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ABSTRACT

Fluorescence Diffuse Optical Tomography (FDOT) is an emerging molecular imag-

ing modality with applications in small animal and deep tissue imaging. FDOT uses

visible or near infrared light to reconstruct the concentration and pharmacokinetics,

as well as the life time of fluorophores injected into the tissue, based on a mathe-

matical model of light propagation in turbid media. Due to the diffusive nature of

light propagation in tissue, FDOT image reconstruction is a highly nonlinear, inher-

ently three-dimensional, and computationally intense inverse problem. This thesis

focuses on developing discretization error analysis and subsequent spatially varying

resolution techniques to address the tradeoff between the reconstruction accuracy

and the computational requirements of FDOT.

In the first part of the thesis, we formulate the FDOT inverse problem as an

optimization problem with Tikhonov regularization under the assumption of noise-

free measurements. We next analyze the effect of forward and inverse problem dis-

cretizations on the accuracy of FDOT reconstruction. Our analysis identifies several

factors that determine the extent to which the discretization affects the accuracy of

reconstructed fluorescence optical images. Based on our error analysis, we develop

adaptive mesh generation algorithms with the objective of increasing the reconstruc-

tion accuracy while keeping the discretized forward and inverse problem sizes within

allowable limits. In the simulation study, we demonstrate the effectiveness of our

new algorithms and compare it with those of the uniform and conventional adaptive

meshing schemes.

In the second part of the thesis, we consider measurements corrupted by addi-

tive noise and formulate the FDOT inverse problem as an optimization problem in

the maximum a posteriori framework. We analyze the effect of measurement noise

in the FDOT forward and inverse problem discretizations and develop adaptive

mesh generation alogrithms that take into account noise statistics as well as a priori

information on the fluorophore concentration. In the simulation study, we evalu-

ate the performance of our new adaptive mesh generation algorithms and compare

x



their performance with those of the uniform meshing scheme and the algorithms

developed in the first part of the thesis.

We apply our new adaptive mesh generation algorithms to FDOT reconstruc-

tion using data from a phantom experiment, and demonstrate the practical advan-

tages of our algorithms in real FDOT reconstruction.

Finally, we note that while our focus has been the FDOT inverse problem, the

methods and algorithms developed in this thesis can be adapted to other partial

differential equation based inverse parameter estimation problems, such as diffuse

optical tomography, bioluminescence tomography, electrical impedance tomography,

and microwave tomography.
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CHAPTER 1

INTRODUCTION

1.1 DOT and FDOT Imaging

Diffuse Optical Tomography (DOT) is a promising medical imaging tech-

nique [1, 2], that uses visible or Near Infrared (NIR) light to image the optical

properties inside biological tissue. Light, when traveling inside the tissue, is either

elastically scattered or absorbed by three major types of molecules: water, oxy-

genated hemoglobin (HbO), and deoxygenated hemoglobin (Hb). These three types

of molecules show a relatively weak absorption to the light with the wavelength

ranging from 700 nm to 1000 nm [3]. The light with wavelength in this “spectral

window” can penetrate the tissue up to several centimeters, and can be used to

explore and recover the absorption as well as the scattering properties of the tissue

in terms of the spatially varying absorption and scattering coefficient images. Fur-

thermore, due to different absorption properties of these three types of molecules

at different wavelengths, their respective concentrations can also be recovered using

the spectroscopy technique [4]. In this respect, DOT offers an opportunity to image

the hemoglobin concentration and oxygen saturation, which reflect the metabolic

level and functional information of the tissue [4].

DOT has a number of advantages as compared to the traditional anatomical

imaging modalities, such as ultrasound, X-ray, Computed Tomography (CT), and

Magnetic Resonance Imaging (MRI). First, DOT is a non-invasive and non-ionizing

imaging modality. Second, the instrumentation required for DOT is relatively less

expensive and can be made portable. Third, DOT provides functional informa-

tion that is not available from those anatomical imaging modalities. With these

advantages, some of the potential applications of DOT include optical mammogra-

phy [5–10], cognitive activity monitoring [11–13], and neonatal brain imaging [14].

Fluorescence Diffuse Optical tomography (FDOT) is an emerging molecular

imaging technique for small animal or deep tissue imaging based on the same light

propagation model as the one used in DOT. FDOT provides a method to visual-

1
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ize and quantify some specific molecular targets, and chemical and biological pro-

cesses in vivo [15, 16]. In FDOT imaging, fluorescent probes, also referred to as

“fluorophore”, can be developed to target on specific genes and proteins. These

fluorescent probes are either molecules [17] or small particles [18] that can absorb

the energy from an external light source and re-emit light at a lower-energy level

with longer wavelength. By illuminating the tissue and measuring the emission light

coming out, one can use tomographic methods similar to that used in DOT to re-

trieve the fluorophore concentration and lifetime (the time in which the emitting

light intensity decays to 1/e of the its initial intensity) information. The concentra-

tion information of fluorophore directly indicates the distribution of those specific

proteins or genes in tissue and how it changes over time [19]. Additionally, fluores-

cence lifetime can also provide valuable information on tissue oxygenation, pH, and

glucose concentration [20].

Some traditional radiologic imaging techniques, such as MRI, CT, Single Pho-

ton Emission Computed Tomography (SPECT), and Positron Emission Tomography

(PET), are also adapted and used in the field of molecular imaging. FDOT has the

similar advantages over these traditional techniques as DOT. Also similar to DOT,

FDOT can be classified into three categories based on the employed method of il-

lumination and detection [16]: Continuous Wave (CW) [21–24], Frequency Domain

(FD) [25–27], and Time Domain (TD) [28–30] methods. CW method uses light with

constant intensity generated and measured by simple low-cost optical equipments.

This method has the advantage of comparatively higher Signal-to-Noise Ratio (SNR)

than those of FD and TD methods, because of the stability and better noise char-

acteristic of the optical components [16]. However, it can not recover the lifetime

information of fluorophore. FD method uses light with modulated intensity, and the

measurements of light intensity and phase shift at detector positions can be used to

obtain both localization and lifetime information of fluorophore. On the other hand,

TD method, that uses fast light pulses to illuminate tissue and measures the time-

resolved light intensity at detector positions, can also be used to retrieve the lifetime

information. One advantage of TD method is its higher resolution achieved by us-

ing the information contained in less diffusive early arriving photons [31]. However
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both FD and TD methods require more complex and expensive optical equipments

as compared to that used by the CW method, and their SNRs are both lower than

the CW method [16].

In recent years, researchers began to use direct-lens-coupled camera in FDOT

data collection to replace the traditionally used light-guiding fibers. This approach

offers high spatial sampling of the measurement and increases the number of total

measurements from traditionally 102-103 to 104-106 [16]. This method was reported

to be able to improve the reconstruction resolution to sub-millimeter level [22].

Further, a non-contact imaging technique [24, 32] using the similar data collection

method with camera was introduced into FDOT field. This method eliminates

the use of matching fluid, and instead a surface capture device is used to obtain

the tissue boundary information [32]. With a model that describes the combined

light propagation from tissue to air [33], this method provides the possibility of

using FDOT to explore arbitrary bounded tissue or animal, greatly simplifies the

experiment process, and improves the flexibility of optical imaging technique [24].

1.2 Forward and Inverse Problems of FDOT

In this thesis, we focus on the image reconstruction aspect of FDOT imaging.

In this context, we consider FDOT imaging as an inverse problem that involves

recovering the unknown optical properties (i.e., the fluorophore concentration and

lifetime inside tissue) from the boundary measurements of light based on a forward

model of light propagation. The FDOT forward problem involves computing the

light field in tissue given the optical properties of the medium based on the FDOT

forward model. In this section, we give a brief introduction to the forward and

inverse problems of FDOT from a computational perspective.

There are two types of mathematical models available to describe light propa-

gation in biological tissue: The Radiative Transport Equation (RTE) and the diffu-

sion equation. The radiative transport equation [34], also referred to as Boltzmann

transport equation, treats the light as a large number of photons propagating in

the tissue, and it is based on the conservation law of the radiance. Although the

radiative transport equation is considered as a more accurate model than the dif-
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fusion equation model, its solution is very difficult to obtain either analytically or

numerically due to its integro-differential structure [35]. Under the assumption that

the tissue has much stronger scattering property than the absorption property in the

NIR range, the radiative transport equation can be approximated by the diffusion

equation [36].

In FDOT, a pair of coupled diffusion equations are used to model the excitation

and emission lights [37, 38]:

−∇ ·Dx(r)∇ϕx(r, t) + µax(r)ϕx(r, t) +
1

c

∂ϕx(r, t)

∂t
= S(r, t), (1.1)

−∇ ·Dm(r)∇ϕm(r, t) + µam(r)ϕm(r, t) +
1

c

∂ϕm(r, t)

∂t
=

1

τ
ηµaxf (r)

·
∫ t

0

exp

(
t′ − t

τ

)
ϕx(r, t

′)dt′, (1.2)

where subscripts x andm denote the excitation and emission, respectively, ϕx,m(r, t)

is the light field at position r and at time t, Dx,m(r) and µax,am(r) are the diffusion

coefficient and absorption coefficient of the tissue, µaxf , τ , and η are the absorption

coefficient, lifetime and quantum efficiency of the fluorophore, respectively. Since

the absorption coefficient of the fluorophore is proportional to the fluorophore con-

centration, therefore retrieving the fluorophore concentration information is equiv-

alent to recovering the absorption coefficient of the fluorophore. Although this

approximation may fail in the tissue with stronger absorption than the scattering

property [39,40], it is valid in many applications that involve biological tissue [2].

There are three types of methods used to solve the forward problem defined

based on the RTE or diffusion equation: Analytical method, statistical method, and

numerical method. The analytical method attempts to find a closed form expression

for the Green’s function of the diffusion equations (1.1) and (1.2). However, ana-

lytical solution only exists for simple imaging domain geometries and homogeneous

background optical properties [41–43]. The statistical method solves the forward

problem based on the RTE by simulating a large number of photons and calculating

the trajectory of each photon. One of the most widely used methods is the Monte

Carlo method [44] which can solve the forward problem with very high accuracy.

However, because of the intensive computational requirements of this method, it is
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typically used to solve the forward problem only where diffusion equation does not

hold [44–46], and to validate the solutions obtained by other less accurate meth-

ods [47, 48]. The numerical method can overcome the analytical method’s inability

to solve for light field in arbitrary domain geometry and requires much fewer com-

putational resources than the statistical method [49–51]. In this thesis, we model

the FDOT forward problem by a pair of coupled diffusion equations in the frequency

domain, and use one of the most widely used numerical methods: Finite Element

Method (FEM) to solve the forward problem.

Let the forward problem of FDOT be represented by the coupled diffusion

equations (1.1) and (1.2). Then, we can define a relationship between the light

field, y, on the boundary of imaging domain and the spatially varying fluorophore

concentration or lifetime, x, as

y = A(x), (1.3)

where A is a nonlinear operator determined by (1.1) and (1.2). Then, the in-

verse problem of FDOT involves solving x given y based on the relationship defined

in (1.3). This is a highly nonlinear inverse problem. Furthermore, it is ill-posed in

the following two senses:

• It does not have a unique solution, because the number of unknowns is usually

much larger than the number of measurements.

• It does not have a stable solution, i.e., the solution is highly sensitive to small

variations in the measurements.

To solve the FDOT inverse problem, both its nonlinearity and ill-posedness need to

be appropriately addressed in the inverse problem formulation.

The nonlinearity of the FDOT inverse problem in (1.3) can be addressed by an

iterative linearization. When the variation of the optical property is small with re-

spect to a known background value (in FDOT, this means the absorption coefficient

of the fluorophore is much smaller than that of the tissue or the lifetime is close

to a known background value), the nonlinear relationship (1.3) can be linearized

by a Born- or Rytov-type of approximation [52, 53]. After the discretization of the
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linearized relationship, (1.3) can be reduced to a matrix-vector equation:

y = Ax, (1.4)

where y and x are the discretized measurements and fluorophore concentration or

lifetime, and A is the matrix representation of the linearized operator A, often

referred to as the “weight matrix” [22].

There are many inversion methods that can be used to solve (1.4) while coun-

tering its ill-posedness. These methods include the truncated singular value decom-

position, algebraic reconstruction technique, Krylov subspace method and conjugate

gradient method [54,55].

To address the stability and non-uniqueness of the FDOT inverse problem,

(1.3) can be regularized [56,57] as follows:

x = argxmin
{
∥y −A(x)∥2 + λ∥L(x, y)∥2

}
, (1.5)

where L(x, y) is a regularization functional that represents some a priori information

about x and y, λ is the regularization parameter, and ∥·∥ is an appropriately chosen

norm. The first term in (1.5) forces the solution x to fit to the measurements y, and

the second term constrains x to prevent an unstable solution. In this respect, λ is

used to balance these two terms and control the solution toward the measurements

or a priori information. There are many nonlinear optimization methods that can

be used to solve (1.5) including the Gauss-Newton [58, 59] and iterative coordinate

descent methods [57].

1.3 Adaptive FEMs for FDOT and Other Inverse Problems

FDOT poses a computationally intense imaging problem. This stems from the

necessity of numerically solving the interdependent forward and inverse problems.

If the nonlinear inverse problem formulation is used in FDOT reconstruction, one

needs to linearize and solve the inverse problem at many iteration steps until it

converges. At each iteration, solving the inverse problem also requires first solving

the forward problem, comprised of a pair of coupled diffusion equations, for each
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source or detector. For both forward and inverse problems, numerical solutions are

merely approximations of the exact solutions, and they possess error as a result of the

problem discretization. In this respect, the problem discrtization presents a tradeoff

between the accuracy and the computational complexity of FDOT reconstruction.

One way to achieve higher accuracy is to reduce the size of the mesh used to discretize

the problem. However, reducing the size of the mesh implies a substantial increase of

the discretization points due to the three-dimensional nature of the FDOT imaging

problem, thereby increasing the resulting discretized problem size as well as the

computational complexity of the image reconstruction.

One way to address this tradeoff, is to use the adaptive FEMs to solve both

FDOT forward and inverse problems. The adaptive FEMs use adaptive meshes

with spatially varying resolution for the problem discretization. With a constraint

on the computational complexity, the adaptive meshes can produce more accurate

numerical solutions than those produced by the meshes with uniform resolution.

To generate the meshes that can effectively reduce the discretization error, the

adaptive mesh generation algorithm must be designed with a solid understanding

about the effects of the forward and inverse problem discretizations on the accuracy

of FDOT reconstruction. Due to the interdependence of the FDOT forward and

inverse problems, the discretizations of both problems affect the final reconstruction

accuracy in a complex way. While the effect of inverse problem discretization can

be deduced rather intuitively [60], the discretization error in the forward problem

solutions can also result in unexpected artifacts in optical imaging [61]. In this case,

the adaptive meshes refined independently for the forward and inverse problems

may not be as effective in reducing the error due to discretization as those refined

by taking the interdependence of two problems into account [60]. Furthermore, in

the imaging problem, the measurement noise is also an important factor that may

interact with the discretization to affect the accuracy of the image reconstruction.

Therefore, adaptive mesh generation algorithms designed for FDOT imaging also

need to take into account the impact of measurement noise.

There is a vast degree of work on the estimation and analysis of discretization

error in the numerical solutions of Partial Differential Equations (PDEs) solved by
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FEMs [62–67]. However, in the area of inverse problems, which often present as

parameter estimation problems governed by PDEs, relatively little has been pub-

lished. This parameter estimation problem is often formulated as an optimization

problem: Given some PDEs, find the values of some parameters in these PDEs that

can minimize the difference between the actual observation and the prediction cal-

culated based on them [68]. Several error estimates for this type of problem have

been derived (see [69–73]), based on which adaptive meshing methods can be de-

veloped to reduce the error due to discretization. For applications of these works

(see, for example [74, 75]), Beilina et al. derived an a posteriori error estimate

and developed an adaptive meshing method for the solution of an inverse acoustic

scattering problem.

In the area of DOT, Arridge et al. [61] numerically showed that the error re-

sulting from the forward problem discretization can lead to significant artifacts in

the reconstructed optical images. In that work, these artifacts are minimized by

modeling the discretization error in the forward problem solution as a random vari-

able and reconstructing the image within the Bayesian framework. Furthermore, the

adaptive meshing methods in FEMs field were adapted to DOT imaging to improve

the accuracy and computational efficiency of the image reconstruction. In [76], Gu

et al. developed a dual meshing method for DOT. This method uses two meshes

with different discretization levels in DOT reconstruction: fine mesh for the forward

problem and coarse mesh for the inverse problem. Furthermore, they proposed an

adaptive meshing method similar to those in [77, 78], which adaptively refines the

mesh around the region of heterogeneity, identified either from the co-registered ul-

trasound image [77] or the previous DOT reconstruction [76, 78]. In [79], Guven et

al. presented a rigorous approach to analyze the effect of discretization on the accu-

racy of DOT reconstruction, which further led to the development of a new adaptive

mesh generation method for DOT [60]. Their new method takes into account the

interdependence of forward and inverse problems when discreizatizing either of them

and can effectively reduce the error due to discretization in the reconstructed optical

images.

In the area of FDOT, it has been shown that, when the computational re-
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sources are constrained, using the meshes with spatially varying resolution can re-

sult in higher accuracy and resolution in the reconstructed images than using the

meshes with uniform resolution [59, 80, 81]. In [59, 80], Bangerth et al. formulated

the FDOT image reconstruction problem as a PDE-constrained optimization prob-

lem, and employed a mesh refinement criteria suggested in a dual weighted residual

framework [69]. In [82], to achieve fast and robust parameter mapping between

the adaptively refined/derefined meshes of forward and inverse problems, Lee et al.

developed an algorithm to identify and resolve the intersections of tetrahedral finite

elements. In [81], this algorithm was utilized in FDOT reconstruction where the

meshes for the forward and inverse problems are independently refined based on an

a posteriori error estimate.

Adaptive meshing algorithms have been proposed for both DOT and FDOT

imaging before [76, 77, 77, 78, 81]. However, in all these studies, existing adaptive

meshing methods/algorithms are directly applied to the DOT and FDOT imaging

without giving any specific consideration to problems in hand. As such these algo-

rithms are not expected to produce optimal results in addressing the computational

complexity vs. accuracy tradeoff as demonstrated in our simulation study. There

are a number of studies, including our previous study [59,60,79], that take into ac-

count forward and inverse problem interdependency in adaptive meshing. However,

these studies do not take into account the effect of measurement noise in designing

adaptive meshing algorithms. In Chapter 5, we describe an adaptive mesh gen-

eration algorithm that takes into account the statistics of measurement as well as

the interdependency of the FDOT forward and inverse problems. We demonstrate

the effectiveness of our method in simulation and phantom studies over existing

approaches.

1.4 Thesis Objectives

In this thesis, we focus on analyzing the effect of forward and inverse problem

discretizations on the accuracy of FDOT reconstruction and developing adaptive

mesh generation algorithms to address this tradeoff. More specifically, in our analy-

sis, we determine the factors that affect the reconstruction accuracy due to forward
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and inverse problem discretizations. Based on our analysis, we develop the adaptive

mesh generation algorithms for FDOT forward and inverse problems. These algo-

rithms generate the meshes with spatially varying resolution, and can be used to

reduce the error due to discretization in FDOT reconstruction.

The objectives of this thesis can be summarized as follows:

• To define a figure of merit that quantitatively evaluates the accuracy of the

reconstructed optical image, and show explicitly the effect of the forward and

inverse problem discretizations on the reconstruction accuracy. In this respect,

we identify the factors that can affect the reconstruction accuracy together

with the forward and inverse problem discretizations (i.e., the choice of basis

functions and discretization points).

• To develop adaptive mesh generation algorithms for the FDOT forward and

inverse problems that take into account the factors identified in the discretiza-

tion effect analysis to improve accuracy and resolution of FDOT imaging while

keeping the computational requirements within allowable limits. We develop

several adaptive mesh generation algorithms that can address the tradeoff be-

tween the computational complexity and the reconstruction accuracy of FDOT

imaging.

• To compare our adaptive mesh generation algorithms with uniform and con-

ventional adaptive meshing methods in FDOT reconstruction, and demon-

strate their practical advantages.

To achieve the objectives stated above, our work in this thesis was developed

in two parts: In Chapters 2 and 3, we first analyze the effect of discretization on

the reconstruction accuracy and develop adaptive mesh generation algorithms for

FDOT under the assumption that the measurements are noise-free. This assump-

tion simplifies our analysis and allows us to identify the key factors related to the

imaging geometry and heterogeneity involved in the forward and inverse problem

discretizations, that effect the accuracy of the FDOT reconstruction. In Chapters 4

and 5, we address the impact of measurement noise in FDOT forward and inverse

problem discretizations and its effect in reconstruction accuracy.



11

The major contributions of this thesis can be summarized as follows:

• The discretization error analysis in the noise-free case presents a clear rela-

tionship among the accuracy of FDOT reconstruction, factors associated with

the FDOT imaging problem (such as source-detector configuration, their po-

sitions with respective to fluorophore heterogeneity and the inverse problem

formulation), and forward and inverse problem discretizations. To the best of

our knowledge, this part of the thesis is the first study that provides a compre-

hensive analysis on the error due to discretization in FDOT imaging literature.

This analysis further suggests novel adaptive mesh generation algorithms for

FDOT imaging to address the tradeoff between the reconstruction accuracy

and computational complexity of FDOT imaging.

• The discretization error analysis in the presence of measurement noise takes

the noise statistics as well as the a priori information on the fluorophore con-

centration into account, and shows how the discretization together with the

noise and a priori information affect the accuracy of FDOT reconstruction.

To the best of our knowledge, this part of the thesis is the first study address-

ing the discretization error and adaptive mesh generation in the presence of

measurement noise in the FDOT, as well as the DOT imaging literature.

• The adaptive mesh generation algorithms developed in this thesis can sig-

nificantly improve the FDOT reconstruction accuracy while constraining the

computational complexity within allowable limit, as compared to the uniform

and conventional adaptive meshing schemes.

• The discretization error analysis framework and the adaptive mesh genera-

tion algorithms developed in this thesis can also be adapted to other inverse

parameter estimation problems involving PDEs, such as bioluminescence to-

mography, electrical impedance tomography, and microwave tomography.

1.5 Thesis Outline

Throughout this thesis, we focus on the estimation of the fluorophore con-

centration in a bounded optical domain using the CW method. In this respect,
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for the forward problem of FDOT, we model the light propagation in the bounded

domain by a pair of coupled frequency-domain diffusion equations with the Robin-

type boundary conditions. After transforming this boundary value problem into

a variational problem, we use the Galerkin projection method with first-order La-

grange basis functions to discretize and solve the forward problem. For the inverse

problem of FDOT, we consider an iterative linearization method based on the Born

approximation to address the nonlinearity. The outline of the thesis is as follows:

In Chapter 2, we analyze the effect of discretization on FDOT imaging when

the measurements are noise-free. Thus, we assume that there is no error in the re-

constructed images due to noise. In this case, we assess the reconstruction accuracy

using the H1(Ω) norm of the error due to discretization in the reconstructed image.

We formulate the inverse problem as an optimization problem at each iteration of

the linearization with zeroth- and first-order Tikhonov regularization. Next, with an

appropriate boundary condition, we convert the optimization problem into a vari-

ational problem, and discretize and solve it using the Galerkin projection method

with first-order Lagrange basis functions. Following the discretizations, we derive

two upper bounds for the error in the reconstructed image due to the forward and

inverse problem discretizations, respectively. Unlike the conventional error bounds

in the finite element theory, these two new error bounds take into account the mu-

tual dependence of the forward and inverse problems and identify the specific factors

in the FDOT imaging problem. These factors include the number of sources and

detectors, their configuration and their positions with respect to the fluorophore

heterogeneity, and the formulation of the inverse problem.

In Chapter 3, based on the two error bounds derived in Chapter 2, we de-

velop two new adaptive mesh generation algorithms for the forward and inverse

problems of FDOT for the noise-free case. These two new adaptive mesh gen-

eration algorithms provide improved reconstruction accuracy as compared to the

conventional adaptive and uniform meshing schemes while keeping the size of the

discretized problems under the allowable limits. In contrast to the adaptive meshing

method suggested by the conventional error bound in finite element theory, our new

algorithms address the interdependence between the solutions of the forward and
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inverse problems, and take into account the source and detector configuration, and

their relative locations with respect to the fluorophore heterogeneity, as well as the

inverse problem formulation and the regularization parameters. After describing

each algorithm in detail, we also illustrate their mesh refinement process through

a toy problem, compare them with the conventional method and briefly discuss

their computational complexities. At the end of this chapter, we present a series

of three-dimensional simulation studies to illustrate the practical advantages of our

new adaptive mesh generation algorithms in FDOT reconstruction. Our numerical

simulations show the improvements, resulting from our new algorithms, in terms

of accuracy, resolution, and small target detectability of the reconstructed optical

images, as well as the convergence rate of the discretized inverse solution to the

exact inverse problem solution.

In Chapter 4, we analyze the effect of discretization on FDOT imaging when

the measurements are corrupted by additive noise. We assume that the measure-

ment noise is an independent, zero-mean Gaussian process. Similarly, we assume

that the fluorophore concentration is a Gaussian random field with known first- and

second-order statistics. In this respect, we formulate the FDOT inverse problem in

the Bayesian framework and consider the Maximum A Posteriori (MAP) estimator

of the fluorophore concentration taking into account a priori information on fluo-

rophore concentration at each linearization step. Following the approach presented

in Chapter 2, we transform these optimization problems into variational problems

and discretize them with the Galerkin projection method. Since the measurements

are contaminated with random noise, the estimate of fluorophore concentration as

well as the error due to discretization are random fields rather than the determin-

istic functions as considered in Chapter 2. To quantitatively assess the error due to

discretization, we define the Mean-Square-Error (MSE) between the exact solution

and the discretized solution of the inverse problem, and use this as the figure of

merit to evaluate the reconstruction accuracy. Then, we analyze the effect of dis-

cretization and present two new upper bounds on the MSE that present a direct

relationship among the MSE due to discretization, the forward and inverse problem

discretizations, the measurement noise, and the a priori information on the fluo-
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rophore concentration. Unlike the upper bounds given in Chapter 2, the new error

bounds not only include the factors (such as the number of sources and detectors,

their configuration and their positions with respect to the fluorophore heterogeneity)

identified by the upper bounds in Chapter 2, but also take into account the noise

statistics as well as the a priori information on fluorophore concentration.

In Chapter 5, based on the two upper bounds derived in Chapter 4, we de-

velop two new adaptive mesh generation algorithms for the forward and inverse

problems of FDOT, taking into account the noise statistics and a priori informa-

tion on fluorophore concentration. Additionally, unlike the algorithms in Chapter 3,

these two new algorithms aim to improve the reconstruction accuracy in the mean

square sense, while keeping the size of the discretized problems under an allowable

limit. After describing each algorithm in detail, we address several practical issues

in implementing the algorithms, briefly discuss their computational complexities,

and compare them with the ones in Chapter 3 and the conventional adaptive mesh-

ing method. At the end of this chapter, we present a series of three-dimensional

simulation studies in the presence of measurement noise to demonstrate the practi-

cal advantages of our new algorithms over the ones in Chapter 3. The simulation

results show that, in the presence of measurement noise, our new algorithms can

more effectively reduce the MSE and improve the convergence rate of the discretized

inverse problem solution to the exact inverse problem solution, than the algorithms

given in Chapter 3.

In Chapter 6, we used data from a phantom experiment to demonstrate the

performance of our adaptive mesh generation algorithms in the real FDOT re-

construction. Since the measurements are always corrupted by noise in the real

FDOT reconstruction, we apply our adaptive mesh generation algorithms, proposed

in Chapter 5, to FDOT reconstruction using data obtained from a phantom ex-

periment, and compare our algorithm with the uniform and conventional adaptive

meshing schemes. The phantom experiment results demonstrate the effectiveness of

our algorithms in real data.

In Chapter 7, we conclude the thesis and provide a discussion on the potential

future work.
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We summarize the performance of conventional adaptive meshing algorithm

and the proposed adaptive mesh generation algorithms in this thesis in Table 1.1.

Table 1.1: Comparison of different adaptive mesh generation algorithms.
Conventional Algorithms Algorithms

adaptive meshing in Chapter 3 in Chapter 5
algorithm

H1 norm error reduction 0-15% 50-60% N/A
MSE reduction N/A 25-40% 70-75%
Resolution 8.5 mm 6.5 mm 6.5 mm

Computational complexity1
O(N∆ND) O(N∆ND)

O(N∆) O(N∆NS) O(N∆NS)
O(N∆NSND) O(N∆NSND)

1NS is the number of sources, ND is the number of detectors, N∆ is the number of element in
the mesh used for problem discretization. For algorithms in Chapters 3 and 5, from top to bottom,
the computation complexities are given for refining the mesh for a single source, a single detector
and inverse problem.



