
IDENTIFYING AND ADDRESSING
THE ERROR SOURCES IN

DIFFUSE OPTICAL TOMOGRAPHY

By

Murat Güven
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All Rights Reserved

ii



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 DOT in a Clinical Perspective . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Diffuse Optical Tomography as an Imaging Problem . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Effect of discretization on the accuracy of optical absorption
imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Adaptive mesh generation for DOT . . . . . . . . . . . . . . . 12

1.3.3 Effect of linearization by Born approximation on the accuracy
of DOT imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Effect of discretization on the simultaneous reconstruction of
optical absorption and diffusion coefficients . . . . . . . . . . . 15

2. Effect of discretization error in diffuse optical absorption imaging . . . . . 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Forward and Inverse Problems . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Discretization of the Inverse and Forward Problems . . . . . . . . . . 27

2.3.1 Inverse Problem Discretization . . . . . . . . . . . . . . . . . . 27

2.3.2 Forward Problem Discretization . . . . . . . . . . . . . . . . . 28

2.3.3 Discretization of the Inverse Problem with Operator Approx-
imations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Discretization-based Error Analysis . . . . . . . . . . . . . . . . . . . 29

2.4.1 Case 1: The kernel κ(x, x́) is exact . . . . . . . . . . . . . . . 30

2.4.2 Case 2: The kernel is degenerate . . . . . . . . . . . . . . . . 35

2.4.3 Iterative Born Approximation . . . . . . . . . . . . . . . . . . 42

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



3. Adaptive mesh generation in diffuse optical absorption imaging . . . . . . . 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Forward and inverse problems in DOT . . . . . . . . . . . . . 48

3.2.2 Effect of inverse problem discretization . . . . . . . . . . . . . 50

3.2.3 Effect of forward problem discretization . . . . . . . . . . . . . 51

3.3 Adaptive Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Adaptive Mesh Generation for the Forward Problem . . . . . 53

3.3.2 Computational cost of the adaptive mesh generation algo-
rithm for the forward problem . . . . . . . . . . . . . . . . . . 55

3.3.3 Adaptive mesh generation for the inverse problem: . . . . . . . 56

3.3.4 Computational cost of the adaptive mesh generation algo-
rithm for the inverse problem . . . . . . . . . . . . . . . . . . 58

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1 Simulation Study 1 . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 Simulation Study 2 . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Simulation Study 3 . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4. Error in Optical Absorption Images due to Born Approximation in Diffuse
Optical Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 The Scattered Field and Born Approximation . . . . . . . . . . . . . 80

4.3 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Inverse problem statement without Born approximation . . . . 83

4.3.2 Inverse problem based on Born approximation . . . . . . . . . 84

4.4 Analysis of the error resulting from Born approximation and Tikhonov
regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Effect of Born approximation . . . . . . . . . . . . . . . . . . 86

4.4.2 Effect of Tikhonov regularization . . . . . . . . . . . . . . . . 91

4.4.3 The overall error . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iv



5. Effect of discretization on the accuracy of simultaneously reconstructed
absorption and scattering images . . . . . . . . . . . . . . . . . . . . . . . 107

5.1 Forward and Inverse Problems . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Forward Problem . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.2 Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.3 Regularization of the inverse problem . . . . . . . . . . . . . . 113

5.1.4 Existence and boundedness of the inverse operator . . . . . . 115

5.2 Discretization of the Forward and Inverse Problems . . . . . . . . . . 116

5.2.1 Forward Problem Discretization . . . . . . . . . . . . . . . . . 116

5.2.2 Approximation of T and γ with finite element solutions Gj

and G∗
i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.3 Discretization of the inverse problem . . . . . . . . . . . . . . 119

5.2.4 Summary: The inverse problem and its approximations . . . . 120

5.3 Discretization-based Error Analysis . . . . . . . . . . . . . . . . . . . 121

5.3.1 Effect of forward problem discretization . . . . . . . . . . . . . 122

5.3.2 Effect of inverse problem discretization . . . . . . . . . . . . . 124

5.3.3 Iterative linearization by Born approximation . . . . . . . . . 126

5.4 Adaptive Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Adaptive mesh generation for the forward problem . . . . . . 128

5.4.2 Adaptive mesh generation for the inverse problem . . . . . . . 130

5.4.3 Computational complexity of the adaptive mesh generation
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

APPENDICES

A. Appendix for chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.1 Boundedness of Aa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

A.2 Compactness of Aa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.3 Proof of the Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

v



B. Appendix for chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.1 Solution of the Model Problem (shorter version) . . . . . . . . . . . 154

B.2 Solution of the Model Problem . . . . . . . . . . . . . . . . . . . . . . 154

B.2.1 Homogeneous Optical Background . . . . . . . . . . . . . . . . 155

B.2.2 The scattered field due to the circular inclusion . . . . . . . . 158

C. Appendix for chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.1 Proof of theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.2 Proof of theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.3 Proof of theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.1 Finite Element Discretization of the Forward Problem . . . . . . . . . 170

D.1.1 Existence and Uniqueness of the Solution to the Variational
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

D.1.2 Finite Element Discretization . . . . . . . . . . . . . . . . . . 174

D.1.3 Generation of Element Matrices and Vectors . . . . . . . . . . 175

vi



LIST OF TABLES

2.1 Definition of variables, functions, and operators. . . . . . . . . . . . . . 22

2.2 Definition of function spaces and norms. . . . . . . . . . . . . . . . . . . 23

3.1 Definition of function spaces and norms. . . . . . . . . . . . . . . . . . . 48

3.2 The mesh scenarios and the background µa values in simulation study 1. 61

3.3 The error ‖αλ−α̃λ
n‖L1(Ω) for each experiment described in the simulation

study 1 and Table 3.2. The first column shows the type of the meshes
used in the forward and inverse problems, respectively. The unit of
background µa is cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 The L1 norm of αλ and the error ‖αλ − α̃λ
n‖L1(Ω) for each experiment

described in the simulation study 2. The first column shows the type of
the meshes used in the forward and inverse problems, respectively. The
radius of the circular heterogeneity is given in cm. . . . . . . . . . . . . 66

3.5 The relevant parameters in the experiments 1-5 in simulation study
3. The abbreviation “Conv.” implies that the corresponding mesh
was generated using the conventional a priori discretization error esti-
mates (3.14)-(3.15) for the forward problem solution, and the conven-
tional a priori interpolation error estimate (3.11) for the inverse prob-
lem solution. The abbreviation “Prop.” refers to the adaptive meshes
generated by using the proposed adaptive mesh generation algorithms
based on Theorems 1 and 2, for the inverse and forward problem solu-
tions, respectively. The last column in the table shows the coordinates
of the center of the circular heterogeneity, considered in each experiment. 69

3.6 The error ‖αλ − α̃λ
n‖L1(Ω) for each experiment described in the simu-

lation study 3. The first column shows the type of the meshes used
in the forward and inverse problems, respectively. The superscript ‘C’
denotes that the corresponding adaptive mesh generation is based on
the conventional a priori error estimates (3.14)-(3.15) and (3.11). . . . . 70

4.1 The list of notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Definition of function spaces and norms. . . . . . . . . . . . . . . . . . . 102

4.3 The error norm ‖α − α̃λ‖0 measured for each image reconstruction in
simulation study 1 (normalized by ‖α− α̃λ‖0 for α = 0.040 cm−1.) . . . 102

vii



4.4 The error norm ‖α− α̃λ‖L1(Ω) measured for each calculation in simula-
tion study 2 (normalized by ‖α − α̃λ‖0 for α = 0.040 cm−1 in the first
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Definition of variables, functions, and operators. . . . . . . . . . . . . . 138

5.2 Definition of function spaces and norms. . . . . . . . . . . . . . . . . . . 139

viii



LIST OF FIGURES

1.1 A typical solution of the diffusion equation for a point source. . . . . . . 4

1.2 Sample uniform and adaptive meshes. . . . . . . . . . . . . . . . . . . . 6

1.3 An example of crosstalk in simultaneous reconstruction of absorption
and diffusion coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 A typical optical setup with transmission geometry with 29 sources
(triangles) and 29 detectors. . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 The setups used for the simulation studies 1, 2, and 3. The squares and
triangles denote the detectors and sources, respectively. . . . . . . . . . 60

3.2 Examples of meshes used in the first simulation study. . . . . . . . . . . 62

3.3 The reconstruction results of simulation study 1, with the background
µa = 0.032 cm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 The results of simulation study 1, with the background µa = 0.050 cm−1. 65

3.5 The cross-sectional views from the reconstructed images in simulation
study 1, corresponding to the cases where the background µa = 0.032
and µa = 0.050 cm−1, respectively. . . . . . . . . . . . . . . . . . . . . . 72

3.6 The results of simulation study 2. The left and right columns show the
reconstructed images regarding the optical heterogeneity with radius
0.50 cm, and 1.25 cm, respectively. The background µa = 0.040 cm−1

in all of the reconstructions. The reference images shown in (a) and
(b) are obtained using a uniform mesh with 61× 61 nodes in both the
forward and inverse problems. . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 (a)-(b) Samples of adaptive meshes in the third simulation study, gen-
erated by using the conventional error estimates (3.14) and (3.15), which
led to unstable optical image reconstruction shown in (c) to (f), for the
circular heterogeneity centered at (3.0, 3.5). (c)-(d) The unstable op-
tical image reconstructions in the third simulation study, obtained by
using the adaptive meshes for the forward problem solution whose ex-
amples are shown in (a)-(b). λ = 10−8. (e)-(f) The unstable optical
image reconstructions in the third simulation study, obtained by using
the adaptive meshes for the forward problem solution whose examples
are shown in (a)-(b). λ was set to 10−6 to suppress the significantly
large artifacts observed in (c)-(d). . . . . . . . . . . . . . . . . . . . . . 74

ix



3.8 Samples of adaptive meshes used in the third simulation study, which
led to the optical image reconstructions shown in Figure 3.10. The
meshes were generated for the circular heterogeneity centered at (3.0,4.5). 75

3.9 The reconstructed optical images regarding the circular heterogeneity
centered at (3.0, 3.5) in the third simulation study. . . . . . . . . . . . . 76

3.10 The reconstructed optical images regarding the circular heterogeneity
centered at (3.0, 4.0) in the third simulation study. . . . . . . . . . . . . 77

4.1 The setups used for the simulation studies 1 and 2. The squares and
triangles denote the detectors and sources, respectively. . . . . . . . . . 95

4.2 The L2(Ω) norm of the scattered field vs each source position (on x-axis)
in each of the experiments in the first (a) and second (b) simulation
studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 The cross-sections of |uj
0α| and |g∗i α̃λ| in simulation study 1, which con-

stitute the bound (4.34) for the error resulting from Born approxima-
tion. The jth source is located at (3, 0) and the ith adjoint source is
located at (3, 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Samples of the reconstructed images in the first simulation study. . . . . 104

4.5 The cross-sections of |uj
0α| and |g∗i α̃λ| in simulation study 2, which con-

stitute the bound (4.34) for the error resulting from Born approxima-
tion. The jth source is located at (3, 0) and the ith adjoint source is
located at (3, 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Samples of the reconstructed images in the second simulation study. . . 106

5.1 An example of crosstalk in simultaneous reconstruction of absorption
and diffusion coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Samples of the reconstructed images in the second simulation study. . . 139

B.1 The setup considered for the solution of the model problem in equa-
tion (B.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

x



ACKNOWLEDGMENT

Babama (to my Dad)

I would like to dedicate my Ph.D degree to my father, who always knew...

I would like to specially thank my advisor Dr. Birsen Yazıcı for discovering

my potential and inviting me for Ph.D program to the USA. I am grateful for her

patience, guidance, help, and support during times that I believed getting my Ph.D

degree was impossible. I am also thankful to her for providing me with great working

conditions and the great research topic and for the opportunity to freely do research

under her supervision and guidance.

This is a small step for the mankind but a giant leap for myself. Do not get

me wrong; I did pretty good work. I am just trying to be modest. Perhaps, it is not

a good time to be modest. All right, this is a small step for me, but a giant leap for

the mankind.

But it was difficult. Not everyone should do a Ph.D, nor is there a need for

this. I felt that I should have lived the Ph.D education period to do endless research

and to feed my need and enthusiasm for learning and knowing more.

I would like to thank my family for their endless support and for repeatedly

saying “Don’t worry, you will do fine”. I worried, but I think I did fine. Maybe it

is not possible to do fine without worrying.

I would like to thank Dr. Xavier Intes and Dr. Eldar Giladi for their support

and help on my research and during my Ph.D life.

I would like to thank Dr. Kiwoon Kwon and Dr. Laurel Reilly for fruitful

discussions and for their friendship.

I would like to thank my thesis committee members for their feedback, which

helped me make this thesis better.

I would like to thank Dr. Aydan Erkmen, Dr. Gozde Bozdagi, Dr. Mu-

rat Eyuboglu, and Dr. Tolga Ciloglu from Middle East Technical University who

encouraged me to go to the graduate school.

I would like to thank Dr. Nihat Bilgutay from Drexel University for his support

xi



during the difficult first days and Dr. Dagmar Niebur for her help and encourage-

ment during the wonderful course series at Drexel University.

I would like to thank Dr. Vitor Schneider for his help and friendship during

my internship at Corning Inc.

I would like to thank Ann Bruno, Priscilla Magilligan, Laraine Michealides,

and George Narode for their patience, interest, and help. I always forgot to do

something, and they were there to remind and help me.

I would like to thank the human resources guy who did not hire me to a

consulting company back in 2001, suggesting that I should deal with “more technical

stuff”. I took his advice.
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ABSTRACT

Diffuse Optical Tomography (DOT) is a minimally invasive imaging modality that

makes use of the light in the Near-Infrared (NIR) spectrum. The inverse prob-

lem in DOT involves reconstruction of spatially varying absorption and diffusion

coefficients as well as fluorophore lifetime and yield in tissues from boundary mea-

surements. These fundamental quantities can be utilized to obtain tissue oxy- and

deoxyhemoglobin concentrations, blood oxygen saturation, water and fat amount,

and to observe uptake and release of contrast agents and organelle concentration

in tissue. The unique physiological and biochemical information offered by DOT

is very valuable for practical applications such as breast cancer diagnosis, cogni-

tive activity monitoring, brain tumor and hemorrhage detection, functional muscle

imaging with a growing list of applications in molecular and cellular imaging.

Diffuse Optical Tomography (DOT) poses a nonlinear ill-posed inverse prob-

lem. Furthermore, propagation of NIR light is not restricted to a plane owing to

the diffuse nature of photons in turbid media. As a result, DOT is an inherent 3D

problem and suffers from low spatial resolution. One has to address all of these

drawbacks in order to provide accurate and computationally viable optical image

reconstructions.

This thesis focuses on the factors that affect the accuracy of DOT imaging

and on how to eliminate these factors. In this context, we present an error analysis

to show the effect of the discretization of the forward and inverse problems, and

the linearization of the inverse problem on the accuracy of the reconstructed optical

images.

First, we consider the inverse problem for which we reconstruct the unknown

optical absorption coefficient of a bounded optical medium while the optical diffu-

sion coefficient is assumed to be known. Then, we analyze the error in the recon-

structed optical absorption images resulting from the discretization of the forward

and inverse problems and the linearization of the inverse problem by Born approx-

imation. Our analysis identifies several factors which influence the extent to which

xiii



the discretization and Born approximation impact the accuracy of the reconstructed

optical absorption images. For example; the mutual dependence of the forward and

inverse problems; the number of sources and detectors, their configuration and their

locations with respect to optical heterogeneities. Based on the error analysis, we

propose novel adaptive discretization schemes for the forward and inverse problems.

The proposed discretization schemes lead to adaptively refined composite meshes

that yield the desired level of imaging accuracy while reducing the size of the dis-

cretized forward and inverse problems.

Finally, we extend our error analysis for the simultaneous reconstruction of the

unknown optical absorption and diffusion coefficients. For this problem, while the

model for NIR light propagation remains the same, the inverse problem formulation

becomes more challenging since two parameters need to be estimated simultaneously.

Our analysis shows that the error in the reconstructed optical images due to forward

problem discretization depends on the solutions of the inverse problem. Similarly,

the error due to inverse problem discretization depends on the solutions of the

forward problem, thereby implying the inter-dependence of the forward and inverse

problems. One important implication of the analysis is that poor discretization of

one optical parameter may lead to error in the reconstruction of the other. Based

on the error analysis, we develop adaptive mesh design algorithms which are of low

computational complexity as compared to the computational complexity of solving

the respective problems, namely the discrete forward and inverse problems.
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CHAPTER 1

Introduction

Diffuse Optical Tomography (DOT) is a minimally invasive imaging modality that

makes use of the light in the Near-Infrared (NIR) spectrum [87, 43, 42, 49]. The

inverse problem in DOT involves reconstruction of spatially varying absorption and

scattering properties [72, 15, 4]. These quantities can be used to compute the oxy-

and deoxyhemoglobin concentrations, blood oxygen saturation, and the amount

of water and fat in tissue [56]. Similarly, diffuse optical fluorescence tomography

is concerned with the estimation of fluorophore lifetime and yield in tissues from

boundary measurements [23, 41, 29], which can be utilized to observe the uptake and

release of contrast agents in tissue [56]. The unique physiological and biochemical

information offered by DOT is very valuable for practical applications such as

• breast cancer diagnosis [21, 79, 51],

• cognitive activity monitoring [80, 84, 22],

• brain tumor and hemorrhage detection [42],

• functional muscle imaging [75], and

• molecular and cellular imaging [32, 86].

DOT poses a nonlinear ill-posed inverse problem [4] with a relatively limited

number of measurements. Furthermore, the propagation of NIR light is not re-

stricted to a plane owing to the diffuse nature of photons in turbid media. Hence,

DOT image reconstruction is an inherent 3D problem, which suffers from poor spa-

tial resolution. In addition, the solution of the inverse problem calls for the solution

of the forward (direct) problem. As a result, DOT image reconstruction is an in-

volved mathematical problem with several computational challenges.

In this work, we focus on the computational aspects of the DOT problem. In

this context, we examine the factors that affect the accuracy and computational com-

plexity of DOT imaging, such as discretization of the forward and inverse problems

1
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and linearization of the inverse problem. Based on the analysis of these factors, we

propose algorithms/methods to address the computational complexity of the DOT

imaging problem, without compromising the imaging accuracy.

In the following we briefly give an overview of the two aspects of the DOT

imaging problem: DOT in a clinical setting and DOT as an imaging problem. The

first part of the discussion summarizes the motivation for the use of DOT as a

clinical tool. The second part defines briefly the steps in formulating, modeling and

solving the DOT imaging problem and describes the challenges therein.

1.1 DOT in a Clinical Perspective

In anatomical imaging, the main interest is the imaging of internal struc-

tures. On the other hand, functional imaging is concerned with imaging physio-

logical changes in the body. Examples of anatomical imaging modalities include

x-ray imaging, magnetic resonance imaging (MRI) and ultrasound (US). Functional

imaging modalities include for example positron emission tomography (PET), single

photon emission computed tomography (SPECT), and optical tomography.

In tissue, light is attenuated in the visible region of the spectrum (with wave-

length between 450 and 700 nm) and can penetrate less than one centimeter. On

the contrary, in the near infrared (NIR) region (wavelengths 700 to 1000 nm), the

absorption is significantly lower and light can travel up to 8 centimeters of tissue

before it is totally attenuated. Thus, NIR light can be used to interrogate tissue.

DOT offers several potential advantages over existing radiological techniques [42]:

• NIR radiation is minimally invasive, thus can be safely used for screening and

continuous monitoring.

• DOT is inexpensive and portable as compared to x-ray computed tomography

(CT) and magnetic resonance imaging (MRI).

• DOT offers the potential to differentiate between soft tissues which differ in

optical properties such as absorption, scattering coefficients, which are linked

to tissue chromophores (water, Haemoglobin (Hb) etc.). Note that more than

97% of the transported oxygen is delivered by oxyhaemoglobin (HbO2) [58].
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Thus, DOT provides information about the metabolic state of an organ by

measuring the concentrations of Hb and HbO2 in the tissue using near-infrared

light. On the contrary, MR can not provide this kind of information.

• NIR methods offer novel criteria for cancer differentiation with the ability to

in-vivo measure oxygenation and vascularization state, the uptake and release

of contrast agents and organelle concentration. These properties are believed

to be malignancy specific and may significantly contribute to increased speci-

ficity in malignancy diagnosis. Therefore, DOT has the potential as a func-

tional imaging modality, and its applications range from brain oxygenation

monitoring in newborn and preterm infants to brain activation studies during

physical exercise or mental stimulation, and breast cancer detection/diagnosis

and screening.

1.2 Diffuse Optical Tomography as an Imaging Problem

“Solution of an inverse problem entails determining unknown causes based

on observation of their effects” (Oleg Mikailivitch Alifanov)... An inverse problem

invokes the need for a description of the relationship between these causes and

their corresponding effects. This relationship is provided by the forward (direct)

problem. Hence, solving an inverse problem calls for a well-defined forward problem

and its solution. As a result, DOT imaging requires the definition and solution of a

forward and an inverse problem. The forward problem in DOT can be defined by a

model that predicts the propagation of the NIR light in a bounded domain given the

optical coefficients of the medium. Then, the inverse DOT problem is to estimate

the unknown optical coefficients (namely the scattering and absorption coefficients)

of the medium from the boundary measurements based on this forward model. In

this respect, the forward and inverse problems are the inter-dependent components

of the DOT imaging.

In the following, we will describe the components of DOT imaging together

with the associated challenges. Note that each of the following can be considered

as a factor that affects the accuracy of DOT imaging:
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1. Model for the NIR light propagation (forward problem): Before image

reconstruction can be attempted, a model of photon transport in tissue is

required.

In optical tomography of biological tissues, the use of the radiative transport

equation (RTE) is frequently required to accurately describe propagation of

multiply scattered light photons. This is especially true in close proximity

to sources or boundaries, or in regions with high absorption and low scatter-

ing [73]. RTE is a conservation equation which states that the radiance (the

number of photons per unit volume), for photons travelling from point r in

direction s at time t is equal to the sum of all the mechanisms which increase

the radiance minus those effects which reduce it [34]. Provided the scattering

coefficient is much larger than the absorption coefficient, the diffusion approx-

imation to RTE is a commonly used model, especially in DOT imaging of deep

tissue such as breast (see in figure (1) for a typical solution of the frequency-

domain diffusion equation on a bounded domain). We refer to [4] for a more

detailed review.
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Figure 1.1: A typical solution of the diffusion equation for a point source.

2. Ill-posedness of the inverse problem: While the forward problem is well-

defined and well-posed, the inverse problem in DOT is ill-posed. The ill-

posedness (in Hadamard sense [52]) in general implies:
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• The solution does not depend continuously on the measurements (bound-

ary data).

• There is no unique solution to the inverse problem.

• There is no solution to the inverse problem.

In DOT, a solution exists provided there is sufficient amount of data. On the

other hand, the solution is not unique [6] owing to the null-space of the operator

which relates the unknown coefficients to the boundary data. Furthermore,

the solution is not stable, i.e. a small variation in the measurement data can

lead to large deviations in the solution.

3. Discretization and size of the discretized forward and inverse prob-

lems: The propagation of the photons in biological tissues is isotropic due to

large and isotropic scattering coefficient of the medium. This makes the DOT

inverse problem an inherent 3D problem.

In general, no analytical solutions are available for the forward problem. Thus,

analytical solutions are rare to obtain for the inverse problem as well. In this

context, one can obtain only a finite-dimensional approximation of the solu-

tions to the forward and inverse problems. The size of the forward and inverse

problems may become large, extent of which depends on the discretization of

these problems. We note that poor discretization of the forward and inverse

problems may lead to severe artifacts in the reconstructed optical images (see

chapters 2-3-4). See figures (1.2(a)) and (1.2) for sample two dimensional

uniform and adaptive meshes with triangular elements.

4. Dual-parameter: The inverse problem in optical tomography is concerned

with reconstructing the optical coefficients of the medium under inspection.

In general, one has to reconstruct both the absorption and scattering coeffi-

cients of a medium simultaneously. As a result, the inverse problem becomes

larger in size with the same number of measurements, which implies a more

challenging inverse problem with an increase in its computational complexity.

Furthermore, dual-parameter reconstruction often ends up with the so-called
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(a) A sample uniform coarse mesh that
can be used for the discretization of the
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(b) An adaptive mesh that can be used for
the discretization of the forward or inverse
problem.

Figure 1.2: Sample uniform and adaptive meshes.

crosstalk problem between the two images [65, 74, 26, 44], which degrades

the imaging accuracy (see figures (1.3(a)) and (1.3(b)) for an illustration of

crosstalk).

(a) Reconstructed absorption image with
crosstalk. Red circles indicate the recon-
structed absorptive heterogeneities and the
light blue circle on the top right is the ghost
image introduced as a result of crosstalk from
the diffusion image.

(b) Reconstructed diffusion image with
crosstalk. Blue circles indicate the recon-
structed absorptive heterogeneities and the
pink circle on the top left is the ghost image
introduced as a result of crosstalk from the
absorption image.

Figure 1.3: An example of crosstalk in simultaneous reconstruction of
absorption and diffusion coefficients.

5. Non-linearity of the inverse problem: Except for special geometries, there

is, in general, no closed form relationship between the unknown optical coef-

ficients and the boundary data. Furthermore, this relationship is nonlinear
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including the special cases, in which closed-form solutions are available. This

precludes the use of analytic methods such as back-projection methods. Lin-

earization of this relationship (that is linearization of the inverse problem)

affords a great simplification at the expense of a compromise in imaging accu-

racy (see Chapter 4). In this context, Born and Rytov approximation schemes

are the widely used approximation schemes [17, 24, 68].

6. Model mismatch: Apart from the selection of the NIR light propagation

model, model mismatches occur in the presence of measurement noise. Due

to the ill-posed nature of the inverse problem, measurement noise can be the

largest error source in a DOT imaging system.

Note that linearization of the inverse problem can also be viewed as re-modeling,

which poses a model mismatch problem.

