged in
a pendular geometry with the source-detector probes gently touching its surface.

Figure 3.5 illustrates the configuration of the apparatus and the configuration of

the detectors and the sources in a circular plane. Note that sources and detectors
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Table 3.2: Tumor information for each patient

Tumor Type Tumor Size Tumor Location
Case 1 Fibroadenoma 1-2 cm 6-7 o‘clock
Case 2 Adenocarcinoma 2-3 cm 4-5 o‘clock
Case 3 Invasive Ductal Carcinoma 4 by 3 cm 6 o‘clock

are co-located. The detectors use the same positions as the sources to collect the
light originating from one source at a time. Only the signals from the farthest 11
detectors are used in the analysis. For example, when Source 1 is on, the data is
collected using Detectors 4 to 14. This provides sufficient number of source-detector
readings (176 readings) to reconstruct Ap, images at each time instant. A band
pass filter at 805 nm, the absorption peak of ICG, is placed in front of the sources
to select the desired wavelength. A set of data for one source is collected every ~
500 ms. The total time for a whole scan of the breast including 16 sources and 16
detectors is ~ 8.8 seconds. A more detailed explanation of the apparatus and the

data collection procedure can be found in Nioka et al [143].

3.3.2 Tumor Information and Protocol

Three different patients with different tumor types are included in this study.
Measurements are made before the biopsy to avoid modification of the blood vol-
ume and flow in the tumor region. First case, (Case 1), is fibroadenoma, which
corresponds to a mass estimated to be 1—2 c¢m in diameter within a breast of 9 cm
diameter located at 6-7 o’clock. Second case, (Case 2), is adenocarcinoma corre-
sponding to a tumor estimated to be 2—3 c¢m in diameter within a breast of 7.7 cm
diameter located at 4-5 o’clock. The third case, (Case 3), is invasive ductal carci-
noma, which corresponds to a mass estimated to be 4 by 3 cm located at 6 o’clock.
Table 3.2 describes the tumor information for each patient. A priori information
on the location and size of the tumor was obtained by palpation and the diagnostic
information was derived a posteriori from biopsy and surgery. ICG is injected in-
travenously by bolus with a concentration of 0.25 mg per kg of body weight. Data

acquisition started before the injection of ICG and continued for 10 minutes.



46

3.4 Results and Discussion

Using the CW imager described above, source-detector readings were collected
from different angles for each patient. Differential absorption coefficient images were
reconstructed based on DDOT forward model given in equations (3.1) to (3.4) with
w set to zero. Using the linear relationship (3.5) between ICG concentration, and
absorption coefficient, ICG concentration images were obtained for each case. A
sample set of ICG concentration images for the selected time instants are shown
in Figures 3.1-3.3 for Case 1, 2, and 3, respectively. Although only 9 images are
displayed, there are approximately 50 images for each case, each corresponding to
a different time instant. Each image is composed of 649 voxels. Note that the ICG
concentration images in Figures 3.1-3.3 represent the bulk ICG concentrations in
the tissue, not the ICG concentrations in plasma or the EES compartments.

We next extracted the time course of ICG concentration for each voxel. As
an example, Fig. 3.4 shows the time course of ICG concentrations for all three
cases for a specific voxel in the tumor region (65, 276", 188" voxel for Case 1,
Case 2, and Case 3, respectively). We then fit the two-compartment model to
each time course data using the EKF framework; and estimated k., kour, Keim,
and the ICG concentrations in plasma and the EES. We chose initial values within
the biological limits that lead to minimum norm error covariance matrix. The
images of k;,, and k,,, for each case are shown in Figures 3.6(a)-(b), 3.7(a)-(b),
and 3.8(a)-(b), respectively. Additionally, we constructed the ICG concentration
images for plasma and the EES compartments. Figures 3.9-3.14 show the ICG
concentration in plasma and the EES for 3 different time instants for Case 1, 2,
and 3, respectively. Our results show that the pharmacokinetic-rates are higher
around the tumor region agreeing with the fact that permeability increases around
the tumor region due to compromised capillaries of tumor vessels. We also observed
that ICG concentrations in plasma and the EES compartments are higher around
the tumors agreeing with the hypothesis that around the tumor region ICG may act
as a diffusible extravascular flow in leaky capillary of tumor vessels.

Using the a priori and a posterior: information on the location, and the size

of the tumors, we plotted an ellipse (or a circle) to identify the approximate location
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Table 3.3: Mean and standard deviation of pharmacokinetic-rates for the
tumor region and outside the tumor region

kin (sec™11072) Four (sec™11072%) ket (sec™11073)

Inside Outside Inside Outside Inside Outside
Case 1 2.1440.018 0.73£0.011 1.2440.069 0.43+£0.013 4.1140.057 3.874+0.012

Case 2 2.924+0.076 1.14+0.052 1.58+0.051 0.654+0.036 3.94+0.081 4.1240.047
Case 3 6.87+0.093 3.06£0.015 4.96+0.048 1.66+0.072 4.49£0.056 4.4640.081

and size of the tumor in the pharmacokinetic-rate images. We note that the radii
of the ellipses were chosen large enough to include the tumor boundaries. Figures
3.6(a), 3.7(a), and 3.8(a) present the k;, images with approximate tumor location
and size for Case 1, 2, and 3, respectively. The consistency of the bright regions
in the k;, images, and circular/elliptical regions drawn based on t