CHAPTER 2

EFFECT OF DISCRETIZATION IN FDOT IN THE

NOISE-FREE SITUATION1

2.1 Introduction

In this chapter, we analyze the effect of discretization on the accuracy of FDOT

imaging when the measurements are noise-free. In this respect, there is no error due

to the noise in the reconstructed image. This assumption simplifies our analysis and

allows us to identify the key factors specific to the imaging problem that show how

the forward and inverse problem discretizations impact the accuracy of reconstruc-

tion. In particular, we focus on the estimation of the fluorophore concentration in

a bounded optical domain using the CW method. For the forward problem, the

light propagation in this domain is modeled by a pair of coupled frequency-domain

diffusion equations with the Robin-type boundary conditions. After transforming

this boundary value problem into a variational problem, we use the Galerkin pro-

jection method with first-order Lagrange basis functions to discretize and solve the

forward problem. For the inverse problem, we consider an iterative linearization

method based on the Born approximation to address the nonlinearity. At each lin-

earized iteration, we formulate the inverse problem as an optimization problem that

enables us to incorporate a priori information in the form of zeroth- and first-order

Tikhonov regularization. Then, with the appropriate boundary condition, we con-

vert this optimization problem into a variational problem, which can be discretized

and solved by the Galerkin method as we use in the forward problem.

Following the discretizations, we derive two upper bounds for the error in

the reconstructed image due to discretization the forward and inverse problem dis-

cretizations, respectively. Unlike the conventional error bounds in the finite element

theory, these two new error bounds take into account the mutual dependence of

1Portions of this chapter previously appeared as: M. Guven, L. Reilly-Raska, L. Zhou, and
B. Yazıcı. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse
optical tomography: part I. IEEE Transactions on Medical Imaging, 29(2):217-229, 2010.
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the forward and inverse problems and identify the specific factors that may lead

to high error in the reconstructed optical image. These factors include the num-

ber of sources and detectors, their configuration and their positions with respect to

the fluorophore heterogeneity, and the formulation of the inverse problem. These

new error bounds motivate the development of the new adaptive mesh generation

algorithms, which are further discussed in the next chapter.

2.2 Notational Conventions

Throughout the thesis, we use capital cursive letters (A) for operators and

bold capital letters (A) for matrices. We denote functions by lowercase letters (g

and ϕ etc.) and their finite-dimensional approximations by corresponding uppercase

letters (G and Φ etc.). We use bold to denote vectorized quantities such as r and

Γ. Table. 2.1 provides a summary of key variables, function spaces, and norms used

throughout the thesis.

Table 2.1: Definition of function spaces and norms.
Notation Explanation
C(Ω) Space of continuous functions on Ω
L∞(Ω) L∞(Ω) = {f |ess supΩ|f(x)| <∞ }
Lp(Ω) Lp(Ω) = {f | (

∫
Ω
|f(x)|pdx)1/p <∞ }, p ∈ [1,∞)

Hp(Ω) Hp(Ω) = {f | (
∑

|z|≤p ∥Dz
wf∥20)1/2 <∞ }, p ∈ [1,∞)

∥f∥0 The L2(Ω) norm of f
∥f∥p The Hp(Ω) norm of f
∥f∥p∗ The dual norm of f in the dual space Hp∗(Ω)
∥f∥∞ The L∞(Ω) norm of f
∥f∥0,m The L2 norm of f over the mth finite element Ωm

∥f∥p,m The Hp norm of f over the mth finite element Ωm

∥f∥∞,m The L∞ norm of f over the mth finite element Ωm

2.3 Forward Problem of FDOT

We start with using a pair of coupled frequency-domain diffusion equations to

model the light propagation in a fluorescent medium of a bounded domain Ω ⊂ R3
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with Lipschitz boundary ∂Ω [37,38]:

−∇ ·Dx(r)∇ϕx(r, ω) +
(
µax(r) +

jω

c

)
ϕx(r, ω) = Si(r, ω), (2.1)

−∇ ·Dm(r)∇ϕm(r, ω) +
(
µam(r) +

jω

c

)
ϕm(r, ω) = ϕx(r, ω)ηµaxf (r)

· 1− jωτ(r)

1 + [ωτ(r)]2
, (2.2)

where r = [r1, r2, r3] ∈ Ω, ω is the source operating frequency, subscripts x,m de-

note the excitation and emission wavelengths, ϕx,m represents the light fields, µax,am

represents the absorption coefficient of the medium, Dx,m represents the isotropic

diffusion coefficients, µaxf and τ are the absorption coefficient and the lifetime of

the fluorophore, η is the quantum efficiency, and Si is the ith excitation source,

i = 1, · · · , NS, where NS is the number of sources. We assume that the diffusion

coefficients are known and they are identical at both excitation and emission wave-

lengths in the closed domain, which implies D(r) := Dx(r) = Dm(r), r ∈ Ω
∪
∂Ω.

Typically, we have following relationship among µax, µam, and µaxf for r ∈ Ω:

µax(r) = µaxe(r) + µaxf (r), (2.3)

µam(r) = µame(r) + µamf (r), (2.4)

where the subscript e denotes endogenous properties and f denotes exogenous prop-

erties. Without loss of generality, we assume that both D(r) and µax,m(r) are

non-negative and bounded on Ω.

Since we consider using the CW method to estimate the fluorophore concen-

tration in the medium, the frequency ω = 0 in (2.1) and (2.2). We note that subse-

quent developments can be extended to include multiple frequencies in FD method

of FDOT when τ is known. In this respect, we model the sources by a Gaussian

function centered at source position ri with angular frequency ω = 0. Therefore,

the NIR light propagation at the excitation and emission wavelengths can be model
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by the following boundary value problems:

−∇ ·D(r)∇ϕx(r, ri) + µax(r)ϕx(r, ri) = Si(r), r ∈ Ω, (2.5)

−∇ ·D(r)∇ϕm(r, ri) + µam(r)ϕm(r, ri) = ϕx(r, ri)ηµaxf (r), r ∈ Ω, (2.6)

with the Robin-type boundary conditions [36]:

2D(r)
∂ϕx(r, ri)

∂n
+ ρϕx(r, ri) = 0, r ∈ ∂Ω, (2.7)

2D(r)
∂ϕm(r, ri)

∂n
+ ρϕm(r, ri) = 0, r ∈ ∂Ω, (2.8)

where ρ is a parameter governing the internal reflection at the boundary ∂Ω, and

∂/∂n denotes the directional derivative along the unit normal vector on the bound-

ary.

In order to simplify the analysis later on, we make use of the adjoint problem

associated with (2.6) and (2.8):

−∇ ·D(r)∇g∗m(r, rj) + µam(r)g
∗
m(r, rj) = 0, r ∈ Ω, (2.9)

2D(r)
∂g∗m(r, rj)

∂n
+ ρg∗m(r, rj) = S∗

j (r), r ∈ ∂Ω, (2.10)

where g∗m(r, rj) is the solution of the adjoint problem for the jth adjoint source S∗
j

located at the detector position rj ∈ ∂Ω, j = 1, · · · , ND, where ND is the number of

detectors. For a point adjoint source located at the detector position rj, g
∗
m(r, rj) =

gm(rj, r) holds where gm(·, r) is the Green’s function of (2.6) and (2.8) [36]. Note

that in this thesis, we model the point adjoint source by a Gaussian function with

sufficiently low variance. Then, the emission light field at r due to the source at ri

is given by the following nonlinear integral equation:

ϕm(r, ri) =

∫
Ω

g∗m(ŕ, r)ϕx(ŕ, ri)ηµaxf (ŕ)dŕ. (2.11)

Given NS sources and ND detectors, we define Γi,j to be the measurement obtained
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by the jth detector located at rj due to the ith source, then we have

Γi,j := ϕm(rj, ri)

=

∫
Ω

g∗m(r, rj)ϕx(r, ri)ηµaxf (r)dr. (2.12)

The relationship between Γi,j and µaxf defined in (2.12) is nonlinear, because

g∗m is dependent on µamf nonlinearly which is in turn related to µaxf , and the

nonlinear dependence of ϕx on µaxf is also clear. Further we note that, we assume

that the measurements are noise-free in this chapter. This assumption allows us

to eliminate the effect of noise in our error analysis, and to focus primarily on the

effect of the discretization at the moment. In the next section, we will formally

state the inverse problem, and address its nonlinearity and ill-posedness by the

Born approximation and the Tikhonov regularization in an optimization framework

respectively.

2.4 Inverse Problem of FDOT

Based on the forward problem formulation given in the previous section, the

inverse problem can be defined as to recover the quantity µaxf using the measure-

ments Γi,j, i = 1, . . . , NS and j = 1, . . . , ND, based on the nonlinear integral equation

(2.12). To address the nonlinearity of this integral equation, we use the Born ap-

proximation [52, 53] and linearize (2.12) around a known background fluorophore

absorption coefficient µ0
axf : Let ϕ0

x(r, ri) and g∗,0m (r, rj) be the solutions of (2.5)-

(2.7) and (2.9)-(2.10) for µaxf = µ0
axf , then (2.12) can be linearized as

Γi,j =

∫
Ω

g∗,0m (r, rj)ϕ
0
x(r, ri)ηµaxf (r)dr. (2.13)

We let g∗j (r) := g∗,0m (r, rj) and ϕi(r) := ϕ0
x(r, ri) suppressing the dependence

of these functions on 0, x and m to simplify our notation. We also introduce

µ(r) := ηµaxf (r) which we refer to as fluorophore concentration quantity to be
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reconstructed. Then (2.13) can be expressed as

Γi,j =

∫
Ω

g∗j (r)ϕi(r)µ(r)dr. (2.14)

Based on our linearized measurement model (2.14), we group the individual

measurements into the following vector form:

Γ := [Γ1,1, . . . ,Γ1,ND
,Γ2,1, . . . ,ΓNS ,ND

]T , (2.15)

and further define a vector-valued operator A : L2(Ω) → RNSND as

(Aµ)ij :=

∫
Ω

aij(r)µ(r)dr, (2.16)

where aij(r) := g∗j (r)ϕi(r). Combining (2.15) and (2.16), we write our measurement

model as

Γ = Aµ. (2.17)

We note that the Born approximation is valid and widely used in FDOT imag-

ing when the perturbation of absorption coefficient is relatively small as compared

to the known background absorption coefficient [38, 83]. However, when the per-

turbation of absorption coefficient is large, an iterative linearization method based

on the Born approximation can be used to address the nonlinearity of the inverse

problem. In this case the fluorophore concentration µ solved based on (2.17) can be

iteratively refined based on the following model [84,85]:

Γ = Akµ̂k+1,

where µ̂k+1 is the estimate of the fluorophore concentration at (k + 1)th linearized

iteration and

(Akµ)ij :=

∫
Ω

akij(r)µ(r)dr,

where akij = ϕki (r)g
∗,k
j (r), ϕki (r) and g

∗,k
j (r) are computed based on the fluorophore
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concentration µ̂k estimated at the kth iteration.

Using the l1 norm of the finite-dimensional space, an upper bound for the

linear operator A can be given by

∥A∥L2(Ω)→l1 ≤
NS ,ND∑
i,j

∥g∗jϕi∥0. (2.18)

Because of the boundedness and the finite-dimensional range of A, we conclude that

A is compact. Therefore the inverse problem based on (2.17) is ill-posed [86].

In this chapter, we address the ill-posedness of the FDOT inverse problem

using the Tikhonov regularization in the optimization framework, which provides

a suitable means for incorporating a priori information of the fluorophore concen-

tration. In this respect, our inverse problem can be formulated by the following

optimization problem where we seek a solution µ̂ ∈ H1(Ω) that minimize the objec-

tive functional J :

µ̂ = min
µ∈H1(Ω)

J (µ,∇µ)

= min
µ∈H1(Ω)

[JL(µ) + JR(µ,∇µ)] , (2.19)

where the H1(Ω) smoothness on the solution is imposed by the use of first-order

Tikhonov regularization described in the following. In (2.19), the functional JL that

measures the difference between the predicted and actual measurements is given by

JL(µ) = ∥Γ−Aµ∥2l2

=

NS ,ND∑
i,j

[Γi,j − (Aµ)i,j]2 . (2.20)

The regularization term JR regularize the ill-posed inverse problem by the a priori

information of the fluorophore concentration. In this work, we assume that a priori

information of µ and its gradient ∇µ are available. Let β1(r) denote the a priori in-

formation on µ and β2(r) = [β21(r), β22(r), β23(r)]
T denote the a priori information

on ∇µ. We incorporate β1(r) and β2(r) through zeroth- and first-order Tikhonov
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regularization terms as [87]:

JR(µ,∇µ) = λ1

∫
Ω

[µ(r)− β1(r)]
2 dr + λ2

∫
Ω

|∇µ(r)− β2(r)|2dr, (2.21)

where λ1, λ2 > 0 are regularization parameters. There are a number of methods

in choosing appropriate regularization parameters (see [88–92]). In this thesis, we

assume that λ1 and λ2 are properly chosen.

Substituting (2.20) and (2.21) into (2.19), our inverse problem can be written

explicitly as:

µ̂ = min
µ∈H1(Ω)

[
NS ,ND∑
i,j

[Γi,j − (Aµ)i,j]2 + λ1

∫
Ω

[µ(r)− β1(r)]
2 dr

+ λ2

∫
Ω

|∇µ(r)− β2(r)|
2 dr

]
. (2.22)

By taking the Gâteaux derivative of the objective functional in (2.22) and

defining appropriate boundary conditions for it, we can convert this optimization

problem into a boundary value problem. It can be shown that the solution of (2.22)

satisfies ∂J/∂µ(µ,∇qµ) = 0, where∇q is the gradient with respect to the rq direction

for q = 1, 2, 3. In particular, if J =
∫
u(r, µ, ∂µ/∂rq)dr, the Gâteaux derivative of

J is defined by [93]

∂J

∂µ
=
∂u

∂µ
−
∑
q

∂

∂rq

(
∂u

∂µq

)
. (2.23)

Therefore, taking the Gâteaux derivative of (2.22) with respect to µ and setting

it equal to zero yields:

(A∗Aµ)(r) + λ1µ(r)− λ2∇2µ(r) = f(r), (2.24)

where f(r) containing the known terms from a priori information and measurement

is defined as

f(r) := (A∗Γ)(r) + λ1β1(r) + λ2

3∑
q=1

β2q(r). (2.25)
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In both (2.24) and (2.25), A∗ : RNSND → L2(Ω) is the adjoint operator of A defined

as

(A∗w)(r) = [a11(r), . . . , a1NS
(r), a21(r), . . . , aNSND

(r)] ·w, (2.26)

where w ∈ RNSND and a∗ij(r) = g∗j (r)ϕi(r), i = 1, . . . , NS and j = 1, . . . , ND. We

further define an operator B : L2(Ω) → L2(Ω) as

(Bµ)(r) := (A∗Aµ)(r)

=

∫
Ω

NS ,ND∑
i,j

a∗ij(r)aij(ŕ)µ(ŕ)dŕ. (2.27)

Then (2.24) becomes

(Bµ)(r) + λ1µ(r)− λ2∇2µ(r) = f(r). (2.28)

We consider (2.28) with the following Neumann boundary condition:

∂µ

∂n
(r) = 0, r ∈ ∂Ω, (2.29)

where ∂µ/∂n is the directional derivative of µ along the unit normal vector at the

boundary ∂Ω. The boundary condition in (2.29) implies that no changes in the

fluorophore concentration occur across the boundary.

To apply the FEM on the boundary value problem (2.28) and (2.29), we need

to first obtain the corresponding variational (weak) problem. Hence, we multiply

both sides of (2.28) by a test function ψ ∈ H1(Ω), and integrate it over Ω. Applying

Green’s first theorem to the last term on the left hand side and using the boundary

condition in (2.29), we obtain∫
Ω

ψ(r) [(Bµ)(r) + λ1µ(r)] dr + λ2

∫
Ω

∇ψ(r) · ∇µ(r)dr =

∫
Ω

ψ(r)f(r)dr.

(2.30)

A more convenient way to express (2.30) is using a bilinear form. Thus, we
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define

F(ψ, µ) := (ψ,Bµ) + λ1(ψ, µ) + λ2(∇ψ,∇µ), (2.31)

G(ψ) := (ψ, f), (2.32)

where the inner product (·, ·) is defined by

(k, l) :=

∫
Ω

k(r)l(r)dr,

(k, l) :=

∫
Ω

k(r) · l(r)dr,

for both scalar- and vector-valued functions. Then the variational form of the inverse

problem can be expressed as

F(ψ, µ) = G(ψ), ∀ψ ∈ H1(Ω). (2.33)

It can be shown that the bilinear form (2.31) is bounded and coercive for regu-

larization parameters λ1, λ2 > 0 (see Appendix C). Therefore, by the Lax-Milgram

lemma, a unique solution exists for the regularized inverse problem (2.33) for each

pair of λ1, λ2 > 0 [86, 94]. In the next section, we will describe the discretization

scheme used in this thesis for each of the separate forward and inverse problems as

well as the combined forward and inverse problems.

2.5 Discretization of Forward and Inverse Problems

2.5.1 Forward Problem Discretization

We first express the coupled PDEs used to model the forward problem in their

variational forms in order to apply FEM. We multiply both sides of (2.5) by a test

function ξ1 ∈ H1(Ω), and apply Green’s theorem to the second derivative term.

Then using the boundary condition in (2.7) we have∫
Ω

(∇ξ1 ·D∇ϕi + µaxξ1ϕi)dr +
1

2ρ

∫
∂Ω

ξ1ϕidl =

∫
Ω

ξ1Sidr, ∀ξ1 ∈ H1(Ω).

(2.34)
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It can be shown that a unique solution for (2.34) exists and is bounded [94], [95].

Similarly, for a test function ξ2 ∈ H1(Ω), the variational form for the adjoint forward

problem (2.9) and (2.10) is∫
Ω

(
∇ξ2 ·D∇g∗j + µamξ2g

∗
j

)
dr +

1

2ρ

∫
∂Ω

ξ2g
∗
jdl =

1

2ρ

∫
∂Ω

ξ2S
∗
j dl, ∀ξ2 ∈ H1(Ω),

(2.35)

for which it is possible to show that a unique bounded solution exists as well.

Let Lk denote the piecewise linear Lagrange basis functions. We define Y Ni
i (Ω) ⊂

H1(Ω), i = 1, . . . , NS, as the finite-dimensional subspace spanned by {Lk, k =

1, . . . , Ni}. Note that {Lk, k = 1, . . . , Ni} are associated with the set of points

{rp, p = 1, . . . , Ni} on Ω. Similarly, we define Y
∗,Nj

j (Ω) ⊂ H1(Ω), j = 1, . . . , ND, as

the finite-dimensional subspace spanned by {Lk, k = 1, . . . , Nj}, which are associ-

ated with the set of Nj points {rp, p = 1, . . . , Nj} on Ω.

Next, the functions ξ1, ϕi in (2.5) and ξ2, g
∗
j in (2.35) are replaced by their

finite-dimensional counterparts

ΞNi
1 (r) :=

Ni∑
k=1

pkLk(r), ΦNi
i :=

∑Ni

k=1 ckLk(r), (2.36)

Ξ
Nj

2 (r) :=

Nj∑
k=1

pkLk(r), G
∗,Nj

j :=
∑Nj

k=1 dkLk(r). (2.37)

The representation ΦNi
i or G

∗,Nj

j is an approximation to the function ϕi or g
∗
j for each

source or detector. This means that for each source and detector, the dimension of

the solution can be different, and the parameters Ni and Nj may vary for each i

and j, respectively. The finite-dimensional expansions are therefore dependent on

the parameters Ni and Nj as represented by the superscript. However, we suppress

this cumbersome notation as the dependence is clearly understood.

Substituting (2.36) and (2.37) into the variational forward problem (2.34) and
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(2.35) yields the matrix equations

Mci = qi, (2.38)

M∗d∗
j = q∗

j , (2.39)

for ci = [c1, c2, ..., cNi
]T and d∗

j = [d1, d2, ..., dNj
]T . Here M and M∗ are the finite

element matrices, qi and q∗
j are the load vectors resulting from the finite element

discretization of the forward problem.

Further, let {Ωni, n = 1, . . . , N i
∆} denote the set of elements used to dis-

cretize (2.34), where N i
∆ is the number of elements for the ith source, such that∪N i

∆
n Ωni = Ω for all i = 1, . . . , NS. Similarly, let {Ωmj,m = 1, . . . , N∗j

∆ } denote the

set of elements used to discretize (2.35), where N∗j
∆ is the number of elements for

the jth detector, such that
∪N∗j

∆
m Ωmj = Ω for all j = 1, . . . , ND.

The upper bounds for errors ei and e
∗
j defined as ei := ϕi−Φi and e

∗
j := g∗j−G∗

j

respectively on each finite element can be given by [94]:

∥ei∥0,ni ≤ C∥ϕi∥1,nihni, (2.40)

∥e∗j∥0,mj ≤ C∥g∗j∥1,mjhmj, (2.41)

where ∥ · ∥0,ni and ∥ · ∥0,mj denote the L2 norm on Ωni and Ωmj, ∥ · ∥1,ni and ∥ · ∥1,mj
denote the H1 norm on Ωni and Ωmj, hni and hmj are the diameters of the smallest

balls containing the finite element Ωni and Ωmj respectively, and C is a positive

constant independent to hni and hmj. In the next section, the approximate solution

Φi and G∗
j are substituted into (2.33) to obtain an approximate inverse problem

formulation.

2.5.2 Inverse Problem Discretization

Let Aij(r) = G∗
j(r)Φi(r) and A∗

ij(r) = G∗
j(r)Φi(r), i = 1, . . . , NS and j =

1, . . . , ND, be the finite-dimensional approximations of aij and a∗ij. We substitute

aij and a∗ij with their finite-dimensional counterparts in the operators A and A∗

defined by (2.16) and (2.26). The resulting approximate operators are denoted

by tildes: Ã and Ã
∗
, indicating that the finite element solutions of the forward
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problem are used. By so doing, we arrive at the approximate variational inverse

problem formulation:

F̃(ψ, µ̃) = G̃(ψ), ∀ψ ∈ H1(Ω), (2.42)

where we use µ̃ to denote the solution of this approximate inverse problem. In (2.42),

F̃(ψ, µ̃) and G̃(ψ) are given respectively by

F̃(ψ, µ̃) := (ψ, B̃µ̃) + λ1(ψ, µ̃) + λ2(∇ψ,∇µ̃), (2.43)

G̃(ψ) := (ψ, f̃), (2.44)

where

(B̃µ̃)(r) := (Ã
∗
Ãµ̃)(r)

=

∫
Ω

NS ,ND∑
i,j

A∗
ij(r)Aij(ŕ)µ̃(ŕ)dŕ, (2.45)

and

f̃(r) := (Ã
∗
Γ)(r) + λ1β1(r) + λ2

3∑
q=1

β2q(r)

=

NS ,ND∑
i,j

A∗
ij(r)Γi,j + λ1β1(r) + λ2

3∑
q=1

β2q(r). (2.46)

Next, we discretize the functions ψ and µ̃. Let V N(Ω) ⊂ H1(Ω) denote a

sequence of finite-dimensional subspaces of dimension N , spanned by the first-order

Lagrange basis functions {Lk, k = 1, . . . , N}, which are associated with the set of

points {rp, p = 1, . . . , N} on Ω. We replace ψ and µ̃ in (2.42) by their respective

finite-dimensional counterparts ΨN ∈ V N(Ω) and µD,N ∈ V N(Ω):

ΨN :=
N∑
k=1

pkLk(r), (2.47)

µD,N :=
N∑
k=1

mkLk(r), (2.48)
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where pk and mk are unknown coefficients. As it is clear that the finite-dimensional

expansions are dependent on the parameter N , this dependence is hereafter sup-

pressed. Substituting (2.47) and (2.48) into (2.42), we arrive at

F̃(Ψ, µD) = G̃(Ψ), ∀Ψ ∈ V (Ω). (2.49)

Equation (2.49) can be transformed to a matrix equation

FNm = GN , (2.50)

where m = [m1, · · · ,mN ]
T represents the unknown coefficients in the finite expan-

sion of (2.48), FN and GN are respectively the finite element matrix and the load

vector resulting from the projection of (2.42) by Galerkin method.

Let {Ωt, t = 1, . . . , N∆} denote the set of linear elements used to discretize (2.42),

where N∆ is the number of elements, such that
∪N∆

t Ωt = Ω. Note that the inverse

problem mesh {Ωt} is independent to the meshes {Ωni} and {Ωmj}, which are used

to discrtize the forward problem. Similar to the forward problem, a conventional

error bound for error eµ between µ̃ and µD on each finite element can be given by:

∥eµ∥0,t ≤ C∥µ̃∥1,tht, (2.51)

where ∥ · ∥0,t and ∥ · ∥1,t denote the L2 and H1 norms, respectively on Ωt, ht is the

diameter of the smallest ball containing the finite element Ωt, and C is a positive

constant independent to ht.

2.6 Discretization Error Analysis in the Noise-free Situation

In this chapter, we consider the solution of the exact inverse problem (2.33)

to be the exact solution since neither the forward problem nor the inverse problem

is discretized. Our objective is to examine the error in FDOT imaging due to

the finite element discretization of the forward and inverse problems. Then the

error analysis can be used in the design of adaptive mesh generation algorithm to

reduce the discretization error in the reconstructed image. In the first section of
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this chapter, we present an upper bound for the error in FDOT reconstrucction due

to the forward problem discretization. Therefore, the first type of error we define

is e := µ − µ̃, where µ̃ satisfies the approximate inverse problem (2.42). Note that

the inverse problem is not discretized in this case. In the second section, we present

an upper bound for the error in the reconstructed image resulting from the finite

element discretization of the inverse problem. In this respect, we examine the error

E between the solution µ̃ of approximate inverse problem (2.42) and the solution

µD of fully-discretized inverse problem (2.49), i.e., E = µ̃ − µD. In this case, the

error is due entirely to the discretization of the approximate inverse problem (2.42).

Finally, we define the total error as the difference between µ and µD in terms of the

two contributors:

µ− µD = e+ E. (2.52)

In the followings, we analyze each of these two types of errors and derive two upper

bounds for the H1(Ω) norm of these errors respectively.

2.6.1 Error due to Forward Problem Discretization

The following theorem presents an upper bound for the H1(Ω) norm of the

error e due to the forward problem discretization.

Theorem 1:

Let {Ωni, n = 1, . . . , N i
∆} denote the set of elements used to discretize (2.34)

such that
∪N i

∆
n Ωni = Ω and hni is the diameter of the smallest ball that

contains the nth element in the solution Φi, for all i = 1, . . . , NS. Similarly, let

{Ωmj,m = 1, . . . , N∗j
∆ } denote the set of elements used to discretize (2.35) such

that
∪N∗j

∆
m Ωmj = Ω and hmj is the diameter of the smallest ball that contains

the mth element in the solution G∗
j , for all j = 1, . . . , ND. Then a bound for

the error between the solution µ of (2.33) and the solution µ̃ of (2.42) due to
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the approximations of F̃ and G̃ is given by:

∥µ− µ̃∥1 ≤ C

min(λ1, λ2)
max
i,j

∥g∗jϕi∥0

·

 NS∑
i=1

N i
∆,ND∑
n,j

(2∥g∗jµ∥0,ni + ∥g∗j∥∞,ni∥µ∥0)∥ϕi∥1,nihni

+

ND∑
j=1

N∗j
∆ ,NS∑
m,i

(2∥ϕiµ∥0,mj + ∥ϕi∥∞,mj∥µ∥0)∥g∗j∥1,mjhmj

 ,

(2.53)

where C is a positive constant independent of the discretization parameters

hni and hmj.

Proof: See Appendix D. �

The error bound in (2.53) shows the specific effect that the forward problem

discretization has on the accuracy of the inverse problem solution. In this respect,

for the forward problem, Theorem 1 suggests a discretization criteria for the forward

problem which takes both forward and inverse problem solutions into account. First

of all, the forward problem discretization includes the discretization of each solution

ϕi and g
∗
j . Second, to keep the total error bound low, the hni of the n

th element in

solution ϕi has to be chosen small when
∑ND

j (2∥g∗jµ∥0,ni + ∥g∗j∥∞,ni∥µ∥0)∥ϕi∥1,ni is
large on this element; and the hmj of the m

th element in solution g∗j has to be chosen

small when
∑NS

i (2∥ϕiµ∥0,mj + ∥ϕi∥∞,mj∥µ∥0)∥g∗j∥1,mj is large on this element. Note

that ∥ϕi∥1,ni or ∥g∗j∥1,mj is large on the element close to the ith source or the jth

detector, respectively; and the values of the terms
∑ND

j (2∥g∗jµ∥0,ni + ∥g∗j∥∞,ni∥µ∥0)
and

∑NS

i (2∥ϕiµ∥0,mj + ∥ϕi∥∞,mj∥µ∥0) depend on the fluorophore heterogeneity and

its position with respect to the sources and detectors. Therefore, finer elements near

the designated source or detector as well as near the heterogeneity may result in a

lower error bound. The conventional error bounds (2.41) or (2.40) only depends on

the smoothness and support of ϕi or g
∗
j as well as the finite-dimensional space of

approximating function. They only require to keep hni or hmj small where ∥ϕi∥1,ni
or ∥g∗j∥1,mj is large, respectively. However, lower error bound in (2.41) or (2.40) only
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guarantees to reduce the error in the solution of the forward problem, and may not

necessarily reduce the error in the solution of inverse problem.