It is also common to reconstruct only the absorption coefficient of a medium,

as it is the main optical property that relates directly to the chromophore con-

centrations in the medium, which can be used to assess the tumor character-

istics. However, assuming a known spatially homogeneous diffusion coefficient

for the medium of interest may lead to model mismatches as well. A similar

situation is observed in fluorescence tomography when the inverse problem is

linearized around a background with homogeneous absorption coefficient at

the excitation wavelength [69].

7. Choice of algorithms and numerical solvers: Since, in general, no an-

alytical solution is available for the forward and inverse problem, numerical

algorithms have to be used. Due to the large size of these problems, and the

ill-posedness of the inverse problem, the choice of the numerical solvers and

the design of the algorithms becomes important. The convergence rate and the

computational complexity are the key factors in the selection of a numerical

solver. The computational complexity of a numerical algorithm increases with

the size of the discrete forward and inverse problems. Thus, the efficiency of

the numerical solver depends on the discretization of the forward and inverse

problems, as well.
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8. Inverse problem formulation: The formulation of the inverse DOT prob-

lem has to address the ill-posedness of the inverse problem. This is usu-

ally done by using regularizers, which in general accounts for both the non-

uniqueness and the instability of the solution in the presence of measurement

noise. On the other hand, using regularizers often impose a bias on the recon-

structed images. Thus, the choice of regularizers has to be addressed quanti-

tatively (see [37] and the references therein).

9. Low spatial resolution: The reason for the low spatial resolution of DOT

images is the high scattering coefficient of biological tissues for the visible and

near-infrared light, which makes light propagation a diffuse process. Each

detected photon undergoes multiple scattering events and deviates from the

direct line of sight between the source and detector sites, thereby blurring the

spatial information content it carries.

Both the inherent low resolution and the ill-posedness of the problem make it

desirable to combine DOT with a second independent imaging modality such

as MRI whose high-resolution spatial information could be used to guide the

reconstruction process. In this context, a priori anatomical and/or physiolog-

ical information can be used to assist the design of regularizers which result

in minimum bias and variance. Use of a priori information may enhance

the imaging accuracy and the spatial resolution significantly (see [37] and the

references therein).

10. Information content provided by the imaging setup: The number of

sources and detectors and their orientation with respect to each other and

with respect to internal optical heterogeneities determine the size (dimension)

of the space of observable objects (the space of functions which can be resolved

from the boundary data) in a diffuse optical tomography system [18, 2]. We

refer to figure (10) for a sample optical setup with transmission geometry.

A priori information about the optical properties of a medium can be used to

maximize the information content by placing the sources and detectors accord-

ingly or even to compensate for the missing information content. Furthermore,
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a priori information can assist the discretization of the forward and inverse

problems (see for example Theorems 1-2 in Chapter 2).

Figure 1.4: A typical optical setup with transmission geometry with 29
sources (triangles) and 29 detectors.

1.3 Thesis Outline

In Section 1.1, we have outlined the motivations for DOT imaging in a clinical

setting and in Section 1.2, we have summarized the main components of DOT

imaging. In this thesis, we focus on the computational aspects of the DOT imaging

problem, which can be identified by the inter-dependent factors described in section

1.2. In particular, we focus on the discretization of the forward and inverse problems

and linearization of the inverse problem by Born approximation. We show the

factors that determine the extent to which the discretization of the forward and

inverse problems and linearization of the inverse problem affect the accuracy of

DOT imaging. Note that as we concentrate on the discretization of the forward and

inverse problems and linearization of the inverse problem, we discuss and address

each of the computational challenges (Section 1.2) associated with DOT imaging.

Below, we present the details of our approach in analyzing the effect of dis-

cretization of the forward and inverse problems, and linearization of the inverse

problem on the accuracy of DOT imaging.
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1.3.1 Effect of discretization on the accuracy of optical absorption imag-

ing

Numerical approaches in solving the forward and inverse problems in DOT

poses a tradeoff between computational efficiency and imaging accuracy. This trade-

off is a direct consequence of the discretization of the forward and inverse problems

and the size of the resulting discrete forward and inverse problems. The imaging

accuracy depends on the discretization error in the forward and inverse problem

solutions. On the other hand, attempting to minimize the discretization error in

the solutions of both problems separately implies a significant increase in the size of

the discrete forward and inverse problems. Hence, it is important to understand the

relationship between the discretization error and the resulting error in the solution

of the inverse problem. Such a relationship can illuminate the mutual dependence of

the forward and inverse problem solutions and identify the factors that control the

extent to which the discretization error in the solutions of the forward and inverse

problems affects the accuracy.

In Chapter 2 of this work, we present an analysis to show the effect of dis-

cretization on the accuracy of DOT imaging. The objectives of this part of the

thesis are:

1. To show explicitly the effect of discretization of the forward and inverse prob-

lems on the accuracy of the reconstructed optical absorption images.

2. To identify the parameters that influence the extent to which the choice of

basis functions and discretization points for the forward problem discretization

affects the accuracy of the reconstructed optical absorption images.

3. To identify the parameters that influence the extent to which the choice of

basis functions and discretization points for the inverse problem discretization

affects the accuracy of the reconstructed optical absorption images.

4. To show that an effective discretization approach should take into account the

inter-dependence of the forward and inverse problem solutions.

5. To obtain a measure of the error resulting from discretization which can be
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used in the design and development of adaptive discretization methods for the

forward and inverse problems.

To meet these objectives, we first define the forward and inverse problems.

In this work, we model the forward problem by the frequency-domain diffusion

equation. For the inverse problem, we focus on the estimation of the absorption

coefficient. We consider the linear integral equation resulting from the iterative

linearization of the inverse problem based on Born approximation and use zeroth

order Tikhonov regularization to address the ill-posedness of the resulting integral

equation. We use finite elements with first order Lagrange basis functions to dis-

cretize the forward and inverse problems and analyze the effect of the discretization

of each problem on the reconstructed optical absorption image. In our analysis,

we first consider the impact of the inverse problem discretization when there is no

discretization error in the solution of the forward problem, and provide a bound for

the resulting error in the reconstructed optical image. Next, we analyze the effect

of the forward problem discretization on the accuracy of the reconstructed image

without discretizing the inverse problem, and obtain another bound for the resulting

error in the reconstructed optical image.

As a result, in chapter 2, we summarize the implications of the error analysis

in two theorems which provide an insight into the impact of forward and inverse

problem discretizations on the accuracy of the reconstructed optical absorption im-

ages. These theorems show that the error in the reconstructed optical image due

to the discretization of each problem is bounded by roughly the multiplication of

the discretization error in the corresponding solution and the solution of the other

problem. In particular, the study shows that solving the forward problem (diffusion

equation and the associated adjoint problem) accurately may not avoid errors in the

reconstructed optical images. Similarly, relatively large discretization error in the

solution of the forward problem may have relatively low impact on the accuracy of

the reconstructed optical images, depending on the source-detector configuration,

and orientation with respect to the optical heterogeneities. Finally, we extend our

analysis to show the effect of noise on the accuracy of the reconstructed optical im-

ages. Our analysis shows that the presence of noise results in error terms in addition
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to the error in the reconstructed optical images induced by the discretization of the

forward and inverse problems.

The presented analysis brings several advantages:

• A clear relationship between the error in the reconstructed optical absorption

images resulting from discretization and the parameters associated with the

forward and inverse problems, such as source-detector configuration, orienta-

tion of the sources and detectors with respect to the support of the optical

absorption coefficient.

• Two new error estimates which are used to develop new adaptive discretization

algorithms (See Chapter 3).

• Provided there is a priori information about the support of the absorptive het-

erogeneity, the error estimates can be used to place the sources and detectors

such that the error resulting from discretization is reduced.

• The error analysis can be extended to show the effect of the discretization

error on the accuracy of the simultaneous reconstruction of scattering and

absorption coefficients (See chapter 5).

• The framework used to analyze the error in the reconstructed optical images

resulting from discretization can be employed to analyze the error resulting

from linearization of the inverse problem by Born approximation (See chapter

4).

• The error analysis introduced in this work is not limited to DOT, and can

easily be adapted for similar inverse parameter estimation problems such as

electrical impedance tomography, bioluminescence tomography, optical fluo-

rescence tomography, microwave imaging etc.

1.3.2 Adaptive mesh generation for DOT

Based on the two error bounds provided by the error analysis in Chapter 2, we

introduce an adaptive discretization scheme for the forward and inverse problems,
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respectively. The presented adaptive mesh generation algorithms address the in-

terdependence between the solutions of the forward and inverse problems and take

into account the orientation of the source-detectors and the absorptive perturba-

tions. This makes the adaptive discretization algorithms introduced in this work

different from the previous approaches [28, 36, 82, 35, 46, 54], which make use of

conventional error estimates.

The objectives of this study can be summarized as follows:

1. To develop adaptive mesh generation algorithms for the discretization of the

forward and inverse problems in DOT, by using the error estimates derived in

Chapter 2.

2. To address the tradeoff between the computational efficiency and accuracy in

DOT imaging, i.e. to reduce the number of unknowns in the discrete forward

and inverse problems, yet sustain the accuracy.

3. To improve spatial resolution of the reconstructed optical absorption images

without compromising the computational efficiency.

Our simulation experiments validate the implications of the error analysis

presented in Chapter 2 and show that the proposed mesh generation algorithms

significantly improve the accuracy of the reconstructed optical images while keeping

the number of unknowns in the discrete forward and inverse problems for a given

number of unknowns in the discrete forward and inverse problems. We specifically

show that using the discretization error estimates, which do not take into account

the interdependence of forward and inverse problems as a criterion for discretization,

may lead to severely degraded image reconstructions (see simulation study 3 in

Chapter 3). We also discuss the computational complexity of the proposed adaptive

mesh generation algorithms and compare it to the computational complexity of mesh

generation algorithms based on the conventional discretization error estimates.

The advantages of this study are as follows:

• The proposed mesh generation algorithms significantly improve the accuracy

of the reconstructed optical images for a given number of unknowns in the
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discrete forward and inverse problems while conventional error estimates do

not include domain specific factors.

• The proposed adaptive mesh generation algorithms can be adapted for similar

inverse parameter estimation problems, such as electrical impedance tomogra-

phy, optical fluorescence tomography, bioluminescence tomography, microwave

imaging, etc.

1.3.3 Effect of linearization by Born approximation on the accuracy of

DOT imaging

The nonlinearity of the associated inverse problem makes DOT imaging a com-

putationally intense problem, which calls for the use of nonlinear inversion methods.

In general, nonlinear inversion algorithms require repetitive solution of the forward

problem defined by the light propagation model, which is followed by the update

of the inverse problem solution. As a result, nonlinear algorithms provide accuracy

at the expense of high computational complexity. A widely used approach to over-

come the difficulties posed by the nonlinearity is to linearize the inverse problem

using Born (or Rytov) approximation and solve the resulting linear problem to re-

construct the optical parameters [7]. Such approximation schemes assume a small

perturbation on the background optical coefficients, which are in general assumed to

be spatially homogeneous. Spatially homogeneous backgrounds allow for analytical

solutions of the forward problem for certain domain geometries [64] and analytical

solutions for the linearized inverse problem as well [63]. Hence, linearization of the

inverse DOT problem brings several computational advantages. As a result, Born

approximation can be considered as a compromise between accuracy and compu-

tational complexity. Intuitively, it can be deduced that the accuracy of the Born

approximation is determined by the perturbation in the optical coefficients with re-

spect to a background with known optical properties. In this work, we show what

other factors lead to an increase in the error in the reconstructed optical absorption

images resulting from linearization by Born approximation.

The objectives of this study can be summarized as follows:

1. To provide an insight into the effect of linearization by Born approximation
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on the accuracy of DOT imaging.

2. To present an error analysis to show the parameters that determine the extent

to which the linearization by Born approximation affects the accuracy of DOT

imaging.

3. To show under what conditions the linearization of the inverse problem by

Born approximation may ensure the accuracy of DOT imaging.

Our analysis provides a tight error bound that takes into account the spatial

orientation of the optical absorptive heterogeneity, the optical field generated by

the light sources and the detector positions. This makes the derived error bound

significant, especially in optical media with relatively small sizes.

The advantages of this study and its results are as follows:

• The presented error analysis shows the factors that determine the extent to

which the accuracy of DOT imaging is affected by the linearization of the

inverse problem.

• The error analysis provides a measure for the choice of step length in itera-

tive linearization based nonlinear optimization methods, such as trust-region

algorithms.

• Provided there is a priori information about the support of the heterogeneity,

the analysis can be used to place the sources and detectors such that the error

in the reconstructed images resulting from linearization is reduced. One pos-

terior approach can be to use only the specific sources-detectors in the image

reconstruction, such that the error due to linearization by Born approximation

is reduced.

1.3.4 Effect of discretization on the simultaneous reconstruction of op-

tical absorption and diffusion coefficients

In Chapter 5 of this work, we present an analysis to show the effect of dis-

cretization on the accuracy of simultaneously reconstructed optical absorption and

diffusion images. In this respect, we extend our work presented in chapter 2 and 3
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for the simultaneous reconstruction of optical absorption and diffusion coefficients.

While the light propagation model remains the same as in chapters 2 and 3, the

inverse problem formulation needs to be extended to estimate the unknown optical

diffusion coefficient as well. Since this is a two-parameter inverse problem, the dis-

cretization of the inverse problem implies an increase in the number of unknowns in

the resulting discrete inverse problem. Consequently, the tradeoff between compu-

tational complexity and accuracy of DOT imaging becomes more critical: One has

to minimize the number of unknowns in the discrete inverse problem while providing

the desired level of imaging accuracy.

The objectives of this part of the thesis are:

1. To show explicitly the effect of discretization of the forward and inverse prob-

lems on the accuracy of simultaneously reconstructed optical absorption and

diffusion coefficient images.

2. To identify the parameters that enhance the effect of poor discretization on

the accuracy of simultaneous DOT imaging.

3. To show that an effective discretization approach should take into account the

inter-dependence of forward and inverse problem solutions.

4. To reveal that the accuracy of one optical parameter reconstruction depends

not only on how well it is discretized but also on how well the other opti-

cal parameter is discretized, thereby providing a different perspective on and

addressing so-called the “inter-parameter cross-talk” resulting from discretiza-

tion.

5. To obtain an estimate of the error resulting from discretization which can be

used in the design and development of adaptive discretization methods for the

forward and inverse problems, with relatively low computational complexity

as compared to the computational complexity of solving the resulting discrete

problems.

In this study, we use an approach similar to the one followed in chapters 2

and 4. In this respect, we consider the iterative linearization of the inverse problem
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based on Born approximation. In order to regularize the resulting linear integral

equation, we use zeroth order Tikhonov regularization. We use finite elements with

first order Lagrange basis functions to discretize the forward and inverse problems

and analyze the effect of the discretization of each problem on the reconstructed

optical absorption and diffusion images. Different than chapter 2, in the analysis we

first consider the impact of the forward problem discretization and provide a bound

for the resulting error in the reconstructed optical images. Next, we analyze the

effect of the discretization of the inverse problem whose formulation is based on the

numerical (finite element) solutions of the forward problem, which possess error due

to forward problem discretization.

As a result, in chapter 5, we summarize the implications of the error analysis

in two theorems which provide an insight into the impact of forward and inverse

problem discretizations on the accuracy of the simultaneously reconstructed optical

absorption and diffusion images. These theorems show that the error in the re-

constructed optical image due to the discretization of each problem is bounded by

roughly the multiplication of the discretization error in the corresponding solution

and the solution of the other problem. In addition, the analysis of the error due

inverse problem discretization reveals that the discretization of the optical diffusion

coefficient has an influence on the accuracy of the reconstructed optical absorption

coefficient. As a result, one has to take into account the dependence of the error

in the reconstructed optical images due to discretization on all of the fundamental

elements of DOT imaging; i.e. the solutions of the forward problem for each source

and detector, the absorption coefficient, and the diffusion coefficient. Finally, we

use the error bounds obtained in the analysis to devise adaptive mesh generation

algorithms that can address the compromise between computational efficiency and

accuracy. We present two practical adaptive mesh generation algorithms whose com-

putational complexity is relatively low as compared to the computational complexity

of solving the resulting discrete forward and inverse problems.

The error analysis and the proposed adaptive mesh generation algorithms pro-

vide several advantages including the following:

• The error analysis helps to understand the factors that control the extent to
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which the discretization affects the accuracy of DOT imaging when both the

scattering and absorption coefficients are reconstructed.

• The analysis reveals how the discretization of one optical coefficient will af-

fect the accuracy of the reconstruction of the other optical coefficient. In

this respect, the error analysis provides a perspective to understand the inter-

parameter cross-talk (see Chapter 5) between the optical absorption and scat-

tering coefficients resulting from discretization.

• The error analysis indicates that an effective discretization scheme for both the

forward and inverse problems has to take into account the inter-dependence

of the forward and inverse problems. In other words, the discretization of one

problem can not be independent of the solution of the other problem.

• The error estimates obtained in the analysis used to develop new discretiza-

tion algorithms for the simultaneous reconstruction of the optical coefficients.

The computational cost of the algorithms does not exceed that of solving the

resulting discrete forward and inverse problems.

• The adaptive mesh generation algorithms can be applied a priori or a poste-

riori depending on the availability of a priori information about the solutions

of the forward and inverse problems that are required to compute the error

bounds.

• The error analysis and adaptive mesh generation algorithms introduced in

this work is not limited to DOT, and can easily be adapted for similar two-

parameter inverse problems. In addition, the analysis framework can be used

to examine the inter-parameter crosstalk occurring due to other factors, such

as linearization by Born approximation, modeling errors, regularization etc.



CHAPTER 2

Effect of discretization error in diffuse optical absorption

imaging

2.1 Introduction

Imaging in Diffuse Optical Tomography (DOT) is comprised of two interde-

pendent stages which seek solutions to the forward and inverse problems. The

forward problem is associated with describing the Near Infrared (NIR) light propa-

gation, while the objective of the inverse problem is to estimate the unknown optical

parameters from boundary measurements [4].

There are a variety of factors that affect the accuracy of the DOT imaging,

such as model mismatch (due to light propagation model and/or linearization of the

inverse problem), measurement noise, discretization, numerical algorithm efficiency,

and inverse problem formulation. In this two-part study, we focus on the effect of

discretization of the forward and inverse problems. In the first part of our work,

we present an error analysis to show the effect of discretization on the accuracy of

the reconstructed optical absorption images. We identify the factors specific to the

imaging problem, which determine the extent to which the discretization impacts

the accuracy of the reconstructed optical absorption images. In the sequel, first,

we use the error analysis to develop novel adaptive discretization algorithms for

the forward and inverse problems to reduce the error in the reconstructed optical

images resulting from discretization. Next, we present numerical experiments that

support the main results of part I and demonstrate the effectiveness of the developed

adaptive mesh generation algorithms.

There has been extensive research on the estimation of discretization error in

the solutions of partial differential equations (PDEs) [3, 10, 11, 13, 81, 83]. On the

contrary, relatively little has been published in the area of parameter estimation

problems governed by PDEs. See for example [14] for an a posteriori error estimate

for the Lagrangian in the inverse scattering problem for the time-dependent acoustic

wave equation and [62] for a posteriori error estimates for distributed elliptic optimal

19
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control problems. In the area of DOT, it was numerically shown that the approxi-

mation errors resulting from the discretization of the forward problem can lead to

significant errors in the reconstructed optical images [5]. However, an analysis re-

garding the error in the reconstructed optical images resulting from discretization

has not been reported so far.

In this work, we model the forward problem by the frequency-domain diffu-

sion equation. For the inverse problem, we focus on the estimation of the absorption

coefficient. We consider the linear integral equation resulting from the iterative lin-

earization of the inverse problem based on Born approximation and use zeroth order

Tikhonov regularization to address the ill-posedness of the resulting integral equa-

tion. We use finite elements with first order Lagrange basis functions to discretize

the forward and inverse problems and analyze the effect of the discretization of each

problem on the reconstructed optical absorption image. Our analysis describes the

dependence of the image quality on the optical image properties, the configuration

of the source and detectors, the orientation of the source and detectors with respect

to absorptive heterogeneities, and on the regularization parameter in addition to the

discretization error in the solution of each problem. In our analysis, we first con-

sider the impact of the inverse problem discretization when there is no discretization

error in the solution of the forward problem, and provide a bound for the result-

ing error in the reconstructed optical image. Next, we analyze the effect of the

forward problem discretization on the accuracy of the reconstructed image without

discretizing the inverse problem, and obtain another bound for the resulting error

in the reconstructed optical image. We see that each error bound comprises the

discretization error in the corresponding problem solution, scaled spatially by the

solutions of both problems. This is a direct consequence of the fact that the inverse

problem solution depends on the model defined by the forward problem. As a result,

the error analysis yields specific error estimates which are different than the conven-

tional discretization error estimates (see equations (5.25)-(5.26) and (2.41)) which

take into account only the smoothness and support of the function of interest, and

the finite dimensional space of approximating functions [20]. We further discuss the

use of other basis functions and methods in the discretization of the forward and
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inverse problems and explain how the error bounds can be modified accordingly.

Finally, we extend our analysis to show the effect of noise on the accuracy of the

reconstructed optical images. Our analysis shows that the presence of noise results

in error terms in addition to the error in the reconstructed optical images induced

by the discretization of the forward and inverse problems.

This work not only provides an insight into the error in reconstructed optical

absorption images resulting from discretization, but also motivates the development

of novel adaptive mesh generation algorithms to address this error [40]. In addi-

tion, the analysis presented in this work provides a means to identify and analyze

the error in the reconstructed optical images resulting from the linearization of the

Lippmann-Schwinger type equations [25] using Born approximation [38]. Further-

more, the error analysis introduced in this paper is not limited to DOT, and can

easily be extended for use in similar inverse parameter estimation problems such as

electrical impedance tomography, bioluminescence tomography, optical fluorescence

tomography, microwave imaging etc., in all of which the inverse problem can be

interpreted in terms of a linear integral equation, whose kernel is the solution of a

PDE that models the forward problem.

The outline of this paper is as follows: Section 2 defines the forward and inverse

problems. In Section 3, we discuss the discretization of the forward and inverse

problems. In Section 4, we present two theorems that summarize the impact of

discretization on the accuracy of the reconstructed optical images, which is followed

by the Conclusion section. The Appendix includes results regarding the boundedness

and compactness of the linear integral operator used to define the inverse problem,

and the proof for the convergence of the inverse problem discretization.

2.2 Forward and Inverse Problems

In this section, we describe the model for NIR light propagation and define the

forward and inverse DOT problems. Table 5.1 provides a list of the notation and

Table 5.2 provides the definition of function spaces and norms used throughout the

paper. We note that we use calligraphic letters to denote the operators, e.g. Aa, I,

K etc.
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Table 2.1: Definition of variables, functions, and operators.

Notation Explanation
Ω Bounded domain in R3 with Lipschitz boundary
∂Ω Lipschitz boundary of Ω
x Position vector in Ω ∪ ∂Ω
gj(x) Solution of the diffusion equation at x for the jth

point source located at xj
s

g∗i (x) Solution of the adjoint problem at x for the ith

adjoint source located at xi
d

Gj(x) Finite element approximation of gj at x
G∗

i (x) Finite element approximation of g∗i at x
ej(x) The discretization error at x in the finite element

approximation of gj

e∗i (x) The discretization error at x in the finite element
approximation of g∗i

α(x) Small perturbation over the background µa at x
Γi,j Differential measurement at the ith detector

due to the jth source
Aa The integral operator mapping α ∈ L∞(Ω) to Γi,j ∈ CNd×Ns

A∗
a The adjoint of Aa mapping from CNd×Ns to L1(Ω)

Hi,j(x) The kernel of Aa at x
H∗

i,j(x) The kernel of A∗
a at x

γ(x) A∗
aΓi,j at x

λ The regularization parameter
αλ(x) Solution of the regularized inverse problem at x
αλ

n(x) Solution of the discretized regularized inverse problem
with exact kernel at x

α̃λ(x) Solution of the regularized inverse problem
with degenerate kernel at x

α̃λ
n(x) Solution of the discretized regularized inverse problem

with degenerate kernel at x

2.2.1 Forward Problem

We use the following boundary value problem to model the NIR light propa-

gation in a bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω [20, 4]:

−∇ ·D(x)∇gj(x) +

(
µa(x) +

iω

c

)
gj(x) = Qj(x) x ∈ Ω, (2.1)

gj(x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂Ω, (2.2)
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Table 2.2: Definition of function spaces and norms.

Notation Explanation

f The complex conjugate of the function f
C(Ω) Space of continuous complex-valued functions on Ω
Ck(Ω) Space of complex-valued k -times continuously

differentiable functions on Ω
L∞(Ω) L∞(Ω) = {f | ess supΩ |f(x)| < ∞ }
Lp(Ω) Lp(Ω) = {f | (

∫
Ω
|f(x)|pdx)1/p < ∞ }, p ∈ [1,∞)

Dz
wf zth weak derivative of f

Hp(Ω) Hp(Ω) = {f | (
∑

|z|≤p ‖Dz
wf‖2

0)
1/2 < ∞ }, p ∈ [1,∞)

‖f‖0 The L2(Ω) norm of f
‖f‖p The Hp(Ω) norm of f
‖f‖∞ The L∞(Ω) norm of f
‖f‖Lp(Ω) The Lp(Ω) norm of f
‖f‖0,m The L2 norm of f over the mth finite element Ωm

‖f‖p,m The Hp norm of f over the mth finite element Ωm

where gj(x) is the photon density at x, Qj is the point source located at xj
s, D(x) is

the diffusion coefficient and µa(x) is the absorption coefficient at x, i =
√−1, ω is

the modulation frequency of the source, c is the speed of the light, a = (1+R)/(1−
R) where R is a parameter governing the internal reflection at the boundary ∂Ω,

and ∂ · /∂n denotes the directional derivative along the unit normal vector on the

boundary. Note that we assume the diffusion coefficient is isotropic. For the general

anisotropic material, see [55].