Furthermore, it is clear that other factors can affect this error bound. The

regularization parameters scale this error bound, therefore, choosing smaller values

for λ1 and λ2 may lead to higher discretization error. We note that, since this error

bound is a sum over all sources and detectors, increasing the number of either can

also have an impact on the reconstruction accuracy.

2.6.2 Error due to Inverse Problem Discretization

In the following theorem, we present an upper bound for the H1(Ω) norm of

the error E due to the inverse problem discretization.

Theorem 2:

Consider the Galerkin projection of the variational problem (2.42) on a finite-

dimensional subspace V (Ω) ⊂ H1(Ω) using a set of finite elements {Ωt, t =

1, . . . , N∆} whose vertices are at {rp, p = 1, . . . , N}, such that
∪N∆

t Ωt = Ω,

and let ht be the diameter of the smallest ball that contains the tth element.

Assume that the solution µ̃ of (2.42) also satisfies µ̃ ∈ H2(Ω). Then a bound

for the error E in the solution µD of (2.49) with respect to the solution µ̃

of (2.42) can be given by

∥µ̃− µD∥1 ≤ C

min(λ1, λ2)

(
max
i,j

∥G∗
jΦi∥0

N∆∑
t=1

NS ,ND∑
i,j

∥G∗
jΦi∥0,t∥µ̃∥2,th2t

+λ1

N∆∑
t=1

∥µ̃∥2,th2t + λ2

N∆∑
t=1

∥µ̃∥2,tht

)
, (2.54)

where C is a positive constant independent of the discretization parameters

ht.

Proof: See Appendix E. �

The error bound in (2.54) shows that the error due to the inverse problem

discretization not only depends on the inverse problem solution itself, but also
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on the solutions of the forward problem. The first term in the bracket of (2.54)

shows that ∥µ̃∥2,t is scaled by the finite element solutions of the forward problem

maxi,j ∥G∗
jΦi∥0∥G∗

jΦi∥0,t. This implies that the discretization error is dependent on

the location of the heterogeneity with respect to the sources and detectors. The sec-

ond and third term in the bracket suggest that keeping the mesh size small where

∥µ̃∥2,t is large, can help to lower the error bound, but it also depends on the reg-

ularization parameters λ1 and λ2. Comparing (2.54) with the conventional error

bound (2.51), (2.54) suggests a discretization criteria based on the inverse prob-

lem solution µ̃, and the forward problem solutions Φi and G
∗
j , as well as the spatial

relationship among these solutions. Because of the interdependence between the for-

ward and inverse problems, simply keeping the mesh parameter small over regions

where ∥µ̃∥2,t is large, as suggested by (2.51), may not ensure a lower error bound,

thereby a reduction of the error in the reconstructed image. Similar to Theorem 1,

the regularization parameters λ1, λ2 and the number of sources and detectors also

affect this error bound, therefore, may also have an impact on the reconstruction

accuracy.

Combining results of Theorems 1 and 2, and rearranging the terms, both error

bounds can be formulated in a single error bound. Assuming maxi,j ∥G∗
jΦi∥0 ≈

maxi,j ∥g∗jϕi∥0 for i = 1, · · · , NS and j = 1, · · · , ND, we have a total bound for the

error due to discretization in the reconstructed image:

∥µ− µD∥1 ≤ C

min(λ1, λ2)
max
i,j

∥g∗jϕi∥0

·
NS ,ND∑
i,j

 N i
∆∑

n=1

(2∥g∗jµ∥0,ni + ∥g∗j∥∞,ni∥µ∥0)∥ϕi∥1,nihni

+

N∗j
∆∑

m=1

(2∥ϕiµ∥0,mj + ∥ϕi∥∞,mj∥µ∥0)∥g∗j∥1,mjhmj

+

N∆∑
t=1

∥G∗
jΦi∥0,t∥µ̃∥2,th2t

]

+
C

min(λ1, λ2)

(
λ1

N∆∑
t=1

∥µ̃∥2,th2t + λ2

N∆∑
t=1

∥µ̃∥2,tht

)
. (2.55)
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2.6.3 Error in Iterative Linearization

The error bounds derived in the previous sections only address one iteration

of linearization. If the solution of the inverse problem is iteratively updated using

the method mentioned in Section 2.4, the propagation of error due to discretization

needs to be considered. Let µk and µD,k represent the solution to (2.33) and (2.49)

at the kth iteration, respectively, and we know µD,k contains error with respect to

µk. Then, in the (k + 1)th iteration, three types of errors are introduced into the

solution µD,k+1: The first is due to the finite element discretization of the inverse

problem. The second is due to the finite element discretization of the forward

problem introducing the error (B − B̃)k+1 in the operator B̃
k+1

and the error (Ã
∗
−

A∗)k+1Γ in Ã
∗,k+1

Γ. Finally, µaxf and µamf which are related to µD,k, appear as the

coefficient in the forward problem (2.5)-(2.7), and the adjoint problem (2.9)-(2.10),

respectively. Then, the error in the solution µD,k at each iteration will propagate

and lead to an additional error in Φi and G
∗
j at the (k + 1)th iteration in addition

to the discretization error analyzed before.

2.7 Conclusion

In this chapter, we analyzed the error in FDOT imaging due to the forward

and inverse problem discretizations under the assumption that the measurements

are noise-free. After giving a brief description for the forward problem of FDOT,

we presented our inverse problem formulation addressing its nonlinearity by an it-

erative linearization method based on the Born approximation and its ill-posedness

by the Tikhonov regularization in an optimization framework, respectively. Then

we transformed both forward and inverse problems into variational problems, and

discretized and solved them using the Galerkin projection method with first-order

Lagrange basis functions. We analyzed the effect of each problem’s discretization on

the reconstruction accuracy. In our analysis, we first considered the impact of the

forward problem discretization and provided an upper bound for the resulting error

in Theorem 1. Next, we analyzed the inverse problem discretization, and obtained

another upper bound for the resulting error in Theorem 2. These two new error

bounds showed that the error resulting from discretization is affected by the fluo-
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rophore concentration, number of sources and detectors, and their locations with

respect to the fluorophore concentration, as well as the regularization parameters.

Based on these two new error bounds, we develop two new adaptive mesh generation

algorithms that can be used in the adaptive FEM for FDOT imaging in the next

chapter.



CHAPTER 3

ADAPTIVE MESH GENERATION FOR FDOT IN THE

NOISE-FREE SITUATION1

3.1 Introduction

In Chapter 2, we analyzed the effect of discretization on the accuracy of FDOT

reconstruction and derive two upper bounds for the error resulting from the forward

and inverse problem discretizations in the noise-free situation. In this chapter,

based on these two error bounds, we develop two new adaptive mesh generation

algorithms which can be used in the adaptive FEM for FDOT. By selecting ∥µ− µ̃∥1
and ∥µ̃ − µD∥1 as the figures of merit and reducing the respective bounds (2.53)

and (2.54), we aim to minimize the error between the fully discretized solution µD

and the exact solution µ. Clearly, we can reduce both error bounds by reducing the

mesh size parameter uniformly (hni and hmj in (2.53) and ht in (2.54)), which is

known as h−refinement in the literature. At the same time, reducing mesh size will

increase the number of total discretization points, thereby leading to an increase in

the size of the discretized forward and/or inverse problems.

To address this tradeoff between the accuracy and the computational complex-

ity, we consider two adaptive h-refinement approaches: The first approach we discuss

sets a predetermined error tolerance value for the error bound computed on each fi-

nite element, and reduces the mesh size parameter by refining the element until this

predetermined tolerance value is reached. This approach relies on the knowledge of

this error tolerance value which represents the desired level of discretization accu-

racy. From a practical standpoint, defining the ideal value for the error tolerance

can be a complex undertaking due to the presence of unknown factors and functions

such as C, g∗j , ϕi, µ and µ̃ in both error bounds. The second approach, which is

more easily applied in practice, limits the total number of discretization points in

1Portions of this chapter previously appeared as: M. Guven, L. Zhou, L. Reilly-Raska, and
B. Yazıcı. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse
optical tomography: part II. IEEE Transactions on Medical Imaging, 29(2):230-245, 2010.

36
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the finite-dimensional approximations (2.36), (2.37) and (2.48). Instead of using a

predetermined error tolerance, the average value of the error bounds on the finite

elements is calculated at each iteration in the refinement process. Then the elements

with computed error bounds larger than the average are refined until the limit on

the discretization points number is reached. In this respect, the first approach can

be viewed as to rely on a priori information while the second approach makes use

of a posteriori information on the error bounds.

In the next two sections, we design the adaptive mesh generation algorithms

based on the error bounds derived previously for the forward and inverse problems.

First, we explore the mesh generation for the forward problem and describe the

algorithm which uses a predetermined error tolerance before discussing the second

approach. Next, we present the adaptive mesh generation algorithm for the inverse

problem in a similar way. Unlike the adaptive meshing method suggested by the

conventional error bound in finite element theory, our new algorithms address the

interdependence between the solutions of the forward and inverse problems and

take into account the source and detector configuration, their relative locations

with respect to the fluorophore heterogeneity, and inverse problem formulation, as

well as the regularization parameters. At the end of this chapter, we present a series

of three-dimensional numerical simulations to illustrate the practical advantages of

our new adaptive mesh generation algorithms in FDOT reconstruction.

3.2 Adaptive Mesh Generation for Forward Problem

For the forward problem discretization, our goal is to minimize ∥µ−µ̃∥1, whose
upper bound is given in (2.53). Let ε̃f be the allowable H1(Ω) norm of the error

in the reconstructed optical image due to the forward problem discretization. The

bound (2.53) contains known or estimable factors multiplying two summation terms.

The first term arises from the discretization of the boundary value problem (2.5)-

(2.7) for each source, and the second term arises from the discretization of the

boundary value problem (2.9)-(2.10) for each detector. Therefore, we need to set

two distinct conditions corresponding to each of the mesh parameters hni and hmj

that will ensure the H1(Ω) norm of the error is less than ε̃f .



38

Starting with the predetermined allowable error norm ε̃f , we define the pa-

rameter εf as follows:

εf :=
min(λ1, λ2)

Cmaxi,j ∥g∗jϕi∥0

(
NS∑
i=1

N i
∆ +

ND∑
j=1

N∗j
∆

)−1

ε̃f , (3.1)

where C is the positive constant in (2.53), N i
∆ or N∗j

∆ is the number of elements in

the mesh used to solve Φi or G
∗
j . Let Bni and Bmj, i = 1, · · · , NS and j = 1, · · · , ND,

be defined as

Bni :=
εf∑ND

j=1(2∥g∗jµ∥0,ni + ∥g∗j∥∞,ni∥µ∥0)∥ϕi∥1,ni
, (3.2)

B∗
mj :=

εf∑NS

i=1(2∥ϕiµ∥0,mj + ∥ϕi∥∞,mj∥µ∥0)∥g∗j∥1,mj
. (3.3)

In this case, if hni > 0 and hmj > 0 are chosen as

hni ≤ Bni,

hmj ≤ B∗
mj,

then by Theorem 1, this implies that ∥µ− µ̃∥1 ≤ ε̃f .

For each source or detector, the algorithm is initiated with a coarse uniform

mesh. Each mesh size parameter hni (or hmj) in this mesh is checked against the

corresponding bound Bni (or B
∗
mj). Then, each element with mesh size parameter

hni (or hmj) larger than the bound Bni (or B
∗
mj) is refined. With each sweep of re-

finement, the mesh is altered providing spatially varying resolution over the domain.

The process is iterated until the mesh size parameter hni (or hmj) for each element is

less than the corresponding bound Bni (or B
∗
mj). In other words, the tolerance error

bound ε̃f is uniformly distributed over all finite elements. Note that Bni (or B
∗
mj) is

computed for a given set of meshes {∆i, i = 1, · · · , NS} (or {∆∗j, j = 1, · · · , ND})
and the associated number of elements is N i

∆ (or N∗j
∆ ) in each of these meshes.

We further present an alternative approach based on a different constraint.

Rather than starting with a predetermined error bound as the constraint, we in-

stead limit the total number of discretization points which determines the size of
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the discretized forward problem. This approach is particularly useful when an error

bound can not be determined in advance and the computational resources are lim-

ited. In this approach, we neglect the factor multiplying the summation terms in

(2.53), and define two error indicators for the nth and mth elements in the forward

problem meshes associated with ith source and jth detector, respectively:

εif (n) =

ND∑
j=1

(2∥g∗jµ∥0,ni + ∥µ∥0∥g∗j∥∞,ni)∥ϕi∥1,nihni, (3.4)

εjf (m) =

NS∑
i=1

(2∥ϕiµ∥0,mj + ∥µ∥0∥ϕi∥∞,mj)∥g∗j∥1,mjhmj. (3.5)

Similar to the first approach, the adaptive mesh generation algorithm is initi-

ated with a coarse uniform mesh. With each sweep of refinement and for each source

(or detector), we compute εif (n) (or ε
j
f (m)) on every finite element and compute the

average value ε̄if (or ε̄jf ) of them. Every element with εif (n) > ε̄if (or εjf (m) > ε̄jf )

is refined so that the new εif (n) (or ε
j
f (m)) value for that element will decrease. In

this case, the resulting mesh provides spatially varying resolution over the domain

and the discretization error is more uniformly distributed over all finite elements

than the last refinement iteration. The algorithm is stopped when the number of

discretization points reaches the allowable limit. This approach is further described

in Algorithm 1 by pseudocode.

Finally, we note that the practical implementations of both approaches require

several adjustments, because Bni, B
∗
mj, ε

i
f (n), and ε

j
f (m) can not be computed ex-

actly due to the unknown actual values of g∗j , ϕi, µ and C. First of all, εf can

be scaled by C to eliminate the unknown constant C. Second, Bni, B
∗
mj, ε

i
f (n),

and εjf (m) can be estimated by using the analytical solutions for g∗j , ϕi on a un-

bounded domain (see Appendix F) and the approximation of µ based on some a

priori information [60]. Alternatively, these functions can also be estimated using

the finite-dimensional solutions G∗
j , Φi and µD from the most recent iteration of

image reconstruction.
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Algorithm 1 The pseudocode of the the adaptive mesh generation algorithm for
the forward problem in the noise-free situation.

⋄ Generate an initial uniform mesh:

(∆i, N i
∆), ∆

i =
∪N i

∆
n=1{∆n}

(
(∆∗j, N∗j

∆ ),∆∗j =
∪N∗j

∆
m=1{∆m}

)
⋄ Set the maximum number of nodes N f

max

while Number of nodes in ∆i (∆∗j) less than N f
max

for each element ∆n ∈ ∆i with mesh parameter hni (∆m ∈ ∆∗j with hmj)
if first linearization
� Use analytical solutions for ϕi and g

∗
j and a priori information

about µ to compute εif (n) in (3.4) (εjf (m) in (3.5))

else
� Use current solution updates Φi, G

∗
j and µ

D to compute εif (n) in

(3.4) (εjf (m) in (3.5))

end

� Compute εjf (εif )

� Refine the elements with εif (n) > εif (εjf (m) > εjf )

� Update the mesh ∆i (∆∗j)
end

⋄ Solve for Φi (G
∗
j)

3.3 Adaptive Mesh Generation for Inverse Problem

For the inverse problem discretization, our goal is to minimize ∥µ̃−µD∥1, whose
upper bound is given in (2.54). We adopt a similar approach for the inverse problem

mesh generation algorithm as outlined for the forward problem previously. First,

we present an algorithm for adaptive mesh generation using a predetermined error

tolerance to be distributed over the whole domain. Then, we discuss the practical

approach limiting the number of discretization points.

Let ε̃i be the predetermined allowable upper bound of the error in the recon-

structed image due to the Galerkin projection of (2.42). We aim to distribute this

error bound evenly over all elements in the domain. Let

εi :=
min(λ1, λ2)

CN∆

ε̃i. (3.6)
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and

a(t) := max
i,j

∥G∗
jΦi∥0

NS ,ND∑
i,j

∥G∗
jΦi∥0,t∥µ̃∥2,t + λ1∥µ̃∥2,t, (3.7)

b(t) := λ2∥µ̃∥2,t, (3.8)

such that Theorem 2 can be rewritten as follows:

∥µ̃− µD∥1 ≤
C

min(λ1, λ2)

N∆∑
t=1

[
a(t)h2t + b(t)ht

]
. (3.9)

Next, we define the parameter Bt as follows:

Bt :=
−b(t) +

√
b(t)2 + 4a(t)εi
2a(t)

. (3.10)

Then for 0 < ht ≤ Bt , by (3.9) and (3.6), we have

∥µ̃− µD∥1 ≤
CN∆

min(λ1, λ2)
εi ≤ ε̃i.

We note that the adaptive mesh generation using this approach for the inverse

problem remains the same as the one we outlined for the forward problem: starting

from a coarse uniform mesh, every element in the mesh is refined until its size

parameter satisfies ht ≤ Bt.

The second more practical approach limits the number of discretization points

in the adaptive mesh rather than relying on a predetermined error tolerance. As

in the previous section, this algorithm uses an error indicator computed after each

sweep of refinement on every finite element:

εi(t) := a(t)h2t + b(t)ht, (3.11)

where a(t) and b(t) are defined in (3.7) and (3.8), respectively. Given an initial coarse

uniform mesh, we compute εi for each element with parameter ht and compute

the average value εi of them. Next, we refine those elements with εi(t) > εi, so

that εi computed on the new element becomes smaller. The algorithm has to be
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stopped before the total number of discretization points exceeds the allowable limit.

Computing Bt or εi requires knowledge of µ̃. In this respect, we can either estimate

µ̃ using a priori information, or use the most recent updates of the inverse problem

solutions µD as an approximation. The pseudocode for this algorithm is outlined in

Algorithm 2.

Algorithm 2 The pseudocode of the the adaptive mesh generation algorithm for
the inverse problem in the noise-free situation.

⋄ Generate an initial uniform mesh: (∆,N∆), ∆ =
∪N∆

t=1{∆t}
⋄ Set the maximum number of nodes N i

max

while Number of nodes N less than N i
max

for each element ∆t ∈ ∆ with mesh size parameter ht
if first linearization
� Use current solution updates Φi and G

∗
j and a priori information

about µ̃ to compute εi(t) in (3.11)
else
� Use current solution updates Φi and G

∗
j and µ

D to compute εi(t) in
(3.11)

end
� Compute εi
� Refine the elements with εi(t) > εi
� Update the mesh ∆

end
⋄ Solve for µD.

3.4 A Comparison to the Conventional Techniques

There are various a priori error bounds developed in particular to estimate

discretization error in the numerical solutions of PDEs (see [67] for a survey on error

estimation procedures). These error bounds are in general adopted for adaptive

mesh generation in inverse problems. One commonly used is the interpolation error

bound [79,94, 96], which depends on the smoothness of the solution, the mesh size,

and the basis function (first-order Lagrangian basis function in our case) used for

approximation:

∥µ̃− µ̃I∥1,t ≤ C∥µ̃∥2,tht, (3.12)
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where µ̃I is the interpolant of µ̃, and C is a constant similar as those in (2.53)

and (2.54). Adoption of such error bounds for adaptive mesh generation in imag-

ing problems overlooks the intrinsic mechanisms in the problem, such as the un-

derlying forward problem, the source-detector configuration, the location of the

fluorophore concentration with respect to the sources and detectors, and the regu-

larization parameters in the inverse problem formulation. On the other hand, the

error bound (2.54) in Theorem 2, takes into account these factors in addition to the

smoothness of the inverse problem solution, the mesh size and the approximation

basis function. In the following discussion, we compare the a priori interpolation

error bound with our error bound (2.54) when they are used to assess the potential

error in the reconstructed optical images, resulting from the discretization of the

inverse FDOT problem.

Consider the discretization of the inverse problem (2.42) on a finite-dimensional

subspace V (Ω) ⊂ H1(Ω) spanned by a set of linear finite elements {Ωt, t = 1, ..., N∆}
such that

∪N∆

t Ωt = Ω. The vertices of {Ωt, t = 1, ..., N∆} are at {rp, p = 1, ..., N}
and ht is the diameter of the smallest ball that contains the tth element Ωt. Further

assume that, the following constraint is satisfied for the a priori interpolation error

bound on the linear finite element Ωt of the mesh for t = 1, ..., N∆:

C∥µ̃∥2,tht ≤ ϵ, (3.13)

so that

∥µ̃− µD∥1 ≤ C

N∆∑
t=1

∥µ̃∥2,tht ≤ N∆ϵ. (3.14)

In other words, if the mesh used in discretizing the inverse problem (2.42) is gener-

ated with every element subject to (3.13) which is based on the conventional error

bound, then the upper bound on the H1(Ω) norm of the error µ̃ − µD is expected

not to exceed N∆ϵ.

In the following, we show how a constraint on the conventional error bound as

given in (3.13) leads to a bound on ∥µ̃−µD∥1 that is higher than expected, when the

parameters specific to optical imaging (such as the forward problem solution, the
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source-detector configuration, the inverse problem formulation) as noted in Theorem

2 are taken into account. We note that such a higher error bound may indicate a

relatively higher error in the reconstructed optical image µD.

Substituting the constraint (3.13) into the bound (2.54) in Theorem 2, we

obtain a new upper bound Θ for ∥µ̃ − µD∥1 and a lower bound on Θ can be given

as (see Appendix G):

Θ ≥ N∆ϵ

[
1 + min

t
ht +

maxi,j ∥G∗
jΦi∥0

min(λ1, λ2)
min
t

NS ,ND∑
i,j

∥G∗
jΦi∥0,tht

]
≥ N∆ϵ. (3.15)

Depending on the choices of λ1 and λ2, the last term in brackets can dominate the

lower bound on Θ, or can be neglected. In either case, the lower bound in (3.15)

implies that the mesh generation based on the conventional error bound indicates

an increase in the error bound with respect to the expected bound of N∆ϵ, which

may result in error in the reconstructed optical image higher than intended for.

3.5 Adaptive Mesh Generation for A Toy Problem

In this section, we demonstrate the mesh refinement process of our algorithms

with a simple example. We consider a two-dimensional bounded domain discretized

by an initial uniform mesh with 16 nodes and 18 elements as shown in Figure 3.1(a).

The sources and detectors are indicated by the solid triangles and squares, respec-

tively. Using the adaptive mesh generation algorithm described in Algorithm 1,

we want to generate an adaptive mesh with triangular finite elements to solve the

boundary value problem for a point source located at (−2.5,−3). We constrain the

number of nodes in the final mesh not to exceed 32, which represents the computa-

tional resources available at hand.

We assume that we do not have the finite element solutions of the forward

problem: Φi, i = 1, · · · , NS, and G∗
j , j = 1, · · · , ND. Thus, we use the analytical

solution of the diffusion equation on an unbounded domain to approximate ϕi and
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(a) The initial uniform mesh with 16 nodes
and 18 elements.
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(b) The adaptive mesh with 21 nodes and 28
elements after first refinement.
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Figure 3.1: The adaptive mesh generation for a point source located at
(−2.5,−3) with a priori fluorophore concentration image shown in the
last figure. The error indicator values computed for each element based
on (3.4) are shown inside each element.

g∗j , and use an a priori image model given by

µ(x, y) = µ0e
−x2−( y

2
)2 + 0.001, (3.16)

where µ0 = 0.005cm−1, to approximate µ (shown in Figure 3.1(d)). Note that this

a priori image model is a two-dimensional Gaussian function centered at (0, 0). We

compute the error indicators (3.4) on each of the 18 elements in the initial uniform

mesh. In Figure 3.1(a), the computed error indicator values are shown inside the

corresponding finite elements. The elements with error indicator computed higher
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than the average are selected for refinement. Using Rivara’s algorithm [97], the

adaptive refinement results in a mesh with 21 nodes and 28 elements as shown in

Figure 3.1(b). We notice that the refinement occurs around the source at (−2.5,−3)

and around the detectors which are relatively close to that source. The error indi-

cators are re-computed on the refined mesh, which are shown inside the elements

in Figure 3.1(b). Note that the newly computed values are lower as compared to

the previously computed ones where the elements are refined. After the next re-

finement, we see that the mesh is refined around the source, the closest detectors,

and the fluorophore heterogeneity (see Figure 3.1(c)). At this point, the number of

nodes reaches to 30, and the refinement is terminated since the number of nodes

exceeds the limit if one more refinement is performed.

3.6 Computational Complexity

In this section, we briefly discuss the computational complexity of the adaptive

mesh generation algorithms described in the previous sections. We first start with

the algorithm for the forward problem, which is followed by the algorithm for the

inverse problem.

Using first-order Lagrange basis functions and an analytical (exact) integra-

tion on each finite element, we assume the number of multiplications required to

compute the L2 or H1 norm of a finite-dimensional function on each element is of

O(1) complexity [60]. Then the computational complexity of computing (3.4) is

O(ND) for each element. For all elements in the mesh, the computational complex-

ity becomes O(N i
∆ND). Similarly, one can obtain the computational complexity

of O(N∗j
∆ NS) for computing the error indicator (3.5). It is possible to reduce the

computational complexities by making the following approximations on the error

indicators (3.4) and (3.5):

εif (n) ≈

2

∥∥∥∥∥
ND∑
j=1

g∗jµ

∥∥∥∥∥
0,ni

+ ∥µ∥0
ND∑
j=1

∥g∗j∥∞,ni

 ∥ϕi∥1,nihni, (3.17)

εjf (m) ≈

2

∥∥∥∥∥
NS∑
i=1

ϕiµ

∥∥∥∥∥
0,mj

+ ∥µ∥0
NS∑
i=1

∥ϕi∥∞,mj

 ∥g∗j∥1,mjhmj. (3.18)
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Then, the computational complexity for each mesh refinement sweep using (3.17)

or (3.18) reduces to O(N i
∆) or O(N∗j

∆ ), respectively.

Next, we discuss the computational complexity of our algorithm for the in-

verse problem. Based on the same arguments, the computational complexity of

computing (3.11) is O(NSND) for each element. For all elements in the mesh, the

computational complexity becomes O(N∆NSND). Similarly, it is possible to reduce

the complexity by making the following approximation on the error indicator (3.11):

εi(t) ≈

max
i,j

∥G∗
jΦi∥0

∥∥∥∥∥
NS ,ND∑
i,j

G∗
jΦi

∥∥∥∥∥
0,t

∥µ∥2,t + λ1∥µ∥2,t

h2t + λ2∥µ∥2,tht.

(3.19)

Then the computational complexity for each sweep of the mesh refinement us-

ing (3.19) reduces to O(N∆). Note that, for conventional method, the computa-

tional complexity for one sweep of the mesh refinement is always O(N i
∆), O(N∗j

∆ )

or O(N∆). Although it generally requires less computational resources to compute

the conventional error bounds, the resulting meshes may not be as effective as the

adaptive meshes generated based on our error bounds in reducing the discretization

error in the reconstructed optical images.

3.7 Numerical Simulation

To demonstrate the improvements in the reconstructed image quality by using

the adaptive FEM with our new adaptive mesh generation algorithms, we performed

a series of numerical simulation studies. Specifically, we evaluated the quality of the

reconstructed images in terms of reconstruction accuracy, small target detectability,

and resolution as well as convergence, and compared our results with those of the

uniform and conventional adaptive meshing schemes.

3.7.1 Simulation Setup

We considered the three-dimensional bounded domain shown in Figure 3.2(a)

in our numerical experiments. The spherical heterogeneity with radius r in the fig-

ure denotes the concentration of the fluorophore with constant absorption coefficient
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(a) The optical domain and source-detector configura-
tion for Simulation Study 1.

(b) The optical domain and source-detector configura-
tion for Simulation Study 2. The radius of the sphere
is 2 mm.

Figure 3.2: The simulation setups used in Simulation Studies 1 and 2.
The squares and triangles denote the detectors and sources, respectively.

µaxf and quantum efficiency η = 0.05, embedded in an optically homogeneous back-

ground with µaxe = µame = 0.05 cm−1 at both excitation and emission wavelengths.

We set the diffusion coefficient D(r) = 0.0410 for r ∈ Ω ∪ ∂Ω, the refractive index

mismatch parameter ρ = 3 for the boundary, and placed 25 sources and 25 detectors

evenly at the bottom and top surfaces of the domain. Using the parameters above,

we simulated the fluorescence data by solving the coupled diffusion equations (2.5)

and (2.6) with their corresponding boundary conditions (2.7) and (2.8) on a fine

uniform grid with 81×81×41 nodes.

In Simulation Study 1, we considered the geometry shown in Figure 3.2(a).

We set µaxf = 0.015 cm−1 and simulated 5 different data sets corresponding to 5 dif-

ferent values of the radius r: 1, 2, 3, 4, and 5 mm, respectively. By varying the size
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of the fluorophore heterogeneity, we demonstrated how our adaptive mesh genera-

tion algorithms can improve the reconstruction accuracy as well as the small target

detectability of the imaging system in comparison with uniform and conventional

adaptive meshing schemes.

In Simulation Study 2, we considered the geometry shown in Figure 3.2(b),

and set µaxf = 0.015 cm−1, r = 2 mm for both fluorophore heterogeneities inside

the imaging domain. We assumed that the center of the domain is positioned at

(0, 0, 0) and placed two heterogeneities on the y-axis with equal distances to the

origin. We simulated 5 different data sets corresponding to 5 different distances, d,

between the two heterogeneities, i.e., d = 0.5, 0.75, 1.0, 1.25, 1.5 cm. By changing the

distance between two fluorophore heterogeneities, we compared the accuracy as well

as the resolution of the images reconstructed by using our adaptive mesh generation

algorithms as well as the uniform and conventional adaptive meshing schemes.

In the image reconstruction, we chose the regularization parameters in our in-

verse problem formulation as small as possible, yet large enough to enable a robust

image reconstruction. In this respect, the appropriate values for the regularization

parameters were empirically selected as λ1 = 1 × 10−8 and λ2 = 1 × 10−8 for both

Simulation Studies 1 and 2. We performed our simulation studies using deal.II FEM

C++ library [98], and used hexahedral finite elements with trilinear Lagrange ba-

sis functions to discretize both forward and inverse problems. Note that we used

the Gaussian quadrature method to evaluate the integrals in the variational prob-

lems (2.34), (2.35) and (2.49) [99]. While solving the forward (or inverse) problem,

we evaluated the value of the inverse (forward) problem solution at the Gaussian

quadrature points associated with the forward (inverse) problem mesh.

3.7.2 Mesh Generation

We used three different types of coarse meshes: Uniform mesh, the adaptive

mesh generated based on the conventional error bounds (2.40), (2.41), and (3.13),

and the adaptive mesh generated by our algorithms based on Theorems 1 and 2, to

discretize the forward and inverse problems. For the forward problem, the number of

nodes for the coarse mesh ranged from 7,000 to 9,000; and for the inverse problem, it
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(a) The coarse uniform mesh with 8,125 nodes
used to discretize the forward problem.
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(b) The coarse uniform mesh with 2,601
nodes used to discretize the inverse problem.
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(c) The adaptive mesh with 8,141 nodes gen-
erated for the forward problem for the de-
tector located at (-2.0,-2.0,1.5) in Simulation
Study 1, Case 5, with µaf = 0.015 cm−1,
r = 5 mm.
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(d) The adaptive mesh with 2,583 nodes gen-
erated for the inverse problem in Simulation
Study 1, Case 5, with µaf = 0.015 cm−1,
r = 5 mm.
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(e) The conventional adaptive mesh with
8,756 nodes generated for the forward prob-
lem for the detector located at (-2.0,-2.0,1.5)
in Simulation Study 1, Case 5, with µaf =
0.015 cm−1, r = 5 mm.
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(f) The conventional adaptive mesh with
2,691 nodes generated for the inverse problem
in Simulation Study 1, Case 5, with µaf =
0.015 cm−1, r = 5 mm.

Figure 3.3: Examples of the meshes used in Simulation Studies 1 and 2.
The mesh is cut through to show the mesh structure inside.
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ranged from 2,000 to 3,000. For performance evaluation, we considered five different

image reconstruction scenarios corresponding to five different meshing schemes:

1. We used the coarse uniform mesh shown in Figure 3.3(a) to discretize the for-

ward problem and the coarse uniform mesh shown in Figure 3.3(b) to discretize

the inverse problem. We denote the resulting image by µDUU .

2. We used the adaptive meshes generated by Algorithm 1 (see Figure 3.3(c))

to discretize the forward problem and the coarse uniform mesh shown in Fig-

ure 3.3(b) to discretize the inverse problem. We denote the resulting image

by µDAU .

3. We used the adaptive meshes generated by Algorithm 1 (see Figure 3.3(c)) to

discretize the forward problem and the adaptive mesh generated by Algorithm

2 (see Figure 3.3(d)) to discretize the inverse problem. We denote the resulting

image by µDAA.

4. We used the adaptive meshes generated based on the conventional error bounds

given in (2.41) and (2.40) (see Figure 3.3(e)) to discretized the forward problem

and the coarse uniform mesh shown in Figure 3.3(b) to discretize the inverse

problem. We denote the resulting image by µDCAU .

5. We used the adaptive meshes generated based on the conventional error bounds

given in (2.41), (2.40) and (3.13) to discretized the forward and inverse prob-

lems (see Figure 3.3(f)). We denote the resulting image by µDCAA.

The coarse uniform mesh used for solving the forward problem shown in Fig-

ure 3.3(a) has 25×25×13 nodes and the uniform mesh used for solving the inverse

problem shown in Figure 3.3(b) has 17×17×9 nodes. For adaptive meshes, we first

generated the meshes for the forward and inverse problems using Algorithms 1 and

2 described in Sections 3.2 and 3.3. Then, we generated the conventional adaptive

meshes for the forward and inverse problems based on the error bounds (2.41), (2.40)

and (3.13).

Figures 3.3(c) and 3.3(e) show examples of our adaptive mesh and the conven-

tional adaptive mesh for the detector located at (−2.0,−2.0, 1.5). We observe that
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our algorithm refined the mesh around the designated detector at (−2.0,−2.0, 1.5),

and fluorophore heterogeneity, as well as some sources close to this detector on the

opposite side of the domain. However, the conventional method only refined the

mesh based on the forward problem solution associated with that detector. Fig-

ures 3.3(d) and 3.3(f) show examples of our adaptive mesh and the conventional

adaptive mesh for the inverse problem when µaxf = 0.015 cm−1 and r = 1 mm.

We observe that the conventional method refined the mesh only based on the fluo-

rophore concentration. Our algorithm, on the other hand, performed the refinement

based on the fluorophore concentration as well as the position of the fluorophore

heterogeneity with respect to the sources and detectors.

In the following sections, we discuss the simulation results and compare our

adaptive mesh generation algorithms with the uniform and conventional meshing

schemes in terms of reconstruction accuracy, small target detectability, and resolu-

tion, as well as convergence rate of the discretized inverse problem solution to the

exact inverse problem solution.

3.7.3 Simulation Results

3.7.3.1 Reconstruction Accuracy

To evaluate the reconstruction accuracy, we used a fine uniform mesh with

61×61×31 nodes to discretize the forward problem (2.5), (2.8) and the inverse prob-

lem (2.33). We assumed that the error due to discretization in the resulting image,

denoted by µ, is negligible with respect to the images reconstructed using the coarse

meshes, and we used this image as a baseline for comparison. For both Simulation

Studies 1 and 2, we summarized the H1(Ω) norm of the error in the reconstructed

images with respect to the baseline image in Tables 3.1 and 3.2. Additionally, we

tabulated the percentage of error as compared to the error in the image recon-

structed by using the coarse uniform meshes for the forward and inverse problems.

In Tables 3.1 and 3.2, the upper row in each quantity is the absolute error value,

and the lower row in each quantity is the percentage of error.

The results show that the error in the images reconstructed by using the uni-

form meshes for both forward and inverse problems is significantly reduced when the
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Table 3.1: H1(Ω) norms of the errors due to discretization in the images
reconstructed by using different meshes in Simulation Study 1.

Case 1 Case 2 Case 3 Case 4 Case 5
r (mm) 1 2 3 4 5

∥µ− µDUU∥1 (×10−5)
2.315 3.906 5.627 6.913 8.632
100% 100% 100% 100% 100%

∥µ− µDAU∥1 (×10−5)
1.417 2.340 3.322 3.978 4.810
61.21% 59.91% 59.03% 57.54% 55.72%

∥µ− µDAA∥1 (×10−5)
0.930 1.826 2.852 3.611 4.483
40.17% 46.75% 50.69% 52.24% 51.93%

∥µ− µDCAU∥1 (×10−5)
2.635 4.184 5.550 6.259 7.656

113.81% 107.12% 98.63% 90.54% 88.69%

∥µ− µDCAA∥1 (×10−5)
2.525 4.076 5.390 5.997 7.338

109.09% 104.34% 95.78% 86.75% 85.01%

adaptive meshes generated by our algorithms are used. We note that the adaptive

meshes generated by our algorithms reduces the error up to around 60% when the

radius of heterogeneity is close to 1 mm. Although the error increases as the size

of heterogeneity increases, the total error reduction provided by our algorithms is

roughly around 50%. On the other hand, the conventional adaptive meshes even

increases the error by roughly 5% when the size of the heterogeneity is small, and

provides only about 15% error reduction when the radius of the heterogeneity in-

creases to 5 mm.

3.7.3.2 Detectability

The reconstructed image of a point-like heterogeneity can be viewed as a point

spread function of the reconstruction algorithm. To evaluate the detectability of

small heterogeneities in reconstructed images using different mesh types, we consider

the “peak-to-sidelobe ratio” and the Full-Width-at-Half-Maximum (FWHM) of the

point spread function.

To capture peak-to-sidelobe ratio as a figure of merit, we define the Signal-to-

Background-Ratio (SBR) as the ratio of the magnitude of the image at the target

location to the magnitude of surrounding background volume. More specifically, we
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Table 3.2: H1(Ω) norms of the errors due to discretization in the images
reconstructed by using different meshes in Simulation Study 2.

Case 1 Case 2 Case 3 Case 4 Case 5
d (cm) 0.5 0.75 1.0 1.25 1.5

∥µ− µDUU∥1 (×10−5)
4.392 4.655 4.512 4.670 4.733
100% 100% 100% 100% 100%

∥µ− µDAU∥1 (×10−5)
2.647 2.768 2.756 2.840 2.910
60.27% 59.46% 61.09% 60.82% 61.48%

∥µ− µDAA∥1 (×10−5)
1.990 2.092 2.077 2.142 2.147
45.31% 44.95% 46.03% 45.87% 45.36%

∥µ− µDCAU∥1 (×10−5)
4.746 4.979 4.804 4.988 5.071

108.06% 106.95% 106.48% 106.80% 107.17%

∥µ− µDCAA∥1 (×10−5)
4.577 4.821 4.660 4.866 4.947

104.22% 103.57% 103.29% 104.19% 104.53%

define

SBR[µD] = 20 log10
(∥µD∥2L2(ΩF )/VΩF

)

(∥µD∥2L2(ΩB)/VΩB
)
, (3.20)

where ΩF and ΩB denote the target and background regions, VΩF
and VΩB

denote

the corresponding volumes.

We computed the FWHM for the cross-sections of the reconstructed images

along the x- and y-axis since the FWHM for the cross-section along the z-axis is

expected to be poor due to the geometry of the source-detector distribution. For

each cross-section, we computed the distance between the two points corresponding

to the half of the maximum fluorophore concentration. The overall FWHM of the

image was determined by the average of the FWHMs along the x- and y-axis.

In Simulation Study 1, we summarized the SBR and FWHM of the recon-

structed images in Tables 3.3 and 3.4. The results show that the images recon-

structed using our adaptive mesh generation algorithms have higher SBR and lower

FWHM than the those reconstructed using the uniform and conventional meshing

schemes.

Figure 3.4 shows the cross-sections of the reconstructed images on z = 0

plane for the fluorophore heterogeneity with 1 mm radius. The cross-section of

the baseline image, µ, which was used to compute the error values in Table 3.1, is

shown in Figure 3.4(a). Figures 3.4(b), 3.4(c) and 3.4(e) show the cross-sections of
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Table 3.3: SBR of the images reconstructed by using different meshes in
Simulation Study 1.

Case 1 Case 2 Case 3 Case 4 Case 5
r (mm) 1 2 3 4 5
µ (dB) 31.18 37.27 42.30 47.06 50.07
µDUU (dB) 17.32 23.12 28.53 32.97 36.84
µDAU (dB) 25.70 31.06 37.76 42.15 45.13
µDAA (dB) 27.05 32.27 39.64 44.06 46.41
µDCAU (dB) 15.34 22.17 29.91 35.09 40.55
µDCAA (dB) 16.89 23.75 30.89 35.54 41.95

Table 3.4: FWHM of the images reconstructed by using different meshes
in Simulation Study 1.

Case 1 Case 2 Case 3 Case 4 Case 5
r (mm) 1 2 3 4 5
µ (mm) 6.04 8.75 10.98 12.30 13.71
µDUU (mm) 7.82 9.32 12.84 13.16 14.72
µDAU (mm) 6.66 8.81 11.34 12.79 14.04
µDAA (mm) 6.54 8.77 11.27 12.75 13.95
µDCAU (mm) 8.46 11.29 11.79 13.12 14.63
µDCAA (mm) 8.56 11.25 11.74 13.05 13.99

the images µDUU , µ
D
AU , and µ

D
CAU , reconstructed when the coarse uniform mesh was

used in solving the inverse problem. We see that the concentration of fluorophore

heterogeneity was reconstructed in a pyramid shape in all images. Since in this

case the actual size of the fluorophore heterogeneity is smaller than the element

size (3.75 mm for each edge), the coarse uniform mesh was not able to resolve

the actual shape of the fluorophore heterogeneity. Figures 3.4(d) and 3.4(f) show

the images of µDAA and µDCAA, reconstructed using the adaptive meshes for both

forward and inverse problems. Since both our adaptive mesh generation algorithm

and the conventional method adaptively refined the inverse problem mesh around

the fluorophore heterogeneity, its shape was better resolved than that in µDUU , µ
D
AU ,

and µDCAU . Furthermore, comparing all the images reconstructed using the coarse

meshes, we observe that the cross-sections of µDAU and µDAA have the largest SBR

and the smallest FWHM as compared to the other images, which is consistent with
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the results in Table 3.3.

Figure 3.5(a) shows the reconstructed images of µ, µDUU , µ
D
AA and µDCAA along

the y-axis. The solid line in Figure 3.5(a) shows the baseline image µ which is

assumed to have no or negligible error. We observe that the image µDAA is the closest

one to µ among all three reconstructed images. In particular, we observe that this

image has higher response at the center of the fluorophore heterogeneity and lower

sidelobe magnitude at the background region, as compared to those reconstructed

by using the conventional adaptive meshes and uniform meshes. The results in this

part of the simulation study indicate that our adaptive mesh generation algorithms

can effectively improve the detectability of small targets as compared to the other

meshing schemes.

3.7.3.3 Resolution

To quantify the resolvability of two closely spaced heterogeneities in the recon-

structed images, we define a figure of merit which we referred to as Peak-to-Valley-

Ratio (PVR). PVR is the ratio between the average reconstructed concentration of

the fluorophore at the two peak values corresponding to the true fluorophore loca-

tions and that at the lowest value between the two peaks. We summarized the PVR

of the reconstructed images in Table 3.5.

We observe that the two fluorophore heterogeneities are not distinguishable

even in the baseline images, when they are closer than 1 cm apart. We note that this

is due to the physical limitations of the photon propagation based on the parame-

ters used in our simulations. We further note that, when the conventional adaptive

meshes are used, the two fluorophore concentrations become distinguishable in the

reconstructed images only if the distance between them is at least 1.25 cm. On

the other hand, this distance is 1 cm for images reconstructed using our adaptive

meshes and the uniform meshes. Among the images, in which the two fluorophore

heterogeneities are distinguishable, the quantitative results show that those recon-

structed using our adaptive meshes have higher PVR than those reconstructed by

using the uniform and conventional adaptive meshes.

In Figure 3.6, we present the cross-sections of the reconstructed images on



57

−2

0

2

−3
−2

−1
0

1
2

3

−5

0

5

10

15

x 10
−3

 

x

z=0

y

 −5

0

5

10

15
x 10

−3

(a) The baseline image.
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(b) The image reconstructed using the uni-
form meshes for both forward and inverse
problems.
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(c) The image reconstructed using our adap-
tive mesh and the uniform mesh for forward
and inverse problems respectively.
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(d) The image reconstructed using our adap-
tive mesh for both forward and inverse prob-
lems.
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(e) The image reconstructed using the con-
ventional adaptive mesh and the uniform
mesh for forward and inverse problems respec-
tively.
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(f) The image reconstructed using the con-
ventional adaptive mesh for both forward and
inverse problems.

Figure 3.4: The reconstruction results of Simulation Study 1, Case 1, on
plane z = 0, with µaxf = 0.015cm−1, r = 1mm.
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(a) The reconstructed images along the y-axis, in Sim-
ulation 1, Case 1, with µaxf = 0.015cm−1, r = 1mm
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(b) The reconstructed images along the y-axis, in Sim-
ulation 2, Case 3, with µaxf = 0.015cm−1, r = 2mm,
d = 1cm,

Figure 3.5: The reconstructed images µ, µDUU , µ
D
AA and µDCAA along the

y-axis in Simulation Study 1, Case 1 and Simulation Study 2, Case 3.
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Table 3.5: PVR of the images reconstructed by using different meshes
in Simulation Study 2.

Case 1 Case 2 Case 3 Case 4 Case 5
d (cm) 0.5 0.75 1 1.25 1.5
µ - - 1.227 1.957 3.638
µDUU - - 1.071 1.617 3.021
µDAU - - 1.136 1.818 3.529
µDAA - - 1.136 1.819 3.533
µDCAU - - - 1.175 1.723
µDCAA - - - 1.184 1.730

z = 0 plane when the distance between the two fluorophore heterogeneities is 1

cm. Figure 3.6(a) shows the cross-section of the baseline image µ, where the two

fluorophore heterogeneities are clearly distinguishable. In Figures 3.6(b), 3.6(c)

and 3.6(d), we can also clearly see the two peaks of the fluorophore concentration,

while in the cross-sections of µDCAU and µDCAA shown in Figures 3.6(e) and 3.6(f),

these two peaks appear merged together.

For a close examination, in Figure 3.5(b), we also present the reconstructed

images along the y-axis on z = 0 plane. The cross-section of µDCAA reveals that the

conventional adaptive meshing method fails to produce an image that can resolve

the two distinct fluorophore heterogeneities (see dashed line in Figure 3.5(b)). On

the other hand, µDAA reconstructed by using the adaptive meshes generated by our

algorithms, shows two distinguishable peaks of the fluorophore concentration with

higher PVR than that of µDUU . The results in this part of the simulation study

indicates that our adaptive mesh generation algorithms can effectively improve the

resolution of the reconstructed images as compared to other meshing schemes.

3.7.3.4 Convergence Rate

To study the convergence of the discretized inverse problem solution to the

exact inverse problem solution when different types of meshes are used in FDOT

reconstruction, we solved both forward and inverse problems on a series of meshes

with gradually increasing discretization levels in each reconstruction scenario. Note

that, for each discretization level, the mesh for the forward problem is always slightly
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(a) The baseline image.

−2

0

2

−3
−2

−1
0

1
2

3

−5

0

5

10

15

x 10
−3

 

x

z=0

y

 −5

0

5

10

15
x 10

−3

(b) The image reconstructed using the uni-
form meshes for both forward and inverse
problems.
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(c) The image reconstructed using our adap-
tive mesh and the uniform mesh for forward
and inverse problems respectively.
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(d) The image reconstructed using our adap-
tive mesh for both forward and inverse prob-
lems.
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(e) The image reconstructed using the con-
ventional adaptive mesh and the uniform
mesh for forward and inverse problems respec-
tively.
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(f) The image reconstructed using the con-
ventional adaptive mesh for both forward and
inverse problems.

Figure 3.6: The reconstruction results of Simulation Study 2, Case 3, on
plane z = 0, with µaxf = 0.015cm−1, r = 2 mm, d = 1 cm.
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Case 3, with µaxf = 0.015cm−1, r = 2mm, d = 1cm,

Figure 3.7: The change in percent H1(Ω) norm of error versus the number
of nodes used in the inverse problem mesh in Simulation Study 1, Case
1 and Simulation Study 2, Case 3. The horizontal dash line indicates the
5% error level between each mesh refinement.
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higher than the mesh for the inverse problem (there are more nodes in the mesh for

the forward problem than in the mesh for the inverse problem). At the same time, we

calculated the H1(Ω) norm of the difference between the two images reconstructed

on two consecutive discretization levels, and normalized it with the H1(Ω) norm of

the image reconstructed on the lower discretization level. We refer to this as the

percentage error between the mesh refinement. Clearly, this error is bounded by the

sum of the percentage error due to discretization in these two images, therefore it

decreases as the discretization level increases. We note that this error, which reflects

the gain of the image reconstruction accuracy that can be obtained by a further

mesh refinement, can be used as an indicator for the error due to discretization in

the reconstructed image.

Figure 3.7 shows the change in the H1(Ω) norm of error versus the number

of nodes used in the inverse problem mesh generated by different adaptive mesh

generation algorithms for Simulation Study 1, Case 1 and Simulation Study 2, Case

3. The x-axis represents the number of nodes in the inverse mesh, and the y-axis

represents the error. Note that both quantities are in logarithmic scale. We observe

that our adaptive mesh generation algorithms have the fastest convergence rate as

compared to the conventional and uniform meshing schemes. The horizontal dash

lines in Figure 3.7 represent the 5% error between each mesh refinement. When

the convergence curves fall below those 5% error lines, the further increased dis-

cretization level will reduce the error less than 5% of the total H1(Ω) norm of the

reconstructed image, and we consider that discretization level is high enough to ob-

tain an relatively accurate image. Figure 3.7 shows that, to achieve this accuracy

level, one needs to use the uniform mesh with over 30,000 nodes and the conven-

tional adaptive mesh with over 6,000 nodes for the inverse problem. On the other

hand, it only requires roughly 3,500 nodes in the mesh generated by our algorithm.

3.8 Conclusion

Based on the two error bounds derived in the previous chapter, we developed

novel adaptive mesh generation algorithms for the forward and inverse problems of

FDOT. These adaptive mesh generation algorithms aim to reduce the error due to
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discretization in the reconstructed optical images while constraining the number of

discretization points in the discretized problems. The key feature that distinguishes

our algorithms from the existing conventional adaptive meshing method is that

our algorithms take into account the interdependence of FDOT forward and inverse

problems. This implies that the solution of one problem will affect the discretization

of the other problem in our algorithms. On the other hand, the conventional method

always independently discretizes these two problems. In addition, we analytically

showed that the conventional adaptive meshing method relying on the interpolation

error bounds may lead to higher error in the reconstructed images than expected.

We illustrated the mesh refinement process of our adaptive mesh generation

algorithms using a toy problem and also briefly discussed the computational com-

plexities. We showed that, by using the appropriate approximations, the complexi-

ties of our algorithms can be reduced from O(N i
∆ND) and O(N j

∆NS) to O(N i
∆) and

O(N j
∆) for the forward problem, and reduced from O(N∆NSND) to O(N∆) for the

inverse problem. In this case, the computational complexities of our algorithms are

equal to that of the conventional method.

Finally, our simulation studies showed that using the adaptive meshes gen-

erated by the conventional method may lead to higher errors in the reconstructed

images, especially when the fluorophore heterogeneity is small. As compared to the

uniform and conventional methods, given a limited number of discretization points

in the discretized forward and inverse problems, our algorithms can significantly im-

prove the accuracy of the reconstructed image in terms of the reduced discretization

error, improved small target detectability, image resolution, and convergence rate.



CHAPTER 4

EFFECT OF DISCRETIZATION IN FDOT IN THE

PRESENCE OF MEASUREMENT NOISE

4.1 Introduction

In Chapter 2, we analyzed the effect of forward and inverse problem discretiza-

tions on the accuracy of FDOT reconstruction under the assumption that the mea-

surements are noise-free. This assumption simplifies the error analysis and the

development of the adaptive mesh generation algorithms for FDOT. However the

important aspects of our results can also be extended to a more general measure-

ment model with noise involved. In this chapter, we consider the measurements

contaminated with additive noise and analyze the discretization error in this situa-

tion. We still focus on the estimation of the fluorophore concentration using the CW

method, model the forward problem by a pair of coupled diffusion equations, and

solve them by the FEMs. For the inverse problem, we first assume that the noise is

an independent multivariate Gaussian noise and the fluorophore concentration is a

Gaussian random field. Based on these assumptions, we formulate the inverse prob-

lem as an optimization problem in the form of MAP estimator of the fluorophore

concentration at each linearized iteration. We also provide an inverse problem for-

mulation in the form of ML estimator in the case when the a priori information on

fluorophore concentration is not available. Following the approach we presented in

Chapter 2, we transform both optimization problems into variational problems. For

the inverse problem formulated as ML estimator, we regularize it with zero-th order

Tikhonov regularization to address its ill-posedness. Finally, we discretize and solve

these variational problems with the Galerkin projection method.

Since the measurements are contaminated with random noise, both inverse

problem solution as well as error due to discretization are random fields, rather

than the deterministic functions as we considered in the previous chapters. To

quantitatively assess the error due to discretization, we define the MSE between the

exact solution and the discretized solution of the inverse problem, and use this as

64
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the figure of merit to evaluate the accuracy of the FDOT reconstruction. Then we

analyze this MSE and derive new error bounds that present a direct relationship

among the MSE, the forward and inverse problem discretizations, the measurement

noise, and the a priori information on fluorophore concentration. As compared to

the error bounds given in Chapter 2, the new error bounds not only include the

factors identified previously (such as the number of sources and detectors, their

configuration and their positions with respect to the fluorophore heterogeneity),

but also take into account the noise statistics as well as the a priori information

on fluorophore concentration. Based on these new error bounds, we develop new

adaptive mesh generation algorithms for the FDOT forward and inverse problems

in the next chapter.

4.2 Models for Measurement Noise and Fluorophore Con-

centration

When the measurements are contaminated with additive noise, the measure-

ment model in (2.17) can be extended in a straight forward manner:

Γ = Aµ+ ε

= Γ0 + ε, (4.1)

where ε = [ε1,1, . . . , ε1,ND
, ε2,1, . . . , εNS ,ND

]T is the noise vector and Γ0 = Aµ is

the vector of ideal noise-free measurements. Without loss of generality, we assume

the components of the noise vector are mutually statistically independent Gaussian

random variables with zero-mean and known variance σ2
ε,ij ≥ 0, for i = 1, . . . , NS

and j = 1, . . . , ND. Thus, the covariance matrix of ε is given by

Σε = diag
(
[σ2
ε,11, . . . , σ

2
ε,1ND

, σ2
ε,21, . . . , σ

2
ε,NSND

]T
)
, (4.2)

where diag(·) denotes a diagonal matrix in which the kth element along the diagonal

is the kth component of the vector inside the bracket.

We model the fluorophore concentration image as a Gaussian random field and
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assume that it is statically independent of the additive noise. Particularly, we assume

that the fluorophore concentration µ has mean µ0 = ηµ0
axf , which is the known

background fluorophore concentration when we formulate the Born approximation,

and that µ(r) and µ(ŕ), r ̸= ŕ, are mutually statistically independent. Thus, we

define

E[µ(r)] = µ0(r), (4.3)

Covµµ(r, ŕ) = E [[µ(r)− µ0(r)][µ(ŕ)− µ0(ŕ)]]

=: κ(r)δ(r − ŕ), (4.4)

where E denotes expectation and κ(r) ≥ 0 is the variance of µ(r). Note that, in

the (k+ 1)th iteration of the iterative reconstruction, we assume µ̂k+1 has mean µ̂k,

which is the estimate obtained at the kth iteration.

4.3 Inverse Problem Formulation as MAP estimator

Based on the noise and a priori fluorophore concentration models, we first

consider the MAP estimator for µ which is given by the following constrained min-

imization problem [100] in Bayesian framework:

µ̂ = min
µ∈L2(Ω)

JMAP (µ)

= min
µ∈L2(Ω)

[JLH (µ) + JPR (µ)] , (4.5)

where we seek a solution µ̂ ∈ L2(Ω) that minimize the functional JMAP representing

the posteriori probability of fluorophore concentration. In (4.5), the functional JLH

corresponds to the likelihood of measurement Γ given fluorophore concentration µ.

JLH is further given by

JLH(µ) = [Γ−Aµ]T Σ−1
ε [Γ−Aµ]

=

NS ,ND∑
i,j

1

σ2
ε,ij

[Γi,j − (Aµ)i,j]2 ,
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where

Σ−1
ε = diag

[ 1

σ2
ε,11

, . . . ,
1

σ2
ε,1ND

,
1

σ2
ε,21

, . . . ,
1

σ2
ε,NSND

]T ,

is also a diagonal matrix. On the other hand, the a priori model of fluorophore

concentration is incorporated by the functional JPR given by

JPR(µ) =

∫
Ω

1

κ(r)
[µ(r)− µ0(r)]

2 dr.