The adjoint problem [4] associated with (5.1)-(5.2) is given by the following

boundary value problem:

−∇ ·D(x)∇g∗i (x) +

(
µa(x)− iω

c

)
g∗i (x) = 0 x ∈ Ω, (2.3)

g∗i (x) + 2aD(x)
∂g∗i
∂n

(x) = Q∗
i (x) x ∈ ∂Ω, (2.4)

where Q∗
i is the adjoint source located at xi

d. We note that we approximate the

point source Qj in (5.1) and the adjoint source Q∗
i in (5.4) by Gaussian functions

with sufficiently low variance, whose centers are located at xj
s and xi

d, respectively.

In this work, we consider the finite-element approximations of the solutions
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of the forward problem. Hence, before we discretize the forward problem (see Sec-

tion 5.2.1), we consider the variational formulations of (5.1)-(5.2) and (5.3)-(5.4) by

multiplying (5.1) by a test function φ ∈ H1(Ω) and integrating over Ω [20]:

∫

Ω

[
∇φ ·D∇gj + φ

(
µa +

iω

c

)
gj − φQj

]
dx +

1

2a

∫

∂Ω

φgjdl = 0, (2.5)

where the boundary integral term results from the boundary condition (5.2).

Equivalently, we can express (D.6) by defining the sesquilinear form b(φ, gj)[47]:

b(φ, gj) := A(φ, gj) +

〈
φ,

1

2a
gj

〉
= (φ,Qj), (2.6)

where

A(φ, gj) :=

∫

Ω

[
∇φ ·D∇gj +

(
µa +

iω

c

)
φgj

]
dx,

(φ,Qj) :=

∫

Ω

φQjdx,

〈
φ,

1

2a
gj

〉
:=

1

2a

∫

∂Ω

φgjdl.

Similarly, the variational problem for (5.3)-(5.4) can be formulated by defining the

sesquilinear form b∗(φ, g∗i ):

b∗(φ, g∗i ) := A(φ, g∗i ) +

〈
φ,

1

2a
g∗i

〉
=

〈
φ,

1

2a
Q∗

i

〉
, (2.7)

where in A(φ, g∗i ), ω is replaced by −ω.

The sesquilinear forms b(φ, gj), b∗(φ, g∗i ) are continuous and positive definite

for bounded D and µa [47]. As a result, the variational problems (5.6) and (5.7) have

unique solutions, which follows from the Lax-Milgram Lemma [20]. The solutions

gj and g∗i of the variational problems (5.6) and (5.7) belong to H1(Ω), which results

from the H1-boundedness of the Gaussian function that approximates the point

source Qj and the adjoint source Q∗
i [47]. Assuming D,µa ∈ C1(Ω) and noting that

Qj, Q
∗
i ∈ H1(Ω); the solutions gj, g

∗
i satisfy gj, g

∗
i ∈ H2

loc(Ω) (Chapter 6.3, Theorem
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2 in [30]). This last condition implies (Chapter 5.6, Theorem 6 in [30])

gj, g
∗
i ∈ C(Ω). (2.8)

2.2.2 Inverse Problem

In this work, we focus on the estimation of the absorption coefficient; therefore

we assume D(x) is known for all x ∈ Ω ∪ ∂Ω. To address the nonlinear nature of

the inverse DOT problem, we consider an iterative algorithm based on repetitive

linearization of the inverse problem using first order Born approximation [4]. As

a result, at each linearization step, the following linear integral equation relates

the differential optical measurements to a small perturbation α on the absorption

coefficient µa:

Γi,j = −
∫

Ω

g∗i (x)gj(x)α(x)dx (2.9)

:=

∫

Ω

Hi,j(x)α(x)dx

:= (Aaα)i,j, (2.10)

where Hi,j = −g∗i gj is the kernel of the integral operator Aa : L∞(Ω) → CNd×Ns ,

gj is the solution of (5.6), g∗i is the solution of (5.7), and Γi,j is the (i, j)th entry in

Γ ∈ CNd×Ns which represents differential measurement at the ith detector due to the

jth source. Note that approximating Q∗
i in (5.4) by a Gaussian function centered

at xi
d implies that Γi,j corresponds to the scattered optical field evaluated at xi

d,

after filtering it by that Gaussian function. Thus, the Gaussian approximation of

the adjoint source models the finite size of the detectors. Similarly, approximating

Qj in (5.1) by a Gaussian function models the finite beam of the source.

The linear operator Aa : L∞(Ω) → CNd×Ns defined by (5.9) is compact and

bounded by (see A.1 and A.2)

‖Aa‖L∞(Ω)→l1 ≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0. (2.11)

For the given solution space L∞(Ω) for α, the compactness of the linear operator

Aa implies the ill-posedness of (5.9). Hence, we regularize (5.9) with a zeroth order
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Tikhonov regularization. This yields the following equation which defines our inverse

problem at each linearization step:

γ = A∗
aΓi,j = (A∗

aAa + λI)αλ (2.12)

:= Kαλ, (2.13)

where λ > 0 and αλ is an approximation to α. In this representation, A∗
a : CNd×Ns →

L1(Ω) is the adjoint of Aa and I is the identity operator.

Let A = A∗
aAa, then A : L∞(Ω) → L1(Ω) is defined as follows:

(Aα)(x) =

Nd,Ns∑
i,j

H∗
i,j(x)

∫

Ω

Hi,j(x́)α(x́)dx́

:=

∫

Ω

κ(x, x́)α(x́)dx́, (2.14)

where κ(x, x́) stands for the kernel of the integral operator A and is given by

κ(x, x́) =

Nd,Ns∑
i,j

H∗
i,j(x)Hi,j(x́), (2.15)

and H∗
i,j is the kernel of the adjoint operator A∗

a given by:

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H∗
i,j(x)βi,j =

Nd,Ns∑
i,j

−g∗i (x)gj(x)βi,j, (2.16)

for all β ∈ CNd×Ns .

Having defined the adjoint integral operator, we note that the operator A :

L∞(Ω) → L1(Ω) is compact and that the operator K : L∞(Ω) → L1(Ω) is bounded

by ‖K‖ ≤ ‖Aa‖2 + λ. We assume that the solution αλ ∈ L∞(Ω) also satisfies

αλ ∈ H1(Ω). For the rest of the paper, we will denote L∞(Ω) and L1(Ω) by X and

Y , respectively.
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2.3 Discretization of the Inverse and Forward Problems

In this section, we outline the discretization of the inverse and forward prob-

lems.

2.3.1 Inverse Problem Discretization

In practice, we seek a finite dimensional approximation to the solution of the

inverse problem (5.19) at each linearization step. Therefore, we discretize (5.19) by

projecting it onto a finite dimensional subspace.

Let Xn ⊂ X and Yn ⊂ Y denote a sequence of finite dimensional subspaces of

dimension n = 1, 2, . . ., spanned by first order Lagrange basis functions {L1, . . . , Ln},
and {xp}, p = 1, . . . , n, be the set of collocation points on Ω. Then, the collocation

method approximates the solution of (5.19) by an element αλ
n ∈ Xn which satisfies

(Kαλ
n)(xp) = γ(xp), p = 1, . . . , n, (2.17)

where we express αλ
n as

αλ
n(x) =

n∑

k=1

akLk(x). (2.18)

Note that in (3.10), ap = αλ
n(xp), p = 1, . . . , n. Then, (2.17) can be written explicitly

as follows:

λap +
n∑

k=1

ak

∫

Ω

κ(xp, x́)Lk(x́)dx́ = γ(xp), p = 1, . . . , n. (2.19)

Equivalently, the collocation method can be interpreted as a projection with the

interpolation operator Pn : Y → Yn defined by [57]

Pnf(x) :=
n∑

p=1

f(xp)Lp(x), x ∈ Ω, (2.20)

for all f ∈ Y . Then, (2.17) is equivalent to

PnKαλ
n = Pnγ. (2.21)
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2.3.2 Forward Problem Discretization

In this section, we consider the finite element discretization of (5.6) and (5.7),

and use their solutions to approximate Hi,j and H∗
i,j. As a result, we obtain finite

dimensional approximations to K and γ.

Let Lk be the first order Lagrange basis functions. Replacing φ and gj in (5.6)

with their finite dimensional counterparts:

Φ(x) =

Nj∑

k=1

pkLk(x),

Gj(x) =

Nj∑

k=1

ckLk(x),

and replacing φ and g∗i in (5.7) with

Φ(x) =

Ni∑

k=1

pkLk(x),

G∗
i (x) =

Ni∑

k=1

dkLk(x),

yields the matrix equations:

Scj = qj, (2.22)

S∗di = q∗i , (2.23)

for cj = [c1, c2, · · · , cNj
]T and di = [d1, d2, · · · , dNi

]T . Here S and S∗ are the finite

element matrices and qj and q∗i are the load vectors resulting from the finite element

discretization of (5.6) and (5.7). Note that for each source (detector), the dimension

of the finite element solution Gj (G∗
i ) can be different, therefore Nj (Ni) may vary.

The H1(Ω) boundedness of the solutions gj and g∗i implies that the discretiza-

tion error ej and e∗i in Gj and G∗
i on the mth finite element is bounded. A bound

for ej and e∗i on each finite element can be found by using the discretization error
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estimates (Theorem 4.4.4 in [20, 9]):

‖ej‖0,m ≤ C‖gj‖1,mhj
m, (2.24)

‖e∗i ‖0,m ≤ C‖g∗i ‖1,mhi
m, (2.25)

where C is a positive constant and hj
m (hi

m) is the diameter of the smallest ball

containing the mth finite element.

2.3.3 Discretization of the Inverse Problem with Operator Approxima-

tions

Substituting the finite element approximations Gj and G∗
i in (4.23) and (5.15),

and using the resulting finite dimensional operator approximations in (3.9), we ob-

tain the following linear system in terms of α̃λ
n which approximates αλ:

PnK̃α̃λ
n = Pnγ̃. (2.26)

In (2.26), the operator K̃ : X → Y is the finite dimensional approximation of K
in (5.19) and PnK̃ : Xn → Yn. Similarly,

γ̃ = Ã∗
aΓ, (2.27)

where Ã∗
a is the approximation to the adjoint operator A∗

a, obtained by substituting

Gj and G∗
i in (5.15).

2.4 Discretization-based Error Analysis

As a result of the discretization of the forward and inverse problems, the re-

constructed image α̃λ
n in (2.26) is an approximation to the actual image αλ. Thus,

the accuracy of the reconstructed image depends on the error incurred by the dis-

cretization of the forward and inverse problems.

In this section, we analyze the effect of the discretization of the forward and

inverse problems on the accuracy of DOT imaging. The analysis is carried out based

on the inverse problem at each linearization defined by (5.19) and the associated
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kernel κ(x, x́).

In this work, we follow an approach which allows us to separately analyze the

effect of the discretization of each problem on the accuracy of the reconstructed

optical image. In this respect, we first consider the impact of projection (i.e. inverse

problem discretization) by collocation method when the associated kernel κ(x, x́)

in (5.19) is exact. Next, we explore the case in which the kernel is replaced by

its finite dimensional approximation (i.e. degenerate kernel) and analyze the effect

of the forward problem discretization on the accuracy of the reconstructed image

without projecting (5.19).

Our analysis reveals that even the kernel is exact, the accuracy of the solution

approximation αλ
n in (3.9) resulting from the inverse problem discretization depends

on the kernel κ(x, x́) of the integral operator. Likewise, the error in the reconstructed

optical image due to the discretization of the forward problem is a function of the

inverse problem solution. These results suggest that the discretization of the inverse

and forward problems can not be considered independent of each other.

2.4.1 Case 1: The kernel κ(x, x́) is exact

In this section, we show the effect of projection on the optical imaging accuracy.

In the analysis, we assume that the kernel κ(x, x́) is exact. We first prove the

convergence of the projection method for the operator K, and then analyze the

effect of projection on the imaging accuracy.

Clearly, the inverse operator K−1 : Y → X exists since K is positive definite

for λ > 0. Furthermore, by the compactness of A and Riesz Theorem, the inverse

operator K−1 is bounded by

‖K−1‖ ≤ 1

λ
. (2.28)

Lemma: Projection by collocation method for the operator K : X → Y converges.

Specifically, the sequence of finite dimensional operators PnK : Xn → Yn

are invertible for sufficiently large n, and (PnK)−1PnKαλ → αλ, n → ∞.

Furthermore,

‖(PnK)−1PnK‖X→Xn ≤ CM
‖K‖X→Y

λ
(2.29)

for some CM > 0 independent of n.
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Proof. See A.3. ¤

Based on the Lemma, the following theorem provides an upper bound for

the L1(Ω) norm of the error between the solution αλ of (5.19) and the solution αλ
n

of (3.9).

Theorem 1: Let {Ωm} denote a set of linear finite elements for m = 1, · · · , N∆,

such that
⋃N∆

m Ωm = Ω and hm be the diameter of the smallest ball that

contains the mth element. Then,

‖αλ − αλ
n‖L1(Ω) ≤ C

√
VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm,

(2.30)

where C is a positive constant, VΩ is the volume of Ω and Tn : Y → Xn is a

uniformly bounded operator given by Tn = (I + 1
λ
PnA)−1Pn.

Proof.

αλ − αλ
n = [I − (PnK)−1PnK]αλ

= [I − (PnK)−1PnK](αλ − ψ) (2.31)

since [I − (PnK)−1PnK]ψ = 0, where ψ ∈ Xn is the interpolant of αλ [20, 9].

Using (A.6),

[I − (PnK)−1PnK] = I − (I +
1

λ
PnA)−1 1

λ
PnK

= I − Tn
1

λ
K, (2.32)

where Tn = (I + 1
λ
PnA)−1Pn is a uniformly bounded operator (see A.3). We

use K defined by (5.19) and (2.32) in (2.31) to obtain

αλ − αλ
n = (I − Tn)(αλ − ψ)− Tn

λ
A(αλ − ψ). (2.33)



32

Then we use the definition of A in (2.33) and find

αλ − αλ
n = (I − Tn)(αλ − ψ)− Tn

λ

∫

Ω

κ(·, x́)(αλ − ψ)(x́)dx́. (2.34)

This leads to

‖αλ − αλ
n‖L1(Ω) ≤ ‖I − Tn‖Y→Xn‖αλ − ψ‖L1(Ω)

+
1

λ
‖Tn‖Y→Xn‖

∫

Ω

κ(·, x́)(αλ − ψ)(x́)dx́‖L1(Ω)

≤
√

VΩ‖I − Tn‖Y→Xn‖αλ − ψ‖0

+
1

λ
‖Tn‖Y→Xn

∫

Ω

dx

∫

Ω

|κ(x, x́)(αλ − ψ)(x́)|dx́,(2.35)

The second term in (2.35) can be rewritten as:

1

λ
‖Tn‖Y→Xn

∫

Ω

dx

∫

Ω

|κ(x, x́)(αλ − ψ)(x́)|dx́

=
1

λ
‖Tn‖Y→Xn

∫

Ω

dx

(
N∆∑
m=1

∫

Ωm

|κ(x, x́)(αλ − ψ)(x́)|dx́
)

. (2.36)

Let eα be the interpolation error:

eα = αλ − ψ. (2.37)

Then, using (4.18),

N∆∑
m=1

∫

Ωm

|κ(x, x́)eα(x́)|dx́

=

N∆∑
m=1

∫

Ωm

∣∣∣∣∣
Nd,Ns∑

i,j

g∗i (x)gj(x)g∗i (x́)gj(x́)eα(x́)

∣∣∣∣∣ dx́ (2.38)

≤
N∆∑
m=1

Nd,Ns∑
i,j

|g∗i (x)gj(x)|
∫

Ωm

|g∗i (x́)gj(x́)||eα(x́)|dx́

≤
N∆∑
m=1

Nd,Ns∑
i,j

|g∗i (x)gj(x)|‖g∗i gj‖0,m‖eα‖0,m, (2.39)
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where (2.39) follows from the Schwarz’ inequality. Note that g∗i gj ∈ L2(Ω) by

assuming (5.8) holds up to the boundary ∂Ω.

We now use (2.36) and (2.39) to obtain

1

λ
‖Tn‖Y→Xn

∫

Ω

dx
( ∫

Ω
|κ(x, x́)(αλ − ψ)(x́)|dx́

)

≤ 1

λ
‖Tn‖Y→Xn

×
∫

Ω

dx

N∆∑
m=1

Nd,Ns∑
i,j

|g∗i (x)gj(x)|‖g∗i gj‖0,m‖eα‖0,m. (2.40)

Using the bound (2.40) in (2.35) and substituting the interpolation error

bound [20, 9]

‖eα‖0,m ≤ C‖αλ‖1,mhm, (2.41)

we obtain

‖αλ − αλ
n‖L1(Ω) ≤ C

√
VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖L1(Ω)‖g∗i gj‖0,m‖αλ‖1,mhm.

≤ C
√

VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm. (2.42)

¤

Remarks 1:

1. Theorem 1 shows the spatial dependence of the inverse problem discretization

on the forward problem solution.

2. The first term in (2.42) suggests that the mesh of the inverse problem be

refined where ‖αλ‖1 is large.
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3. The second term in (2.42) shows that the term ‖αλ‖1,m is scaled spatially by

‖g∗i gj‖0,m. Thus, the effect of the interpolation error eα (see equation (3.11)) in

the inverse problem solution is scaled spatially by the solution of the forward

problem. As a result, the orientation of the sources and detectors with respect

to the support of the optical heterogeneity determines the extent of the bound

on ‖αλ − αλ
n‖L1(Ω).

4. The regularization parameter affects the bound on ‖αλ − αλ
n‖L1(Ω).

5. Increasing the number of sources and detectors increases the bound on ‖αλ −
αλ

n‖L1(Ω).

Remarks 2:

1. Note that the conventional interpolation error estimate given in (2.41) depends

on only the smoothness and support of αλ, and the finite dimensional space

of approximating functions [20]. On the other hand, the error estimate (3.12)

in Theorem 1 shows that the accuracy of the reconstructed image αλ
n depends

on the orientation of the absorptive heterogeneity with respect to the sources

and detectors, as well as on the bound (2.41) on the interpolation error.

2. An error bound similar to (3.12) follows if one uses the Galerkin method [57]

instead of the collocation method for projection.

3. The interpolation error bound (2.41) can be modified based on the choice of

the basis function in (3.10) and the smoothness of the solution αλ (Theorem

4.4.4. in [20, 9]). For instance, if αλ ∈ H2(Ω) and quadratic Lagrange basis

functions are used, then (2.41) can be replaced by

‖eα‖0,m ≤ C‖αλ‖2,mh2
m.

4. An error bound similar to (3.12) can be derived for the error that occurs as

a result of the discretization of the inverse problem in electrical impedance

tomography, optical fluorescence tomography, bioluminescence tomography,

and microwave imaging. Note that in all these imaging modalities, the forward
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problem is modeled by a PDE and the inverse problem can be interpreted in

terms of a linear integral equation, whose kernel is related to the solution of

this PDE.

5. Let γδ be the perturbed right-hand side γ of (3.9) due to the presence of noise,

such that ‖γδ − γ‖L1(Ω) ≤ δ. Then, an additional term is introduced to the

error bound in (3.12) due to this perturbation:

‖αλ − αλ
n‖L1(Ω) ≤ C

√
VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm

+
CM

λ
δ, (2.43)

where CM > 0 is the constant in (2.29) with the use of first order Lagrange

basis functions (see A.3). Thus, the additional term CMδ/λ indicates that the

choice of basis functions may be critical in the presence of noise.

2.4.2 Case 2: The kernel is degenerate

In this section, we first derive approximate upper bounds for the approximation

errors ‖K̃ − K‖ and ‖γ̃ − γ‖, which result from the discretization of the forward

problem. Then, we show the effect of these approximation errors on the accuracy

of the reconstructed optical image. For notational convenience, we will drop the

subscripts on the norms ‖ · ‖ where necessary.

The operatorK : X → Y is bounded with a bounded inverseK−1 : Y → X. By

the finite element approximation of the associated kernel, the sequence of bounded

linear finite dimensional operators K̃ is norm convergent ‖K̃−K‖ → 0; Nj, Ni →∞,

for j = 1, · · · , Ns and i = 1, · · · , Nd, and

‖K̃−1‖ < 1/λ, (2.44)

which can be obtained analogous to (4.33).

In the following, we derive an explicit approximation to the error ‖K̃ − K‖
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in terms of the associated kernel and the discretization error in the kernel approx-

imation. The result is then used to compute the error in the reconstructed optical

image due to ‖K̃ − K‖.
By definition,

‖(Aa − Ãa)α‖l1 =

Nd,Ns∑
i,j

∣∣∣∣
∫

Ω

(g∗i (x)gj(x)−G∗
i (x)Gj(x))α(x)dx

∣∣∣∣ , (2.45)

where G∗
i , Gj are finite element approximations to g∗i and gj, respectively. We can

expand g∗i gj −G∗
i Gj as

g∗i gj −G∗
i Gj = e∗i ej + Gje∗i + G∗

i ej, (2.46)

where e∗i = g∗i −G∗
i and ej = gj−Gj. Replacing G∗

i and Gj respectively with g∗i −e∗i

and gj − ej, we get

g∗i gj −G∗
i Gj = gje∗i + g∗i ej − e∗i ej

≈ gje∗i + g∗i ej, (2.47)

where we neglect the term e∗i ej.

We can express K − K̃ as

K − K̃ = A∗
aAa − Ã∗

aÃa. (2.48)

Following a similar approach as above,

A∗
aAa − Ã∗

aÃa = (A∗
a − Ã∗

a)(Aa − Ãa) + Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa. (2.49)

As a result, the following condition holds:

‖K̃ − K‖ ≤ ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖+ ‖Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa‖. (2.50)
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Since Ãa = −(Aa − Ãa) +Aa, (C.9) can be rewritten as

‖K̃ − K‖ = ‖A∗
aAa − Ã∗

aÃa‖
≤ ‖(A∗

a − Ã∗
a)(Aa − Ãa)‖+ 2‖A∗

a(Aa − Ãa)‖
≈ 2‖A∗

a(Aa − Ãa)‖, (2.51)

where we neglect the term ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖.
Similarly, ‖γ̃ − γ‖ can be interpreted as

‖γ̃ − γ‖L1(Ω) =

∫

Ω

∣∣∣∣∣
Nd,Ns∑

i,j

(g∗i (x)gj(x)−G∗
i (x)Gj(x))Γi,j

∣∣∣∣∣ dx

≈
∫

Ω

∣∣∣∣∣
Nd,Ns∑

i,j

(e∗i (x)gj(x) + g∗i (x)ej(x))Γi,j

∣∣∣∣∣ dx, (2.52)

where the error in Γi,j due to discretization is neglected and the last approximation

is derived similar to (C.10).

We now analyze the effect of the forward problem discretization on the accu-

racy of the reconstructed optical image. Let α̃λ be the solution of

K̃α̃λ = γ̃, (2.53)

where K̃ and γ̃ are the finite dimensional approximations to K and γ, respectively.

Then, by Theorem 10.1 in [57], the error in the solution α̃λ with respect to the

actual solution αλ is bounded by

‖αλ − α̃λ‖ ≤ 1

λ

{
‖(K̃ − K)αλ‖+ ‖γ̃ − γ‖

}
. (2.54)

In the next theorem, we will expand the terms in (4.32) to show explicitly the

effect of the forward problem discretization on the accuracy of the inverse problem

solution.

Theorem 2: Let {Ωj
m} denote the set of linear elements used to discretize (5.6) for

m = 1, . . . , N j
∆; such that

⋃Nj
∆

m Ωj
m = Ω and hj

m be the diameter of the smallest
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ball that contains the mth element in the solution Gj, for all j = 1, . . . Ns.

Similarly, let {Ωi
n} denote the set of linear elements used to discretize (5.7) for

n = 1, . . . , N∗i
∆ ; such that

⋃N∗i
∆

n Ωi
n = Ω and hi

n be the diameter of the smallest

ball that contains the nth element in the solution G∗
i , for all i = 1, . . . Nd.

Then, a bound for the error between the solution αλ of (5.19) and the solution

α̃λ of (3.16) due to the approximations K̃ and γ̃ is given by:

‖αλ − α̃λ‖L1(Ω) ≤ C

λ
max

i,j
‖g∗i gj‖L1(Ω)

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

(
2‖gjα

λ‖0,ni + ‖α‖∞‖gj‖0,ni

) ‖g∗i ‖1,nihi
n

+
Ns∑
j=1

Nj
∆,Nd∑
m,i

(
2‖g∗i αλ‖0,mj + ‖α‖∞‖g∗i ‖0,mj

) ‖gj‖1,mjhj
m




, (2.55)

where C is a positive constant, and ‖ · ‖0,ab and ‖ · ‖1,ab denote respectively the

L2 and H1 norms on the finite element Ωb
a.

Proof. Using (2.51), (C.2), and (C.10), we can write

‖(K̃ − K)αλ‖L1(Ω) ≈ 2‖A∗
a(Aa − Ãa)α

λ‖L1(Ω)

≈ 2

∥∥∥∥∥
Nd,Ns∑

i,j

g∗i (·)gj(·)
∫

Ω

(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)dx́

∥∥∥∥∥
L1(Ω)

≤ 2 max
i,j

‖g∗i gj‖L1(Ω)

Nd,Ns∑
i,j

∫

Ω

∣∣∣
(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)

∣∣∣ dx́. (2.56)

An upper bound for the integral in (C.14) can be obtained as follows:

∫

Ω

∣∣∣
(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)

∣∣∣ dx́

≤
N∗i

∆∑
n=1

‖e∗i ‖0,ni‖gjα
λ‖0,ni +

Nj
∆∑

m=1

‖ej‖0,mj‖g∗i αλ‖0,mj . (2.57)

Note that gjα
λ ∈ L2(Ω) since |gjα

λ| ≤ |gj|‖αλ‖∞. Similarly, g∗i α
λ ∈ L2(Ω)



39

since |g∗i αλ| ≤ |g∗i |‖αλ‖∞. Using (C.15) in (C.14),

‖(K̃ − K)αλ‖L1(Ω) ≤ 2 max
i,j

‖g∗i gj‖L1(Ω)

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gjα
λ‖0,ni

+
Ns∑
j=1

Nj
∆,Nd∑
m,i

‖ej‖0,mj‖g∗i αλ‖0,mj


 .

(2.58)

To compute an upper bound for ‖γ̃ − γ‖ using (4.38), we first write

∫

Ω

∣∣∣∣∣
Nd,Ns∑

i,j

(
e∗i (x)gj(x) + g∗i (x)ej(x)

)
Γi,j

∣∣∣∣∣ dx

≤ max
i,j

|Γi,j|
∫

Ω

Nd,Ns∑
i,j

|e∗i (x)gj(x) + g∗i (x)ej(x)|dx

≤ max
i,j

|Γi,j|



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gj‖0,ni +
Ns∑
i=j

Nj
∆,Nd∑
m,i

‖g∗i ‖0,mj‖ej‖0,mj


 .(2.59)

Noting (5.9),

max
i,j

|Γi,j| ≤ max
i,j

‖g∗i gj‖L1(Ω)‖α‖∞, (2.60)

which leads to

max
i,j

|Γi,j|



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gj‖0,ni +
Ns∑
i=j

Nj
∆,Nd∑
m,i

‖g∗i ‖0,mj‖ej‖0,mj




≤ max
i,j

‖g∗i gj‖L1(Ω)‖α‖∞




Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gj‖0,ni +
Ns∑
i=j

Nj
∆,Nd∑
m,i

‖g∗i ‖0,mj‖ej‖0,mj


 .

(2.61)

We now use (C.16), (C.24), the corresponding discretization error estimates (5.25)-
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(5.26), and (4.32) to obtain (4.34). ¤

Remarks 3:

1. Theorem 2 suggests the use of meshes designed individually for the solutions

Gj, j = 1, · · · , Ns and G∗
i , i = 1, · · · , Nd.

2. Theorem 2 states explicitly the effect of the forward problem discretization on

the accuracy of the inverse problem solution. In this context, Theorem 2 sug-

gests a discretization scheme for the forward problem, where the discretization

criterion is based on the inverse problem solution accuracy, rather than the

accuracy of the forward problem solution.

3. For each source, when solving for Gj, hj
m has to be kept small where (2‖g∗i αλ‖0,mj+

‖α‖∞‖g∗i ‖0,mj)‖gj‖1,mj is large. Note that ‖gj‖1,mj will be large on the elements

close to the jth source.

4. For each detector, when solving for G∗
i , hi

n has to be kept small where (2‖gjα
λ‖0,ni+

‖α‖∞‖gj‖0,ni)‖g∗i ‖1,ni is large. Note that ‖g∗i ‖1,ni will be large on the elements

close to the ith detector.

5. |gj| and |g∗i | are higher close to the sources and detectors, respectively. There-

fore, hj
m has to be small around the jth source and around all detectors, where

αλ is nonzero. Likewise, hi
m has to be small around the ith detector and around

all sources, where αλ is nonzero.

6. If αλ is nonzero on the whole domain Ω, then the error may become higher

depending on the magnitude of |gj| and |g∗i |.

7. The regularization parameter affects the bound on ‖αλ − α̃λ‖L1(Ω).

8. Increasing the number of sources and detectors increases the bound on ‖αλ −
α̃λ‖L1(Ω).

Remarks 4:
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1. Note that the finite-element discretization error estimates (5.25)-(5.26) depend

on only the smoothness and support of gj and g∗i , and the finite dimensional

space of approximating functions [20]. However, the error estimate (4.34) in

Theorem 2 shows that the accuracy of the reconstructed image α̃λ depends on

the orientation of the absorptive heterogeneity with respect to the sources and

detectors, as well as on the finite-element discretization error estimates (5.25)-

(5.26). In this respect, the estimate (4.34) in Theorem 2 shows that reducing

the discretization error in the solutions Gj and G∗
i of the forward problem may

not ensure the accuracy of the reconstructed absorption image (see [40]).

2. In case a different discretization approach such as finite difference [78] or finite

volume [31] is used to solve the forward problem, Theorem 2 can be modified in

a straightforward manner by replacing the discretization error estimates (5.25)

and (5.26) with the corresponding error estimates specific to the method of

choice [78], [31].

3. Let γ̃δ be the perturbed right-hand side γ̃ of (3.16) due to the presence of

noise, such that ‖γ̃δ − γ̃‖L1(Ω) ≤ δ̃. Then, an additional term is introduced to

the bound in (4.34) due to this perturbation:

‖αλ − α̃λ‖L1(Ω) ≤ C

λ
max

i,j
‖g∗i gj‖L1(Ω)

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

(
2‖gjα

λ‖0,ni + ‖α‖∞‖gj‖0,ni

)
‖g∗i ‖1,nihi

n

+
Ns∑
j=1

Nj
∆,Nd∑
m,i

(
2‖g∗i αλ‖0,mj + ‖α‖∞‖g∗i ‖0,mj

)
‖gj‖1,mjhj

m


 +

δ̃

λ
. (2.62)

Clearly, the additional term δ̃/λ due to the presence of noise in (2.62) is

independent of the discretization of the forward problem.

4. Theorem 2 provides a general framework to analyze the error in reconstructed

optical images resulting from the perturbations in the kernel of the linear in-

tegral equation (4.18). In general, a perturbation in the kernel of the linear

integral equation (4.18) can occur due to errors resulting from the numerical
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integration of (5.6)-(5.7), the approximation of the boundary ∂Ω, the inaccu-

rate approximation of the source Qj and/or the background optical properties.

Furthermore, the analysis framework in Theorem 2 can be used to analyze the

effect of linearization of the Lippmann-Schwinger type equations [25] using

Born approximation on the accuracy of the reconstructed optical images [38].

5. A bound similar to (4.32) can be derived for the error that occurs as a result of

the discretization of the forward problem in electrical impedance tomography,

optical fluorescence tomography, bioluminescence tomography, and microwave

imaging.

2.4.3 Iterative Born Approximation

In this section, we explore the error in the inverse problem solution within an

iterative linearization approach.

The error analysis presented in this paper covers the error which results from

the discretization of the forward and inverse problems. If α is sufficiently low, then

one iteration suffices to solve the inverse problem and the error analysis discussed

above applies. When iterative linearization is considered to address the nonlinearity

of the inverse problem, we can make use of the error analysis at each linearized

step as follows: Let αλ
(t) and α̃λ

n(t) be the actual solution of the regularized inverse

problem (5.19) and the solution of (2.26) at the tth linearization step, respectively.

At the end of the (r − 1)th linearization step, the absorption coefficient estimate at

x is given by µ̂
(r−1)
a (x) = µ

(0)
a (x) +

∑r−1
t=1 α̃λ

n(t)(x), where α̃λ
n(t) has an error due to

discretization with respect to the actual solution αλ
(t), and µ

(0)
a is the initial guess

for the background absorption coefficient. In the next linearization, an error on the

new solution update µ̂
(r)
a will be introduced due to:

1. projection (inverse problem discretization),

2. the error (K̃ − K)(r−1) in the operator (K̃)(r−1) and the error (γ̃ − γ)(r−1) in

(γ̃)(r−1) resulting from the forward problem discretization, and

3. the error in the (r − 1)th update µ̂
(r−1)
a , resulting from the discretization of

the forward and inverse problems. Note that µ̂
(r−1)
a appears as a coefficient



43

in the boundary value problems (5.1)-(5.2) and (5.3)-(5.4). An error in this

coefficient implies perturbation in the solutions of (5.1)-(5.2) and (5.3)-(5.4).

As a result, Gj and G∗
i will have error terms in addition to the discretization

error.

As a result, the error in µ̂
(r)
a at the rth iteration is bounded by:

‖µa − µ̂(r)
a ‖ =

∥∥∥∥∥
r∑

t=1

αλ
(t) − α̃λ

n(t)

∥∥∥∥∥ ≤
r∑

t=1

‖αλ
(t) − α̃λ

n(t)‖, (2.63)

assuming that the initial guess µ
(0)
a for the background absorption is approximated

accurately while solving the boundary value problems (5.1)-(5.2) and (5.3)-(5.4) at

the first iteration, that is µ
(0)
a (x)−∑n

k=1 µ
(0)
a (xk)Lk(x) → 0, for all x ∈ Ω.

2.5 Conclusion

In this work, we presented an error analysis to show the relationship between

the error in the reconstructed optical absorption images and the discretization of

the forward and inverse problems. We summarized the implications of the error

analysis in two theorems which provide an insight into the impact of forward and

inverse problem discretizations on the accuracy of the reconstructed optical absorp-

tion images. These theorems show that the error in the reconstructed optical image

due to the discretization of each problem is bounded by roughly the multiplication

of the discretization error in the corresponding solution and the solution of the other

problem. In particular, Theorem 2 shows that solving the diffusion equation and

the associated adjoint problem accurately may not ensure small values for ‖K̃ −K‖
and ‖γ − γ̃‖, which may lead to large errors in the reconstructed optical images,

depending on the value of the regularization parameter. Similarly, relatively large

discretization error in the solution of the forward problem may have relatively low

impact on the accuracy of the reconstructed optical images, depending on the source-

detector configuration, and orientation with respect to the optical heterogeneities.

We have also shown that the error estimates can be extended to include the effect

of noise on the overall error in the reconstructed images.
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The error analysis presented in this work motivates the development of novel

adaptive discretization schemes based on the error estimates in Theorems 1 and 2.

In the sequel of this work, we propose two novel adaptive discretization algorithms

for the forward and inverse problems [40], and justify the validity of Theorems 1

and 2.

The error analysis can be extended to show the effect of the discretization error

on the accuracy of the simultaneous reconstruction of scattering and absorption co-

efficients, which will be the focus of our future work. Furthermore, the framework,

which is used to analyze the effect of discretization error in the forward problem

solution, can be employed to analyze the effect of perturbations in the kernel of

the integral equation (4.18) on the accuracy of optical imaging. Finally, we note

that the error analysis introduced in this paper is not limited to DOT, and can eas-

ily be adapted for similar inverse parameter estimation problems such as electrical

impedance tomography, bioluminescence tomography, optical fluorescence tomogra-

phy, microwave imaging etc.



CHAPTER 3

Adaptive mesh generation in diffuse optical absorption

imaging

3.1 Introduction

Numerical approaches in solving the forward and inverse problems in Diffuse

Optical Tomography (DOT) poses a tradeoff between computational efficiency and

imaging accuracy. This tradeoff is a direct consequence of the discretization of the

forward and inverse problems [39, 4] and the size of the resulting discrete forward

and inverse problems. The imaging accuracy depends on the discretization error

in the forward and inverse problem solutions. On the other hand, attempting to

minimize the discretization error in the solutions of both problems separately implies

a significant increase in the size of the discrete forward and inverse problems. Hence,

it is important to understand the relationship between the discretization error and

the resulting error in the solution of the inverse problem. Such a relationship can

illuminate the mutual dependence of the forward and inverse problem solutions

and identify the factors that control the extent to which the discretization error

in the solutions of the forward and inverse problems affects the accuracy of the

reconstructed optical images.

In part I of this two-part study, we present an error analysis which shows the

effect of discretization of the forward and inverse problems on the accuracy of the

reconstructed optical absorption images [39]. The analysis leads to two new error

estimates that take into account the interdependence of the forward and inverse

problems (see Section 3.2). In the second part of our work, based on the error

analysis presented in part I, we develop new adaptive discretization schemes for the

forward and inverse problems. The resulting locally refined meshes reduce the error

in the reconstructed optical images while keeping the size of the discrete forward

and inverse problems relatively small.

There has been extensive research on adaptive mesh generation for the nu-

merical solution of partial differential equations (see [39] for a list of publications)

45
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and inverse parameter estimation problems to reduce the undesired effect of dis-

cretization error [19, 66]. In the area of DOT, in [5] it was numerically shown

that approximation errors resulting from the discretization of the forward prob-

lem can lead to significant degradation in the quality of the reconstructed images.

In that work, the error in the reconstructed images is minimized by using an en-

hanced imaging model that treats this additional approximation error within the

Bayesian framework. Alternatively, several investigators have reported on adaptive

discretization schemes for the forward and inverse problems to address the optical

image degradation due to discretization. In [28] a “data driven zonation” scheme,

which can be viewed as an adaptive discretization algorithm, was proposed for flu-

orescence imaging [28]. In [36], we presented a region-of-interest (ROI) imaging

scheme for DOT, which employed a multi-level algorithm on a nonuniform grid.

The non-uniform grid is designed so as to provide finer spatial resolution for the

ROI which corresponds to the tumor region as indicated by a priori anatomical

image. In [82] an a priori non-uniform mesh design which provides high resolution

at the heterogeneities and near boundary regions was proposed. In that work, the

mesh refinement is independent of the source-detector configuration and the loca-

tion of the heterogeneities. In [35] a dual mesh strategy was proposed, in which, a

relatively fine uniform mesh is considered for the forward problem discretization and

a coarse uniform mesh is generated for the inverse problem discretization. In the

same study, an adaptive refinement scheme was proposed for the inverse problem

discretization, but no adaptive refinement was considered for the solution of the for-

ward problem. Another dual mesh strategy which makes use of a priori ultrasound

information was presented in [46]. In that work, the dual mesh is a coarse mesh for

the background tissue and a relatively fine mesh for the heterogeneity, similar to the

approach in [36]. In fluorescence imaging, a dual adaptive mesh strategy was used to

discretize the inverse problem and the associated coupled diffusion equations, where

the refinement criterion is based on a posteriori discretization error estimates [54].

Note that in all these studies [28, 36, 82, 35, 46, 54], the mesh refinement criteria

considered for the inverse (forward) problem disregard the impact of the solution of

the forward (inverse) problem. In other words, the discretization of each problem is
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considered independently of the solution of the other problem.

In this work, based on the two error bounds provided by the error analy-

sis in part I [39], we introduce an adaptive discretization scheme for the forward

and inverse problems, respectively. We remark that the mesh refinement criterion

for each problem comprises the discretization error in the corresponding problem

solution, scaled spatially by the solutions of both problems. Thus, the proposed

adaptive mesh generation algorithms address the interdependence between the so-

lutions of the forward and inverse problems and take into account the orientation

of the source-detectors and the absorptive perturbations. This makes the adap-

tive discretization algorithms introduced in this paper different from the previous

approaches [28, 36, 82, 35, 46, 54]. The simulation experiments validate the implica-

tions of our error analysis and show that the proposed mesh generation algorithms

significantly improve the accuracy of the reconstructed optical images for a given

number of unknowns in the discrete forward and inverse problems. We specifically

show that using the discretization error estimates, which do not take into account

the interdependence of forward and inverse problems as a criterion for discretization,

may lead to severely degraded image reconstructions (see simulation study 3). We

also discuss the computational complexity of the proposed adaptive mesh genera-

tion algorithms and compare it to the computational complexity of mesh generation

algorithms based on the conventional discretization error estimates. We finally note

that the proposed adaptive mesh generation algorithms can be adapted for similar

inverse parameter estimation problems, such as electrical impedance tomography,

optical fluorescence tomography, bioluminescence tomography, microwave imaging,

etc.

The outline of this paper is as follows: In Section 2, we give a brief overview of

the forward and inverse DOT problems and recall the two theorems presented in part

I which summarize the impact of discretization on the accuracy of the reconstructed

optical images. In Section 3, based on these two theorems, we introduce the adaptive

mesh generation algorithms for the solution of the forward and inverse problems and

discuss their computational complexity. In Section 4, we present our experimental

results, which is followed by the Conclusion section. The Appendix includes the
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solution of a model problem used to initiate the adaptive mesh generation.

Table 3.1: Definition of function spaces and norms.
NotationExplanation

f The complex conjugate of the function f
C(Ω) Space of continuous complex-valued functions on Ω
Ck(Ω) Space of complex-valued k -times continuously differentiable functions on Ω
L∞(Ω) L∞(Ω) = {f | ess supΩ |f(x)| < ∞ }
Lp(Ω) Lp(Ω) = {f | (

∫
Ω
|f(x)|pdx)1/p < ∞ }, p ∈ [1,∞)

Dz
wf zth weak derivative of f

Hp(Ω) Hp(Ω) = {f | (
∑

|z|≤p ‖Dz
wf‖2

0)
1/2 < ∞ }, p ∈ [1,∞)

‖f‖0 The L2(Ω) norm of f
‖f‖p The Hp(Ω) norm of f
‖f‖∞ The L∞(Ω) norm of f
‖f‖Lp(Ω) The Lp(Ω) norm of f
‖f‖0,m The L2 norm of f over the mth finite element Ωm

‖f‖p,m The Hp norm of f over the mth finite element Ωm

3.2 Overview

In this section, we first briefly define the forward and inverse problems in

DOT. Next, we state Theorems 1 and 2 presented in the first part of this work [39]

to recall the effect of the discretization of the forward and inverse problems on the

accuracy of optical absorption image reconstruction. We refer to Table 5.2 for the

explanation of the notation associated with functions and their norms. Note that

calligraphic letters are used to denote the operators, e.g. Aa, I, K etc.

3.2.1 Forward and inverse problems in DOT

We consider the following boundary value problem to model the near infrared

light propagation in a bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω [20, 4]:

−∇ ·D(x)∇gj(x) + (µa(x) +
iω

c
)gj(x) = Qj(x) x ∈ Ω, (3.1)

gj(x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂Ω, (3.2)

where gj(x) is the photon density at x, Qj is the point source located at the source

position xj
s, D(x) is the diffusion coefficient and µa(x) is the absorption coefficient
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at x, i =
√−1, ω is the modulation frequency of the source, c is the speed of the

light, a = (1 + R)/(1−R) where R is a parameter governing the internal reflection

at the boundary ∂Ω, and ∂ · /∂n denotes the directional derivative along the unit

normal vector on the boundary. The boundary value problem (5.1)-(5.2) constitutes

the forward problem in DOT together with the associated adjoint problem [4, 39]:

−∇ ·D(x)∇g∗i (x) + (µa(x)− iω

c
)g∗i (x) = 0 x ∈ Ω, (3.3)

g∗i (x) + 2aD(x)
∂g∗i
∂n

(x) = Q∗
i (x) x ∈ ∂Ω, (3.4)

where Q∗
i is the adjoint source located at the detector position xi

d. Note that we

approximate the point source Qj in (5.1) and the adjoint source Q∗
i in (5.4) by

Gaussian functions with sufficiently low variance, whose centers are located at xj
s

and xi
d, respectively.

In this work, we focus on the estimation of the absorption coefficient and con-

sider an iterative algorithm based on repetitive linearization of the inverse problem

using first order Born approximation. Using a zeroth order Tikhonov regularization

to address the illposedness, the inverse problem at each iteration reads:

γ(x) = (A∗
aΓ)(x) = [(A∗

aAa + λI)αλ](x)

:=

∫

Ω

κ(x, x́)αλ(x́)dx́ + λαλ(x) (3.5)

:= (Kαλ)(x), (3.6)

where Γi,j is the (i, j)th entry in the vector Γ ∈ CNd×Ns which denotes the differen-

tial measurement at the ith detector due to the jth source as a result of the small

perturbation α on the background absorption coefficient µa. In (3.5), κ(x, x́) is the

kernel of the integral equation, given by [39]

κ(x, x́) =

Nd,Ns∑
i,j

H∗
i,j(x)Hi,j(x́), (3.7)

where Hi,j = −g∗i gj is the kernel of the integral operator Aa : L∞(Ω) → CNd×Ns and
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H∗
i,j = −g∗i gj is the kernel of the adjoint operator A∗

a : CNd×Ns → L1(Ω) given by:

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H∗
i,j(x)βi,j =

Nd,Ns∑
i,j

−g∗i (x)gj(x)βi,j, (3.8)

for all β ∈ CNd×Ns . Note that gj and g∗i in (4.18) and (5.15) are the solutions of the

variational formulations of (5.1)-(5.2) and (5.3)-(5.4), respectively [39]. For the rest

of the paper, we will denote L∞(Ω) and L1(Ω) by X and Y , respectively.

Below we summarize the two theorems of part I [39] and provide the error

estimates which will be used in the design of adaptive meshes for the discretization

of the forward and inverse DOT problems. In this respect, we first consider the

impact of inverse problem discretization when the associated kernel κ(x, x́) in (3.5)

is exact. Next, we give the error estimate for the case in which the kernel is replaced

by its finite dimensional approximation (i.e. degenerate kernel) and analyze the

effect of the forward problem discretization on the accuracy of the reconstructed

image without projecting (3.6).

3.2.2 Effect of inverse problem discretization

Consider the discretization of the inverse problem (3.6) by projecting it onto

a finite dimensional subspace Yn ⊂ Y spanned by the first order Lagrange basis

functions {L1, . . . , Ln}, using the collocation method [39]:

PnKαλ
n = Pnγ, (3.9)

where Pn : Y → Yn is the projection operator associated with the collocation

method with first order Lagrange basis functions [39] such that αλ
n(x), x ∈ Ω, is

approximated on a set {Ωm} of finite elements for m = 1, · · · , N∆,
⋃N∆

m Ωm = Ω as

follows:

αλ
n(x) =

n∑

k=1

akLk(x). (3.10)
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Let ψ be the interpolant of αλ [20] and assume that αλ ∈ H1(Ω). Then, the

interpolation error eα = αλ − ψ on each finite element is bounded by

‖eα‖0,m ≤ C‖αλ‖1,mhm, (3.11)

where C is a positive constant and hm is the diameter of the smallest ball that

contains the mth element.

Theorem 1 describes the effect of inverse problem discretization on the accu-

racy of the reconstructed optical absorption image.

Theorem 1: The error between the solution αλ of (3.6) and the solution αλ
n of (3.9)

is bounded by:

‖αλ − αλ
n‖L1(Ω) ≤ C

√
VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

N∆∑
m=1

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,mhm, (3.12)

where C is a positive constant, VΩ is the volume of Ω, Tn : Y → Xn is a

uniformly bounded operator given by Tn = (I + 1
λ
PnA∗

aAa)
−1Pn, and gj, g

∗
i

are the solutions of the variational formulations of the boundary value prob-

lems (5.1)-(5.2) and (5.3)-(5.4), respectively [39].

Proof: See [39].

3.2.3 Effect of forward problem discretization

Assume that D,µa ∈ C1(Ω). Noting that Qj, Q
∗
i ∈ H1(Ω), the solutions gj, g

∗
i

of the variational formulations of the boundary value problems (5.1)-(5.2) and (5.3)-

(5.4) satisfy [39]

gj, g
∗
i ∈ C(Ω). (3.13)

Let {Ωj
m} denote the set of linear elements used to discretize the variational for-

mulation of the boundary value problem (5.1)-(5.2) for m = 1, . . . , N j
∆; such that

⋃Nj
∆

m Ωj
m = Ω and hj

m be the diameter of the smallest ball that contains the mth
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element in the finite dimensional solution Gj, for all j = 1, . . . Ns [39]. Similarly, let

{Ωi
n} denote the set of linear elements used to discretize the variational formulation

of the boundary value problem (5.3)-(5.4) for n = 1, . . . , N∗i
∆ ; such that

⋃N∗i
∆

n Ωi
n = Ω

and hi
n be the diameter of the smallest ball that contains the nth element in the finite

dimensional solution G∗
i , for all i = 1, . . . Nd [39]. Then, a bound for the discretiza-

tion error in the finite element solutions Gj and G∗
i with respect to the solutions gj

and g∗i of the variational formulations of the boundary value problems (5.1)-(5.2)

and (5.3)-(5.4) on each finite element can be given by [20]

‖gj −Gj‖0,mj ≤ C‖gj‖1,mjhj
m, (3.14)

‖g∗i −G∗
i ‖0,ni ≤ C‖g∗i ‖1,nihi

n, (3.15)

where C is a positive constant, and ‖ · ‖0,ab and ‖ · ‖1,ab denote respectively the L2

and H1 norms on the finite element Ωb
a.

Consider the inverse problem

K̃α̃λ = γ̃, (3.16)

where K̃ and γ̃ are the finite dimensional approximations to K and γ, obtained by

substituting gj and g∗i in Hi,j and H∗
i,j by Gj and G∗

i , respectively.

Theorem 2 shows the effect of forward problem discretization on the accuracy

of the reconstructed optical absorption image.

Theorem 2: A bound for the error between the solution αλ of (3.6) and the solution

α̃λ of (3.16) due to approximations K̃ and γ̃ is given by:

‖αλ − α̃λ‖L1(Ω) ≤ C

λ
max

i,j
‖g∗i gj‖L1(Ω)

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

(
2‖gjα

λ‖0,ni + ‖α‖∞‖gj‖0,ni

)
‖g∗i ‖1,nihi

n

+
Ns∑
j=1

Nj
∆,Nd∑
m,i

(
2‖g∗i αλ‖0,mj + ‖α‖∞‖g∗i ‖0,mj

)
‖gj‖1,mjhj

m


 , (3.17)
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where C is a positive constant.

Proof: See [39].

We refer to part I [39] for further details of the discussion regarding the defi-

nition and discretization of the forward and inverse problems. In the following, we

discuss the adaptive mesh generation for the forward and inverse problems.

3.3 Adaptive Mesh Generation

In this section, we discuss the adaptive mesh design for the discretization

of the forward and inverse problems based on the Theorems 1 and 2. For each

problem, we present an adaptive mesh generation algorithm, which is followed by

the corresponding computational cost analysis.

3.3.1 Adaptive Mesh Generation for the Forward Problem

Let the mesh parameter hj
m for Gj for j = 1, · · · , Ns and the mesh parameter

hi
m for G∗

i for i = 1, · · · , Nd be chosen so that:

hj
m ≤ εf∑Nd

i (2‖g∗i αλ‖0,mj + ‖α‖∞‖g∗i ‖0,mj)‖gj‖1,mj

:= Bm
j , (3.18)

hi
n ≤

εf∑Ns

j (2‖gjαλ‖0,ni + ‖α‖∞‖gj‖0,ni)‖g∗i ‖1,ni

:= B∗n
i , (3.19)

where the tolerance εf will be defined later. Then, by Theorem 2, the error in the

reconstructed image due to the forward problem discretization is bounded by:

C

λ
max

i,j
‖g∗i gj‖L1(Ω)

(
Ns∑
j

N j
∆ +

Nd∑
i

N∗i
∆

)
εf = ε̃f , (3.20)

where C is a positive constant and ε̃f is the total allowable error in the reconstructed

optical image due to the forward problem discretization. Equation (3.20) implies

the following value for εf :

εf =
λε̃f/C

maxi,j ‖g∗i gj‖L1(Ω)

1(∑Ns

j N j
∆ +

∑Nd

i N∗i
∆

) . (3.21)
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Algorithm 1 outlines the adaptive mesh generation algorithm for the forward

problem in the form of a pseudocode. The algorithm is performed for each source

and detector before the linearization of the inverse problem and it yields a family of

adaptively refined meshes with conforming elements. We use Rivara’s algorithm [76]

for refinement.