Taking the Gâteaux derivative of (4.5) with respect to µ, and setting it equal

to zero yields:

(
A∗Σ−1

ε AµMAP

)
(r) +

µMAP (r)

κ(r)
=

(
A∗Σ−1

ε Γ
)
(r) +

µ0(r)

κ(r)
, (4.6)

where µMAP is the solution of the optimization problem (4.5). We further define

BLH : L2(Ω) → L2(Ω) as

(BLHµ)(r) := (A∗Σ−1
ε Aµ)(r)

=

∫
Ω

NS ,ND∑
i,j

1

σ2
ε,ij

a∗ij(r)aij(ŕ)µ(ŕ)dŕ, (4.7)

and express (4.6) as follows:

(BLHµMAP ) (r) +
µMAP (r)

κ(r)
=

(
A∗Σ−1

ε Γ
)
(r) +

µ0(r)

κ(r)
. (4.8)

We use the Galerkin method [86] to solve the integral equation defined in (4.8).

Thus, we first define the variational form of (4.8) with a similar bilinear form as we

used in Chapter 2:

FMAP (ψ, µMAP ) = (ψ,A∗Σ−1
ε Γ) + (ψ,

µ0

κ
), ∀ψ ∈ L2(Ω), (4.9)
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where

FMAP (ψ, µ) := (ψ,BLHµ) + (ψ,
µ

κ
). (4.10)

We note that, the bilinear form FMAP is bounded and coercive when appropriate

κ is chosen (see Appendix C). Then, by Lax-Milgram lemma, a unique solution for

the inverse problem (4.9) exists.

4.4 Inverse Problem Formulation as ML estimator

When the a priori information on the fluorophore concentration is not avail-

able, one can formulate the inverse problem as the ML estimator of fluorophore

concentration with JPR(µ) = 0 in (4.5). In this respect, the inverse problem is for-

mulated by the following optimization problem where only the log-likelihood func-

tion of the measurement is minimized [101]:

µ̂ = min
µ∈L2(Ω)

JLH (µ)

= min
µ∈L2(Ω)

NS ,ND∑
i,j

1

σ2
ε,ij

[Γi,j − (Aµ)i,j]2 . (4.11)

Similarly, taking the Gâteaux derivative of (4.11) with respect to µ, we obtain

an integral equation that the solution of the optimization problem µML must satisfy:

(BLHµML) (r) =
(
A∗Σ−1

ε Γ
)
(r),

Since both A and A∗ are compact, the inverse problem (4.12) is ill-posed. Therefore,

we consider the following regularized form of (4.12):

((BLH + λI)µML) (r) =
(
A∗Σ−1

ε Γ
)
(r), (4.12)

where I : L2(Ω) → L2(Ω) is an identity operator, and λ is a small positive constant.

Similar to Chapter 2, we assume that λ is appropriately chosen.

Then, the variational form of the ML estimator of fluorophore concentration
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is given by

FML(ψ, µML) = (ψ,A∗Σ−1
ε Γ), ∀ψ ∈ L2(Ω), (4.13)

where

FML(ψ, µ) := (ψ,BLHµ) + λ(ψ, µ), (4.14)

Clearly, the inverse problem formulation of the ML estimator for fluorophore con-

centration is a special case of the MAP estimator when

κ(r) =
1

λ
, µ0(r) = 0.

It also can be shown that the bilinear form FML is bounded and coercive given

λ > 0(see Appendix C), and a unique solution for the inverse problem (4.13) exists.

4.5 Discretization of Inverse Problem

The forward problem discretization remains same as the one we discussed in

Chapter 2. Following the discretization scheme for the forward problem in Chap-

ter 2, we solve them and obtain the finite-dimensional solutions Φi and G
∗
j , as well

as the approximated operators Ã and Ã
∗
. Then, substituting them into (4.8), we

obtain an approximation B̃LH to BLH defined as

(B̃LHµ)(r) =
(
Ã

∗
Σ−1
ε Ãµ

)
(r)

=

∫
Ω

NS ,ND∑
i,j

1

σ2
ε,ij

A∗
ij(r)Aij(ŕ)µ(ŕ)dŕ. (4.15)

Further, let V (Ω) ⊂ L2(Ω) denote a finite-dimensional subspace of dimension N ,

spanned by the first-order Lagrange basis functions {Lk, k = 1, . . . , N} which are

associated with the set of points {rp, p = 1, . . . , N} on Ω. Then, we define the



70

finite-dimensional counterparts Ψ ∈ V (Ω) and µDMAP ∈ V (Ω) of ψ and µMAP as

Ψ(r) :=
N∑
k=1

pkLk(r), (4.16)

µDMAP (r) :=
N∑
k=1

mkLk(r), (4.17)

where pk and mk are unknown coefficients.

Substituting BLH with B̃LH and replacing ψ and µMAP with Ψ and µDMAP , we

arrive at the fully discretized inverse problem for the MAP estimator of fluorophore

concentration:

F̃MAP (Ψ, µ
D
MAP ) = (Ψ, Ã

∗
Σ−1
ε Γ) + (Ψ,

µ0

κ
), ∀Ψ ∈ V (Ω), (4.18)

where

F̃MAP (ψ, µ) := (ψ, B̃LHµ) + (ψ,
µ

κ
). (4.19)

Similarly, we can also obtain the fully discretized inverse problem for the ML

estimator of fluorophore concentration:

F̃ML(Ψ, µ
D
ML) = (Ψ, Ã

∗
Σ−1
ε Γ), ∀Ψ ∈ V (Ω), (4.20)

and

F̃ML(ψ, µ) := (ψ, B̃LHµ) + λ(ψ, µ), (4.21)

where

µDML(r) :=
N∑
k=1

mkLk(r) ∈ V (Ω), (4.22)

is the finite-dimensional counterpart of µML. We note that both (4.18) and (4.20)

can be transformed into matrix equations as the one in (2.50), from which the
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unknown coefficients mk, k = 1, . . . , N , can be solved.

4.6 Discretization Error Analysis in the Presence of Mea-

surement Noise

In this section, we analyze the effect of forward and inverse problem discretiza-

tions on the accuracy of FDOT reconstruction in the presence of measurement noise.

Due to the random nature of the measurements as well as the fluorophore concentra-

tion, the reconstructed images obtained are random fields rather than deterministic

functions which we discussed in the previous chapters. We are interested in quantify-

ing the difference between the estimates µMAP and µDMAP or the difference between

µML and µDML, which represents the error due to discretization in µDMAP or µDML,

respectively. Thus, we define

eMAP (r) := µMAP (r)− µDMAP (r),

eML(r) := µML(r)− µDML(r),

and quantify these differences in terms of the MSEs defined as follows:

MSE[µDMAP ] :=

∫
Ω

E
[
|eMAP (r)|2

]
dr, (4.23)

MSE[µDML] :=

∫
Ω

E
[
|eML(r)|2

]
dr. (4.24)

Since the ML estimate of fluorophore concentration is only a special case of the MAP

estimate, in the following sections, we first analyze the MSE for the MAP estimate,

then we give the results for the ML estimate case directly. For MSE[µDMAP ], we can

express it as

MSE[µDMAP ] = Bias2[µDMAP ] + Var[µDMAP ],
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where

Bias2[µDMAP ] :=

∫
Ω

|E [eMAP (r)]|2 dr, (4.25)

Var[µDMAP ] :=

∫
Ω

E
[
|eMAP (r)− E[eMAP (r)]|2

]
dr. (4.26)

We refer to Bias[µDMAP ] as the bias of µDMAP with respect to the exact estimate

µMAP and Var[µDMAP ] as the variance of µDMAP . We note that MSE[µDML] can also

be decomposed into Bias2[µDML] and Var[µDML] in the same manner.

In the following sections, we analyze the effect of discrtization and present two

upper bounds for Bias2[µDMAP ] and Var[µDMAP ], respectively. Then we discuss the

implications of these error bounds for the forward and inverse problem discretiza-

tions, and give the results for Bias2[µDML] and Var[µDML] in the ML estimate case.

Finally, we discuss the validity of the models we use for measurement noise and

fluorophore concentration, and present the results for the case involving correlated

noise and a priori fluorophore concentration models.

4.6.1 Bias of the MAP Estimate

In the following theorem, we first present an upper bound for Bias2[µDMAP ]

defined in (4.25).

Theorem 3:

Consider the Galerkin projection of the variational problems (2.34), (2.35), (4.9)

described in Sections 2.5.1 and 4.5, respectively. Let µ̄MAP (r) := E[µMAP (r)],

then µ̄MAP satisfies the following variational problem:

FMAP (ψ, µ̄MAP ) = (ψ,A∗Σ−1
ε Γ̄) + (ψ,

µ0

κ
), ∀ψ ∈ L2(Ω),

where Γ̄ = E[Γ] = Aµ0. Furthermore, Bias2[µDMAP ] satisfies the following

inequality:

Bias2[µDMAP ] ≤ C [B1 +B2 +B3]
2 , (4.27)
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where

B1 =

NS∑
i=1

N i
∆,ND∑
n,j

(
F 1
ij∥g∗j µ̄MAP∥0,ni + F 2

ij∥g∗j∥∞,ni

)
∥ϕi∥1,nihni,

B2 =

ND∑
j=1

N∗j
∆ ,NS∑
m,i

(
F 1
ij∥ϕiµ̄MAP∥0,mj + F 2

ij∥ϕi∥∞,mj

)
∥g∗j∥1,mjhmj,

B3 =

N∆∑
t=1

(
NS ,ND∑
i,j

I1ij∥G∗
jΦi∥0,t + I2t

)
∥µ̄MAP∥1,tht,

with

F 1
ij =

2∥κ∥∞∥g∗jϕi∥0
σ2
ε,ij

, F 2
ij =

∥κ∥∞|Γ̄i,j|
σ2
ε,ij

,

I1ij =
∥κ∥∞∥G∗

jΦi∥0
σ2
ε,ij

, I2t = ∥κ∥∞
∥∥∥∥1κ
∥∥∥∥
∞,t

,

and C is a positive constant independent of the discretization parameters hni,

hmj and ht.

Proof: See Appendix H. �

Equation (4.27) in Theorem 3 presents an upper bound for Bias2[µDMAP ], which

takes into account the noise statistics and the a priori information of fluorophore

concentration, in addition to the interdependence between the forward and inverse

problem solutions. In this error bound, B1 and B2 represent the contribution from

the forward problem discretization. To keep these quantities small, the mesh pa-

rameters hni and hmj of the nth and mth elements in the meshes used in solving

Φi and G
∗
j , respectively, have to be chosen small when their corresponding scaling

factors
ND∑
j=1

(
F 1
ij∥g∗j µ̄MAP∥0,ni + F 2

ij∥g∗j∥∞,ni

)
∥ϕi∥1,ni,

and
NS∑
i=1

(
F 1
ij∥ϕiµ̄MAP∥0,mj + F 2

ij∥ϕi∥∞,mj

)
∥g∗j∥1,mj,
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are large on those elements. Further examination of these factors suggests an adap-

tive refinement scheme within each mesh, because ∥g∗j µ̄MAP∥0,ni, ∥g∗j∥∞,ni, ∥ϕi∥1,ni,
∥ϕiµ̄MAP∥0,mj, ∥ϕi∥∞,mj, and ∥g∗j∥1,mj all vary within the mesh. This mesh refine-

ment scheme is similar to the one suggested by Theorem 1 in Chapter 2: For the ith

source or the jth detector, it refines the mesh close to that source or detector, as well

as around the fluorophore heterogeneity and other detectors or sources. At the same

time, the coefficient F 1
ij = 2∥g∗jϕi∥0∥κ∥∞/σ2

ε,ij and F
2
ij = |Γ̄i,j|∥κ∥∞/σ2

ε,ij in B1 and

B2 may vary for different source-detector pairs. To keep B1 and B2 low, one has to

generate finer meshes for the source-detector pairs with smaller noise variances and

higher magnitude of measurements, as compared to those pairs with higher noise

variances and smaller measurements. In this respect, the error bound in Theorem 3

suggest a new adaptive mesh refinement scheme across different meshes in solving

Φi and G
∗
j based on the measurements and the noise statistics. We note that this is

a major difference between the implications of the error bounds in this chapter and

those from Chapter 2.

In B3, which corresponds to the contribution from the inverse problem dis-

cretization, the discretization parameter ht of the inverse mesh is not only scaled

by the inverse problem solution ∥µ̄MAP∥1,t, but also scaled by the finite element

solutions of the forward problem, the noise variance and a priori information of the

fluorophore concentration:

NS ,ND∑
i,j

I1ij∥G∗
jΦi∥0,t + I2t ,

where I1ij = ∥κ∥∞∥G∗
jΦi∥0/σ2

ε,ij, and I
2
t = ∥κ∥∞ ∥1/κ∥∞,t. This result also suggests

a new adaptive mesh refinement criteria for the inverse problem of FDOT, not only

based on the forward and inverse problem solutions, but also based on the noise

statistics and a priori information of fluorophore concentration. More specifically,

to keep B3 low, one has to refine the mesh around the heterogeneity of fluorophore

concentration, and the sources and detectors with low noise variances, as well as the

region where the fluorophore concentration has low variance.
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We further note that, when the measurements are noise-free, the inverse prob-

lem formulation in this chapter can be reduced to the one given in Chapter 2 with

only zero-th order Tikhonov regularization (λ2 = 0). In this respect, we set σ2
ε,ij = 1

for i = 1, . . . , NS and j = 1, . . . , ND, µ0(r) = β1(r), and κ(r) = λ1. Then the upper

bound for Bias2[µDMAP ] can be reduced to the combination of two error bounds in

(2.53) and (2.54). Finally, we note that, for the ML estimate µDML, the upper bound

for Bias2[µDML] can be given as in (4.27) with

F 1
ij =

2∥g∗jϕi∥0
λσ2

ε,ij
, F 2

ij =
|Γ̄i,j|
λσ2

ε,ij
, I1ij =

∥G∗
jΦi∥0

λσ2
ε,ij

, I2t = 1.

4.6.2 Variance of the MAP Estimate

For Var[µDMAP ] define in (4.26), we present an upper bound for it in the fol-

lowing theorem.

Theorem 4:

Consider the Galerkin projection of the variational problems (2.34), (2.35) and

(4.9) described in Sections 2.5.1 and 4.5, respectively. Let πij ∈ L2(Ω) be the

solution of the following variational problem:

FMAP (ψ, πij) = (ψ,A∗Σ−1
ε eij), ∀ψ ∈ L2(Ω),

and eij = [0, . . . , 1, . . . , 0]T ∈ RNSND , where the only non-zero entry is at the

[ND(i− 1) + j]th position. Then Var[µDMAP ] satisfies the following inequality:

Var[µDMAP ] ≤ C [V1 + V2 + V3]
2 , (4.28)

where

V1 =

NS∑
i=1

N i
∆,ND∑
n,j

(
F 1
ij

NS ,ND∑
i′,j′

∥g∗jDi′j′πi′j′∥0,ni + F 3
ijDij∥g∗j∥∞,ni

)
∥ϕi∥1,nihni,

V2 =

ND∑
j=1

N∗j
∆ ,NS∑
m,i

(
F 1
ij

NS ,ND∑
i′,j′

∥ϕiDi′j′πi′j′∥0,mj + F 3
ijDij∥ϕi∥∞,mj

)
∥g∗j∥1,mjhmj,
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V3 =

N∆∑
t=1

(
NS ,ND∑
i,j

I1ij∥G∗
jΦi∥0,t + I2t

)(
NS ,ND∑
i,j

∥Dijπij∥1,t

)
ht,

with

F 1
ij =

2∥κ∥∞∥g∗jϕi∥0
σ2
ε,ij

, F 3
ij =

∥κ∥∞
σ2
ε,ij

, I1ij =
∥κ∥∞∥G∗

jΦi∥0
σ2
ε,ij

,

I2t = ∥κ∥∞
∥∥∥∥1κ
∥∥∥∥
∞,t

, Dij =

[
σ2
ε,ij +

∫
Ω

κ(r)a∗ij(r)aij(r)dr

]1/2
,

and C is a positive constant independent of the discretization parameters hni,

hmj and ht.

Proof: See Appendix I. �

Equation (4.28) in Theorem 4 shows the effect of the forward and inverse

problem discretizations, and the a priori information of fluorophore concentration,

as well as the noise on Var[µDMAP ].

In this error bound, V1 and V2 correspond to the contribution from the forward

problem discretization, and V3 corresponds to the contribution from the inverse

problem discretization. This error bound has a similar form as the one in (4.27),

but Γ̄ij is replaced with the standard deviation, Dij, of the (i, j)th measurement,

and µ̄MAP is replaced with Dijπij, where πij is the image reconstructed by the

imaging system using the basis vector eij in the measurement space RNSND . This

result indicates that Var[µDMAP ] is independent of the fluorophore concentration, but

depends explicitly on the noise statistics as well as the factors related to the imaging

geometry and the background optical properties, which are incorporated into the

error bound through the functions πij. More specifically, Dijπij indicates where

µMAP may have high variance due to the (i, j)th measurement. Therefore, to keep

the error bound in (4.28) low, one has to refine the mesh in the region where Dijπij

has high value, in addition to the region close to the sources and detectors.

When the measurements are noise-free, it can be shown that the bound in

(4.28) equals to zero, and therefore Var[µDML] vanishes (see Appendix I). This result

is consistent with the fact that the error due to discretization is deterministic in



77

the noise-free situation. Finally, we give the upper bound for Var[µDML] of the ML

estimate µDML, which is in the same form as in (4.28) but with

F 1
ij =

2∥g∗jϕi∥0
λσ2

ε,ij
, F 3

ij =
1

λσ2
ε,ij

, I1ij =
∥G∗

jΦi∥0
λσ2

ε,ij
, I2t = 1, Dij = σε,ij.

4.6.3 Total MSE of the MAP Estimate

Both error bounds in Theorems 3 and 4 present a tradeoff between minimizing

Bias2[µDMAP ] and Var[µDMAP ], when discretizing the forward and inverse problems.

One can use either error bound to adaptively refine the mesh that can minimize

Bias2[µDMAP ] or Var[µDMAP ]. However, minimizing Bias2[µDMAP ] or Var[µDMAP ] may

lead to an increase of the other. To address this tradeoff, we can combine the error

bounds in Theorems 3 and 4 to obtain a total upper bound for MSE[µDMAP ]:

MSE[µDMAP ] ≤ C [M1 +M2 +M3]
2 , (4.29)

and

M1 =

NS∑
i=1

N i
∆,ND∑
n,j

(
F 1
ij

(
∥g∗j µ̄MAP∥0,ni +

NS ,ND∑
i′,j′

∥g∗jDi′j′πi′j′∥0,ni

)
+
(
F 2
ij + F 3

ijDij

)
∥g∗j∥∞,ni

)
∥ϕi∥1,nihni,

M2 =

ND∑
j=1

N∗j
∆ ,NS∑
m,i

(
F 1
ij

(
∥ϕiµ̄MAP∥0,mj +

NS ,ND∑
i′,j′

∥ϕiDi′j′πi′j′∥0,mj

)
+
(
F 2
ij + F 3

ijDij

)
∥ϕi∥∞,mj

)
∥g∗j∥1,mjhmj,

M3 =

N∆∑
t=1

(
NS ,ND∑
i,j

I1ij∥G∗
jΦi∥0,t + I2t

)(
∥µ̄MAP∥1,t +

NS ,ND∑
i,j

∥Dijπij∥1,t

)
ht,

where F 1
ij, F

2
ij, F

3
ij, I

1
ij, I

2
t and Dij are defined in Theorems 3 and 4. Note that

(4.29) also holds for MSE[µDML] with the coefficients defined for ML estimate in the

previous sections.
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4.7 Discussion on Model Validity

In this section, we briefly discuss the validity of our assumptions on the mea-

surement noise and a priori fluorophore concentration models. In optical imaging,

the measurement is the light intensity measured by the optical detector at the tissue

boundary. The output signal of the optical detector is proportional to the number

of photons detected per unit time, therefore measurement noise is dominated by

the shot-noise, when the thermal noise is well controlled by appropriately cooling

the detector. When a sufficiently large number of photons are detected, the Pois-

son distribution of the signal can be approximated by a Gaussian distribution with

the mean equal to the average signal intensity and the variance proportional to its

mean [102]. In this case, the measurement noise can be modeled by the Gaussian

random variable as we assumed in Section 4.2, and the variance, σ2
ε,,ij, i = 1, . . . , NS

and j = 1, . . . , ND, of each noise component is given by

σ2
ε,ij = α|Γ0,ij|, (4.30)

where Γ0,ij is the noise-free measurement obtained by the jth detector due to the ith

source. This Gaussian approximation is widely used in CW [21,22] and FD [26,27,

100] imaging systems to model the measurement noise, due to sufficient number of

photons can be detected in such systems. However, in the TD measurement system,

due to the high sampling frequency in the time domain, the signal measured in each

time interval is much lower than those measured by CW and FD systems. Therefore,

Poisson distribution is a more appropriate model for measurement noise for the TD

systems [28,30].

To regularize the ill-posed FDOT inverse problem, we assume an independent

Gaussian a priori model for the fluorophore concentration in the image reconstruc-

tion. This Gaussian model or the equivalent L2 norm regularization in Chapter 2

are widely used in the imaging inverse problems to address their ill-posedness and

incorporate a priori information, such as in DOT [103–105], FDOT [27, 106–108],

and EIT [56]; and they are also used to model images in the image restoration prob-

lem [90,109–111]. The Gaussian and L2 norm regularization terms in the objective
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functional given by (4.5) and (2.19) lead to relatively simple optimization problems

in computational respect [112]. However, it has been reported that the Gaussian

model or the L2 norm regularization may cause edge-smoothing effect in the image

reconstruction and restoration. To overcome this drawback, other models or regu-

larization functionals were proposed to model images in [112–116]. These models

were shown to be effective to preserve the edges in the image, while suppressing the

noise. However, these models also increase the computational requirements of the

corresponding image reconstruction and restoration problems.

We note that the error analysis as well as the adaptive mesh generation algo-

rithms presented in this thesis can also be extended to the case when other mea-

surement noise and a priori fluorophore concentration models are used in FDOT

reconstruction. In this case, the FDOT inverse problem formulated as the opti-

mization problem will have a different objective functional. More specifically, JLH

and JPR in (4.5) needs to be formulated according to the particular noise and a

priori fluorophore concentration models used, respectively. After transforming the

optimization problem into its variational form which can be solved by the FEMs, we

can analyze the MSE due to discretization by decomposing it similarly into the bias

and variance of the reconstructed image. The bias will depend on the mean of the

measurements, as well as the mean of the fluorophore concentration estimate. On

the other hand, the variance arises from the measurement noise, and can be related

to the second-order statistics of the measurement noise through the images πij. By

taking both forward and inverse problem discretizations into account, both upper

bounds for the bias and variance can be derived as functions of the forward and

inverse problem solutions, discretization parameters, and noise statistics, as well as

the a priori information on fluorophore concentration.

Finally, we note that, although we have been focusing on the error analysis

in the independent Gaussian model case, our results can be directly extended to

the case involving more general Gaussian models for both measurement noise and

fluorophore concentration. For a more general second-order statistic of the a priori

Gaussian model for the fluorophore concentration, we consider Covµµ(r, ŕ) = κ(r, ŕ)

as the kernel of a positive definite operator K : L2(Ω) → L2(Ω). Similarly, for a
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general Gaussian noise model, we assume that the covariance matrix, Σε, of the

measurement noise is a positive definite matrix, that is not necessarily diagonal.

Then, the variational form of the inverse problem formulation becomes

FMAP (ψ, µMAP ) =
(
ψ,A∗Σ−1

ε Γ
)
+ (ψ,K−1µ0),

where

FMAP (ψ, µ) := (ψ,BLHµ) + (ψ,K−1µ).

In this case, it can be shown that the upper bounds for Bias2[µDMAP ] and

Var[µDMAP ] are also of the same forms as in (4.27) and (4.28), but with new coeffi-

cients given by

F 1
ij =

2

∥κ−1∥∞

NSND∑
p=1

(
Σ−1
ε
)
p,(i−1)ND+j

∥g∗jϕi∥0,

F 2
ij =

1

∥κ−1∥∞

NSND∑
p=1

(
Σ−1
ε
)
p,(i−1)ND+j

|Γ̄i,j|,

F 3
ij =

1

∥κ−1∥∞

NSND∑
p=1

(
Σ−1
ε
)
p,(i−1)ND+j

,

I1ij =
1

∥κ−1∥∞

NSND∑
p=1

(
Σ−1
ε
)
p,(i−1)ND+j

∥G∗
jΦi∥0,

I2t =
1

∥κ−1∥∞
∥κ∗0∥0 ∥κ0∥∞,t ,

Dij =

[
(Σε)(i−1)ND+j,(i−1)ND+j +

∫
Ω

∫
Ω

κ(r, ŕ)a∗ij(r)aij(ŕ)drdŕ

]1/2
,

where κ−1 denote the kernel of the operator K−1 : L2(Ω) → L2(Ω), i.e.,

(K−1µ)(r) =

∫
Ω

κ−1(r, ŕ)µ(ŕ)dŕ, (4.31)

and κ0(r) is the Kolmogorov decomposition of κ−1(r, ŕ) [117]; (Σε)p,q and
(
Σ−1
ε
)
p,q
,

p, q = 1, . . . , NSND, denote the entries on the pth row and the qth column of Σε and
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Σ−1
ε , respectively. Clearly, these coefficients reduce to those in Theorems 3 and 4

when the independent noise and fluorophore concentration models are considered in

FDOT reconstruction.

4.8 Conclusion

In this chapter, we extended our analysis for the noise-free situation in Chap-

ter 2 into the case when the measurements are corrupted by additive noise. When

the additive measurement noise is involved in the FDOT reconstruction, the recon-

structed image as well as the error is a random field rather than a deterministic

function. In this respect, one has to seek for a different figure of merit to quanti-

tatively assess the error due to discretization and the reconstruction accuracy than

the H1(Ω) norm of the discretization error used in the previous chapters. In this

chapter, we defined the MSE due to discretization in the discretized inverse problem

solution to evaluate the reconstruction accuracy in the mean square sense. In our

analysis, we identified two components in the total MSE, namely the bias and the

variance of the fluorophore concentration estimate. Then we analyzed these two

parts and presented two new error bounds for them respectively. These two error

bounds show that the MSE due to discretization is not only affected by the factors

previously identified in Theorems 1 and 2, but also by the statistics of the measure-

ment noise and the a priori information on fluorophore concentration. Based on

these two new error bounds, in the next chapter, we develop two new adaptive mesh

generation algorithms for FDOT forward and inverse problems in the presence of

measurement noise.



CHAPTER 5

ADAPTIVE MESH GENERATION FOR FDOT IN THE

PRESENCE OF MEASUREMENT NOISE

5.1 Introduction

In Chapter 4, taking into account the measurement noise, we analyzed the

effect of discretization on the accuracy of FDOT reconstruction and derive two new

error bounds for the MSE due to discretizationin in the fluorophore concentration

estimate. In this chapter, based on these two error bounds, we develop two new

adaptive mesh generation algorithms for FDOT forward and inverse problems in

the presence of noise. Since the ML estimator of the fluorophore concentration can

be viewed as a special case of the MAP estimator, we focus on developing adaptive

mesh generation algorithms for the MAP case in this chapter. In this respect, the

new algorithms use MSE[µDMAP ] as the figure of merit, and additionally take the

noise statistics and a priori information on fluorophore concentration into account

to improve the reconstruction accuracy while keeping the size of the discretized

problems under the allowable limits.

In the following sections, we still consider two adaptive h-refinement ap-

proaches to design our new adaptive mesh generation algorithms: The first ap-

proach adaptively refines the mesh to achieve a predetermined error tolerance, and

the second approach limits the total number of discretization points in the dis-

cretized problems. In the design of adaptive mesh generation algorithm for the

forward problem, as suggested by Theorems 3 and 4 in Chapter 4, we propose a

new adaptive refinement scheme across the meshes for different sources and detec-

tors. By doing so, the adaptive meshes generated by our new algorithm not only

have spatially varying resolution within each mesh, but also have varying resolution

across all the meshes. After describing our new algorithms in detail, we also briefly

analyze the computational complexities of the new algorithms and address several

practical issues in their implementations. At the end of this chapter, we present a

series of three-dimensional numerical simulations to demonstrate the implications

82
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of the error bounds given in Chapter 4 and the practical advantages of our new

algorithms for FDOT in the presence of measurement noise.