Algorithm 1 The pseudocode for the mesh generation algorithm for the forward
problem, prior to the linearization of the inverse problem.

¦ Generate an initial uniform mesh (∆,N∆), ∆ =
⋃N∆

m=1{∆m}
¦ Set εf

¦ Initialize the set of marked elements: Me ← {}
¦ flag = True

while flag = True
for each element ∆m ∈ ∆ with mesh parameter hj

m (hi
m)

if first linearization
¦ Use analytical solutions for gj and g∗i and a priori anatomical
information about α to compute the bound Bm

j in (3.18) (B∗n
i in (3.19))

else
¦ Use current solution updates Gj and G∗

i and α̃λ
n

to compute Bm
j in (3.18) (B∗n

i in (3.19))
end
if hj

m > Bm
j (hi

m > B∗n
i )

¦ Me ← Me

⋃{∆m}
end

end

if Me 6= {}
¦ Refine the marked elements and update the mesh ∆
¦ Me ← {}

else
¦ flag = False

end
end

¦ Solve for Gj (G∗
i ).

Remarks 1:

1. In practice, Bm
j and B∗n

i in (3.18)-(3.19) can not be computed since α, αλ,

gj, and g∗i are unknown. However, Bm
j and B∗n

i can be estimated by using

approximations for the functions involved in these bounds, based on either
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a priori information or on the recent forward and inverse problem solution

updates. Then, the elements whose mesh parameter hj
m (hi

n) exceeds Bm
j

(B∗n
i ) can be determined and refined.

2. After the first sweep of refinement, one can compute the bound Bm
j and B∗n

i

only for the new elements. We note that for the initial mesh design, we use

a model problem to compute the terms in the error bound relevant to the

forward problem solution (see B.1). If there is no a priori information, αλ can

be assumed to be spatially constant at the first linearization step. After the

first linearization, the norms in Bm
j and B∗n

i relevant to gj and g∗i are not ex-

pected to change significantly. In this context, the terms ‖g∗i αλ‖0,m, ‖gjα
λ‖0,n

in (3.18) and (3.19) can be bounded by ‖g∗i ‖0,mj‖αλ‖∞,mj and ‖gj‖0,ni‖αλ‖∞,ni ,

respectively. Therefore, one can store the norms ‖gj‖0,mj and ‖g∗i ‖0,ni at the

end of the first mesh generation, and update Bm
j and B∗n

i in the following

mesh generations by using these stored values and the updated αλ values.

3. In case εf can not be chosen in prior, we consider a posterior approach, set

εf = 1, and compute hj
m/Bm

j (hi
n/B∗n

i ) on each element, which is used as the

indicator for refinement. Then, the elements with indicator value exceeding

the average hj
m/Bm

j (hi
n/B

∗n
i ) quantity are marked for refinement. We note

that in this case, the algorithm has to be stopped when the number of nodes

in the mesh exceeds the allowable number of nodes.

3.3.2 Computational cost of the adaptive mesh generation algorithm for

the forward problem

Consider the algorithm described in Remark 1(iii) for Ω ⊂ R2. Using triangu-

lar finite elements with first order Lagrange basis functions and an analytical (exact)

integration on each finite element, the number of multiplications required to com-

pute the L2 or H1 norm of a finite dimensional function on each triangular element

Ωj
m (Ωi

n) is 12. On the other hand, computing the norm ‖gjα
λ‖0,ni (‖g∗i αλ‖0,mj)

takes 10 times the number of multiplications to compute ‖gj‖1,mj (‖g∗i ‖1,ni). As a

result, the total number of multiplications required to compute the error estimates

on all finite elements for the jth source is given by (132Nd + 16)N j
∆. Similarly, the



56

total number of multiplications required to compute the error estimates on all finite

elements for the ith detector is equal to (132Ns + 16)N∗i
∆ .

In order to reduce the computational cost of the proposed adaptive mesh

generation algorithm, we can approximate the bounds Bm
j in (3.18) and B∗n

i in (3.19)

as follows:

Bm
j ≈ εf

(2‖∑Nd

i g∗i αλ‖0,mj + ‖α‖∞‖
∑Nd

i g∗i ‖0,mj)‖gj‖1,mj

(3.22)

B∗n
i ≈ εf

(2‖∑Ns

j gjαλ‖0,ni + ‖α‖∞‖
∑Ns

j gj‖0,ni)‖g∗i ‖1,ni

. (3.23)

Then, the number of multiplications required to compute the error estimates on all

finite elements becomes 148N j
∆ (148N∗i

∆ ), which implies a significant reduction as

compared to (132Nd + 16)N j
∆ ((132Ns + 16)N i∗

∆ ).

If one uses the discretization error estimates (3.14)-(3.15) to generate adaptive

meshes for the discretization of (5.1)-(5.2) and (5.3)-(5.4), the number of multiplica-

tions is equal to 13N j
∆ and 13N∗i

∆ , respectively. Then, the resulting adaptive meshes

will lead to finite element solutions Gj and G∗
i with reduced discretization error.

However, reduction in the discretization error in Gj and G∗
i may not ensure the

accuracy of the reconstructed absorption image (see simulation experiment 3).

3.3.3 Adaptive mesh generation for the inverse problem:

Let the mesh parameter hm for the solution of the inverse problem be defined

as follows:

hm ≤ εinv/

(√
VΩ‖I − Tn‖Y→Xn‖αλ‖1,m +

1

λ
‖Tn‖Y→Xn

×max
i,j

‖g∗i gj‖L1(Ω)

Nd,Ns∑
i,j

‖g∗i gj‖0,m‖αλ‖1,m

)
:= Bm

inv. (3.24)

Then, by Theorem 1, the error in the reconstructed image due to inverse problem

discretization is bounded by

CN∆εinv = ε̃inv, (3.25)
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where C is a positive constant and ε̃inv is the total allowable error in the recon-

structed optical image due to inverse problem discretization.

We present the pseudocode for our adaptive mesh generation algorithm used

at each linearization of the inverse problem in Algorithm 2. Similar to the forward

problem discretization, we use Rivara’s algorithm [76] for the refinement of the

elements.

Algorithm 2 The pseudocode for the mesh generation algorithm at every lineariza-
tion step of the inverse problem.

¦ Generate an initial uniform mesh (∆,N∆), ∆ =
⋃N∆

m=1{∆m}
¦ Set εinv

¦ Initialize the set of marked elements: Me ← {}
¦ flag = True

while flag = True
for each element ∆m ∈ ∆ with mesh parameter hm

if first linearization
¦ Use current solution updates Gj and G∗

i and a priori information
about α to compute Bm

inv in (3.24)
else

¦ Use current solution updates Gj and G∗
i and α̃λ

n

to compute Bm
inv in (3.24)

end
if hm > Bm

inv

¦ Me ← Me

⋃{∆m}
end

end

if Me 6= {}
¦ Refine the marked elements and update the mesh ∆
¦ Me ← {}

else
¦ flag = False

end
end

¦ Solve for α̃λ
n.

Remarks 2:

1. In practice, Bm
inv in (3.24) can not be computed since αλ, gj, g∗i , and Tn

are unknown. Similar to the approach described in Section 3.3.1, we can
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compute an estimate for Bm
inv by using the uniform boundedness of the operator

Tn [39] and by using approximate values for the functions involved in Bm
inv. In

this context, we use either a priori information or the recent forward and

inverse problem solution updates to calculate (3.24) on each element. Then,

the elements with the mesh parameter hm > Bm
inv are determined and refined.

2. In order to save computations, after the first sweep of refinement, one can

compute the bound Bm
inv only for the new elements. Furthermore, similar to

the approach described in Section 3.3.1, the term ‖g∗i gj‖0,m in (3.24) can be

stored after the first mesh generation and can be used in the following mesh

generations. In this context, the bound Bm
inv can be updated by using only the

updated ‖αλ‖1,m value.

3. Note that, in practice, one of the two terms in the denominator of Bm
inv will be

dominant depending on the value of λ. Thus, we consider only the dominant

term for the computation of Bm
inv. In case εf can not be chosen in prior,

we consider a posterior approach, set εinv = 1 and compute ‖αλ‖1,mhm or
∑Nd,Ns

i,j ‖g∗i gj‖0,m‖αλ‖1,mhm on each element, which are used as refinement

indicators. Then, the elements with indicator value which exceeds the average

indicator value are refined. In this case, the algorithm has to be stopped when

the number of nodes in the mesh exceeds the allowable number of nodes.

3.3.4 Computational cost of the adaptive mesh generation algorithm for

the inverse problem

Consider the algorithm stated in Remark 2(iii) for Ω ⊂ R2 and assume that

the second term in the denominator of Bm
inv (3.24) is dominant. Using triangular

finite elements with first order Lagrange basis functions and an analytical (exact)

integration on each finite element, the total number of multiplications required to

compute the error estimates on all finite elements is given by (120NdNs + 14)N∆.

In order to reduce the number of multiplications, we can consider an approxi-
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mation for Bm
inv as follows:

Bm
inv ≈

1∥∥∥∑Nd,Ns

i,j g∗i gj

∥∥∥
0,m
‖αλ‖1,m

. (3.26)

Then, the number of multiplications reduces to 134N∆.

If one uses the interpolation error estimate (3.11) to generate adaptive meshes,

the number of multiplications to compute the error estimates on all finite elements

will be 13N∆. However, such adaptive meshes may not help reduce the error in the

reconstructed optical images, resulting from discretization (see simulation experi-

ment 3).

3.4 Numerical Experiments

We conduct a series of numerical experiments to demonstrate the implications

of Theorems 1 and 2, and to present the effectiveness of the proposed adaptive mesh

generation algorithms. We perform our experiments in 2D for ease of comparison.

In the first simulation, we consider a series of image reconstructions to show the

effectiveness of the proposed adaptive mesh generation algorithms. In this context,

we compare the images reconstructed by using uniform meshes for the forward and

inverse problems to the images reconstructed by using adaptive meshes which are

designed based on Theorems 1 and 2.

In the second simulation, we show the effect of the heterogeneity size on the

accuracy of the reconstructed absorption images. Next, we demonstrate how this

error can be addressed by the proposed adaptive discretization schemes.

In the final simulation study, we demonstrate the implication of Theorem 2

and show that meshes generated for the forward problem by using discretization

error estimates which disregard the interaction between the solutions gj and g∗i and

αλ can lead to unstable image reconstructions. We note that the proposed adaptive

mesh generation algorithm for the forward problem addresses this problem.

Note that in all experiments, we use triangular finite elements with first order

Lagrange basis functions. We apply Gaussian elimination method to solve the dis-

crete forward problem resulting from the variational formulation [20] of the boundary
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value problems (5.1)-(5.2) and (5.3)-(5.4) [39]. For the inverse problem, we consider

the discrete problem obtained by projecting (3.16) by collocation method:

PnK̃α̃λ
n = Pnγ̃, (3.27)

where the regularization parameter is chosen as small as possible, yet large enough

to enable robust image reconstructions. In this respect, an appropriate value for the

regularization parameter is chosen based on experience.

3.4.1 Simulation Study 1

In this simulation study, we consider the geometry shown in Figure 4.1(a). We

simulate the optical data by solving the diffusion equation at ω = 0 on a fine uniform

grid with 61 nodes along x and y directions, where the refractive index mismatch

parameter a = 3. 11 sources and 11 detectors are evenly spaced on the bottom and

top edges of the square, respectively. The diffusion coefficient D(x) = 0.0410 for

x ∈ Ω ∪ ∂Ω. The circular heterogeneity with absorption coefficient µa = 0.2 cm−1

is embedded in an optically homogeneous background with µa = 0.04 cm−1.

(a) The optical domain and
source-detector configuration
for simulation study 1.

(b) The optical domain and
source-detector configuration
for simulation study 2. r1 =
0.50 cm, r2 = 0.75 cm, r3 =
1.0 cm, and r4 = 1.25 cm.

(c) The optical domain and
source-detector configuration
for simulation study 3. The ra-
dius of the circles is 0.75 cm.

Figure 3.1: The setups used for the simulation studies 1, 2, and 3. The
squares and triangles denote the detectors and sources, re-
spectively.

In order to obtain a series of absorption imaging problems using the same
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setup, we consider 5 values for the background absorption value. Then, for each

imaging problem, we consider three mesh scenarios: Uniform mesh for both forward

and inverse problems; adaptive mesh for the forward problem and uniform mesh for

the inverse problem; and adaptive meshes for both forward and inverse problems.

We refer to Table 3.2 for a brief outline of the first simulation study.

Table 3.2: The mesh scenarios and the background µa values in simula-
tion study 1.

Mesh (Forward) Mesh (Inverse) Background µa (cm−1)
Uniform Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Adaptive 0.032, 0.036, 0.040, 0.044, 0.050

The uniform mesh used for the forward problem discretization has 625 nodes

and is shown in Figure 3.2(a). The uniform mesh for the inverse problem has 313

nodes and is shown in Figure 3.2(b). We use the algorithms described in Section 3.3.1

and Remark 1(iii), and Section 3.3.3 Remark 2(iii) to generate the adaptive meshes

for the forward and inverse problems, respectively. The number of nodes in each

of the adaptive meshes used for the forward problem does not exceed 750. An

example for the adaptive mesh generated for a source located at (1.0, 0) is shown

in Figure 3.2(c). The adaptive mesh for the inverse problem generated for the case

where the background µa = 0.050 cm−1 has 418 nodes and is shown in Figure 3.2(d).

For the inverse problem, we set the regularization parameter λ to 10−7 in

all experiments to eliminate the dependence of the error estimates (3.12)-(4.34)

on the regularization parameter. We consider the image reconstructed by using

fine uniform meshes (61 × 61 nodes for the forward problem and 61 × 61 nodes

for the inverse problem) as the reference image, which is assumed to possess no

error due to discretization. We compute the error ‖αλ − α̃λ
n‖L1(Ω) for each image

reconstruction and tabulate the results in Table 3.3. We see that the error in the

images reconstructed by using uniform meshes for both forward and inverse problems

is significantly reduced by the use of adaptively refined meshes. A similar behavior

is observed for all choices of background absorption value.

We present image reconstructions in Figures 3.3 and 3.4 for the two extreme
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(a) The uniform mesh with 625 nodes.
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(b) The uniform mesh with 313 nodes.
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(c) The adaptive mesh generated for the for-
ward problem for the source located at (1.0,0):
Background µa = 0.050 cm−1.
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(d) The adaptive mesh generated for the in-
verse problem solution, with 418 nodes. Back-
ground µa = 0.050 cm−1.

Figure 3.2: Examples of meshes used in the first simulation study.

cases, where the background absorption value is equal to 0.032 and 0.050 cm−1,

respectively. Figures 3.3(a) and 3.4(a) display the reference images used to compute

the error values given in Table 3.3. Figures 3.3(c) and 3.3(d) show that the optical

heterogeneity is resolved better by using adaptive meshes as compared to the recon-

structed image obtained by using uniform meshes, which is shown in Figure 3.3(b).

These results are consistent with the error values given in Table 3.3. A similar trend

is seen in Figures 3.4(c) and 3.4(d). Note that the number of nodes in the adaptive

meshes is almost equal to the number of nodes that the uniform meshes have. In

Figure 3.5, we show the cross-sectional views from the reconstructed images. We

see that the use of coarse uniform meshes fails to resolve the circular heterogeneity
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Table 3.3: The error ‖αλ − α̃λ
n‖L1(Ω) for each experiment described in the

simulation study 1 and Table 3.2. The first column shows the
type of the meshes used in the forward and inverse problems,
respectively. The unit of background µa is cm−1.

Background µa: 0.032 0.036 0.040 0.044 0.050
Uniform-Uniform ‖αλ − α̃λ

n‖L1(Ω) : 0.2325 0.2559 0.2773 0.2932 0.3013
Adaptive-Uniform ‖αλ − α̃λ

n‖L1(Ω) : 0.1238 0.1139 0.1166 0.1209 0.1278
Adaptive-Adaptive ‖αλ − α̃λ

n‖L1(Ω) : 0.1043 0.0997 0.0998 0.1003 0.1009

especially for the case in which the background µa = 0.032 cm−1.

3.4.2 Simulation Study 2

In this study, we consider the geometry shown in Figure 3.1(b). To simulate

the optical data, we use the same source-detector configuration considered in the

first simulation study. We simulate the optical data by solving the diffusion equation

at ω = 0 on a fine uniform grid with 61 nodes along x and y directions, where the

refractive index mismatch parameter a = 3. The diffusion coefficient D is assumed

to be constant and D(x) = 0.0410 cm, for all x ∈ Ω ∪ ∂Ω.

We consider 4 different radii for the circular heterogeneity with µa = 0.20 cm−1

embedded in a background with µa = 0.040 cm−1 as shown in Figure 3.1(b). For each

case, we compute the error for different mesh scenarios, similar to the first simulation

study: Uniform mesh for both forward and inverse problems; adaptive mesh for the

forward problem and uniform mesh for the inverse problem; and adaptive meshes for

both forward and inverse problems. The adaptive meshes for this simulation study

were generated based on Theorems 1 and 2, and the mesh generation algorithms

described in the first simulation study and Section 3.3. The uniform meshes used for

the forward and inverse problems are identical to those used in the first simulation

study. We note that the number of nodes in the adaptive meshes generated for the

forward and inverse problems is close to the number of nodes in the corresponding

uniform meshes.

In Table 3.4, we tabulate the error norm ‖αλ − α̃λ
n‖ obtained for each hetero-

geneity size with different mesh choices. Table 3.4 shows that the error increases

with increasing heterogeneity size. We see that the reduction in the error as a result
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(a) The optical absorption image used as
the reference for error computations.
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(b) The reconstructed absorption image
using the uniform mesh in Figure 3.2(a)
for the forward, and the uniform mesh in
Figure 3.2(b) for the inverse problem.
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(c) The reconstructed absorption image
using an adaptive mesh for the forward,
and the uniform mesh in Figure 3.2(b) for
the inverse problem.
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(d) The reconstructed absorption image
using an adaptive mesh for the forward,
and the adaptive mesh in Figure 3.2(d)
for the inverse problem.

Figure 3.3: The reconstruction results of simulation study 1, with the
background µa = 0.032 cm−1.

of using adaptive meshes is more significant for smaller sized heterogeneities. Fur-

ther reduction in the error norm ‖αλ − α̃λ
n‖ is possible by increasing the number of

nodes in the meshes.

For brevity, we only show the reconstruction results for the extreme cases:

r = 0.5 cm and r = 1.25 cm. We note that the regularization parameter λ =

5 × 10−9 in all reconstructions. Figures 3.6(a) and 3.6(b) show the images used as

the reference images αλ in the calculation of the error norms ‖αλ − α̃λ
n‖ listed in

Table 3.4. Figures 3.6(e)-3.6(f) show that the adaptive meshes reduce the artifacts

as compared to the images reconstructed by using uniform meshes, which are shown

in Figures 3.6(c)-3.6(d).
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(a) The optical absorption image used as
the reference for error computations.
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(b) The reconstructed absorption image
using the uniform mesh in Figure 3.2(a)
for the forward, and the uniform mesh in
Figure 3.2(b) for the inverse problem.
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(c) The reconstructed absorption image
using an adaptive mesh for the forward,
and the uniform mesh in Figure 3.2(b) for
the inverse problem.
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(d) The reconstructed absorption image
using an adaptive mesh for the forward,
and the adaptive mesh in Figure 3.2(d)
for the inverse problem.

Figure 3.4: The results of simulation study 1, with the background µa =
0.050 cm−1.

3.4.3 Simulation Study 3

In this simulation study, we consider the geometry shown in Figure 3.1(c).

The center of the circular heterogeneity is moved vertically towards the detector

side to see the effect on the imaging accuracy. Next, we show how the error in the

reconstructed images due to discretization can be addressed by using appropriate

meshes for the solutions of the forward and inverse problems. In this context, we

compare the results obtained by using 1) uniform meshes, 2) the adaptive meshes

generated using conventional a priori discretization error estimates, and 3) the adap-

tive meshes proposed in this study. By conventional error estimates, we mean the a

priori discretization error estimates (3.14) and (3.15) for the solution of the forward
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Table 3.4: The L1 norm of αλ and the error ‖αλ− α̃λ
n‖L1(Ω) for each exper-

iment described in the simulation study 2. The first column
shows the type of the meshes used in the forward and inverse
problems, respectively. The radius of the circular heterogene-
ity is given in cm.

Radius: 0.50 0.75 1.0 1.25
‖αλ‖L1(Ω): 0.7196 1.3760 1.4759 1.7817

Uniform-Uniform ‖αλ − α̃λ
n‖L1(Ω): 0.5622 0.5706 0.5850 0.6337

Adaptive-Uniform ‖αλ − α̃λ
n‖L1(Ω): 0.2153 0.2776 0.3766 0.5113

Adaptive-Adaptive ‖αλ − α̃λ
n‖L1(Ω): 0.2020 0.2630 0.3592 0.5034

problem, and the a priori interpolation error estimate (3.11) for the solution of the

inverse problem.

To simulate the optical data, we use the same source-detector configuration

considered in the first simulation study. We simulate the optical data by solving

the diffusion equation at ω = 0 on a fine uniform grid with 61 nodes along x and y

directions, where the refractive index mismatch parameter a = 3. We note that, in

all reconstructions, the background absorption value is set to µa = 0.04 cm−1 and

the diffusion coefficient D is assumed to be constant and D(x) = 0.0410 cm, for all

x ∈ Ω ∪ ∂Ω.

The uniform meshes used in this simulation study are identical to the ones

used in simulation studies 1 and 2. Sample meshes for the forward problem solution

using the conventional and the proposed adaptive meshing strategies are shown in

Figures 3.7(a)-3.7(b) and Figures 3.8(c) and 3.8(d), respectively. We see that the

conventional adaptive mesh generation strategy leads to meshes refined around only

sources or detectors, but not both. In contrast, Figures 3.8(c) and 3.8(d) show that

the proposed strategy results in adaptive meshes refined around sources, detectors,

and the heterogeneity as well. This observation is consistent with Theorem 2. The

adaptive mesh for the inverse problem solution, which was generated using the a

priori interpolation error estimate (3.11) is shown in Figure 3.8(f). Note that the

mesh was generated for the case where the circular heterogeneity was centered at

(3.0, 3.5). The mesh generated based on Theorem 1 (Figure 3.8(e)) provides higher

resolution close to the sources and detectors as compared to the mesh shown in

Figure 3.8(f), which is merely refined around the heterogeneity.
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In this simulation study, we consider 4 different positions for the center of

the circular heterogeneity with radius 0.75 cm, along y−axis: center at (3.0,3.0),

(3.0,3.5), (3.0,4.0), and (3.0,4.5), respectively. Similar to the previous simulations,

we compute the error in the reconstructed images for all cases, and compare the error

values attained by different meshing strategies. Finally we present the reconstructed

images obtained by using different mesh strategies corresponding to the case where

the circular inclusion is centered at (3.0, 3.5) and (3.0, 4.0).

Using the meshes for the forward problem discretization (see Figures 3.7(a)-

3.7(b)), which were generated by using the conventional a priori discretization error

estimates (3.14)-(3.15), leads to the image reconstructions shown in Figures 3.7(c)

and 3.7(d), where the regularization parameter λ = 10−8. We observe that the

finite dimensional operator does not provide a stable solution. We note that using

an adaptive mesh for the inverse problem solution does not change the outcome

(Figure 3.7(d)). Note also that the meshes generated by using the conventional a

priori discretization error estimates (3.14)-(3.15) are sufficient to provide accurate

finite element approximations to the actual solutions gj and g∗i . Therefore, the

unstable reconstructions can be attributed to the errors K − K̃ and γ − γ̃, due to

inappropriate discretization as noted by Theorem 2. In consistence with Theorem

2, this observation suggests that solving the forward problem accurately does not

necessarily imply that approximate operator K̃ and γ̃ are error-free. Therefore, in

order to address such problems, one has to follow a discretization scheme based

on Theorem 2 for the solution of the forward problem, which takes into account

the interaction between the solutions of the diffusion equation and the associated

adjoint problem, as described in Section 3.3.1.

In order to suppress the severe artifacts observed in Figures 3.7(c) and 3.7(d),

we increased the regularization parameter and set λ = 10−6. The resulting images

are shown in Figures 3.7(e) and 3.7(f). As noted by Theorems 1 and 2, increasing the

regularization parameter reduces the error in the reconstructed images. However,

increasing the regularization parameter will also compromise the image quality and

lead to over-smoothed images. In order to address the instability issue without de-

grading the image quality by using high regularization parameters, we modified the
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adaptive mesh generation method that lead to the meshes shown in Figures 3.7(a)-

3.7(b). In this context, for the first 2 refinements, we used the proposed mesh

generation algorithm based on Theorem 2 to generate an initial adaptive mesh; and

for the next 2 refinements, we used the conventional error estimates (3.14)-(3.15).

Following this modification, the samples of the resulting adaptive meshes are shown

in Figures 3.8(a) and 3.8(b). For a comparison, we also present in Figures 3.8(c)-

3.8(d), the adaptive meshes generated by using the proposed adaptive mesh genera-

tion algorithms as described in Section 3.3.1 and Remark 1(iii). We observe that the

meshes shown in Figures 3.8(c)-3.8(d), indicate further refinement around sources,

detectors and the circular heterogeneity as compared to the adaptive meshes shown

in Figures 3.8(a) and 3.8(b).

Examples of the adaptive meshes generated for the inverse problem based on

Theorem 1 and the conventional a priori interpolation estimate (3.11) are shown in

Figures 3.8(e) and 3.8(f), respectively. We observe that the adaptive mesh shown in

Figure 3.8(e) provides higher resolution around sources and detectors as compared

to the adaptive mesh shown in Figure 3.8(f).

We note that the uniform meshes used in this simulation study are identical

to those used in the previous simulation studies.

In order to compare the performance of the conventional and proposed adap-

tive mesh strategies, we perform 4 experiments and compute the error in the re-

constructed optical absorption images. For each experiment, we consider 5 different

mesh strategies and refer to Table 3.5 for the description of these experiments.

We show the reconstructed optical absorption images for the two cases in

Figures 3.9 and 3.10, corresponding to the circular heterogeneity centered at (3.0,3.5)

and (3.0,4.0), respectively. Figures 3.9(a) and 3.10(a) show the reference absorption

image reconstructions which are used to compute the error in the reconstructed

optical images.

Figure 3.9(b) shows the image reconstructed using coarse uniform meshes for

both the forward and inverse problems, for the case where the circular inclusion

is centered at (3.0,3.5) where the regularization parameter was set to λ = 10−8.

With the same value of the regularization parameter, Figure 3.9(c) shows the re-
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Table 3.5: The relevant parameters in the experiments 1-5 in simulation
study 3. The abbreviation “Conv.” implies that the corre-
sponding mesh was generated using the conventional a pri-
ori discretization error estimates (3.14)-(3.15) for the forward
problem solution, and the conventional a priori interpolation
error estimate (3.11) for the inverse problem solution. The
abbreviation “Prop.” refers to the adaptive meshes generated
by using the proposed adaptive mesh generation algorithms
based on Theorems 1 and 2, for the inverse and forward prob-
lem solutions, respectively. The last column in the table shows
the coordinates of the center of the circular heterogeneity, con-
sidered in each experiment.

Mesh (Forward) Mesh (Inverse) Center at:
Exp. 1 Uniform Uniform [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]
Exp. 2 Adaptive (Conv.) Uniform [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]
Exp. 3 Adaptive (Conv.) Adaptive (Conv.) [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]
Exp. 4 Adaptive (Prop.) Uniform [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]
Exp. 5 Adaptive (Prop.) Adaptive (Prop.) [(3.0,3.0), (3.0,3.5), (3.0,4.0), (3.0,4.5)]

constructed image by using the adaptive mesh based on Theorem 2 for the forward

problem and the coarse uniform mesh (shown in Figure 3.2(b)) for the inverse prob-

lem. Figure 3.9(e) shows the reconstructed image obtained by using the adaptive

meshes based on Theorems 1 and 2. We observe the improvements especially around

the boundaries. Using the conventional adaptive meshes for the forward problem

solution, which were modified around sources and detectors as noted before, we ran

into a similar instability problem. Therefore, in order to obtain better reconstruc-

tions with the conventional adaptive meshes, we set the regularization parameter

λ = 10−7 in the corresponding inverse problem formulations. The resulting recon-

structed images are shown in Figures 3.9(d) and 3.9(f). In this case, we observe

that the use of conventional adaptive meshes for the forward and inverse problems

does not improve the image quality as compared to the reconstructed image shown

in Figure 3.9(b), which is obtained by using coarse uniform meshes.

We observe similar results for the case where the circular inclusion is centered

at (3.0,4.0). We note that the regularization parameter is set to λ = 10−8 for

all reconstructions except for the reconstructions obtained by using conventional

adaptive meshes, in which case λ = 10−7. Figures 3.9 show the reconstructed
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images corresponding to all meshing strategies.

Table 3.6 shows the error norm computations for all cases. The error values

are consistent with Figures 3.9 and 3.10. In all cases, the proposed adaptive meshes

significantly reduce the error in the reconstructed images. Furthermore, the image

quality is enhanced by merely appropriate discretization, without having to increase

the regularization parameter. In contrast, the conventional adaptive meshes perform

worse than uniform meshes even though a higher regularization parameter is used.

Table 3.6: The error ‖αλ − α̃λ
n‖L1(Ω) for each experiment described in the

simulation study 3. The first column shows the type of the
meshes used in the forward and inverse problems, respectively.
The superscript ‘C’ denotes that the corresponding adaptive
mesh generation is based on the conventional a priori error
estimates (3.14)-(3.15) and (3.11).

Radius at: (3.0,3.0) (3.0,3.5) (3.0,4.0) (3.0,4.5)
Uniform-Uniform ‖αλ − α̃λ

n‖L1(Ω): 0.4539 0.4606 0.4733 0.4956
Adaptive-Uniform ‖αλ − α̃λ

n‖L1(Ω): 0.2690 0.2695 0.2634 0.2507
Adaptive-Adaptive ‖αλ − α̃λ

n‖L1(Ω): 0.2433 0.2455 0.2459 0.2434
Adaptive-Uniform ‖αλ − α̃λ,C

n ‖L1(Ω): 0.7989 0.7596 0.7072 0.6418
Adaptive-Adaptive ‖αλ − α̃λ,C

n ‖L1(Ω): 0.8011 0.7614 0.7070 0.6351

3.5 Conclusion

In this work, based on the error analysis presented in part I [39], we devel-

oped two new adaptive mesh generation algorithms, one for the forward and one for

the inverse problem, which take into account the interdependence between the so-

lutions of the two problems. We have also presented the computational complexity

of the presented adaptive mesh generation algorithms. Our numerical experiments

provided a verification of Theorems 1 and 2 and showed that the proposed mesh

generation algorithms significantly improve the accuracy of the reconstructed op-

tical images for a given number of unknowns in the discrete forward and inverse

problems. Conventional error estimates do not include domain specific factors. As

a result, the adaptive mesh generation algorithms based on conventional error es-

timates (3.14)-(3.15) and (3.11) may lead to high errors in reconstructed optical

images as demonstrated in our numerical experiments.
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We finally note that the adaptive mesh generation algorithms introduced in

this paper can be adapted for the forward and inverse problems of similar inverse

parameter estimation problems, such as electrical impedance tomography, optical

fluorescence tomography, bioluminescence tomography, microwave imaging etc.
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Figure 3.5: The cross-sectional views from the reconstructed images in
simulation study 1, corresponding to the cases where the
background µa = 0.032 and µa = 0.050 cm−1, respectively.
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(a) The optical absorption image used as the
reference for error computations. The image
corresponds to the reconstruction of the circular
heterogeneity of radius 0.5 cm.
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(b) The optical absorption image used as the
reference for error computations. The image
corresponds to the reconstruction of the circular
heterogeneity of radius 1.25 cm.
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(c) The reconstructed absorption image using
the uniform mesh in Figure 3.2(a) for the for-
ward, and the uniform mesh in Figure 3.2(b)
for the inverse problem.
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(d) The reconstructed absorption image using
the uniform mesh in Figure 3.2(a) for the for-
ward, and the uniform mesh in Figure 3.2(b)
for the inverse problem.
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(e) The reconstructed absorption image using
adaptive meshes for both the forward and the
inverse problems.
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(f) The reconstructed absorption image using
an adaptive mesh for both the forward and the
inverse problems.

Figure 3.6: The results of simulation study 2. The left and right columns
show the reconstructed images regarding the optical hetero-
geneity with radius 0.50 cm, and 1.25 cm, respectively. The
background µa = 0.040 cm−1 in all of the reconstructions. The
reference images shown in (a) and (b) are obtained using a
uniform mesh with 61 × 61 nodes in both the forward and
inverse problems.
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(a) The adaptive mesh with 865 nodes for the
forward problem solution for the source lo-
cated at (2.0,0), generated based on the con-
ventional a priori error estimate (3.14).
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(b) The adaptive mesh with 865 nodes for the
forward problem solution for the detector lo-
cated at (4.0,6.0), generated based on the con-
ventional a priori error estimate (3.15).
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(c) The reconstructed optical image using
adaptive mesh for the forward and uniform
mesh for the inverse problem. λ = 10−8.
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(d) The reconstructed optical image using
adaptive meshes for both the forward and in-
verse problems.λ = 10−8.
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(e) The reconstructed optical image using
adaptive mesh for the forward and uniform
mesh for the inverse problem. λ = 10−6.
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(f) The reconstructed optical image using
adaptive meshes for both the forward and in-
verse problems. λ = 10−6.

Figure 3.7: (a)-(b) Samples of adaptive meshes in the third simula-
tion study, generated by using the conventional error esti-
mates (3.14) and (3.15), which led to unstable optical image
reconstruction shown in (c) to (f), for the circular heterogene-
ity centered at (3.0, 3.5). (c)-(d) The unstable optical image
reconstructions in the third simulation study, obtained by
using the adaptive meshes for the forward problem solution
whose examples are shown in (a)-(b). λ = 10−8. (e)-(f) The
unstable optical image reconstructions in the third simulation
study, obtained by using the adaptive meshes for the forward
problem solution whose examples are shown in (a)-(b). λ
was set to 10−6 to suppress the significantly large artifacts
observed in (c)-(d).
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(a) The adaptive mesh with 942 nodes for
the forward problem solution for the source
located at (2.0, 0), obtained by refining
the adaptive mesh shown in Figure 3.7(a)
around the detectors.
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(b) The adaptive mesh with 955 nodes for
the forward problem solution for the detec-
tor located at (4.0, 6.0), obtained by refining
the adaptive mesh shown in Figure 3.7(b)
around the sources.
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(c) The adaptive mesh with 895 nodes for
the forward problem solution for the source
located at (2.0, 0), generated based on The-
orem 2.
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(d) The adaptive mesh with 896 nodes for
the forward problem solution for the detec-
tor located at (4.0, 6.0), generated based on
Theorem 2.
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(e) The adaptive mesh with 691 nodes
for the inverse problem solution, generated
based on Theorem 1.
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(f) The adaptive mesh with 609 nodes
for the inverse problem solution, gener-
ated based on the conventional error esti-
mate (3.11).

Figure 3.8: Samples of adaptive meshes used in the third simulation
study, which led to the optical image reconstructions shown
in Figure 3.10. The meshes were generated for the circular
heterogeneity centered at (3.0,4.5).
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(a) The absorption image used as the reference
in the error computations.
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(b) The reconstructed absorption image using
the uniform mesh in Figure 3.2(a) for the for-
ward, and the uniform mesh in Figure 3.2(b)
for the inverse problem.

0

2

4

6

0
1

2
3

4
5

6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

(c) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and the uniform mesh in Figure 3.2(b)
for the inverse problem.
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(d) The reconstructed absorption image using
adaptive meshes based on a priori error esti-
mates (3.14) and (3.15) for the forward, and the
uniform mesh in Figure 3.2(b) for the inverse
problem.
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(e) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and using the adaptive mesh based on
Theorem 1 for the inverse problem.
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(f) The reconstructed absorption image using
adaptive meshes based on a priori error esti-
mates (3.14) and (3.15) for the forward, and
the interpolation error estimate (3.11) for the
inverse problem.

Figure 3.9: The reconstructed optical images regarding the circular het-
erogeneity centered at (3.0, 3.5) in the third simulation study.
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(a) The absorption image used as the reference
in the error computations.
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(b) The reconstructed absorption image using
the uniform mesh in Figure 3.2(a) for the for-
ward, and the uniform mesh in Figure 3.2(b)
for the inverse problem.
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(c) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and the uniform mesh in Figure 3.2(b)
for the inverse problem.

0

2

4

6

0
1

2
3

4
5

6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

(d) The reconstructed absorption image using
adaptive meshes based on a priori error esti-
mates (3.14) and (3.15) for the forward, and the
uniform mesh in Figure 3.2(b) for the inverse
problem.
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(e) The reconstructed absorption image using
adaptive meshes based on Theorem 2 for the
forward, and the adaptive mesh based on The-
orem 1 for the inverse problem.

0

2

4

6

0
1

2
3

4
5

6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

(f) The reconstructed absorption image using
adaptive meshes based on on a priori error es-
timates (3.14) and (3.15) for the forward, and
the interpolation error estimate (3.11) for the
inverse problem.

Figure 3.10: The reconstructed optical images regarding the circular het-
erogeneity centered at (3.0, 4.0) in the third simulation study.



CHAPTER 4

Error in Optical Absorption Images due to Born

Approximation in Diffuse Optical Tomography

4.1 Introduction

Diffuse Optical Tomography (DOT) poses a challenging nonlinear inverse prob-

lem, whose objective is to estimate the unknown optical parameters from boundary

measurements [4].

There are a variety of factors that affect the accuracy of DOT imaging, such

as model mismatch (due to light propagation model and/or linearization of the in-

verse problem), measurement noise, discretization, numerical algorithm efficiency,

and inverse problem formulation. In this work, we analyze the effect of Born ap-

proximation on the accuracy of DOT imaging, in which the light propagation is

modelled by the frequency-domain diffusion equation. In this respect, we first de-

rive an upper bound for the norm of the scattered optical field. Then, we show the

effect of Born approximation on the accuracy of reconstructed optical absorption

images and determine the parameters that control the extent to which the Born

approximation affects the imaging accuracy.

The nonlinearity of the associated inverse problem makes DOT imaging a com-

putationally intense problem, which calls for the use of nonlinear inversion methods.

In general, nonlinear inversion algorithms require repetitive solution of the forward

problem defined by the light propagation model, which is followed by the update

of the inverse problem solution. As a result, nonlinear algorithms provide accu-

racy at the expense of high computational complexity. A widely used approach to

overcome the difficulties posed by the nonlinearity is to linearize the inverse prob-

lem using Born (or Rytov) approximation and solve the resulting linear problem

to reconstruct the optical parameters [7]. Such approximation schemes assume a

small perturbation on the background optical coefficients, which are in general as-

sumed to be spatially homogeneous. Spatially homogeneous backgrounds allow for

analytical solutions of the forward problem for certain domain geometries [64] and
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analytical solutions for the linearized inverse problem as well [63]. Hence, lineariza-

tion of the inverse DOT problem brings several computational advantages and has

been used widely in optical tomographic reconstructions, including clinical appli-

cations [68, 48, 70, 61, 33, 16, 50, 37]. As a result, Born approximation can be

considered as a compromise between accuracy and computational complexity.

The effect of Born approximation on the accuracy of the solutions of parameter

estimation problems (in particular of DOT), has been studied in a limited fashion.

Natterer has reported an error bound for the Born approximation for the inverse

scattering problem of the Helmholtz equation at fixed frequency [67], in which the

associated Green’s function satisfies the Sommerfeld condition at infinity and the

wave number is spatially invariant. However, the dependence of the error on the

spatial orientation of the perturbation over the background with respect to the in-

cident wave has not been taken into account. This makes the resulting error bound

less stringent for a small-sized domain, which is typical in DOT. In the area of

DOT, Boas showed numerically the effect of Born and Rytov approximation on the

accuracy of reconstructed optical images [17], where the optical setup consisted of

a spherical heterogeneity embedded in an unbounded medium. The study demon-

strates the limitation of the linearized algorithms in DOT, but does not provide an

analytical analysis for bounded domains and arbitrary optical media with arbitrary

source-detector configurations. A similar empirical study has also been reported by

Cheng and Boas [24], in which the effect of background optical properties on the

imaging accuracy is shown.

In this work, we model the propagation of light by the frequency-domain diffu-

sion equation with Robin boundary conditions. For the inverse problem, we focus on

the estimation of the absorption coefficient. We consider the linear integral equation

resulting from the linearization of the inverse problem based on Born approxima-

tion and use zeroth-order Tikhonov regularization to address the ill-posedness of the

resulting integral equation. We first derive a bound for the norm of the scattered

optical field, originating from the presence of a perturbation in the absorption coef-

ficient of an arbitrary bounded optical background. Then, we use this error bound

to show the effect of Born approximation on the accuracy of the reconstructed op-
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tical absorption images. In addition, we show the effect of zeroth-order Tikhonov

regularization on the reconstructed optical image. Our analysis identifies several

factors which influence the extent to which Born approximation affects the accu-

racy of the reconstructed images. For example; the inter-dependence of forward and

inverse problem solutions, the orientation of the optical heterogeneity with respect

to the sources and the detectors, and the number of sources and detectors. The

analysis provides an error bound that takes into account the spatial orientation of

the heterogeneity, the optical field generated by the light sources and the detector

positions. This makes the derived error bound significant especially in optical media

with relatively small sizes. The error analysis also provides a measure for the choice

of step length in iterative linearization based nonlinear optimization methods, such

as trust-region algorithms [60].

The outline of this paper is as follows: Section 2 defines the scattered field

and Born approximation. In Section 3, we define the regularized inverse problem

with and without Born approximation, respectively. In Section 4, we present an

analysis of the error resulting from Born approximation and zeroth-order Tikhonov

regularization. In Section 5, we briefly discuss the implications of the derived error.

In Section 6, we present numerical experiments which is followed by the conclusions

section.

4.2 The Scattered Field and Born Approximation

In this section, we first describe the model for NIR light propagation in a

bounded domain, which models the forward problem and define the scattered field

due to a perturbation in the absorption coefficient of the medium. Next, we give

the Born approximation to the scattered field. Tables 5.1 and 5.2 provide a list of

the notation, and the definition of function spaces and norms used throughout the

paper, respectively. We note that we use calligraphic letters to denote the operators,

e.g. Aa, I, K etc. and for any operator F or function f ; F̃ , f̃ denote their relevant

approximations which will be made clear in the text.

We use the frequency-domain diffusion equation to model the NIR light prop-
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agation in a bounded domain Ω ⊂ R3 [4]:

−∇ ·D(x)∇uj(x) +

(
µa(x) +

iω

c

)
uj(x) = Qj(x) x ∈ Ω, (4.1)

uj(x) + 2aD(x)
∂uj

∂n
(x) = 0 x ∈ ∂Ω, (4.2)

where D(x) is the spatially varying isotropic diffusion coefficient [55] and µa(x) is

the spatially varying absorption coefficient at x, c is the speed of the light, a is a

parameter governing the internal reflection at the boundary ∂Ω, and Qj is the point

source located at xj
s, j = 1, · · · , Ns with modulation frequency ω [77]. In this work,

we approximate the point source Qj in (5.1) by a Gaussian function with sufficiently

low variance, whose center is located at xj
s [39].

Let µa(x) = µa0(x)+α(x), for all x ∈ Ω, where α is the perturbation over some

µa0 > 0. In (5.1)-(5.2), let uj = uj
0 + uj

s, where uj
0 is the incident field originating

from µa0 and uj
s is the scattered field due to the perturbation α, for j = 1, · · · , Ns.

In other words, uj
0 satisfies the following boundary value problem:

−∇ ·D(x)∇uj
0(x) +

(
µa0(x) +

iω

c

)
uj

0(x) = Qj(x) x ∈ Ω, (4.3)

uj
0(x) + 2aD(x)

∂uj
0

∂n
(x) = 0 x ∈ ∂Ω. (4.4)

Then uj
s satisfies the following boundary value problem:

−∇ ·D(x)∇uj
s(x) +

(
µa0(x) +

iω

c

)
uj

s(x) = −α(x)uj(x) x ∈ Ω, (4.5)

uj
s(x) + 2aD(x)

∂uj
s

∂n
(x) = 0 x ∈ ∂Ω. (4.6)

Making use of the Green’s function, the scattered field uj
s at x is given by the

Lippmann-Schwinger equation [25]:

uj
s(x) = −

∫

Ω

g(x, x́)uj(x́)α(x́)dx́ (4.7)

where g(x; x́) is the Green’s function of (4.5)-(4.6) at x, due to a point source located
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at x́.

We note that uj depends implicitly on the unknown perturbation α and

hence (4.7) is nonlinear in α. The Born approximation ũj
s to uj

s is obtained by

replacing uj in (4.7) by uj
0, which is independent of α [4, 25]:

ũj
s(x) = −

∫

Ω

g(x, x́)uj
0(x́)α(x́)dx́. (4.8)

4.3 Inverse Problem

In this section, we explore the inverse problem of recovering the absorption

coefficient from boundary measurements. First, we consider the inverse problem

formulation based on (4.7) to obtain a baseline for the analysis of the error resulting

from linearization by Born approximation. Next, we consider the linearized inverse

problem formulation based on Born approximation (4.8).

For practical considerations and to simplify the notation involved in the inverse

problem formulation and the following error analysis, we first define the adjoint

problem associated with (4.3)-(4.4) [39]:

−∇ ·D(x)∇g∗i (x) +

(
µa0(x)− iω

c

)
g∗i (x) = 0 x ∈ Ω, (4.9)

g∗i (x) + 2aD(x)
∂φ

∂n
(x) = Q∗

i (x) x ∈ ∂Ω, (4.10)

where Q∗
i denotes the ith adjoint source and g∗i is the solution of the adjoint problem

for the ith adjoint source. For a point adjoint source located at the detector position

xi
d, the following holds [4]:

g∗i (x) = g(xi
d,x), x ∈ Ω, (4.11)

for i = 1, · · · , Nd where Nd is the number of detectors. In this work, we model the

adjoint source by a Gaussian function with sufficiently low variance, centered at xi
d.

Then, g∗i (x) ≈ g(xi
d,x) models the finite size of the detectors and accounts for the

smoothing on the detector readings [39].



83

4.3.1 Inverse problem statement without Born approximation

In order to assess the accuracy of the reconstructed optical absorption images

resulting from linearization by Born approximation, we consider (4.7) as the baseline

to construct the inverse problem formulation which possesses no error resulting from

Born approximation. In this respect, we assume that uj is known independently of

the unknown α. As a result, (4.7) becomes linear in α given uj on Ω for j = 1, · · · , Ns.

We note that this assumption allows us to employ a linear analysis method to derive

an explicit bound for the error in the reconstructed optical absorption images (see

Section 4.4).

Consider the integral equation (4.7) and suppose that uj for j = 1, · · · , Ns are

known. Let Γi,j be the (i, j)th entry in the vector Γ ∈ CNd×Ns , which represents

the differential measurement at the ith detector due to the jth source such that

Γi,j := uj
s(x

i
d), where xi

d denotes the position of the ith detector, i = 1, · · · , Nd.

Then, the following linear equation relates the differential boundary measurements

to α [4, 39]:

Γi,j = −
∫

Ω

g∗i (x)uj(x)α(x)dx (4.12)

:=

∫

Ω

Hi,j(x́)α(x́)dx́

:= (Aaα)i,j, (4.13)

where Hi,j := −g∗i u
j is the (i, j)th kernel of the matrix-valued operatorAa : L2(Ω) →

CNd×Ns , g∗i is weak the solution of (4.9)-(4.10), and uj is the weak solution of (5.1)-

(5.2) [39].

The linear operator Aa : L2(Ω) → CNd×Ns defined by (5.9) is compact [39].

Hence, (5.9) is ill-posed for the given solution space L2(Ω) for α. Regularizing (5.9)

with a zeroth-order Tikhonov regularization yields the following equation:

γ = A∗
aΓ = (A∗

aAa + λI)αλ (4.14)

:= Kαλ. (4.15)

In this representation, I is the identity operator and A∗
a : CNd×Ns → L2(Ω) is the
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adjoint of Aa, defined by

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H∗
i,j(x)βi,j =

Nd,Ns∑
i,j

−g∗i (x)gj(x)βi,j, (4.16)

for all β ∈ CNd×Ns , where H∗
i,j := −g∗i gj is the (i, j)th kernel of the adjoint operator.

Let A := A∗
aAa, then the linear integral operator A : L2(Ω) → L2(Ω) is defined as

follows:

(Aα)(x) =
∑Nd,Ns

i,j H∗
i,j(x)

∫
Ω

Hi,j(x́)α(x́)dx́

:=
∫

Ω
κ(x, x́)α(x́)dx́, (4.17)

where κ(x, x́) stands for the kernel of the integral operator A and is given by

κ(x, x́) =

Nd,Ns∑
i,j

H∗
i,j(x)Hi,j(x́). (4.18)

4.3.2 Inverse problem based on Born approximation

Replacing uj in (5.9) by uj
0, the inverse optical absorption problem linearized

by Born approximation reads

Γi,j = −
∫

Ω

g∗i (x)uj
0(x́)α̃(x́)dx́ (4.19)

:=

∫

Ω

H̃i,j(x́)α̃(x́)dx́

:= (Ãaα̃)i,j, (4.20)

where the linear matrix-valued operator Ãa : L2(Ω) → CNd×Ns is an approximation

to the operator Aa as a result of Born approximation, H̃i,j(x́) = g∗i (x)uj
0(x́) is the

(i, j)th kernel of Ãa at x́, and α̃ ∈ L2(Ω) is an approximation to the actual solution

α, as a result of the linearization by Born approximation.

Similar to the operator Aa, the linear operator Ãa : L2(Ω) → CNd×Ns de-

fined by (4.19) is compact and this implies the ill-posedness of (4.19). Hence, we
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regularize (4.19) with a zeroth-order Tikhonov regularization:

γ̃ := Ã∗
aΓ =

(
Ã∗

aÃa + λI
)

α̃λ (4.21)

:= K̃α̃λ, (4.22)

where λ > 0 is the regularization parameter and α̃λ is an approximation to α̃. In

this representation, I is the identity operator and Ã∗
a : CNd×Ns → L2(Ω) is the

adjoint of Ãa, defined similar to A∗
a by the kernel H̃∗

i,j = g∗i u
j
0.

Then, the linear integral operator Ã := Ã∗
aÃa : L2(Ω) → L2(Ω) is defined as

follows:

(Ãα̃)(x) =

Nd,Ns∑
i,j

H̃∗
i,j(x)

∫

Ω

H̃i,j(x́)α̃(x́)dx́

:=

∫

Ω

κ̃(x, x́)α̃(x́)dx́, (4.23)

where κ̃(x, x́) is the kernel of Ã and is given by

κ̃(x; x́) =

Nd,Ns∑
i,j

H̃∗
i,j(x)H̃i,j(x́). (4.24)

Comparing K in (5.19) and K̃ in (4.22) shows that Born approximation leads

to an error in the operator K̃ with respect to the operator K. This is due to the

errors in the kernels H̃i,j and H̃∗
i,j with respect to Hi,j and H∗

i,j, given by

(
Hi,j − H̃i,j

)
(x) = −g∗i (x)(uj − uj

0)(x) = g∗i (x)uj
s(x) (4.25)

(
H∗

i,j − H̃∗
i,j

)
(x) = −g∗i (x)(uj − uj

0)(x) = g∗i (x)uj
s(x). (4.26)

As a result, the solution α̃λ of (4.22) with respect to αλ in (5.19) has an error which

can be attributed to Born approximation. In addition, the zeroth-order Tikhonov

regularization implies an error term in the solution αλ of (5.19) with respect to the

absorptive perturbation α. In the following section, we will analyze both errors in

the solution α̃λ of (4.22) with respect to the true absorptive perturbation α.
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4.4 Analysis of the error resulting from Born approximation

and Tikhonov regularization

In this section, we analyze the effect of Born approximation and Tikhonov

regularization on the accuracy of DOT imaging. The analysis is carried out based

on the linear inverse problem defined in Section 4.3.1. In this respect, we first derive

an upper bound for the norm of the scattered field, which is used to compute the

error in the approximations K̃ and γ̃ with respect to K and γ, respectively. Then, we

show the effect of Born approximation on the accuracy of the reconstructed optical

image α̃λ in (4.22) with respect to the solution αλ of (5.19). Finally, we discuss the

effect of Tikhonov regularization on the reconstructed optical image and derive a

bound for the error in the reconstructed optical image α̃λ with respect to the true

absorptive perturbation α.