5.2 Adaptive Mesh Generation for Forward Problem

We use MSE[µDMAP ] as the figure of merit, and design our adaptive mesh

generation algorithms based on its upper bound given in (4.29). For the forward

problem, we aim to minimize the sum of M1 and M2 in (4.29), which aries from

the forward problem discretization. Clearly, M1 corresponds to the discretization of

the boundary value problem (2.5)-(2.7) for each source, and M2 corresponds to the

discretization of the boundary value problem (2.9)-(2.10) for each detector.

For the first type of adaptive refinement approach, let ε̃f be the predetermined

allowable upper bound on the sum of M1 and M2, which represents the allowable

error due to the forward problem discretization. Then we define

εf :=
1√
C

(
NS∑
i=1

N i
∆ +

ND∑
j=1

N∗j
∆

)−1

ε̃f , (5.1)

where C is the positive constant in (4.29) and N i
∆ or N∗j

∆ is the number of elements

in the mesh used in solving Φi or G
∗
j , respectively. Let Bni and Bmj, i = 1, · · · , NS

and j = 1, · · · , ND, be defined as

Bni :=
εf∑ND

j=1

(
F 1
ij

(
∥g∗j µ̄MAP∥0,ni +

∑NS ,ND

i′,j′ ∥g∗jDi′j′πi′j′∥0,ni
)

+
(
F 2
ij + F 3

ijDij

)
∥g∗j∥∞,ni

)
∥ϕi∥1,ni

, (5.2)

B∗
mj :=

εf∑NS

i=1

(
F 1
ij

(
∥ϕiµ̄MAP∥0,mj +

∑NS ,ND

i′,j′ ∥ϕiDi′j′πi′j′∥0,mj
)

+
(
F 2
ij + F 3

ijDij

)
∥ϕi∥∞,mj

)
∥g∗j∥1,mj

. (5.3)

In this case, if hni > 0 and hmj > 0 are chosen as

hni ≤ Bni,

hmj ≤ B∗
mj,
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then by (4.29), this implies that

M1 +M2 ≤ ε̃f .

The first approach of adaptive mesh refinement starts with a set of coarse uniform

meshes for all the sources and detectors, and it checks the size parameter hni (or

hmj) for each element against Bni (or B
∗
mj). Then every element with hni (or hmj)

larger than Bni (or B
∗
mj) is refined, until hni (or hmj) of each element is less than the

corresponding bound Bni (or B
∗
mj). We note that, since Bni and B

∗
mj are functions of

both measurement Γij and noise variance σ2
ε,ij, and they may vary not only within

each mesh, but also across different source-detector pairs. Therefore, the resulting

mesh may also have varying resolution for different source-detector pairs.

For the second adaptive refinement approach, we give two error indicators for

the nth and mth element in the forward problem meshes associated with ith source

and jth detector, respectively:

εiMAP,f (n) :=

ND∑
j=1

(
F 1
ij

(
∥g∗j µ̄MAP∥0,ni +

NS ,ND∑
i′,j′

∥g∗jDi′j′πi′j′∥0,ni

)
+
(
F 2
ij + F 3

ijDij

)
∥g∗j∥∞,ni

)
∥ϕi∥1,nihni (5.4)

εjMAP,f (m) :=

NS∑
i=1

(
F 1
ij

(
∥ϕiµ̄MAP∥0,mj +

NS ,ND∑
i′,j′

∥ϕiDi′j′πi′j′∥0,mj

)
+
(
F 2
ij + F 3

ijDij

)
∥ϕi∥∞,mj

)
∥g∗j∥1,mjhmj. (5.5)

As we discussed in Section 4.6, both theorems suggest an adaptive refinement

scheme across all meshes used in solving Φi and G
∗
j , i = 1, . . . , NS and j = 1, . . . , ND.

In this respect, we make a modification to the one in Chapter 3 that the new algo-

rithm limits the total number of discretization points in all forward problem meshes,

instead of separately limiting the number of discretization points in each mesh used

for solving Φi or G
∗
j . For the adaptive refinement process, the new algorithm is initi-

ated with a set of coarse uniform meshes. With each sweep of refinement and for each

source or detector, it computes the error indicator εiMAP,f (n) (or ε
j
MAP,f (m)) on every

element and computes the average value ε̄MAP,f of the error indicators on all elements



85

in all meshes. Every element with εiMAP,f (n) > ε̄MAP,f (or εjMAP,f (m) > ε̄MAP,f ) is

refined thereafter. By doing so, the resulting meshes provide spatially varying reso-

lution not only within each mesh, but also among all forward problem meshes. The

algorithm is stopped when the total number of discretization points in all forward

problem meshes reaches a predetermined allowable limit. Algorithm 3 describes the

detailed steps of this refinement process in the form of a pseudocode.

Algorithm 3 The pseudocode of the adaptive mesh generation algorithm for the
forward problem in the presence of measurement noise.

⋄ Generate the initial uniform meshes for all forward problems:

(∆i, N i
∆), ∆

i =
∪N i

∆
n=1{∆n}, i = 1, . . . , NS, and

(∆∗j,N∗j
∆ ), ∆∗j =

∪N∗j
∆

m=1{∆m}, j = 1, . . . , ND

⋄ Set the maximum number of nodes N f
max in all meshes

while Number of nodes in all meshes less than N f
max

for i = 1, . . . , NS

for each element ∆n ∈ ∆i with mesh parameter hni
if first linearization
� Use analytical solutions for ϕi and g

∗
j and a priori information

about µ̄MAP and πij to compute εiMAP,f (n) in (5.4)
else
� Use current solution updates Φi, G

∗
j , µ̄

D
MAP and Πij to compute

εiMAP,f (n) in (5.4)
end

end
for j = 1, . . . , ND

for each element ∆m ∈ ∆∗j with mesh parameter hmj
if first linearization
� Use analytical solutions for ϕi and g

∗
j and a priori information

about µ̄MAP and πij to compute εjMAP,f (m) in (5.5)

else
� Use current solution updates Φi, G

∗
j , µ̄

D
MAP and Πij to compute

εjMAP,f (m) in (5.5)

end
end

� Compute εMAP,f

� Refine the elements with εiMAP,f (n) > εMAP,f or εjMAP,f (m) > εMAP,f

� Update the mesh ∆i, i = 1, . . . , NS, and ∆j∗, j = 1, . . . , ND

end
⋄ Solve for Φi, i = 1, . . . , NS, and G

∗
j , j = 1, . . . , ND
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To implement this algorithm, we need to make several adjustments: since

g∗j , ϕi, µ̄MAP and πij in (5.4) and (5.5) also can not be computed exactly, we use

analytical solutions for g∗j and ϕi on an unbounded domain (see Appendix F), and

the a priori information of µ̄MAP and πij in the first iteration, and the updated

finite-dimensional solutions of them thereafter.

5.3 Adaptive Mesh Generation for Inverse Problem

For the inverse problem, we aim to minimize the M3 in (4.29), which aries

from the inverse problem discretization. For the first adaptive refinement approach,

we let ε̃i be the predetermined allowable upper bound on M3, which represents the

allowable error due to the inverse problem discretization. Let

εi :=
1√
CN∆

ε̃i. (5.6)

Then, we define Bt as follows:

Bt :=
εi(∑NS ,ND

i,j I1ij∥G∗
jΦi∥0,t + I2t

)(
∥µ̄MAP∥1,t +

∑NS ,ND

i,j ∥Dijπij∥1,t
) . (5.7)

Then for 0 < ht ≤ Bt , by (4.29) and (5.6), we have

M3 ≤ ε̃i.

The adaptive mesh refinement procedure of this approach remains the same as the

one in Chapter 3.

For the second adaptive refinement approach, the error indicator for each

element in the inverse problem mesh is defined as

εMAP,i(t) :=

(
NS ,ND∑
i,j

I1ij∥G∗
jΦi∥0,t + I2t

)(
∥µ̄MAP∥1,t +

NS ,ND∑
i,j

∥Dijπij∥1,t

)
ht. (5.8)

Our new algorithm for the inverse problem again starts from a coarse uniform mesh.

In each sweep of refinement, it computes εMAP,i for each element and the average
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value ε̄MAP,i for all elements, and refines those elements with εMAP,i(t) > ε̄MAP,i.

The algorithm stops when the total number of discretization points exceeds the

predetermined allowable limit. Algorithm 4 describes the detailed steps of this

refinement process in the form of a pseudocode. Finally, we note that we use the

same strategy as that we used in the previous section to approximate µ̄MAP and πij

in calculating Bt or εMAP,i.

Algorithm 4 The pseudocode of the adaptive mesh generation algorithm for the
inverse problem in the presence of measurement noise.

⋄ Generate an initial uniform mesh: (∆,N∆), ∆ =
∪N∆

t=1{∆t}
⋄ Set the maximum number of nodes N i

max

while Number of nodes N less than N i
max

for each element ∆t ∈ ∆ with mesh size parameter ht
if first linearization
� Use current solution updates Φi and G

∗
j , and a priori information

about πij and µ̄MAP to compute εMAP,i(t) in (5.8 )
else
� Use current solution updates Φi, G

∗
j , µ̄

D
MAP and Πij to compute

εMAP,i(t) in (5.8 )
end
� Compute εMAP,i

� Refine the elements with εMAP,i(t) > εMAP,i

� Update the mesh ∆
end

⋄ Solve for µDMAP and Πij

5.4 Computational Complexity

In this section, we briefly discuss the computational complexity of the adaptive

mesh generation algorithms described in the previous sections. In both Algorithms 3

and 4, one needs to solve πij for i = 1, 2, . . . , NS and j = 1, 2, . . . , ND. These πijs can

be computed once numerically given the source-detector geometry and background

optical properties, and stored for the computation of the error indicators in adaptive

mesh refinement. To further improve the computational efficiency of Algorithms 3
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and 4, we consider the following approximations to (5.4), (5.5) and (5.8):

εiMAP,f (n) ≈
ND∑
j=1

F 1
ij

∥g∗j µ̄MAP∥0,ni +

∥∥∥∥∥g∗j
NS ,ND∑
i′,j′

Di′j′πi′j′

∥∥∥∥∥
0,ni


+
(
F 2
ij + F 3

ijDij

)
∥g∗j∥∞,ni

)
∥ϕi∥1,nihni (5.9)

εjMAP,f (m) ≈
NS∑
i=1

F 1
ij

∥ϕiµ̄MAP∥0,mj +

∥∥∥∥∥ϕi
NS ,ND∑
i′,j′

Di′j′πi′j′

∥∥∥∥∥
0,mj


+
(
F 2
ij + F 3

ijDij

)
∥ϕi∥∞,mj

)
∥g∗j∥1,mjhmj, (5.10)

εMAP,i(t) ≈

(
NS ,ND∑
i,j

I1ij∥G∗
jΦi∥0,t + I2t

)∥µ̄MAP∥1,t +

∥∥∥∥∥
NS ,ND∑
i,j

Dijπij

∥∥∥∥∥
1,t

ht.

(5.11)

It is clear that
∑NS ,ND

i,j Dijπij can be solved by using

FMAP

(
ψ,

NS ,ND∑
i,j

Dijπij

)
=

(
ψ,A∗Σ−1

ε

NS ,ND∑
i,j

Dijeij

)
.

In this case, using (5.9), (5.10) and (5.11) as the error indicators in Algorithms 3 and

4 only requires one image reconstruction procedure to solve
∑NS ,ND

i,j Dijπij, instead

of solving each πij separately.

Based on the modified error indicators (5.9), (5.10) and (5.11), we analyze the

computational complexity of our adaptive mesh generation algorithms. First of all,

in (5.9) and (5.10), ∥g∗jϕi∥0, i = 1, . . . , NS and j = 1, . . . , ND, can be computed

before the mesh refinement. Therefore, we still have O(N i
∆ND) and O(N∗j

∆ NS)

complexity for adaptively refining the mesh based on (5.9) and (5.10) in each re-

finement sweep. We can further reduce them to O(N i
∆) and O(N∗j

∆ ) by using the
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approximations to (5.9) and (5.10) suggested in Section 3.6:

εiMAP,f (n) ≈

∥∥∥∥∥
ND∑
j=1

F 1
ijg

∗
j µ̄MAP

∥∥∥∥∥
0,ni

+

∥∥∥∥∥
ND∑
j=1

F 1
ijg

∗
j

NS ,ND∑
i′,j′

Di′j′πi′j′

∥∥∥∥∥
0,ni


+

ND∑
j=1

(
F 2
ij + F 3

ijDij

)
∥g∗j∥∞,ni

)
, ∥ϕi∥1,nihni (5.12)

εjMAP,f (m) ≈

∥∥∥∥∥
NS∑
i=1

F 1
ijϕiµ̄MAP

∥∥∥∥∥
0,mj

+

∥∥∥∥∥
NS∑
i=1

F 1
ijϕi

NS ,ND∑
i′,j′

Di′j′πi′j′

∥∥∥∥∥
0,mj


+

NS∑
i=1

(
F 2
ij + F 3

ijDij

)
∥ϕi∥∞,mj

)
∥g∗j∥1,mjhmj, (5.13)

Second, in (5.11), ∥G∗
jΦi∥0, i = 1, . . . , NS and j = 1, . . . , ND, can also be

computed before the mesh refinement. Therefore, the computational complexity for

refining the inverse problem mesh using (5.11) in each sweep of the mesh refinement

is O(N∆NSND). It can also be reduced to O(N∆) by a further approximation of

(5.11):

εMAP,i(t) ≈

∥∥∥∥∥
NS ,ND∑
i,j

I1ijG
∗
jΦi

∥∥∥∥∥
0,t

+ I2t

∥µ̄MAP∥1,t +

∥∥∥∥∥
NS ,ND∑
i,j

Dijπij

∥∥∥∥∥
1,t

ht.

(5.14)

Therefore, using the approximated error indicators in (5.12), (5.13) and (5.14),

our new adaptive mesh generation algorithms have the same computational complex-

ity as those of the algorithms in Chapter 3 and the conventional adaptive meshing

method.

5.5 Numerical Simulation

To demonstrate the improvements in the FDOT reconstruction accuracy by us-

ing the adaptive mesh generation algorithms proposed in this chapter in the presence

of measurement noise, we performed a set of numerical simulation studies. Specifi-

cally, we simulated a realistic noise situation in FDOT imaging, and evaluated the
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Figure 5.1: The simulation setups used for Simulation Studies 3 and 4.
The squares and triangles denote the detectors and sources, respectively.

accuracy of FDOT reconstruction by calculating the MSE in the reconstructed im-

ages due to discretization. In the simulation study, we compared our adaptive mesh

generation algorithms proposed in this chapter with the uniform meshing scheme

and the one developed in Chapter 3, to show the practical advantages of the algo-

rithms in this chapter in the presence measurement noise.

5.5.1 Simulation Setup

In the numerical simulation, we considered a 6 cm × 6 cm × 3 cm cubic domain

Ω shown in Figure 5.1. We set the homogeneous background absorption coefficient

µaxe = µame = 0.05 cm−1 and diffusion coefficient D = 0.0410 for both excitation

and emission wavelengths, and set the refractive index mismatch parameter ρ =

3 for the boundary ∂Ω. At the center of the domain, we placed a fluorophore

heterogeneity with 3 mm radius, constant absorption coefficient µaxf = 0.015 cm−1

and quantum efficiency η = 0.05. In the rest of the domain, we assumed µaxf = 0.

To reconstruct the fluorophore concentration image, we placed 36 sources and 36

detectors evenly on two 6 × 6 grids at the bottom and top surfaces of the domain,

as shown in Figure 5.1. We simulated both excitation and emission light fields

by solving the coupled diffusion equations (2.5) and (2.6) with their corresponding

boundary conditions (2.7) and (2.8), using the parameters above on a fine uniform

grid with 81×81×41 nodes.

To simulate measurement noise, we considered the noise model (4.30) in Sec-
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tion 4.7. We further define the SNR of the measurements as

SNRij = 10 log10
|Γ0,ij|2

σ2
ε,ij

= 10 log10
|Γ0,ij|
α

. (5.15)

Note that, each measurement, Γij, has a different SNR proportional to log10 |Γ0,ij|.
In Simulation Study 3, we simulated the noise ε with 3 different values of

α: 5 × 10−11, 1 × 10−9 and 5 × 10−9, corresponding to approximately 40, 26 and

20 dB average SNR over all measurements Γij, i = 1, . . . , NS and j = 1, . . . , ND.

For each value of α, we generated 100 different realizations of noise and obtain

three sets of noise contaminated measurements with approximately 1%, 5% and

10% noise. By changing the noise level, we aimed to show the effect of measurement

noise on the adaptive mesh generation as well as the image reconstruction. In the

FDOT reconstruction, we reconstructed the optical image using the MAP estimator

of fluorophore concentration and considered a simplified a priori model for the

fluorophore concentration:

κ(r) = κ0,

where κ0 = 5× 10−6 is a constant chosen empirically.

In Simulation Study 4, we simulated the noise ε with α = 5× 10−11. Instead

of choosing a deterministic value for the absorption coefficient of the fluorophore,

µaxf , we randomly chose its value from a Gaussian distribution, N (µ0
axf , σ

2
axf ), and

dropped the negative values generated. We set (µ0
axf , σaxf ) to three different values:

(0.005 cm−1, 0.002 cm−1), (0.015 cm−1, 0.006 cm−1), and (0.025 cm−1, 0.010 cm−1),

to simulate three cases of different fluorophore variance. For each case, we generated

100 realizations of µaxf .

We further considered the following a priori model for the fluorophore con-

centration:

κ(r) =

 κf r ∈ Ωf

κb r ∈ Ωb

,

where κf and κb are constant, Ωf ∪Ωb = Ω, Ωf ∩Ωb = ∅, Ωf denotes the fluorophore

region, and Ωb denotes the background region. We chose κb = κ0 = 5 × 10−6, and
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chose κf with 3 different values: 5×10−6, 3.6×10−5, and 1×10−4. Note that in the

latter two cases of Simulation Study 4, we have the specific a priori information on

fluorophore concentration that the variance of the fluorophore concentration inside

the heterogeneity region, Ωf , is higher than that of the background region, Ωb. By

changing κf , we aimed to show the effect of a priori information of fluorophore

concentration on the adaptive mesh generation as well as the image reconstruction.

Finally, we note that we again performed our simulation study using deal.II

FEM C++ library [98] and used hexahedral finite elements with trilinear Lagrange

basis functions to discretize both forward and inverse problems.

5.5.2 Mesh Generation

We used three different types of coarse meshes: uniform meshes, the adaptive

meshes generated by the algorithms in Chapter 3, and the adaptive meshes generated

by the algorithms in this chapter, to discretize the forward and inverse problems.

For the forward problem, the total number of nodes in the meshes used in solving

all Φi and G∗
j , i = 1, . . . , NS and j = 1, . . . , ND, ranged from 500,000 to 650,000

(roughly 7,000 to 9,000 for each mesh); and for the inverse problem, it ranged

from 2,000 to 3,000. Note that the uniform meshes used for solving the forward

and inverse problems have 25×25×13 nodes and 17×17×9 nodes, respectively. For

performance evaluation, we considered three different image reconstruction scenarios

corresponding to these three different meshing schemes:

1. We used the coarse uniform mesh shown in Figure 3.3(a) to discretize the for-

ward problem and the coarse uniform mesh shown in Figure 3.3(b) to discretize

the inverse problem. We denote the resulting image by µDMAP,U .

2. We used the adaptive meshes generated by Algorithm 3 (see Figures 5.2(a)-

5.2(d)) to discretize the forward problem and the adaptive mesh generated by

Algorithm 4 (see Figures 5.5(a), 5.5(b) and 5.5(d)) to discretize the inverse

problem. We denote the resulting image by µDMAP,NA.

3. We used the adaptive meshes generated by Algorithm 1 (see Figures 5.2(e)

and 5.2(f)) to discretize the forward problem and the adaptive mesh generated
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(a) The adaptive mesh with 3,289 nodes gen-
erated by our algorithm in this chapter for the
detector located at (-2.5,-2.5,1.5) for the 1%
noise case.
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(b) The adaptive mesh with 18,876 nodes
generated by our algorithm in this chapter for
the detector located at (-0.5,-0.5,1.5) for the
1% noise case.
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(c) The adaptive mesh with 3,588 nodes gen-
erated by our algorithm in this chapter for the
detector located at (-2.5,-2.5,1.5) for the 10%
noise case.
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(d) The adaptive mesh with 18,054 nodes
generated by our algorithm in this chapter for
the detector located at (-0.5,-0.5,1.5) for the
10% noise case.
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(e) The adaptive mesh with 8,304 nodes gen-
erated by the algorithm in Chapter 3 for the
detector located at (-2.5,-2.5,1.5).
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(f) The adaptive mesh with 7,973 nodes gen-
erated by the algorithm in Chapter 3 for the
detector located at (-0.5,-0.5,1.5).

Figure 5.2: Examples of the adaptive meshes for the forward problem
used in Simulation Study 3. The mesh is cut through to show the mesh
structure inside.
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Figure 5.3: The relationship between the number of nodes in the forward
adaptive mesh for a certain source (or detector) and the distance of the
source (or detector) to the center of the fluorophore heterogeneity in the
1% and 10% noise cases in Simulation Study 3.

by Algorithm 2 (see Figures 5.5(c) and 5.5(e)) to discretize the inverse problem.

We denote the resulting image by µDMAP,A.

For the forward problem, the examples of the adaptive meshes generated for

the detectors located at (−2.5,−2.5, 1.5) and (−0.5,−0.5, 1.5) in the 1% and 10%

noise cases of Simulation Study 3 are shown in Figure 5.2. Figures 5.2(a) - 5.2(d)

show the meshes generated by the algorithm in this chapter. We observe there are

more nodes in the meshes for the detector located at (−2.5,−2.5, 1.5) than in the

meshes for the detector located at (−0.5,−0.5, 1.5). Figures 5.2(e) and 5.2(f) show

the corresponding meshes generated by the algorithm in Chapter 3, and these two

meshes have approximately same number of nodes.

We plotted the relationship between the numbers of nodes in the meshes gen-

erated by the algorithms in this chapter and Chapter 3 for a certain source (or

detector) and the distance of that source (or detector) to the center of the fluo-

rophore heterogeneity in Figure 5.3. Note that for the sources and detectors which

have the same distance to the heterogeneity, we plotted the average number of nodes

in the corresponding meshes. For the algorithm in this chapter, we observe that the

closer the sources or detectors to the heterogeneity, the larger the number of nodes
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Figure 5.4: The cross-sections of the image,
∑NS ,ND

i,j Dijπij, reconstructed
using coarse uniform meshes in the 10% noise case in Simulation Study
3.

is in the associated meshes. This can be explained with the fact that for those

source-detector pairs closer to the heterogeneity, the measurements have higher

SNR. As a result, the algorithm in this chapter generates finer meshes for these

source-detector pairs, so that the accuracies of the corresponding forward problem

solutions can match the accuracy of the measurements. This results in the forward

problem meshes generated by the algorithm in this chapter with varying resolution

for different source-detector pairs. We note that the similar results of the adaptive

mesh generation for the forward problem were also observed in Simulation Study 4.

In Simulation Study 3, we further observe that the algorithm in Chapter 3

generates the same mesh for different noise levels as shown in Figures 5.2(e) - 5.2(f).

This indicates that, when the noise level changes from 1% to 10%, the change in the

reconstructed image does not have enough impact on the adaptive mesh refinement

to change the mesh finally generated. This can be further validated by the image

reconstruction results shown in Figures 5.6 and 5.7 for 1% and 10% measurement

noise level cases. In these reconstruction results, we observe that the major differ-

ence in the reconstructed images is the change in the background variability when

the noise level changes. On the other hand, in Figures 5.2(a) - 5.2(d), we note the

difference between the adaptive meshes generated by the algorithm in this chapter
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for different noise levels, which illustrates the impact of noise level on the meshes

generated by this new algorithm. In this algorithm, since the value of the coefficient

Dij increases as σ
2
ε,ij increases, the images Dijπij, i = 1, . . . , NS and j = 1, . . . , ND,

have more contribution to the mesh refinement when the noise level is high. Fig-

ure 5.4 shows the cross-section of
∑

i,j Dijπij for the 10% noise case. These results

indicate that the algorithm in this chapter can adaptively refine the meshes ac-

cording to the measurement noise level. In Simulation Study 4, as we changed the

fluorophore variance, we also observed a change in adaptive mesh generation similar

to that in Simulation Study 3.

For the inverse problem, we show the examples of the adaptive meshes in

Figure 5.5. Figures 5.5(a) and 5.5(b) show two different meshes generated by the

algorithm in this chapter for the 1% and 10% noise level cases in Simulation Study

3, respectively. Similarly, we note that the difference in these two meshes is mainly

due to the change of noise level. The algorithm in Chapter 3 does not take into

account noise and generates the same mesh for different noise levels as shown in

Figure 5.5(c).

Figures 5.5(e) and 5.5(d) show the meshes generated by algorithms in Chap-

ters 3 and 5 when the specific a priori information was used in Simulation Study 4.

Comparing these two meshes with the meshes generated in Simulation Study 3, we

observe that both algorithms generated different meshes for the different a priori

information. However, we note that the difference in the meshes generated by the

algorithm in Chapter 3 is only due to the dramatic change in the reconstructed im-

age (see Figure 5.8) resulting from the specific a priori information used in FDOT

reconstruction. On the other hand, the difference in the meshes generated by the

algorithm in this chapter is due to changes in both the reconstructed image and a

priori information. To conclude, the results in Figure 5.5 indicate that the algo-

rithm in this chapter takes into account the noise statistics and a priori information

of fluorophore concentration, and can adaptively refine the mesh according to these

two factors.

In the following sections, we present the simulation results and demonstrate

the improvements in the reconstruction accuracy as well as the convergence rate of
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(a) The adaptive mesh with 2,721 nodes gen-
erated by the algorithm in Chapter 5 for the
inverse problem for the 1% noise case in Sim-
ulation Study 3.
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(b) The adaptive mesh with 2,785 nodes gen-
erated by the algorithm in Chapter 5 for the
inverse problem for the 10% noise case in Sim-
ulation Study 3.

−5

0

5

−5

0

5

−2

0

2

x

y

z

(c) The adaptive mesh with 2,652 nodes gen-
erated by the algorithm in Chapter 3 for the
inverse problem in Simulation Study 3.
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(d) The adaptive mesh with 2,836 nodes gen-
erated by the algorithm in Chapter 3 for the
inverse problem with µ0

axf = 0.025 cm−1 and

σaxf = 0.01 cm−1 in Simulation Study 4.
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(e) The adaptive mesh with 2,991 nodes gen-
erated by the algorithm in Chapter 5 for the
inverse problem with µ0

axf = 0.025 cm−1 and

σaxf = 0.01 cm−1 in Simulation Study 4.

Figure 5.5: Examples of the adaptive meshes for the inverse problem
used in Simulation Studies 3 and 4. The mesh is cut through to show the
mesh structure inside.
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Table 5.1: MSE, bias and variance of the images reconstructed by using
different meshes in Simulation Study 3.

Noise Level Images Bias2 (×10−4) Var (×10−6) MSE (×10−4)

1%
µDMAP,U 3.295 100% 0.037 100% 3.295 100%
µDMAP,NA 0.857 26.00% 0.009 23.49% 0.857 26.00%
µDMAP,A 2.040 61.93% 0.038 101.45% 2.041 61.93%

5%
µDMAP,U 3.251 100% 0.893 100% 3.260 100%
µDMAP,NA 0.753 23.16% 0.199 22.27% 0.755 23.16%
µDMAP,A 2.028 62.38% 0.990 110.92% 2.038 62.52%

10%
µDMAP,U 3.217 100% 3.670 100% 3.253 100%
µDMAP,NA 0.768 23.89% 0.872 23.77% 0.777 23.89%
µDMAP,A 2.045 63.57% 4.301 117.19% 2.088 64.18%

Table 5.2: MSE, bias and variance of the images reconstructed by using
different meshes in Simulation Study 4.

(µ0
axf , σaxf ) Images Bias2 (×10−4) Var (×10−4) MSE (×10−4)

(0.005,0.002)
µDMAP,U 1.406 100% 0.270 100% 1.676 100%
µDMAP,NA 0.319 22.70% 0.060 22.37% 0.380 22.64%
µDMAP,A 0.860 61.15% 0.263 97.30% 1.122 66.97%

(0.015,0.006)
µDMAP,U 3.508 100% 0.638 100% 4.146 100%
µDMAP,NA 0.953 27.15% 0.163 25.49% 1.115 26.90%
µDMAP,A 2.330 66.41% 0.700 109.74% 3.030 73.08%

(0.025,0.010)
µDMAP,U 4.613 100% 0.801 100% 5.413 100%
µDMAP,NA 1.396 30.26% 0.224 28.01% 1.620 29.92%
µDMAP,A 3.205 69.49% 0.872 108.93% 4.078 75.32%

the discretized inverse problem solution to the exact inverse problem solution, when

the adaptive meshes refined by taking into account the measurement noise as well as

a priori information on fluorophore concentration are used in FDOT reconstruction.