The error in the solution α̃λ of (4.22) with respect to the actual solution α

of (4.13) has two contributors: The error ẽ = αλ − α̃λ, which is the result of Born

approximation and the error eλ = αλ − α resulting from Tikhonov regularization.

Thus,

α̃λ = αλ − ẽ = α− eλ − ẽ, (4.27)

and a bound on the error α− α̃λ is given by:

‖α− α̃λ‖ = ‖ẽ + eλ‖ ≤ ‖ẽ‖+ ‖eλ‖. (4.28)

In the following, we will analyze both error contributors to derive the bounds

for ‖ẽ‖ and ‖eλ‖, respectively, with an emphasis on the norm ‖ẽ‖ of the error ẽ

resulting from Born approximation.

4.4.1 Effect of Born approximation

Before we derive a bound for the error ẽ = αλ − α̃λ, we give the following

lemma which provides a bound for the L2(Ω) norm of the scattered field uj
s.

Lemma 1:
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The L2(Ω) norm of the scattered field uj
s is bounded by

‖uj
s‖0 ≤ Cs‖ujα‖0, (4.29)

where Cs is a positive constant.

Proof. By (4.7), the square of the norm ‖uj
s‖0 is given by

‖uj
s‖2

0 =

∫

Ω

dx

∣∣∣∣
∫

Ω

g(x; x́)uj(x́)α(x́)dx́

∣∣∣∣
2

≤
∫

Ω

dx

(∫

Ω

|g(x; x́)uj(x́)α(x́)|dx́
)2

. (4.30)

Note that ujα ∈ L2(Ω), which results from the boundedness of α and L2(Ω)

boundedness of uj [39]. Then by [59],

‖uj
s‖2

0 ≤ C2
s‖ujα‖2

0,

for some Cs > 0. ¤

Note that uj = uj
0 +uj

s. In order to obtain an explicit bound for ‖uj
s‖0 in terms

of uj
0, (4.29) can be modified as follows:

Corollary 1: Let ε := Cs‖α‖∞ < 1, where Cs is the constant in (4.29). Then,

‖uj
s‖0 ≤ Cs

1− ε
‖uj

0α‖0. (4.31)

Proof. Noting uj = uj
0 + uj

s, (4.29) can be expanded as ‖uj
s‖0 ≤ Cs‖uj

0α‖0 +

Cs‖uj
s‖0‖α‖∞. Letting ε = Cs‖α‖∞ yields the bound in (4.31). ¤

Remarks:

1. The strength of the scattered field uj
s depends on the strength of the source

Qj. Hence, ‖uj
s‖0 depends on the strength of the source Qj.

2. For each source j = 1, · · · , Ns, the scattered field depends on both the field uj
0

and the perturbation α. For a point source, uj
0 will be large close to the source.
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Hence, if α is nonzero close to the source, the L2(Ω) norm of the scattered

field will be large as well.

3. In case Qj is not a point source, one sufficient (but necessary) condition

for (4.29) to hold is Qj ∈ H1(Ω).

We now analyze the effect of Born approximation on the accuracy of the re-

constructed optical image α̃λ. By Theorem 10.1 in [57], the error ẽ in the solution

α̃λ of (4.22) with respect to the solution αλ of (5.19) is bounded by

‖ẽ‖ = ‖αλ − α̃λ‖ ≤ ‖K̃−1‖
{
‖(K̃ − K)αλ‖+ ‖γ̃ − γ‖

}
. (4.32)

Note that the inverse operator K̃−1 : L2(Ω) → L2(Ω) exists since K̃ is positive

definite for λ > 0. Furthermore, the inverse operator K̃−1 is bounded by

‖K̃−1‖L2(Ω)→L2(Ω) ≤ 1

λ
. (4.33)

Note that a similar bound can be obtained for ‖K−1‖L2(Ω)→L2(Ω)

Lemma 2:

Let ‖g∗i uj
s‖0 ≤ ‖g∗i uj

0‖0 for all j = 1, · · · , Ns, i = 1, · · · , Nd and assume that

α and αλ are bounded. Then, a bound for the error ẽ in the solution α̃λ of (4.22)

with respect to the solution αλ of (5.19), resulting from Born approximation can be

given by

‖αλ − α̃λ‖0 ≤ Cb

λ

Nd,Ns∑
i,j

(
4‖g∗i α̃λ‖0 + ‖α‖0‖g∗i ‖L∞(Ω)

) ‖uj
0α‖0, (4.34)

where Cb is the positive constant given by

Cb =
2Cs

1− ε
max

i,j
‖g∗i uj

0‖0. (4.35)

Proof. ‖(K̃ − K)αλ‖0 is bounded by [39]

‖(K̃ − K)αλ‖0 ≈ 2‖A∗
a(Aa − Ãa)α

λ‖0
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≈ 2

∥∥∥∥∥
Nd,Ns∑

i,j

g∗i (·)uj(·)
∫

Ω

∣∣∣
(
uj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)

∣∣∣ dx́

∥∥∥∥∥
0

≤ 2 max
i,j

‖g∗i uj‖0

Nd,Ns∑
i,j

∫

Ω

∣∣∣
(
uj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)

∣∣∣ dx́,

where e∗i and ej are the errors in the approximations of g∗i and uj, respectively.

Born approximation results in error for only uj. Thus, e∗i = 0 and ej(x́) =

(uj − uj
0)(x́) = uj

s(x́) for all x́ ∈ Ω. Thus, we can write

‖(K̃ − K)αλ‖0 ≤ 2 max
i,j

‖g∗i uj‖0

Nd,Ns∑
i,j

‖g∗i αλ‖0‖uj
s‖0.

Noting ‖g∗i uj
s‖0 ≤ ‖g∗i uj

0‖0 and uj = uj
0 +uj

s, above inequality can be expanded

as follows:

‖(K̃ − K)αλ‖0 ≤ 2 max
i,j

‖g∗i (uj
0 + uj

s)‖0

Nd,Ns∑
i,j

‖g∗i αλ‖0‖uj
s‖0

≤ 4 max
i,j

‖g∗i uj
0‖0

Nd,Ns∑
i,j

‖g∗i αλ‖0‖uj
s‖0. (4.36)

Note that αλ = α̃λ + ẽ, where ẽ is the error in the reconstructed optical ab-

sorption perturbation due to Born approximation. Consistent with the initial

assumption, namely ‖g∗i uj
s‖0 ≤ ‖g∗i uj

0‖0, we assume

‖g∗i ẽ‖0 ≤ ‖g∗i α̃λ‖0,

for i = 1, · · · , Nd. Then, (4.36) can be rewritten as follows:

‖(K̃ − K)αλ‖0 ≤ 8 max
i,j

‖g∗i uj
0‖0

Nd,Ns∑
i,j

‖g∗i α̃λ‖0‖uj
s‖0. (4.37)

We first note that for bounded positive D and µa0, the boundedness of the

adjoint source implies g∗i is bounded [27], thus g∗i ∈ L∞(Ω). Following this
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note, an upper bound for ‖γ̃ − γ‖0 can be obtained as follows [39]:

‖γ̃ − γ‖0 ≈
∥∥∥∥∥

Nd,Ns∑
i,j

(e∗i (·)uj(·) + g∗i (·)ej(·))Γi,j

∥∥∥∥∥
0

≤ max
i,j

|Γi,j|
Nd,Ns∑

i,j

‖g∗i uj
s‖0

≤ max
i,j

|Γi,j|
Nd,Ns∑

i,j

‖g∗i ‖2
L∞(Ω)‖uj

s‖0, (4.38)

since e∗i = 0. A bound for maxi,j |Γi,j| can be given by

max
i,j

|Γi,j| ≤ max
i,j

‖g∗i uj‖0‖α‖0. (4.39)

Then,

‖γ̃ − γ‖0 ≤ max
i,j

‖g∗i uj‖0‖α‖0

Nd,Ns∑
i,j

‖g∗i ‖2
L∞(Ω)‖uj

s‖0, (4.40)

Noting uj = uj
0 + uj

s and ‖g∗i uj
s‖0 ≤ ‖g∗i uj

0‖0, we write

‖γ̃ − γ‖0 ≤ 2 max
i,j

‖g∗i uj
0‖0‖α‖0

Nd,Ns∑
i,j

‖g∗i ‖L∞(Ω)‖uj
s‖0. (4.41)

Using (4.31) in (4.37) and (4.41), we set

Cb =
2Cs

1− ε
max

i,j
‖g∗i uj

0‖0.

Then (4.37) and (4.41) read, respectively

‖(K̃ − K)αλ‖0 ≤ 4Cb

Nd,Ns∑
i,j

‖g∗i α̃λ‖0‖uj
0α‖0, (4.42)

‖γ̃ − γ‖0 ≤ Cb‖α‖0

Nd,Ns∑
i,j

‖g∗i ‖L∞(Ω)‖uj
0α‖0. (4.43)
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We now use (4.32), (4.42) and (4.43) to obtain (4.34). ¤

Remarks:

1. If ‖uj
0α‖0 is large, then the error in the reconstructed absorption image will be

high. This suggests that the support of the heterogeneity α should be away

from the sources, where uj
0 for j = 1, · · · , Ns tends to be large.

2. If the support of the heterogeneity α is close to the detector, then the effect of

Born approximation on the overall error is amplified, since this increases the

summation term in (4.34).

3. In order to minimize the error ‖αλ − α̃λ‖, the support of the heterogeneity

must be away from both the sources and detectors.

4. In order to reduce the error ‖αλ − α̃λ‖, the sources and detectors which will

be used in the reconstruction can be selected based on the support of the

heterogeneity α.

5. If there is a priori information about the position of the heterogeneity α,

the sources and detectors can be located such that the error due to Born

approximation is reduced.

6. Lemma 2 is valid for all bounded sources Qj ∈ H1(Ω).

4.4.2 Effect of Tikhonov regularization

The regularization scheme approximates the solution α of (4.13) by the reg-

ularized solution αλ of (5.19). The following lemma states a bound for the error

eλ = α− αλ resulting from zeroth-order Tikhonov regularization.

Lemma 3:

Let ‖g∗i uj
s‖0 ≤ ‖g∗i uj

0‖0 for j = 1, · · · , Ns, i = 1, · · · , Nd and α ∈ L∞. Then, a bound

for the L2(Ω) norm of the error eλ = α− αλ, resulting from zeroth-order Tikhonov

regularization can be given by

‖α− αλ‖0 ≤ CT‖α‖0, (4.44)
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where CT > 0 is given by

CT := 1 +
4

λ
max

i,j
‖g∗i uj

0‖0 (4.45)

Proof. Clearly,

α− αλ = α−K−1Aα = α−K−1A∗
aΓ (4.46)

and

‖α− αλ‖0 ≤ ‖α‖0 + ‖K−1A∗
aΓ‖0.

Note that

‖K−1AΓ‖0 =

∥∥∥∥∥K
−1

Nd,Ns∑
i,j

g∗i ujΓi,j

∥∥∥∥∥
0

≤ max
i,j

|Γi,j|
∥∥∥∥∥K

−1

Nd,Ns∑
i,j

g∗i uj

∥∥∥∥∥
0

≤ maxi,j |Γi,j|
λ

Nd,Ns∑
i,j

∥∥g∗i u
j
∥∥

0

where we use the bound ‖K−1‖L2(Ω)→L2(Ω) ≤ 1/λ, which can be obtained

similar to the inequality (4.33). Then,

‖α− αλ‖0 ≤ ‖α‖0 +
maxi,j |Γi,j|

λ

Nd,Ns∑
i,j

∥∥g∗i u
j
∥∥

0
.

Noting uj = uj
0+uj

s, ‖g∗i uj
s‖0 ≤ ‖g∗i uj

0‖0, and recalling the bound for maxi,j |Γi,j|
in (4.39), we get

‖α− αλ‖0 ≤ ‖α‖0 +
4

λ
max

i,j
‖g∗i uj

0‖0‖α‖0

Nd,Ns∑
i,j

‖g∗i uj
0‖0.
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Setting CT as:

CT = 1 +
4

λ
max

i,j
‖g∗i uj

0‖0

leads to (4.44). ¤

Remarks:

1. The error eλ originates from the error I − K−1A in (4.46). (4.44) presents a

loose but an explicit bound for the norm of the error eλ in terms of ‖α‖∞. In

practice, a sufficiently low value for λ will reduce the error eλ when there is

no noise.

2. Let γδ be the perturbed left-hand side γ of (5.19), such that ‖γδ − γ‖0 ≤ δ.

Then, an additional term is introduced to the bound in (4.44) due to this

perturbation [57]:

‖α− αλ‖0 ≤ δ

λ
+ CT‖α‖0. (4.47)

4.4.3 The overall error

The following theorem provides a bound for the L1(Ω) norm of the error in

the reconstructed optical image α̃λ with respect to the true absorptive perturbation

α, resulting from Born approximation and Tikhonov regularization.

Theorem: A bound for the error in the reconstructed optical image α̃λ with respect

to the true heterogeneity α can be given by

‖α− α̃λ‖0 ≤ CT‖α‖0 +
Cb

λ

Nd,Ns∑
i,j

(
4‖g∗i α̃λ‖0 + ‖α‖0‖g∗i ‖L∞(Ω)

) ‖uj
0α‖0 (4.48)

Proof. The theorem is a result of (4.28), Lemma 3, and (4.44). ¤

4.5 Discussion

The presented error analysis, in particular Lemma 3, shows the circumstances

under which the error in the reconstructed optical images due to Born approximation
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tends to increase. The orientation of the sources and detectors with respect to the

support of the optical heterogeneity, the number of the sources and detectors, the

size and magnitude of the heterogeneity are the factors that control the extent to

which the linearization based on Born approximation is accurate. In this respect,

Lemma 3 shows how the bound on the error varies with respect to these factors,

rather than provide an exact quantitative measure of the resulting error in the

reconstructed images. Provided there is a priori information about the support of

the heterogeneity, the analysis can be used to place the sources and detectors such

that the error in the reconstructed images resulting from linearization is reduced.

One posterior approach can be to use only the specific sources-detectors in the image

reconstruction, such that the error due to linearization by Born approximation is

reduced. In addition, a priori information can be utilized to select an appropriate

background absorption µa0 such that the error in the reconstructed image due to

Born approximation is minimized.

The analysis suggests some considerations for the nonlinear minimization meth-

ods based on iterative linearization [7] as well. These approaches convert the non-

linear inverse problem into a sequence of linear problems, where the solution of one

linear problem is used to obtain the next. Therefore, the step length used to update

the solution along a minimization direction is crucial in ensuring the validity of the

linearization at each step. In other words, the new solution update following the

linearization has to be within an interval such that the error introduced in the opti-

cal image stays in allowable limits. In order to avoid excessive error introduced by

linearization, trust-region algorithms can be used to control the step length [60]. In

this respect, Lemmas 2 and 3 can be utilized in the design of nonlinear optimization

algorithms.

4.6 Numerical Experiments

We conduct a series of numerical experiments to demonstrate the implications

of lemmas 2, 3, and the theorem. We perform our experiments in 2D for simplicity.

In the first simulation, we consider a series of image reconstructions to show

the validity of lemma 2 and the theorem. In this context, we consider the imaging
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setup shown in figure 4.1(a) and change the absorption coefficient of the circular

inclusion to observe the effect on the scattered field and imaging accuracy.

In the second simulation, we show how the proximity of the source to the

optical heterogeneity affects the linearization accuracy. In this respect, we use the

imaging setup shown in figure 4.1(b) and change the position of the circular hetero-

geneity in order to observe the effect on the scattered field and the accuracy of the

reconstructed optical images.

(a) The optical domain and source-detector
configuration for simulation study 1.

(b) The optical domain and source-detector
configuration for simulation study 2. The ra-
dius of the circles is 0.75 cm.

Figure 4.1: The setups used for the simulation studies 1 and 2. The
squares and triangles denote the detectors and sources, re-
spectively.

To discretize the boundary value problem in (4.5)-(4.6) and the associated

adjoint problem (4.9)-(4.10), we use triangular finite elements with piecewise linear

Lagrange basis functions [39]. For the discretization of the inverse problem (4.22),

we use projection by collocation [39]. We apply Gaussian elimination method to

solve the resulting finite-dimensional forward and inverse problems. We note that

we make use of fine uniform meshes with 61 × 61 nodes to avoid any error in the

reconstructed optical images resulting from discretization of the forward and inverse

problems [40]. The regularization parameter is chosen as small as possible, yet large

enough to enable robust image reconstructions. In this respect, an appropriate

value for the regularization parameter is chosen based on experience and we set
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the regularization parameter λ to 10−7 in all experiments. Note that such a small

λ value will reduce the error in the reconstructed image resulting from Tikhonov

regularization.

4.6.1 Simulation 1

In this experiment, we consider the optical setup shown in figure 4.1(a). We

use 11 sources and 11 detectors positioned on opposite sides. The source operating

frequency is set to ω = 0. The circular heterogeneity is embedded in a background

with absorption coefficient µa = 0.04 cm−1. The diffusion coefficient of the medium

D(x) = 0.0410 is assumed to be constant for all x ∈ Ω∪∂Ω. The internal reflectance

parameter is set to a = 3. In order to obtain a series of image reconstructions using

the same setup, we change the absorption coefficient of the circular heterogeneity

and consider five cases, where α = 0.04, 0.06, 0.08, 0.10, and 0.12, respectively.

We first obtain the scattered field and compute the L2(Ω) norm of the scattered

field to verify lemma 2. Figure 4.2(a) reveals the dependence of the scattered field

on the absorption coefficient of the optical heterogeneity. We see that the L2(Ω)

norm of the scattered field increases as the absorption coefficient of the heterogeneity

increases. Furthermore, the L2(Ω) norm of the scattered field is lower corresponding

to the sources that are farther from the heterogeneity. This indicates the spatial

dependence of the scattered field on the position of the heterogeneity with respect

to the source as well. Figure 4.3(a) shows the cross-sections taken from |uj
0α for

α = 0.04, α = 0.08, and α = 0.12, for which the jth source is located at (3, 0). The

cross-sections imply that ‖uj
s‖0 gets larger as α increases, which is in consistence

with the results shown in Figure 4.2(a).

In order to show the effect of Born approximation on the accuracy of the

optical image reconstruction, we compare the reconstructed images with the true

heterogeneity α. Figures 4.4(a)-4.4(c) and 4.4(e) show the reconstructed optical im-

ages. For brevity, we present the image reconstructions corresponding to the cases

where α = 0.04, 0.08, and 0.12cm−1, respectively. We observe that the increase in

the absorption coefficient of the circular heterogeneity leads to artifacts around the

sources and detectors. Figures 4.4(b)-4.4(d) and 4.4(f) show the comparison of the
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(a) The L2(Ω) norm of the scattered optical
field us corresponding to each of the 11 sources
is shown for α = 0.04 (circle), α = 0.06 (dia-
mond), α = 0.08 (x-mark), α = 0.10 (star), and
α = 0.12 (square).
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(b) The L2(Ω) norm of the scattered optical
field us in simulation study 2, corresponding to
each of the 11 sources. The results are shown
for circular inclusions centered at x = 3 and
y = 2.75 (circle), y = 2.5 (diamond), y = 2.25
(x-mark), y = 2.0 (star), and y = 1.75 (square).

Figure 4.2: The L2(Ω) norm of the scattered field vs each source position
(on x-axis) in each of the experiments in the first (a) and
second (b) simulation studies.

cross-sectional cuts from the image reconstructions and the actual optical images.

We see that the error between the reconstructed and the actual images increases as

the absorption coefficient of the heterogeneity increases. More quantitatively, Ta-

ble 3.2 shows the relationship between the error norm ‖α− α̃λ‖ and the absorption

coefficient of the circular heterogeneity. ‖α− α̃λ‖ increases as the optical coefficient

of the heterogeneity becomes larger. We note that the small value selected for the

regularization parameter allows us to attribute the observed error to Born approxi-

mation. To see how the error ‖α − α̃λ‖ changes as α varies, in figure 4.3, we show

the cross-sections of |uj
0α| and |g∗i α̃λ| for the cases α = 0.04, α = 0.08, and α = 0.12.

As α increases, the increase in the value of |uj
0α| and |g∗i α̃λ| is clear. Note that the

bound (4.34) for the error resulting due to Born approximation is a function of |uj
0α|

and |g∗i αλ|.
As a final remark, we note that the number of measurements and view angles

can be increased to improve the quality of the reconstructed images. However, the

objective of this simulation study is to show the effect of the absorption coefficient

of the heterogeneity on the accuracy of the reconstructed images. Hence, using the



98

same setup for each of the cases provides a fair comparison, which is sufficient to

justify the proposed lemmas and the theorem.

4.6.2 Simulation 2

In this experiment, we consider the optical setup shown in figure 4.1(b). To

simulate the optical data, we use the same source-detector configuration considered

in the first simulation study. We simulate the optical data by solving the diffusion

equation at ω = 0 on a fine uniform grid with 61 nodes along x and y directions,

where the refractive index mismatch parameter a = 3. The diffusion coefficient

D is assumed to be constant and D(x) = 0.0410 cm x ∈ Ω ∪ ∂Ω. In order to

assess the effect of the position of the heterogeneity on the accuracy of the image

reconstructions, we gradually move the center of the circular inclusion towards the

source side. We consider 5 cases, where the circular inclusion is centered at (3, 2.75),

(3, 2.50), (3, 2.25), (3, 2) and (3, 1.75), respectively.

We first obtain the scattered field and compute the L2(Ω) norm of the scattered

field to provide another verification of lemma 2. Figure 4.2(b) reveals the dependence

of the scattered field on the proximity of the inclusion to the sources. We see that

the L2(Ω) norm of the scattered field increases as the center of the inclusion comes

closer to the source side. Similar to the behavior observed in simulation study 1, for

each case, we see that the L2(Ω) norm of the scattered field is the highest for the

source which is closest to the inclusion. We note that, as compared to its absorption

coefficient, the position of the inclusion has a greater impact on the L2(Ω) norm

of the scattered field. In figure 4.5(a), we show the cross-sections taken from |uj
0α|

for three cases, in which the center of the circular inclusion is located at (3, 2.75),

(3, 2.25), and (3, 1.75), respectively. Noting that the jth source is positioned at

(3, 0), the increase in the value of |uj
0α| as the inclusion gets closer to the source side

is evident. These results are consistent with the results shown in figure 4.2(b).

Next, we compare the reconstructed images with the corresponding true het-

erogeneity α. We assume that the fine meshes used for the discretization of the

forward and inverse problems and the low value of the regularization parameter en-

sure that the observed error is a result of Born approximation. Figures 4.6(a)-4.6(c)
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and 4.6(e) show the reconstructed optical images. For brevity, we present the image

reconstructions corresponding to the cases where the center of the inclusion is lo-

cated at (3, 2.75), (3, 2.25), and (3, 1.75), respectively. We observe that the artifacts

around the sources tend to increase as the heterogeneity comes closer to the source

side. Figures 4.6(b)-4.6(d) and 5.2(f) show the comparison of the cross-sectional

cuts from the image reconstructions and the actual optical images. We see that the

error between the reconstructed and the actual images increases as the center of

the inclusion moves towards the source side. Table ?? provides a more quantita-

tive result that displays the relationship between the error norm ‖α − α̃λ‖ and the

position of the circular heterogeneity. ‖α − α̃λ‖ increases as the distance between

the optical heterogeneity and the source side decreases. This is a direct validation

of both lemmas 2 and 3, the latter of which shows that the error norm ‖α − α̃λ‖
depends on ‖uj

0α‖0. To see more clearly how the error ‖α− α̃λ‖ varies depending on

the position of the circular heterogeneity, in figure 4.3, we show the cross-sections

of |uj
0α| and |g∗i α̃λ| for the cases in which the center of the circular inclusion is lo-

cated at (3, 2.75), (3, 2.25), and (3, 1.75). Noting that the jth source is positioned at

(3, 0), the increase in the value of |uj
0α| is evident from figure 4.5(a) as the circular

inclusion approaches the source side. On the other hand, there is slight decrease in

the value of g∗i α̃
λ as the inclusion moves away from the detector side. In this case,

the increase in the error ‖α− α̃λ‖ is dominated by the increase in the term ‖uj
0α‖0

which multiplies ‖g∗i αλ and ‖α‖∞‖g∗i ‖0 in the error bound (4.34).

4.7 Conclusions

In this work, we presented an error analysis to show the effect of linearization

of the inverse problem based on Born approximation on the accuracy of DOT image

reconstructions. First, we derived an upper bound for the norm of the scattered

optical field due to an absorptive perturbation. The bound was shown to depend on

the spatial orientation of the optical heterogeneity and the optical field generated by

the light sources. The bound provides a sensitive measure of the scattered field, since

it takes the spatial variations of both the optical field and the optical heterogeneities

into account. This makes the error bound significant especially in optical media



100

with relatively small sizes. Next, we presented an error analysis to show the effect

of zeroth-order Tikhonov regularization and Born approximation on the accuracy of

DOT imaging. The analysis showed that the error in the reconstructed image due

to Born approximation depends spatially on the optical heterogeneity, the optical

field generated by the light sources, and the source-detector orientation. The error

analysis indicates that there is a tradeoff between the norm of the scattered field

and the accuracy of the inverse problem solution. Furthermore, the error analysis

provides a good measure for the choice of step length in iterative linearization based

nonlinear optimization methods, such as trust-region algorithms.