5.5.3 Simulation Results

5.5.3.1 Reconstruction Accuracy

To obtain the exact solutions of the forward and inverse problems, we solved

the forward and inverse problems on a fine mesh with 61 × 61 × 31 nodes. We

assumed that the error due to discretization in the resulting image, denoted by

µMAP is negligible with respect to the images reconstructed using the three types
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of coarse meshes; and used this image as a baseline to compute the MSE due to

discretization. In both Simulation Studies 3 and 4, we calculated the bias, variance

and the MSE of the reconstructed images for each set of reconstructions by aver-

aging all reconstructed image samples for 100 realizations of noise and fluorophore

concentration value. The results are tabulated in Tables 5.1 and 5.2. Additionally,

we tabulated the percentage of each quantity as compared to µDMAP,U , the image

reconstructed by using the coarse uniform meshes: The left column is the absolute

value, and the right column is the corresponding percentage. In Simulation Study

3, the results in Table 5.1 show that the bias squares of the images, reconstructed

using different types of meshes, remain at a fixed level when the noise level changes,

while the variances of the images increase as the noise level increases. In Simulation

Study 4, the results in Table 5.2 show that both bias squares and variances of the

reconstructed images increase as the fluorophore variance increases. The results in

both Tables 5.1 and 5.2 show that the bias square, variance, as well as the MSE

of µDMAP,NA are approximately reduced by 70% to 75% as compared to µDMAP,U ,

when the algorithms in this chapter are used. On the other hand, the algorithms in

Chapter 3 provide approximately 30% to 40% reduction in the bias square, but no

reduction in the variance of µDMAP,A with respect to µDMAP,U .

Figures 5.6 and 5.7 show the cross-section of the sample images at z = 0 plane

reconstructed by using different types of meshes when the noise level is 1% and

10% in Simulation Study 3. The cross-section of the baseline images are shown in

Figures 5.6(a) and 5.7(a). We observe that the variability of images in Figure 5.7

is more visible as compared to that of the images in Figure 5.6 due to increased

noise level in the measurements. The shape of the small fluorophore heterogeneity

is better resolved in µDMAP,A and µDMAP,NA as compared to the one in µDMAP,U , due

to the spatially varying resolution provided by the adaptive meshes. Additionally,

we observe a higher background variability in µDMAP,A than that of µDMAP,NA in

Figures 5.7(d) and 5.7(c), while the difference between the images in Figures 5.6(d)

and 5.6(c) is not as noticeable due to low noise level.

Figure 5.8 shows the cross-section of the sample images at z = 0 plane recon-

structed by using different types of meshes when µaxf = 0.033 cm−1 in Simulation
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(a) The baseline image.
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(b) The image reconstructed using the uni-
form meshes.
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(c) The image reconstructed using the adap-
tive meshes generated by the algorithms in
Chapter 5.
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(d) The image reconstructed using the adap-
tive meshes generated by the algorithms in
Chapter 3.

Figure 5.6: The reconstruction results of Simulation Study 3, Case 1, on
plane z = 0, at 1% noise level.

Study 4. Since the specific a priori information on fluorophore concentration is

used in the image reconstruction, all the reconstructed images, shown in Figure 5.8,

are reconstructed with a narrower peak at the fluorophore heterogeneity region as

compared to the images shown in Figures 5.6 and 5.7. We observe that the flu-

orophore heterogeneity in µDMAP,U is reconstructed in a pyramid shape due to the

fact that the size of fluorophore heterogeneity is smaller than the size of element

in the uniform mesh used to discretize the inverse problem. On the other hand,

because of the spatially varying resolution provided by the adaptive meshes, the

fluorophore heterogeneities in µDMAP,NA and µDMAP,A are better revolved than that

in µDMAP,U . Furthermore, µDMAP,NA reconstructed by using the algorithms in this

chapter is closer to the baseline image than µDMAP,A reconstructed by the algorithms
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(a) The baseline image.
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(b) The image reconstructed using the uni-
form meshes.
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(c) The image reconstructed using the adap-
tive meshes generated by the algorithms in
Chapter 5.
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(d) The image reconstructed using the adap-
tive meshes generated by the algorithms in
Chapter 3.

Figure 5.7: The reconstruction results of Simulation Study 3, Case 3, on
plane z = 0, at 10% noise level.

in Chapter 3.

The reconstruction results in Figures 5.6, 5.7, and 5.8 can be seen more clearly

in Figures 5.9 and 5.10, where the reconstructed images along the y-axis on z = 0

plane are shown. The solid lines in Figure 5.9 and 5.10 represent the baseline

image µMAP which is assumed to have negligible error due to discretization. We

observe that the image, µDMAP,NA, is the best approximation to µMAP in all three

reconstructed images, which has higher response at the center of the fluorophore

heterogeneity and lower background variance, as compared to those of µDMAP,U and

µDMAP,A.
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(a) The baseline image.
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(b) The image reconstructed using the uni-
form meshes.
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(c) The image reconstructed using the adap-
tive meshes generated by the algorithms in
Chapter 5.
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(d) The image reconstructed using the adap-
tive meshes generated by the algorithms in
Chapter 3.

Figure 5.8: The reconstruction results of Simulation Study 4, Case 3, on
plane z = 0, with µaxf = 0.033 cm−1 and κf = 1× 10−4.

5.5.3.2 Convergence Rate

To study the convergence of the discretized inverse problem solution to the

exact solution when different types of meshes are used in FDOT reconstruction in the

presence of noise, we solved both forward and inverse problems on a series of meshes

with gradually increasing discretization levels in each reconstruction scenario. Note

that, for each discretization level, the mesh for the forward problem is always slightly

finer than the mesh for the inverse problem. At the same time, we calculated the

MSE between the two images reconstructed on two consecutive discretization levels,

and normalized it with the mean L2(Ω) norm square of the image reconstructed

on the lower discretization level. We, again, refer to this as the percentage error

between the mesh refinement. This percentage error decreases as the discretization
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(a) The images along the y-axis reconstructed using measure-
ments with 1% noise level in Simulation 3, Case 1, at 1% noise
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(b) The images along the y-axis reconstructed using measure-
ments with 10% noise level in Simulation 3, Case 3.

Figure 5.9: The profiles of the reconstructed images µMAP , µ
D
MAP,U , µ

D
MAP,A

and µDMAP,NA along the y-axis in Simulation Study 3, Case 1 and Case 3.
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Figure 5.10: The profiles of the reconstructed images µMAP , µDMAP,U ,
µDMAP,A and µDMAP,NA along the y-axis in Simulation Study 4, Case 3, with
µaxf = 0.033 cm−1 and κf = 1× 10−4.

level increases. Similar to the simulation studies in Chapter 3, this error reflects the

gain of the image reconstruction accuracy that can be obtained by a further mesh

refinement, and we used it as an indicator to the MSE due to discretization in the

reconstructed image.

Figures 5.11 and 5.12 show the change in MSE versus the number of nodes

in the inverse problem mesh for different mesh generation algorithms in Simulation

Study 3, Case 1 and Case 3, as well as in Simulation Study 4, Case 3. We observe that

our adaptive mesh generation algorithms in this chapter have the fastest convergence

rate as compared to the algorithms proposed in Chapter 3 and the uniform meshing

scheme. The horizontal dash lines in Figures 5.11 and 5.12 represent the 5% error

between each mesh refinement. Figures 5.11 and 5.12 show that, to achieve this

accuracy level, one needs to use the uniform mesh with over 20,000 nodes and the

adaptive mesh generated by the algorithm in Chapter 3 with over 5,000 nodes for

the inverse problem. On the other hand, the algorithm in this chapter requires

roughly 4,000 nodes in the mesh.
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(a) The change in percent MSE versus the number of nodes
used in the inverse problem mesh in Simulation 3, Case 1, with
1% noise.
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(b) The change in percent MSE versus the number of nodes
used in the inverse problem mesh in Simulation 3, Case 3, with
10% noise.

Figure 5.11: The change in percent MSE versus the number of nodes
used in the inverse problem mesh in Simulation Study 3, Case 1 and
Case 3. The horizontal dash line indicates the 5% error level between
each mesh refinement.
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Figure 5.12: The change in percent MSE versus the number of nodes
used in the inverse problem mesh in Simulation Study 4, Case 3. The
horizontal dash line indicates the 5% error level between each mesh re-
finement.

5.6 Conclusion

Based on our error analysis in Chapter 4, we developed new adaptive mesh

generation algorithms for FDOT forward and inverse problems in the presence of

measurement noise. The new adaptive mesh generation algorithms take into ac-

count the noise statistics and a priori information on fluorophore concentration as

compared with those in Chapter 3, and aim to improve the reconstruction accuracy

in the mean square sense. After discussing the detailed mesh refinement processes

of our new algorithms, we addressed some practical issues in their implementations,

and gave several approximated error indicators which can be used to improve the

computational efficiency of the mesh refinement. Finally we briefly analyzed the

computational complexities of the new algorithms, and showed that they are same

as those of our previous algorithms in Chapter 3 and the conventional method.

In the simulation study, we compared the adaptive mesh generation algorithms

proposed in this chapter with our previous algorithms developed in Chapter 3 as well

as the uniform meshing scheme. The results of the simulation study showed that

our new algorithms can generate adaptive forward meshes with varying resolution

not only within each mesh for a certain source-detector pair, but also across the
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meshes for all source-detector pairs. Furthermore, our new algorithms adaptively

discretized FDOT forward and inverse problems according to the noise level as well

the a priori information on fluorophore concentration. In the image reconstruction,

we showed that the adaptive meshes generated by our previous algorithms can only

provide error reduction for the bias part of the total MSE with respect to the

uniform meshes. On the other hand, the meshes generated by our new algorithms

can effectively reduce both bias and variance of the reconstructed images, thereby

effectively reducing the total MSE as compared to other meshing schemes. We also

showed that the convergence rate of the discretized inverse problem solution to the

exact inverse problem solution is also improve by using our new algorithms in the

FDOT reconstruction.



CHAPTER 6

PERFORMANCE EVALUATION OF ADAPTIVE FEM

FOR FDOT USING EXPERIMENTAL DATA

6.1 Introduction

In Chapters 2 and 3, we analyzed the effect of discretization on the accuracy of

FDOT imaging and proposed novel adaptive meshing algorithms for FDOT under

the assumption that the measurements are noise-free. However, in the real FDOT

reconstruction, the measurements are always corrupted by noise. Therefore, further

in Chapters 4 and 5, we took the measurement noise into consideration, analyzed

the effect of discretization, and proposed two new adaptive meshing algorithms for

FDOT forward and inverse problems in the presence of noise. In Chapter 5, we

demonstrated the implications of our error analysis and the effectiveness of our new

algorithms in a numerical simulation study. In this chapter, we further apply the

adaptive mesh generation algorithms proposed in Chapter 5 to the FDOT recon-

struction using data obtained from a phantom experiment to show the practical

advantages of our algorithms in the real FDOT reconstruction.

In the following sections, we first describe the optical phantom and FDOT

imaging system setup, as well as the data collecting procedure used in the phantom

experiment. To discretize and solve the FDOT forward and inverse problems, we

generate the uniform meshes and the adaptive meshes by using the conventional

method as well as our algorithms proposed in Chapter 5. Next, we illustrate and

compare both mesh generation and image reconstruction results obtained by us-

ing our algorithms with those of the uniform and conventional adaptive meshing

schemes.

6.2 Experiment Setup and Data Collection

In the phantom experiment, we used a cylindrical phantom made of silicone

rubber with 2 cm diameter and 4 cm height as shown in Figure 6.1. The phantom

108
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Figure 6.1: The optical phantom
used in the phantom experiment.

Figure 6.2: The experiment setup
for the phantom experiment.

had homogeneous absorption coefficient µa = 0.2 cm−1 and reduced scattering co-

efficient µ′
s = 12 cm−1. As shown in Figure 6.1, the phantom contained a hollow

tube with 3 mm diameter along the central axis. The tube was filled with 1 µM

Cy7 (excitation at 743 nm, emission at 767 nm) mixed with Intralipid and ink to

mimic the same background optical properties of the phantom base.

The optical measurements were collected on the FDOT imaging system re-

ported in [118], as illustrated in Figure 6.2. Specifically, a focused collimated laser

beam was used as a source on one side of the phantom at 24 different positions (on

a 3 × 8 grid, over a 10 mm × 15 mm field of view) sequentially. On the other side

of the phantom, an electrically cooled Charged Coupled Device (CCD) camera was

placed to collect the continuous wave fluorescence measurements for each source

position. In the image obtained by CCD camera, we selected 36 subimages (on a 4

× 9 grid, over a 10 mm × 20 mm field of view) each with 6 × 6 pixels on the phan-

tom as the virtual detectors, and the reading of each detector was calculated as the

mean pixel value of each subimage. Figures 6.3(b) and 6.3(a) show the source and

detector positions, respectively. After finishing collecting a set of measurements for

all 24 source positions, the phantom is rotated by 180◦ to obtain another set of mea-

surements. Therefore, the total number of measurement available for reconstruction

is 24× 36× 2 = 1, 728.
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(a) The detector positions illustrated in
the image obtained by CCD camera.

(b) The source positions illustrated in the
image obtained by CCD camera.

Figure 6.3: The source and detector positions in the image obtained by
CCD camera in the phantom experiment.

6.3 Mesh Generation

To numerically solve the FDOT forward and inverse problems, we used three

different types of meshes with hexahedral finite elements and trilinear Lagrange

basis functions to discretize the cylindrical domain Ω: uniform meshes, the adaptive

meshes generated by the conventional method, and the adaptive meshes generated

by our algorithms proposed in Chapter 5. We use µU , µCA, and µNA to denote the

images reconstructed by these three types of meshes respectively. For the forward

problem, the total number of nodes in all the meshes generated for all sources and

detectors ranged from 600,000 to 720,000 (roughly 5,000 to 6,000 for each mesh);

and for the inverse problem, it raged from 3,000 to 4,000. Figures 6.4(a) and 6.4(b)

show the uniform meshes with 5,729 and 3,661 nodes generated for the forward and

inverse problems, respectively.

For the adaptive meshes generated for the forward problem, Figure 6.5 shows

the relationship between the number of nodes in the mesh generated by the conven-

tional and our algorithm for a certain source (or detector), and the z-coordinate of

that source (or detector) position. Note that for source or detector positions with

same z-coordinate, we calculated the average number of node in the corresponding

meshes. Figure 6.5 indicates that our adaptive mesh generation algorithm generated



111

−2

−1

0

1

2

−1.5−1−0.500.511.5
−1.5

−1

−0.5

0

0.5

1

1.5

z
x

y

(a) The uniform mesh with 5,729 for the for-
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(b) The uniform mesh with 3,661 nodes for
the inverse problem.

Figure 6.4: The uniform meshes for the forward and inverse problems
used in the phantom experiment. The mesh is cut through to show the
mesh structure inside.

the forward meshes with varying resolution for different source-detector pairs, while

the conventional method generated the forward meshes with approximately same

number of nodes for all source-detector pairs. Specifically, our algorithm generated

finer meshes for the source-detector pairs towards the center of the source and detec-

tor grids due to the higher SNRs of the corresponding measurements. Furthermore,

our algorithm also generated finer meshes for the sources than for the detectors.

Since the number of sources was less than the number of detectors in the phantom

experiment, the error indicator εiMAP,f was expected to be higher than the error

indicator εjMAP,f according to (5.4) and (5.5). Therefore, the adaptive meshes for

the sources are generated with higher discretization level than that of the meshes

for the detectors.

Additionally, both conventional and our algorithms generated the meshes for

the forward and inverse problems with spatially varying resolution within each

mesh. Figure 6.6 shows the adaptive meshes generated for the detector located at

(-0.47,0.88,-1.12) and the source located at (0.06,-1.00,-0.30), and Figure 6.7 shows

the adaptive meshes generated for the inverse problem. Clearly, the meshes shown

in Figures 6.6(c), 6.6(d), and 6.7(b) were generated by the conventional method

only based on the corresponding forward or inverse problem solution. On the other

hand, as shown in Figures 6.6(a), 6.6(b), and 6.7(a), our algorithms took the in-
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Figure 6.5: The relationship between the number of nodes in the forward
adaptive mesh for a certain source (or detector) and the z-coordinate of
the source (or detector) position.

terdependence of forward and inverse problems into account, and refined the mesh

based on the solutions of both problems.

6.4 Experiment Results

To reconstruct the fluorophore concentration image, we formulated the FDOT

inverse problem as the MAP estimator of the fluorophore concentration given in

Chapter 4. For the noise model, we considered the same Gaussian approximation

to the short-noise model:

σ2
k = α|Γk|,

where σ2
k is the variance of the noise in the kth measurement Γk, k = 1, . . . , 1, 728,

and α is a constant. We estimated α by calculating the pixel variance in a number

of homogeneous regions in the images obtained by the CCD camera.

We considered an a priori model for the fluorophore concentration µ(r) given

by

κ(r) =

 κf r ∈ Ωf

κb r ∈ Ωb

,



113

−2

−1

0

1

2

−1.5−1−0.500.511.5
−1.5

−1

−0.5

0

0.5

1

1.5

z
x

y

(a) The adaptive mesh with 3,745 nodes gen-
erated by our algorithm proposed in Chap-
ter 5 for the detector located at (-0.47,0.88,-
1.12).
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(b) The adaptive mesh with 7,128 nodes gen-
erated by our new algorithm proposed in
Chapter 5 for the source located at (0.06,-
1.00,-0.30).
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(c) The adaptive mesh with 5,794 nodes gen-
erated by the conventional method for the de-
tector located at (-0.47,0.88,-1.12).
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(d) The adaptive mesh with 5,831 nodes gen-
erated by the conventional method for the
source located at (0.06,-1.00,-0.30).

Figure 6.6: Examples of the adaptive meshes for the forward problem
used in the phantom experiment. The mesh is cut through to show the
mesh structure inside.

where κf and κb are constant, Ωf ∪ Ωb = Ω, Ωf ∩ Ωb = ∅ and Ωf is the region

of the hollow tube that contains the fluorophore inside the phantom. We chose

κf = 2× 10−5 and κb = 1× 10−5 according to the higher variance of the fluorophore

concentration in the foreground Ωf than that in the background Ωb.

To obtain the exact solution of the forward and inverse problems, we dis-

cretized the domain using a fine mesh with 91,377 nodes, and used the resulting

image, denoted by µ, as the baseline for calculating the error due to discretization.

After reconstructing all the images, we calculated the L2(Ω) norms of the differ-

ences between the baseline image and the images reconstructed by coarse meshes to
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erated by our algorithm proposed in Chap-
ter 5 for the inverse problem.
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erated by the conventional method for the in-
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Figure 6.7: The adaptive meshes for the inverse problem used in the
phantom experiment. The mesh is cut through to show the mesh struc-
ture inside.

Table 6.1: L2(Ω) norm of the error due to discretization in the images
reconstructed by using different meshes in the phantom experiment.

Absolute Value Percentage Value
∥µ− µU∥0 6.096× 10−3 100%
∥µ− µCA∥0 5.134× 10−3 84.23%
∥µ− µNA∥0 3.283× 10−3 53.87%

evaluate the reconstruction accuracy. We tabulated the results in Table 6.1. The re-

sults show that, as compared to the image reconstructed using uniform meshes, the

error due to discretization is reduced by approximately 45% when our algorithms

are used in FDOT reconstruction. On the other hand, the conventional method

can only provide approximately 15% error reduction with respect to the uniform

meshing scheme.

Figure 6.8 shows the cross-section of the fluorophore concentration images at

z = 0 plane reconstructed by using different types of meshes. The baseline image µ

is shown in Figure 6.8(a). As shown in Figures 6.8(b), 6.8(c) and 6.8(d), the shape

of the fluorophore heterogeneity is better resolved in µNA and µCA with spatially

varying resolution than in µU . We also observe that µNA is the closest one to µ in all

images reconstructed using coarse meshes. More specifically, µA has higher response

in the center of the fluorophore heterogeneity and lower background variation as
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(b) The image reconstructed using the uni-
form meshes.
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(c) The image reconstructed using the adap-
tive meshes generated by our algorithms pro-
posed in Chapter 5.
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(d) The image reconstructed using the adap-
tive meshes generated by the conventional
method.

Figure 6.8: The cross-sectional reconstruction result of phantom exper-
iment on plane z = 0.

compared to those of µU and µCA.

Figure 6.9 shows the reconstructed surface of the fluorophore heterogeneity

at the half its maximum concentration value obtained by using different meshes

in image reconstruction. We observe some small objects reconstructed away from

the true heterogeneity (indicated by the blue tubes in Figure 6.9) in Figures 6.9(a)

and 6.9(b), which represent the background variation with value higher than the

half maximum fluorophore concentration value in the reconstructed image. On the

other hand, the result obtained by using our algorithms has a clean background,

and a more smooth reconstructed surface, as well as a more compact shape close to

the true tube-shaped fluorophore heterogeneity as shown in Figure 6.9(c).

The results in Table 6.1 and Figures 6.8 and 6.9 demonstrate the improvements
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(a) The 3D fluorophore heterogeneity recon-
structed using uniform meshes.

(b) The 3D fluorophore heterogeneity recon-
structed using the adaptive meshes generated by
our algorithms proposed in Chapter 5.

(c) The 3D fluorophore heterogeneity using the
adaptive meshes generated by the conventional
method.

Figure 6.9: The 3D fluorophore heterogeneity reconstructed in the phan-
tom experiment. The surface is reconstructed at the half maximum value
of the reconstructed fluorophore concentration. The blue tube indicates
the true fluorophore heterogeneity.
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Figure 6.10: The change in percent L2(Ω) norm of error versus the number
of nodes used in the inverse problem mesh in the phantom experiment.
The horizontal dash line indicates the 5% error level between each mesh
refinement.

in reconstruction accuracy, and small target detectability, as well as image resolution

of the reconstructed optical images, when our adaptive meshing algorithms are used

in FDOT reconstruction.

We finally studied the convergence of the discretized inverse problem solution

to the exact solution when different types of meshes were used in the phantom

experiment. We used the similar method as we used in the simulation studies in

Chapters 3 and 5. Figure 6.10 shows the change in the L2(Ω) norm of error ver-

sus the number of nodes used in the inverse problem mesh for different adaptive

mesh generation algorithms in the phantom experiment. We observe that our adap-

tive mesh generation algorithms again have the fastest convergence rate among all

meshing schemes. The horizontal dash line in Figure 6.10 represents the 5% error

between each mesh refinement. The result shows that, to achieve this accuracy level,

one only needs to use our adaptive mesh with roughly 8,000 nodes for the inverse

problem, as compared to the conventional adaptive mesh with over 12,000 nodes

and the uniform mesh with over 19,000 nodes.
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6.5 Conclusion

In this chapter, we demonstrated the practical advantages of our adaptive mesh

generation algorithms proposed in Chapter 5 in the real FDOT reconstruction using

the data collected from a phantom experiment. In the real FDOT reconstruction

case, the measurement noise is an important factor that affects the reconstruction

accuracy together with the problem discretization. Taking into account the inter-

dependence of the FDOT forward and inverse problems as well as the measurement

noise, our adaptive mesh generation algorithms can adaptively refine the meshes

according to the factors, such as the source detector configuration, their positions

with respect to the fluorophore heterogeneity, the noise statistics and a priori in-

formation on the fluorophore concentration. The reconstruction results showed that

our new algorithms can effectively improve the accuracy, small target detectability,

and resolution, as well as the convergence rate of the reconstructed optical images

using real data.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, we analyzed the effect of discretization on the accuracy of FDOT

imaging when the measurements are noise-free as well as in the presence of mea-

surement noise. We presented our error analysis results in the form of several upper

bounds for the error due to discretization in the reconstructed optical images. These

error bounds take into account the mutual dependence of the forward and inverse

problems, and show the factors that determine the extent to which the discretiza-

tions can affect the accuracy of FDOT reconstruction. These factors include the

number of sources and detectors, their configuration and their positions with re-

spect to the fluorophore heterogeneity, and the formulation of the inverse problem

when the measurements are noise-free. They also include the noise statistics and a

priori information on fluorophore concentration when measurements are contami-

nated with noise. The two most important implications of our error analysis can be

summarized as follows:

• One has to take into account the mutual dependence of the forward and inverse

problems, and discretize either forward or inverse problem of FDOT based on

the solutions of both problems.

• In the presence of measurement noise, one has to additionally take into account

the noise statistics and a priori information on fluorophore concentration,

while discretizing either the forward or inverse problem of FDOT.

The error analysis in Chapters 2 and 4 motivates the development of adaptive

mesh generation algorithms for FDOT. In Chapters 3 and 5, we presented four novel

adaptive mesh generation algorithms for the forward and inverse problems of FDOT

for the noise-free case and for the case when measurements are contaminated by

noise, respectively. All of these new adaptive mesh generation algorithms generate
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meshes with spatially varying resolutions based on the solutions of both problems.

Furthermore, the two algorithms proposed in Chapter 4 can additionally refine the

meshes according to the noise statistics and a priori information on the fluorophore

concentration.

The numerical simulation studies in Chapters 3 and 5 validated our error

analysis and demonstrated the advantages of our new adaptive mesh generation al-

gorithms in FDOT reconstruction. In these simulation studies, we showed that the

adaptive mesh generation algorithms developed in this thesis can effectively improve

the accuracy, resolution, and small target detectability of FDOT reconstruction, as

well as the convergence rate of the discretized solution to the exact inverse prob-

lem solution, as compared to the uniform and the conventional adaptive meshing

schemes. In Chapter 6, we also showed the practical use of our adaptive mesh gen-

eration algorithms in FDOT reconstruction using data from a phantom experiment.

The reconstruction results using the phantom data were consistent with the results

of our simulation studies, and demonstrated the effectiveness of our algorithms in

real data.

In Chapter 4, we formulated our FDOT inverse problem based on the indepen-

dent Gaussian models for both measurement noise and fluorophore concentration.

In some situations, these models may not result in the optimal FDOT reconstruc-

tion due to the mismatch between the models and the underlying natures of the

measurement noise and fluorophore concentration. However, the error analysis and

adaptive mesh generation algorithms presented in the thesis can be extended to the

case when different noise and a priori fluorophore concentration models are con-

sidered. Particularly, we discussed the case when more general Gaussian models

are used for the measurement noise as well as the fluorophore concentration, and

presented the corresponding error bounds for this case.

Finally, we summarize the contributions of this thesis:

• The discretization error analysis in this thesis takes into account the inter-

dependence of FDOT forward and inverse problems, as well as the impact of

measurement noise. The resulting error bounds explicitly show the effect of

problem discretizations on FDOT imaging and identify the key factors that
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determine the extent to which the discretization can affect the FDOT recon-

struction accuracy. We note that this part of the work is the first study in the

literature that takes into account measurement noise and provides a rigorous

analysis on the error due to discretization in FDOT imaging.

• The adaptive mesh generation algorithms developed based on our error anal-

ysis can effectively reduce the error due to discretization in the reconstructed

optical images as compared to the uniform and conventional adaptive meshing

schemes. We note that the simulation and phantom studies in this thesis are

the first studies in the literature that provide comprehensive performance eval-

uation and comparison among different adaptive meshing methods in FDOT

imaging.

• The error analysis and adaptive mesh generation algorithms in this thesis are

not limited to FDOT imaging problem, and can be adapted to other inverse

parameter estimation problems such as bioluminescence tomography, electrical

impedance tomography, and microwave imaging.

7.2 Future Work

Based on the perspectives, methods, and algorithms developed in this thesis,

we propose some future work in the following directions:

• In this thesis, we focus on estimating the fluorophore concentration using the

CW method. However, the approach we presented in this thesis is not limited

to the single frequency FDOT imaging system, and can be extended to FD and

TD methods to estimate both concentration and lifetime of the fluorophore.

• In FDOT reconstruction, the regularization and a priori model of fluorophore

concentration cause the bias in the reconstructed image, which is another type

of error in addition to the errors due to discretization and measurement noise.

The regularization parameters and variance in the a priori fluorophore con-

centration model provide a way to balance this bias and the error due to mea-

surement noise. Our error bounds given in Chapters 2 and 4 are the functions
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of these parameters. In the development of adaptive mesh generation algo-

rithms, we assume that the appropriate values for regularization parameters

and variance of fluorophore concentration are determined a priori. However,

since our error bounds involve these parameters, it is possible to study the

interplay between the choice of these parameters and the mesh size, and adap-

tively select them in an attempt to reduce the overall error in reconstructed

optical images.

• In the presence of measurement noise, we formulate the FDOT imaging prob-

lem as an estimation problem to estimate the fluorophore concentration using

the noise-contaminated data. We access the quality of FDOT reconstruction

by the MSE due to discretization in the fluorophore concentration estimate.

Alternatively, the FDOT imaging problem can also be formulated as a detec-

tion problem where the objective is to detect the fluorophore heterogeneity

from the background variation in the reconstructed image. Therefore, a de-

tection figure of merit, such as SNR of the test-statistic, can be chosen to

evaluate the quality of the FDOT reconstruction. A study on the effect of

discretization on the SNR of the reconstructed optical image can motivate the

development of the adaptive mesh generation algorithm that can be used to

maximize the detectability of the FDOT imaging system with the constraint

of the computation complexity.
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APPENDIX A

LAX-MILGRAM LEMMA

Given a Hilbert space V , a continuous coercive bilinear form F(·, ·) and a continuous

linear functional G, there exists a unique u ∈ V such that

F(v, u) = G(v), ∀v ∈ V. (A.1)

The proof can be found in [94]. As a direct consequence of this lemma, an upper

bound on u can be established as

∥u∥V ≤ 1

Q
∥G∥V ∗ , (A.2)

where Q is the coercivity constant and V ∗ is the dual space of V .
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APPENDIX B

DEFINITION FOR DUAL NORM OF F

The dual norm of the bilinear form F(·, ·) is defined by [94]

∥F(v, u)∥V ∗ := sup
v ̸=0

|F(v, u)|
∥v∥V

, (B.1)

where ∥ · ∥V ∗ denotes the norm of V ∗(Ω) which is the dual space of V (Ω).
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APPENDIX C

COERCIVITY OF F

In the noise-free situation, recall B = A∗A, thus (Bu, u) ≥ 0. From the positive

parameters λ1 and λ2, we see

|F(u, u)| ≥ λ1(u, u) + λ2(∇u,∇u)

≥ min(λ1, λ2)∥u∥21
≥ Q∥u∥21, (C.1)

where Q := min(λ1, λ2) is the coercivity constant.

In the presence of measurement noise, recall BLH = A∗Σ−1
ε A, thus (Bu, u) ≥ 0.

For the MAP estimator case, we have

|FMAP (u, u)| ≥ (u,
u

κ
)

≥ ∥u∥20
∥κ∥∞

≥ Q∥u∥20, (C.2)

where Q := 1/∥κ∥∞ is the coercivity constant.

For the ML estimator case, we have

|FML(u, u)| ≥ λ(u, u)

≥ λ∥u∥20
≥ Q∥u∥20, (C.3)

where Q := λ is the coercivity constant.
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APPENDIX D

PROOF OF THEOREM 1: UPPER BOUND FOR THE

ERROR DUE TO FORWARD PROBLEM

DISCRETIZATION

Subtracting F̃(ψ, µ) from both sides of (2.42) yields:

F̃(ψ, µ̃)− F̃(ψ, µ) = G̃(ψ)− F̃(ψ, µ),

F̃(ψ, µ̃− µ) = G̃(ψ)− F̃(ψ, µ). (D.1)

Adding and subtracting G(ψ) on the right hand side of (D.1) lead to

F̃(ψ, µ̃− µ) = G̃(ψ)− F̃(ψ, µ) + G(ψ)− G(ψ)

= G̃(ψ)− F̃(ψ, µ) + F(ψ, µ)− G(ψ)

= (F − F̃)(ψ, µ) + (G̃ − G)(ψ). (D.2)

Then following the Lax-Milgram Lemma in Appendix A, the error µ− µ̃ is bounded

by

∥µ− µ̃∥1 ≤ 1

min(λ1, λ2)

∥∥∥(F − F̃)(ψ, µ) + (G̃ − G)(ψ)
∥∥∥
1∗

≤ 1

min(λ1, λ2)

[∥∥∥(F − F̃)(ψ, µ)
∥∥∥
1∗
+
∥∥∥(G̃ − G)(ψ)

∥∥∥
1∗

]
, (D.3)

where ∥ · ∥1∗ is defined in Appendix B.

Clearly,

(F − F̃)(ψ, µ) = (ψ,Bµ) + λ1(ψ, µ) + λ2(∇ψ,∇µ)− (ψ, B̃µ)− λ1(ψ, µ)

−λ2(∇µ,∇ψ)

=
(
ψ, (B − B̃)µ

)
. (D.4)
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Note that the dual norm of the bilinear form (F − F̃)(ψ, µ) is defined by

∥(F − F̃)(ψ, µ)∥1∗ := sup
ψ ̸=0

∣∣∣(F − F̃)(ψ, µ)
∣∣∣

∥ψ∥1

= sup
ψ ̸=0

∣∣∣(ψ, (B − B̃)µ
)∣∣∣

∥ψ∥1

≤ sup
ψ ̸=0

∥(B − B̃)µ∥0∥ψ∥0
∥ψ∥0

. (D.5)

Hence,

∥(F − F̃)(ψ, µ)∥1∗ ≤ ∥(B − B̃)µ∥0. (D.6)

Following [79], we express

∥(B − B̃)µ∥0 ≈ 2∥A∗(A− Ã)µ∥0

≈ 2

∥∥∥∥∥
NS ,ND∑
i,j

g∗jϕi

∫
Ω

(g∗j ei + ϕie
∗
j)µdr

∥∥∥∥∥
0

≤ 2max
i,j

∥g∗jϕi∥0
NS ,ND∑
i,j

∫
Ω

|(g∗j ei + ϕie
∗
j)µ|dr, (D.7)

where ei = ϕi−Φi and e
∗
j = g∗j−G∗

j are discretization errors in Φi andG
∗
j respectively.

Then if we expand the integral on Ω as a summation of the integrals on the finite

element Ωmj, m = 1, · · · , N∗j
∆ and Ωni, n = 1, · · · , N i

∆, the upper bound for ∥(B −
B̃)µ∥0 can be given as

∥(B − B̃)µ∥0

≤ 2max
i,j

∥g∗jϕi∥0
NS ,ND∑
i,j

 N i
∆∑

n=1

∥g∗jµ∥0,ni∥ei∥0,ni +
N∗j

∆∑
m=1

∥ϕiµ∥0,mj∥e∗j∥0,mj


≤ 2max

i,j
∥g∗jϕi∥0

 NS∑
i=1

N i
∆,ND∑
n,j

∥g∗jµ∥0,ni∥ei∥0,ni +
ND∑
j=1

N∗j
∆ ,NS∑
m,i

∥ϕiµ∥0,mj∥e∗j∥0,mj

 .

(D.8)
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Next, following a similar argument as in (D.5) and (D.6), we obtain

∥(G̃ − G)(ψ)∥1∗ ≤ ∥f̃ − f∥0. (D.9)

Then an upper bound for ∥f̃ − f∥0 is given by [79]

∥f̃ − f∥0 =
∥∥∥(Ã∗

−A∗)Γ
∥∥∥
0

≈

∥∥∥∥∥
NS ,ND∑
i,j

(g∗j ei + ϕie
∗
j)Γij

∥∥∥∥∥
0

≤ max
i,j

|Γij|
NS ,ND∑
i,j

∥g∗j ei + ϕie
∗
j∥0. (D.10)

A bound for maxi,j |Γij| can be obtained by using (2.14):

max
i,j

|Γij| ≤ max
i,j

∥g∗jϕi∥0∥µ∥0. (D.11)

Finally, to compute an upper bound for ∥f̃ − f∥0, we expand the L2(Ω) norm

computed on Ω as a summation on the finite elements Ωmj, m = 1, · · · , N j
∆ and Ωni,

n = 1, · · · , N i
∆:

∥f̃ − f∥0

≤ max
i,j

∥g∗jϕi∥0∥µ∥0

 NS∑
i=1

N i
∆,ND∑
n,j

∥g∗j∥∞,ni∥ei∥0,ni +
ND∑
j=1

N∗j
∆ ,NS∑
m,i

∥ϕi∥∞,mj∥e∗j∥0,mj

 .

(D.12)

In the end, using the discretization error bounds (2.40) and (2.41) leads to the

theorem.



APPENDIX E

PROOF OF THEOREM 2: UPPER BOUND FOR THE

ERROR DUE TO INVERSE PROBLEM

DISCRETIZATION

Taking (2.42) as the starting point, by coercivity we can write

∥µ̃− µD∥21 ≤
1

min(λ1, λ2)
F̃(µ̃− µD, µ̃− µD).

Let φ ∈ V , then the above inequality is equivalent to

∥µ̃− µD∥21 ≤ 1

min(λ1, λ2)

[
F̃(µ̃− µD, µ̃− φ) + F̃(µ̃− µD, φ− µD)

]
≤ 1

min(λ1, λ2)
F̃(µ̃− µD, µ̃− φ),

because φ − µD ∈ V and the error µ̃ − µD is orthogonal to the finite-dimensional

subspace with respect to the norm induced by the bilinear form [94]. Noting

F̃(µ̃− µD, µ̃− φ) =
(
µ̃− µD, B̃(µ̃− φ)

)
+ λ1(µ̃− µD, µ̃− φ)

+λ2
(
∇(µ̃− µD),∇(µ̃− φ)

)
, (E.1)

it is clear that

∥µ̃− µD∥21 ≤ 1

min(λ1, λ2)

[
∥µ̃− µD∥0∥B̃(µ̃− φ)∥0 + λ1∥µ̃− µD∥0∥µ̃− φ∥0

+ λ2∥∇µ̃−∇µD∥0∥∇µ̃−∇φ∥0
]

≤ 1

min(λ1, λ2)

[
∥µ̃− µD∥1∥B̃(µ̃− φ)∥0 + λ1∥µ̃− µD∥1∥µ̃− φ∥0

+ λ2∥µ̃− µD∥1∥∇µ̃−∇φ∥0
]
. (E.2)

Canceling ∥µ̃− µD∥1 terms on both sides, we have

∥µ̃− µD∥1 ≤
1

min(λ1, λ2)

[
∥B̃(µ̃− φ)∥0 + λ1∥µ̃− φ∥0 + λ2∥∇µ̃−∇φ∥0

]
. (E.3)
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Let φ ∈ V be the interpolant of µ̃ and eµ = µ̃− φ be the interpolation error. Then

the first term in the bound (E.3) can be expanded as follows:

∥B̃(µ̃− φ)∥0 = ∥B̃eµ∥0

=

∥∥∥∥∥
∫
Ω

NS ,ND∑
i,j

G∗
j(·)Φi(·)G∗

j(ŕ)Φi(ŕ)eµ(ŕ)dŕ

∥∥∥∥∥
0

≤
NS ,ND∑
i,j

∥G∗
jΦi∥0

∫
Ω

|G∗
j(ŕ)Φi(ŕ)eµ(ŕ)|dŕ. (E.4)

Then if we expand the integral on Ω as a summation of the integrals on the finite

element Ωt, t = 1, · · · , N :

∥B̃(µ̃− φ)∥0 ≤
NS ,ND∑
i,j

∥G∗
jΦi∥0

N∆∑
t=1

∥G∗
jΦi∥0,t∥eµ∥0,t

≤ max
i,j

∥G∗
jΦi∥0

NS ,ND∑
i,j

N∆∑
t=1

∥G∗
jΦi∥0,t∥eµ∥0,t.

The remaining two terms in (E.3) can be expressed in a straightforward way:

λ1∥µ̃− φ∥0 = λ1∥eµ∥0 ≤ λ1

N∆∑
t=1

∥eµ∥0,t,

λ2∥∇µ̃−∇φ∥0 = λ2∥∇eµ∥0 ≤ λ2

N∆∑
t=1

∥∇eµ∥0,t.

Assume that our solution also satisfies µ̃ ∈ H2(Ω). Then the bounds for the inter-

polation error and its gradient on each element can be given by [94]:

∥eµ∥0,t ≤ C∥µ̃∥2,th2t , (E.5)

∥∇eµ∥0,t ≤ C∥µ̃∥2,tht, (E.6)

where C is a positive constant, ∥ · ∥0,t and ∥ · ∥2,t are respectively the L2 and H2

norms on Ωt and ht is the diameter of the smallest ball containing the finite element

Ωt. Finally, substituting (E.5) and (E.6) into (E.3) proves the theorem.



APPENDIX F

SOLUTION OF THE MODEL PROBLEM

In order to initialize the adaptive mesh for the solution of the forward problem

(provided D(x) = D and µa(x) = µa are spatially constant), we use an analytical

solution to compute the approximations of ϕi and g
∗
j . Below, we give the solution

in 2D for the forward problem (2.5) [60]:

gj(ρ, ρ
j
s; θ, θ

j
s) =

4

Dπ

{
1

2
I0(kΩρ<)K0(kΩρ>)

+
∞∑
m=1

cos[m(θ − θs)]Im(kΩρ<)Km(kΩρ>)

}
,

where ρ< means the smaller of ρ and ρjs, ρ> means the greater of ρ and ρjs, Im and

Km are the modified Bessel functions of the first and second kind, respectively [119],

and kΩ =
√
−K2

Ω. Under the same conditions, an analytical solution for the adjoint

problem (2.9) can be obtained in a similar way. The solution of the problem in

three-dimensional can be derived in a similar manner [120,121].
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APPENDIX G

LOWER BOUND ON Θ

Substituting the constraint (3.13) into the bound (2.54), we get

∥µ̃− µD∥1 ≤ 1

min(λ1, λ2)

(
max
i,j

∥G∗
jΦi∥0ϵ

N∆∑
t=1

NS ,ND∑
i,j

∥G∗
jΦi∥0,tht

+λ1

N∆∑
t=1

ϵht + λ2

N∆∑
t=1

ϵ

)
:= Θ. (G.1)

Next, we compute a lower bound for Θ in (G.1).

Θ =
1

min(λ1, λ2)

(
max
i,j

∥G∗
jΦi∥0ϵ

N∆∑
t=1

NS ,ND∑
i,j

∥G∗
jΦi∥0,tht + λ1

N∆∑
t

ϵht + λ2

N∆∑
t

ϵ

)

≥
N∆ϵmaxi,j ∥G∗

jΦi∥0
min(λ1, λ2)

min
t

NS ,ND∑
i,j

∥G∗
jΦi∥0,tht +

λ1
min(λ1, λ2)

N∆ϵmin
t
ht

+
λ2

min(λ1, λ2)
N∆ϵ

≥ N∆ϵ

[
1 + min

t
ht +

maxi,j ∥G∗
jΦi∥0

min(λ1, λ2)
min
t

NS ,ND∑
i,j

∥G∗
jΦi∥0,tht

]
. (G.2)
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APPENDIX H

PROOF OF THEOREM 3: UPPER BOUND FOR THE

BIAS OF MAP ESTIMATE

Let µ̄MAP (r) := E[µMAP (r)] and µ̄DMAP (r) := E[µDMAP (r)], then E[eMAP (r)] =

µ̄MAP (r)− µ̄DMAP (r). We can further express Bias2[µDMAP ] in (4.25) as

Bias2[µDMAP ] =

∫
Ω

∣∣µ̄MAP (r)− µ̄DMAP (r)
∣∣2 dr

= ∥µ̄MAP (r)− µ̄DMAP (r)∥20.

It is clear that Bias2[µDMAP ] is the square of L2(Ω) norm of the difference between

µ̄MAP and µ̄DMAP .

Taking the expectation on both sides of (4.9) and (4.18), and applying Fubini’s

theorem [122], we can show that µ̄MAP and µ̄DMAP satisfy the following variational

forms:

FMAP (ψ, µ̄MAP ) = (ψ,A∗Σ−1
ε Γ̄) + (ψ,

µ0

κ
), ∀ψ ∈ L2(Ω), (H.1)

F̃MAP (Ψ, µ̄
D
MAP ) = (Ψ, Ã

∗
Σ−1
ε Γ̄) + (Ψ,

µ0

κ
), ∀Ψ ∈ V (Ω), (H.2)

where Γ̄ = E[Γ]. Further, we let ¯̃µMAP ∈ L2(Ω) be the solution of the following

approximate inverse problem:

F̃MAP (ψ, ¯̃µMAP ) = (ψ, Ã
∗
Σ−1
ε Γ̄) + (ψ,

µ0

κ
), ∀ψ ∈ L2(Ω).

Then we have

Bias2[µDMAP ] ≤
[
∥µ̄MAP − ¯̃µMAP∥0 + ∥ ¯̃µMAP − µ̄DMAP∥0

]2
, (H.3)

by the triangular inequality.

For the first term ∥µ̄MAP − ¯̃µMAP∥0 in (H.3), we follow the similar procedures
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given in Appendix D and obtain

∥µ̄MAP − ¯̃µMAP∥0 ≤ ∥κ∥∞
[∥∥∥(BLH − B̃LH)µ̄MAP

∥∥∥
0
+
∥∥∥(Ã∗

−A∗)Σ−1
ε Γ̄

∥∥∥
0

]
.

(H.4)

For term
∥∥∥(BLH − B̃LH)µ̄MAP

∥∥∥
0
, we have [79]

∥∥∥(BLH − B̃LH)µ̄MAP

∥∥∥
0

≈ 2

∥∥∥∥∥
NS ,ND∑
i,j

g∗jϕi

σ2
ε,ij

∫
Ω

(g∗j ei + ϕie
∗
j)µ̄MAPdr

∥∥∥∥∥
0

≤ 2

NS ,ND∑
i,j

∥g∗jϕi∥0
σ2
ε,ij

∫
Ω

|(g∗j ei + ϕie
∗
j)µ̄MAP |dr,

where ei = ϕi − Φi and e∗j = g∗j − G∗
j . Decomposing the integral on Ω into a

summation of the integrals on the finite elements Ωmj, m = 1, · · · , N∗j
∆ and Ωni,

n = 1, · · · , N i
∆, which are used to discretize the forward problem, we arrive at

∥(BLH − B̃LH)µ̄MAP∥0 ≤ 2

 NS∑
i=1

N i
∆,ND∑
n,j

∥g∗jϕi∥0
σ2
ε,ij

∥g∗j µ̄MAP∥0,ni∥ei∥0,ni

+

ND∑
j=1

N∗j
∆ ,NS∑
m,i

∥g∗jϕi∥0
σ2
ε,ij

∥ϕiµ̄MAP∥0,mj∥e∗j∥0,mj

 .(H.5)

Similarly, for term
∥∥∥(Ã∗

−A∗)Σ−1
ε Γ̄

∥∥∥
0
, we have its upper bound as

∥∥∥(Ã∗
−A∗)Σ−1

ε Γ̄
∥∥∥
0

≈

∥∥∥∥∥
NS ,ND∑
i,j

g∗j ei + ϕie
∗
j

σ2
ε,ij

Γ̄i,j

∥∥∥∥∥
0

≤

 NS∑
i=1

N i
∆,ND∑
n,j

|Γ̄i,j|
σ2
ε,ij

∥g∗j∥∞,ni∥ei∥0,ni

+

ND∑
j=1

N∗j
∆ ,NS∑
m,i

|Γ̄i,j|
σ2
ε,ij

∥ϕi∥∞,mj∥e∗j∥0,mj

 . (H.6)

In the end, substituting (H.5) and (H.6) into (H.4) and using the discretization error
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bounds (2.40) and (2.41) lead to B1 and B2 in Theorem 3.

For the second term ∥ ¯̃µMAP − µ̄DMAP∥0 in (H.3), we follow the procedures in

Appendix E and obtain

∥ ¯̃µMAP − µ̄DMAP∥0 ≤ ∥κ∥∞
[∥∥∥B̃LH(¯̃µMAP − φ)

∥∥∥
0
+

∥∥∥∥ ¯̃µMAP − φ

κ

∥∥∥∥
0

]
. (H.7)

Let φ ∈ V (Ω) be the interpolant of ¯̃µMAP and eµ := ¯̃µMAP − φ be the interpolation

error, we have

∥∥∥B̃LH(¯̃µMAP − φ)
∥∥∥
0

=

∥∥∥∥∥
NS ,ND∑
i,j

G∗
j(·)Φi(·)
σ2
ε,ij

∫
Ω

G∗
j(ŕ)Φi(ŕ)eµ(ŕ)dŕ

∥∥∥∥∥
0

≤
NS ,ND∑
i,j

∥G∗
jΦi∥0
σ2
ε,ij

∫
Ω

|G∗
j(ŕ)Φi(ŕ)eµ(ŕ)|dŕ

≤
NS ,ND∑
i,j

∥G∗
jΦi∥0
σ2
ε,ij

N∆∑
t=1

∥G∗
jΦi∥0,t∥eµ∥0,t, (H.8)

and ∥∥∥∥ ¯̃µMAP − φ

κ

∥∥∥∥
0

≤
N∆∑
t=1

∥∥∥eµ
κ

∥∥∥
0,t

≤
N∆∑
t=1

∥∥∥∥1κ
∥∥∥∥
∞,t

∥eµ∥0,t . (H.9)

Approximating ¯̃µMAP by µ̄MAP , and substituting (H.8), (H.9) and the discretization

error bound given by

∥eµ∥0,t ≤ C∥ ¯̃µMAP∥1,tht,

into (H.7), we obtain B3 in Theorem 3.



APPENDIX I

PROOF OF THEOREM 4: UPPER BOUND FOR THE

VARIANCE OF MAP ESTIMATE

We express Var[µDMAP ] in (4.26) using µMAP , µ
D
MAP , µ̄MAP and µ̄MAP as

Var[µDMAP ] :=

∫
Ω

E
[∣∣µMAP (r)− µDMAP (r)− [µ̄MAP (r)− µ̄DMAP (r)]

∣∣2] dr
=

∫
Ω

E
[∣∣[µMAP (r)− µ̄MAP (r)]− [µDMAP (r)− µ̄DMAP (r)]

∣∣2] dr.
Subtracting (H.1) and (H.2) from (4.9) and (4.18), respectively, we obtain

FMAP (ψ, µMAP (r)− µ̄MAP ) = (ψ,A∗Σ−1
ε (Γ− Γ̄)), ∀ψ ∈ L2(Ω), (I.1)

F̃MAP (Ψ, µ
D
MAP (r)− µ̄DMAP ) = (Ψ, Ã

∗
Σ−1
ε (Γ− Γ̄)), ∀Ψ ∈ V (Ω). (I.2)

Let eij ∈ RNSND , i = 1, . . . , NS and j = 1, . . . , ND, be the unit vector given

by

eij = [0, . . . , 1, . . . , 0]T ,

with only non-zero entry at [(i−1)ND+j]th position. Then we define πij(r) ∈ L2(Ω)

and Πij(r) ∈ V (Ω) as the solution of the following variational problems:

FMAP (ψ, πij) = (ψ,A∗Σ−1
ε eij), ∀ψ ∈ L2(Ω),

F̃MAP (Ψ,Πij) = (Ψ, Ã
∗
Σ−1
ε eij), ∀Ψ ∈ V (Ω).

Further, we define π(r) and Π(r) as

π(r) = [π(r)11, . . . , π(r)1NS
, π(r)21, . . . , π(r)NSND

]T ,

Π(r) = [Π(r)11, . . . , Π(r)1NS
, Π(r)21, . . . , Π(r)NSND

]T .

Due to the linearity of (I.1) and (I.2), it can be shown that µMAP (r)− µ̄MAP (r) and
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µDMAP (r)− µ̄DMAP (r) can be given as

µMAP (r)− µ̄MAP (r) = π(r)T (Γ− Γ̄),

µDMAP (r)− µ̄DMAP (r) = Π(r)T (Γ− Γ̄).

Then, we have

Var[µDMAP ] =

∫
Ω

E

[∣∣∣[π(r)−Π(r)]T (Γ− Γ̄)
∣∣∣2] dr

=

∫
Ω

[π(r)−Π(r)]ΣΓ [π(r)−Π(r)] dr, (I.3)

where ΣΓ is the covariance matrix of Γ.

From the property of Gaussian random field, it can be shown that Γ0 in our

measurement model (4.1) is a multivariate Gaussian random variable statistically

independent to the noise ε. More specifically, using the Fubini’s theorem, we can

derive the mean of Γ0 and the covariance between each pair of its entries:

E [Γ0] = Aµ0,

Cov [Γ0,ij,Γ0,kl] =

∫
Ω

κ(r)aij(r)akl(r)dr.

Then, due to the independence between the noise and fluorophore concentration,

ΣΓ can be obtained as the sum of the covariance matrices of Γ0 and noise ε. We

use
(
ΣΓ
)
p,q
, for p = 1, . . . , NSND, and q = 1, . . . , NSND, to denote the entry at the

pth row and the qth column of ΣΓ, then we have

(
ΣΓ
)
p,q

= δpqσ
2
ε,ij +

∫
Ω

κ(r)aij(r)akl(r)dr,

where δpq is the Kronecker delta function and the indices i, j, k, l, p and q have the

following relationship:

p = (i− 1)ND + j, q = (k − 1)ND + l,

for i, k = 1, . . . , NS, j, l = 1, . . . , ND, and p, q = 1, . . . , NSND.
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In this respect, we can express (I.3) as

Var[µDMAP ]

=

∫
Ω

NS ,ND∑
i,j

(
ΣΓ
)
(i−1)ND+j,(i−1)ND+j

|πij(r)− Πij(r)|2 dr

+

∫
Ω

NS ,ND∑
i,j

NS ,ND∑
k,l,kl ̸=ij

(
ΣΓ
)
(i−1)ND+j,(k−1)ND+l

[πij(r)− Πij(r)]
∗ [πkl(r)− Πkl(r)] dr.

Applying Cauchy-Schwarz inequality, we obtain

Var[µDMAP ]

≤
NS ,ND∑
i,j

(
ΣΓ
)
(i−1)ND+j,(i−1)ND+j

∥πij(r)− Πij(r)∥20

+

NS ,ND∑
i,j

NS ,ND∑
k,l,kl ̸=ij

(
ΣΓ
)
(i−1)ND+j,(k−1)ND+l

∥πij(r)− Πij(r)∥0 ∥πkl(r)− Πkl(r)∥0 .

Since ΣΓ is positive semi-definite, we have [123]

∣∣∣(ΣΓ
)
p,q

∣∣∣ ≤ ∣∣∣(ΣΓ
)
p,p

∣∣∣1/2 ∣∣∣(ΣΓ
)
q,q

∣∣∣1/2 ,
and

Var[µDMAP ]

≤
NS ,ND∑
i,j

(
ΣΓ
)
(i−1)ND+j,(i−1)ND+j

∥πij(r)− Πij(r)∥20

+

NS ,ND,NS ,ND∑
i,j,k,l,ij ̸=kl

∣∣∣(ΣΓ
)
(i−1)ND+j,(i−1)ND+j

∣∣∣1/2 ∣∣∣(ΣΓ
)
(k−1)ND+l,(k−1)ND+l

∣∣∣1/2
∥πij(r)− Πij(r)∥0 ∥πkl(r)− Πkl(r)∥0

≤

[
NS ,ND∑
i,j

∣∣∣(ΣΓ
)
(i−1)ND+j,(i−1)ND+j

∣∣∣1/2 ∥πij(r)− Πij(r)∥0

]2
. (I.4)

Note that, when the measurements are noise-free and the fluorophore concentration

is also deterministic, we have ΣΓ = E
[
(Γ− Γ̄)(Γ− Γ̄)

]
= 0, thereby Var[µDMAP ] =
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0.

For each ∥πij(r) − Πij(r)∥0 in (I.4), we can let Γ̄ = eij and follow the same

approach in Appendix H to obtain an upper bound for ∥πij(r)− Πij(r)∥0 given by

∥πij(r)− Πij(r)∥0

≤ C ·

 NS∑
i′=1

N i′
∆ ,ND∑
n,j′

2∥κ∥∞∥g∗j′ϕi′∥0
σ2
ε,i′j′

∥g∗j′πij∥0,ni′∥ϕi′∥1,ni′hni′

+
∥κ∥∞
σ2
ε,ij

N i
∆∑

n=1

∥g∗j∥∞,ni∥ϕi∥1,nihni

+

ND∑
j′=1

N∗j′
∆ ,NS∑
m,i′

2∥κ∥∞∥g∗j′ϕi′∥0
σ2
ε,i′j′

∥ϕi′πij∥0,mj′∥g∗j′∥1,mj′hmj′

+
∥κ∥∞
σ2
ε,ij

N∗j
∆∑

m=1

∥ϕi∥∞,mj∥g∗j∥1,mjhmj

+

N∆∑
t=1

(
NS ,ND∑
i′,j′

∥κ∥∞∥G∗
j′Φi′∥0∥G∗

j′Φi′∥0,t
σ2
ε,i′j′

+ ∥κ∥∞
∥∥∥∥1κ
∥∥∥∥
∞,t

)
∥πij∥1,tht

]
.(I.5)

Finally, let Dij =
∣∣∣(ΣΓ

)
(i−1)ND+j,(i−1)ND+j

∣∣∣1/2 and substitute (I.5) into (I.4), we

arrive at (4.28) in Theorem 4.