In our analysis, we assumed point sources that can be modelled by Gaussian

functions with sufficiently low variance. We note that the analysis can be extended

to arbitrary sources, provided they are H1(Ω) bounded [39].

The error analysis presented in this work can be extended to show the effect

of linearization on the accuracy of simultaneous reconstruction of scattering and

absorption coefficients. Note that the presented error analysis is not limited to

DOT, and can easily be adapted for similar inverse parameter estimation problems,

in which Born approximation is applicable.
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Table 4.1: The list of notation.

Notation: Explanation:
Ω Bounded domain in R3 with Lipschitz boundary
∂Ω Lipschitz boundary of Ω
x Position vector in Ω ∪ ∂Ω

uj
0(x) The incident field at x originating from background

absorption µa0

uj
s(x) The scattered field at x due to a perturbation

α over the background absorption µa0

uj(x) (uj
0 + uj

s)(x), the field at x due to the jth source
g(x, x́) The Green’s function of (4.5)-(4.6) at x due to a point

source located at x́
g∗i (x) The solution of the adjoint problem (4.9)-(4.10) at x

due to the adjoint source located at xi
d

Γi,j Differential measurement at the ith detector
due to the jth source

Aa The matrix-valued operator mapping α ∈ L2(Ω)
to CNd×Ns

A∗
a The adjoint of Aa mapping from CNd×Ns to L2(Ω)

Hi,j(x) The kernel of Aa at x
H∗

i,j(x) The kernel of A∗
a at x

γ(x) A∗
aΓ at x

Ãa : L2(Ω) → CNd×Ns The approximation to Aa, resulting from
Born approximation

Ã∗
a : CNd×Ns → L2(Ω) The approximation to A∗

a, resulting from
Born approximation

H̃i,j(x), H̃∗
i,j(x) The kernels of Ãa and Ã∗

a, respectively, at x.

γ̃(x) Ã∗
aΓ at x

λ The regularization parameter
α(x) Small perturbation over the background µa at x
αλ(x) Solution of the regularized inverse problem at x

with exact operators
α̃λ(x) Solution of the regularized inverse problem at x

with operators resulting from Born approximation
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Table 4.2: Definition of function spaces and norms.

NotationExplanation

f The complex conjugate of the function f
C(Ω) Space of continuous complex-valued functions on Ω
Ck(Ω) Space of complex-valued k -times continuously differentiable functions on Ω
L∞(Ω) L∞(Ω) = {f | ess supΩ |f(x)| < ∞ }
Lp(Ω) Lp(Ω) = {f | (

∫
Ω
|f(x)|pdx)1/p < ∞ }, p ∈ [1,∞)

‖f‖0 The L2(Ω) norm of f
‖f‖∞ The L∞(Ω) norm of f
‖f‖Lp(Ω) The Lp(Ω) norm of f

Table 4.3: The error norm ‖α − α̃λ‖0 measured for each image recon-
struction in simulation study 1 (normalized by ‖α − α̃λ‖0 for
α = 0.040 cm−1.)

α: 0.040 cm−1 0.060 cm−1 0.080 cm−1 0.10 cm−1 0.120 cm−1

‖α− α̃λ‖0: 1.0 1.3695 1.6895 1.9745 2.1908

Table 4.4: The error norm ‖α− α̃λ‖L1(Ω) measured for each calculation in
simulation study 2 (normalized by ‖α− α̃λ‖0 for α = 0.040 cm−1

in the first experiment.

Circle center at: (3,2.75) (3,2.5) (3,2.25) (3,2.0) (3,1.75)
‖α− α̃λ‖0: 2.2310 2.3656 2.4944 2.9119 3.5772
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(a) The cross section of |uj
0α| along y−axis at x =

3 in simulation study 1, for α values 0.04, 0.08, and
0.12.
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(b) The cross section of |g∗i α̃λ| along y−axis at
x = 3 in simulation study 1. The reconstructed
functions α̃λ correspond to the cases: α = 0.04,
α = 0.08, and α = 0.12.

Figure 4.3: The cross-sections of |uj
0α| and |g∗i α̃λ| in simulation study 1,

which constitute the bound (4.34) for the error resulting from
Born approximation. The jth source is located at (3, 0) and
the ith adjoint source is located at (3, 6)

.
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(a) The reconstructed absorption image
for the case α = 0.04cm−1.

0 1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

(b) The cross-sectional cuts taken from
Figure 4.4(a) and the corresponding ac-
tual solution along y-axis at x = 3.

0

2

4

6

0
1

2
3

4
5

6

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

(c) The reconstructed absorption image
for the case α = 0.08cm−1.
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(d) The cross-sectional cuts taken from
Figure 4.4(c) and the corresponding ac-
tual solution along y-axis at x = 3.
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(e) The reconstructed absorption image
for the case α = 0.12cm−1.
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(f) The cross-sectional cuts taken from
Figure 4.4(e) and the corresponding ac-
tual solution along y-axis at x = 3.

Figure 4.4: Samples of the reconstructed images in the first simulation
study.
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(a) The cross section of |uj
0α| along y−axis at x =

3 in simulation study 2, for the circular inclusion
centered at (3, 2.75), (3, 2.25), and (3, 1.75).
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(b) The cross section of |g∗i α̃λ| along y−axis at
x = 3 in simulation study 2. The reconstructed
functions α̃λ correspond to the cases in which the
circular inclusion is centered at (3, 2.75), (3, 2.25),
and (3, 1.75).

Figure 4.5: The cross-sections of |uj
0α| and |g∗i α̃λ| in simulation study 2,

which constitute the bound (4.34) for the error resulting from
Born approximation. The jth source is located at (3, 0) and
the ith adjoint source is located at (3, 6).
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(a) Circular inclusion centered at (x, y) =
(3, 2.75).
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(b) The cross-sectional cuts taken from
Figure 4.6(a) and the corresponding ac-
tual solution along y-axis at x = 3.
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(c) Circular inclusion centered at (x, y) =
(3, 2.25).
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(d) The cross-sectional cuts taken from
Figure 4.6(c) and the corresponding ac-
tual solution along y-axis at x = 3.
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(e) Circular inclusion centered at (x, y) =
(3, 1.75).
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(f) The cross-sectional cuts taken from
Figure 4.6(e) and the corresponding ac-
tual solution along y-axis at x = 3.

Figure 4.6: Samples of the reconstructed images in the second simulation
study.



CHAPTER 5

Effect of discretization on the accuracy of simultaneously

reconstructed absorption and scattering images

Imaging in Diffuse Optical Tomography (DOT) is comprised of two interdependent

stages which seek solutions to the forward and inverse problems. The forward prob-

lem is associated with describing the Near Infrared (NIR) light propagation, while

the objective of the inverse problem is to estimate the unknown optical parameters

from boundary measurements [4]. In this work, we model the forward problem by

the diffusion equation in the frequency domain and the associated adjoint problem.

For the inverse problem, we consider the simultaneous estimation of the optical

diffusion and absorption coefficients.

A number of factors affect the accuracy of the DOT imaging: model accuracy

(dependent on the light propagation model and/or linearization of the inverse prob-

lem), measurement noise, discretization, numerical algorithm efficiency, and inverse

problem formulation. In this work, we focus on the effect of discretization on the ac-

curacy of simultaneously reconstructed optical absorption and diffusion coefficients.

In this respect, we extend our work in [39, 40]. First, we show the effect of forward

problem discretization. Next, we show the effect of discretization of the inverse prob-

lem whose formulation uses the numerical solutions of the forward problem. Finally,

we use the error analysis to devise novel adaptive mesh generation algorithms that

reduce the error in the reconstructed optical images due to discretization for a given

number of unknowns (i.e. for a given number of nodes in the adaptive meshes).

There has been extensive research on the estimation of discretization error in

the solutions of partial differential equations (PDEs) [3, 10, 11, 13, 81, 83]. A some-

what different approach is followed in [71, 45] in which error in quantities of interest

is related to the discretization of the second order elliptic partial differential equa-

tion. In the area of parameter estimation problems governed by PDEs, relatively

little has been published. See for example [14] for an a posteriori error estimate

for the Lagrangian in the inverse scattering problem for the time-dependent acous-
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tic wave equation and [12] for a similar approach, and [62] for a posteriori error

estimates for distributed elliptic optimal control problems.

In the area of DOT, it was numerically shown that the approximation errors

resulting from the discretization of the forward problem can lead to significant errors

in the reconstructed optical images [5]. However, an analysis regarding the error in

the reconstructed optical images resulting from discretization has not been reported

so far.

In this work, we model the forward problem by the frequency-domain dif-

fusion equation. For the inverse problem, we focus on the simultaneous estima-

tion of the absorption and diffusion coefficients. We consider the linear integral

equation resulting from the iterative linearization of the inverse problem based on

Born approximation and use zeroth order Tikhonov regularization to address the

ill-posedness of the resulting integral equation. We use finite elements with first

order Lagrange basis functions to discretize the forward and inverse problems and

analyze the effect of the discretization on the reconstructed optical absorption and

diffusion images. Our analysis shows that the error in the reconstructed optical

images depends on the smoothness of the optical coefficients, the configuration of

the source and detectors, the positions of the source and detectors with respect

to locations of absorptive and diffusive heterogeneities, and on the regularization

parameter in addition to the discretization error in the solution of each problem.

In our analysis, we first consider the impact of the forward problem discretization

when there is no discretization of the inverse problem, and provide a bound for the

resulting error in the reconstructed optical images. Next, we analyze the effect of

the discretization of the inverse problem whose formulation is based on the numer-

ical (finite element) solutions of the forward problem and we obtain another bound

for the resulting error in the reconstructed optical images. We see that each er-

ror bound comprises the discretization error in the corresponding problem solution,

scaled spatially by the solutions of both problems. In addition, we notice that the

error in the reconstruction of one optical parameter depends on how well the other

optical parameter is discretized. Finally we note that the error analysis provides

an insight into the so-called “inter-parameter crosstalk” [74, 44, 26] that originates
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from discretization (see figure 5.1 for an illustration). After summarizing the error

analysis in two theorems, we use the error bounds presented in these theorems to

devise novel adaptive mesh generation algorithms which are of O(N∆) complexity

where N∆ is the number of elements in the discretization mesh. In other words,

the computational complexity of the proposed adaptive mesh generation algorithms

does not exceed that of solving the resulting discrete forward and inverse problems.

The analysis presented in this work provides a means to identify and ana-

lyze the error in the simultaneously reconstructed optical images resulting from the

linearization of the Lippmann-Schwinger type equations [25] using Born approxi-

mation, which will be an extension to our recent work [38]. Furthermore, the error

analysis introduced in this paper is not limited to DOT, and can easily be extended

for use in similar two-parameter inverse problems.

5.1 Forward and Inverse Problems

In this section, we describe the model for NIR light propagation and define

the forward and inverse DOT problems. Table 5.1 provides a list of the notation

and Table 5.2 provides the definition of function spaces and norms used throughout

the paper. We note that we use calligraphic letters to denote the operators, e.g.

Aa, I, K etc. For constant values we will use capital letters. The subscripts or

superscripts a and b will be used respectively to denote the relevance to absorption

and diffusion coefficients, which will be defined where they appear. The superscript

∗ denotes the adjoint and the rest of the superscripts and subscripts are clearly

defined in the text. “tilde” will be used to denote a function or an operator is an

approximation to its actual form. The spatial dependence of the functions will be

implicitly assumed, without remarking it out. All relevant functions are defined

with appropriate function spaces to avoid ambiguity. Vector quantities are in bold

characters, such as x.
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5.1.1 Forward Problem

We use the following boundary value problem to model the NIR light propa-

gation in a bounded domain Ω ⊂ R3 with Lipschitz boundary ∂Ω [20, 4]:

−∇ ·D(x)∇gj(x) +

(
µa(x) +

iω

c

)
gj(x) = Qj(x) x ∈ Ω, (5.1)

gj(x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂Ω, (5.2)

where gj(x) is the photon density at x ∈ Ω ∪ ∂Ω with frequency ω, Qj is the

jth point source located at xj
s, j = 1, · · · , Ns, where Ns is the number of sources.

D(x) is the diffusion coefficient and µa(x) is the absorption coefficient at x, i =
√−1, ω is the modulation frequency of the source, c is the speed of the light,

a = (1 + R)/(1−R) where R is a parameter governing the internal reflection at the

boundary ∂Ω, and ∂ · /∂n denotes the directional derivative along the unit normal

vector on the boundary. Note that we assume the diffusion coefficient is independent

of the absorption coefficient and is isotropic. For the general anisotropic material,

see [55].

The adjoint problem [4] associated with (5.1)-(5.2) is given by the following

boundary value problem:

−∇ ·D(x)∇g∗i (x) +

(
µa(x)− iω

c

)
g∗i (x) = 0 x ∈ Ω, (5.3)

g∗i (x) + 2aD(x)
∂g∗i
∂n

(x) = Q∗
i (x) x ∈ ∂Ω, (5.4)

where Q∗
i is the adjoint source located at the ith detector xi

d, i = 1, · · · , Nd, where

Nd is the number of detectors. We note that we approximate the point source Qj

in (5.1) and the adjoint source Q∗
i in (5.4) by Gaussian functions with sufficiently

low variance, whose centers are located at xj
s and xi

d, respectively. Note also that

for any source Qj ∈ H1(Ω), our error analysis is valid.

In this work, we consider the finite-element approximations of the solutions

of the forward problem. Hence, before we discretize the forward problem (see Sec-

tion 5.2.1), we consider the variational formulations of (5.1)-(5.2) and (5.3)-(5.4) by
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multiplying (5.1) by a test function φ ∈ H1(Ω) and integrating over Ω [20]:

∫

Ω

[
∇φ ·D∇gj + φ

(
µa +

iω

c

)
gj − φQj

]
dx +

1

2a

∫

∂Ω

φgjdl = 0, (5.5)

where the boundary integral term results from the boundary condition (5.2). Let

A(φ, gj) :=

∫

Ω

[
∇φ ·D∇gj + φ

(
µa +

iω

c

)
gj

]
dx,

(φ,Qj) :=

∫

Ω

φQjdx,

〈
φ,

1

2a
gj

〉
:=

1

2a

∫

∂Ω

φgjdl.

Then, we can express (D.6) equivalently by defining the sesquilinear form b(φ, gj)[39,

47]:

b(φ, gj) := A(φ, gj) +

〈
φ,

1

2a
gj

〉
= (φ,Qj), (5.6)

Similarly, the variational problem for (5.3)-(5.4) can be formulated by defining the

sesquilinear form b∗(φ, g∗i ):

b∗(φ, g∗i ) := A(φ, g∗i ) +

〈
φ,

1

2a
g∗i

〉
=

〈
φ,

1

2a
Q∗

i

〉
, (5.7)

where in A(φ, g∗i ), ω is replaced by −ω.

The sesquilinear forms b(φ, gj), b∗(φ, g∗i ) are continuous and positive definite

for bounded positive D and µa [47]. As a result, the variational problems (5.6)

and (5.7) have unique solutions, which follows from the Lax-Milgram Lemma [20].

The solutions gj and g∗i of the variational problems (5.6) and (5.7) belong to H1(Ω),

which results from the H1-boundedness of the Gaussian function that approximates

the point source Qj and the adjoint source Q∗
i [47].

Remark 1:

• In addition to above conditions, noting Qj, Q
∗
i ∈ C(Ω); the solutions gj, g

∗
i

satisfy [27]

gj, g
∗
i ∈ W∞

1 (Ω). (5.8)
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• In this work, we address the forward problem by equations (5.6) and (5.7).

5.1.2 Inverse Problem

In this work, the objective of the inverse problem is to determine the unknown

optical absorption and diffusion coefficients of a bounded optical domain. To ad-

dress the nonlinear nature of the inverse DOT problem, we consider an iterative

algorithm based on repetitive linearization of the inverse problem using first order

Born approximation [4]. As a result, at each linearization step, the following linear

integral equation relates the differential optical measurements to unknown small

perturbations α and β on the absorption coefficient µa and the diffusion coefficient

D, respectively, assuming β = 0 on x ∈ ∂Ω:

Γi,j = −
∫

Ω

[
g∗i (x)gj(x)α(x) +∇g∗i (x) · ∇gj(x)β(x)

]
dx (5.9)

:=

∫

Ω

[
Ha

i,j(x)α(x) + Hb
i,j(x)β(x)

]
dx

:=




[
Aa Bb

]

 α

β







i,j

:= (Kabσ)i,j , (5.10)

where σ = [α β]T ∈ L2(Ω) × L2(Ω), Kab = [Aa Bb] : L2(Ω) × L2(Ω) → CNd×Ns ,

Ha
i,j(x) = −g∗i (x)gj(x) is the (i, j)th kernel of the matrix valued operator Aa :

L2(Ω) → CNd×Ns at x, and Hb
i,j(x) = −∇g∗i (x) · ∇gj(x) is (i, j)th kernel of the

matrix-valued operator Bb : L2(Ω) → CNd×Ns at x. gj is the solution of (5.6) and

g∗i (x) is the solution of (5.7), and Γi,j is the (i, j)th entry in the vector Γ ∈ CNd×Ns ,

which represents the differential measurement at the ith detector due to the jth

source [4, 39]. Thus,

Γ = Kabσ. (5.11)

Note that approximating Q∗
i in (5.4) by a Gaussian function centered at xi

d implies

that Γi,j corresponds to the scattered optical field evaluated at xi
d, after filtering it

by that Gaussian function [39]. Thus, the Gaussian approximation of the adjoint

source models the finite size of the detectors. Similarly, approximating Qj in (5.1)
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by a Gaussian function models the finite beam of the point source.

The operators Aa and Bb are bounded. In particular, for some Aa, Bb > 0 we

have

‖Aa‖L2(Ω)→l1 ≤
Nd,Ns∑

i,j

‖g∗i gj‖0 = Aa, (5.12)

‖Bb‖L2(Ω)→l1 ≤
Nd,Ns∑

i,j

‖∇g∗i · ∇gj‖0 = Bb, (5.13)

each of which is a consequence of remark 1.

Before we proceed with the boundedness of the integral operator Kab, let us

define the norm ‖σ‖L2(Ω)×L2(Ω) as follows:

‖σ‖L2(Ω)×L2(Ω) :=
(‖α‖2

0 + ‖β‖2
0

)1/2
.

Then, the operator Kab is bounded by

‖Kab‖L2(Ω)×L2(Ω)→l1 ≤ Aa + Bb. (5.14)

Furthermore, the operators Aa and Bb are compact [39, 57]. Thus, for the given

solution space L2(Ω) for both α and β, (5.11) is ill-posed. To address the ill-

posedness of (5.9), we regularize (5.11) with a zeroth order Tikhonov regularization.

5.1.3 Regularization of the inverse problem

Let A∗
a : CNd×Ns → L2(Ω) and B∗b : CNd×Ns → L2(Ω) be the adjoint of the

operators Aa and Bb defined respectively by

(A∗
aΘ)(x) :=

Nd,Ns∑
i,j

Ha∗
i,j (x)Θi,j :=

Nd,Ns∑
i,j

−g∗i (x)gj(x)Θi,j, (5.15)

(B∗aΘ)(x) :=

Nd,Ns∑
i,j

Hb∗
i,j(x)Θi,j :=

Nd,Ns∑
i,j

−∇g∗i (x) · ∇gj(x)Θi,j, (5.16)
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for all Θ ∈ CNd×Ns , where Ha∗
i,j and Hb∗

i,j are the (i, j)th kernels of A∗
a and B∗b ,

respectively. Then we define

K∗ab :=
[
A∗

a B∗b
]
.

LetA := A∗
aAa:L

2(Ω) → L2(Ω), B := B∗bBb:L
2(Ω) → L2(Ω), AB := A∗

aB:L2(Ω) →
L2(Ω), and BA := B∗bAa:L

2(Ω) → L2(Ω). Then,

(Aθ)(x) =

Nd,Ns∑
i,j

Ha∗
i,j (x)

∫

Ω

Ha
i,j(x́)θ(x́)dx́ :=

∫

Ω

κA(x, x́)θ(x́)dx́,

(Bθ)(x) =

Nd,Ns∑
i,j

Hb∗
i,j(x)

∫

Ω

Hb
i,j(x́)θ(x́)dx́ :=

∫

Ω

κB(x, x́)θ(x́)dx́,

(ABθ)(x) =

Nd,Ns∑
i,j

Ha∗
i,j (x)

∫

Ω

Hb
i,j(x́)θ(x́)dx́ :=

∫

Ω

κAB(x, x́)θ(x́)dx́,

(BAθ)(x) =

Nd,Ns∑
i,j

Hb∗
i,j(x)

∫

Ω

Ha
i,j(x́)θ(x́)dx́ :=

∫

Ω

κBA(x, x́)θ(x́)dx́,

for all θ ∈ L2(Ω) where

κA(x, x́) :=

Nd,Ns∑
i,j

Ha∗
i,j (x)Ha

i,j(x́), κB(x, x́) :=

Nd,Ns∑
i,j

Hb∗
i,j(x)Hb

i,j(x́),

κAB(x, x́) :=

Nd,Ns∑
i,j

Ha∗
i,j (x)Hb

i,j(x́), κBA(x, x́) :=

Nd,Ns∑
i,j

Hb∗
i,j(x)Ha

i,j(x́).

Note that κBA(x, x́) = κAB(x, x́).

Let

K :=


 A AB

BA B


 , (5.17)

γ :=


 γa

γb


 :=


 A∗

aΓ

B∗bΓ


 , (5.18)

where K : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω). Then, using a zeroth order Tikhonov



115

regularization, the following equation defines the inverse problem at each lineariza-

tion step:

γ = (K + L) σλ

:= T σλ, (5.19)

where T := (K+ L) : L2(Ω)× L2(Ω) → L2(Ω)× L2(Ω), σλ = [αλ βλ]T are approxi-

mations to α and β, respectively, and L : L2(Ω)× L2(Ω) → L2(Ω)× L2(Ω) is given

by

L :=


 λaI 0

0 λbI


 , (5.20)

where λa, λb > 0 and I is the identity operator. We finally note that a bound for T
can be given by ‖T ‖L2(Ω)×L2(Ω)→L2(Ω)×L2(Ω) ≤ ‖Kab‖2

L2(Ω)×L2(Ω)→l1 + max(λa, λb).

5.1.4 Existence and boundedness of the inverse operator

Consider the inverse problem formulation (5.19). Owing to the regularization

term, the inverse operator T −1 : L2(Ω) × L2(Ω) → L2(Ω) × L2(Ω) exists and by

Lax-Milgram lemma [20] it is bounded by

‖T −1‖L2(Ω)×L2(Ω)→L2(Ω)×L2(Ω) ≤ 1

min(λ1, λ2)
.

In particular, the operator T −1 can be viewed as a 2× 2 matrix of operators T −1
ij :

L2(Ω) → L2(Ω), i, j = 1, 2, i.e.:

T −1 :=


 T −1

11 T −1
12

T −1
21 T −1

22


 . (5.21)

We remark that the boundedness of T −1 is a result of the boundedness of the

operators T −1
ij :

‖T −1
ij ‖L2(Ω)→L2(Ω) ≤ χij (5.22)
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for some scalar value χij > 0, for i, j = 1, 2.

5.2 Discretization of the Forward and Inverse Problems

In this section, we first consider the variational formulations (5.6)-(5.7), and

discuss the finite-element discretization of the forward problem. Next, we describe

the discretization of the inverse problem (5.19).

5.2.1 Forward Problem Discretization

In this section, we consider the finite element discretization of (5.6) and (5.7),

and use their solutions to approximate the kernels κA, κB, κAB, and κBA. As a

result, we obtain finite dimensional approximations to K and γ in (5.17) and (5.18),

respectively.

Let Lk be the first order Lagrange basis functions, and Yj ⊂ H1(Ω) be the

finite-dimensional subspace spanned by Lk, k = 1, . . . , Nj, where Nj is the dimension

of the finite-dimensional subspace for the jth source, j = 1, . . . , Ns. Similarly, we

define Y ∗
i ⊂ H1(Ω) as the finite-dimensional subspace spanned by Lk, for k =

1, . . . , N∗
i , where N∗

i is the dimension of the finite-dimensional subspace for the

ith detector, i = 1, . . . , Nd. In this representation, Nj and N∗
i denote that for

each source and detector, the dimension of the finite-dimensional subspace can be

different.

Replacing φ and gj in (5.6) with their finite-dimensional counterparts Φj(x) =
∑Nj

k=1 pkLk(x), Gj(x) =
∑Nj

k=1 ckLk(x); and replacing φ and g∗i in (5.7) with Φ∗
i (x) =

∑N∗
i

k=1 qkLk(x), G∗
i (x) =

∑N∗
i

k=1 dkLk(x) yields the matrix equations:

Scj = qj, (5.23)

S∗di = q∗i , (5.24)

for cj = [c1, c2, · · · , cNj
]T and di = [d1, d2, · · · , dNi

]T . Here S and S∗ are the finite

element matrices and qj and q∗i are the load vectors resulting from the finite element

discretization of (5.6) and (5.7).
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The H1(Ω) boundedness of the solutions gj and g∗i implies that the discretiza-

tion error ej and e∗i in the finite element solutions Gj and G∗
i is bounded. Let {Ωmj}

denote the set of linear elements used to discretize (5.6) for m = 1, . . . , N j
∆; such

that
⋃Nj

∆
m Ωmj = Ω for all j = 1, . . . Ns. Similarly, let {Ωni} denote the set of linear

elements used to discretize (5.7) for n = 1, . . . , N∗i
∆ ; such that

⋃N∗i
∆

n Ωni = Ω for all

i = 1, . . . Nd. Assuming the solutions gj and g∗i for all j = 1, · · · , Ns i = 1, · · · , Nd

also satisfy gj, g
∗
i ∈ H2(Ω), a bound for ej and e∗i on each finite element can be

found by using the discretization error estimates ([20, 9]):

‖ej‖0,mj ≤ C‖gj‖2,mjh
2
mj, (5.25)

‖e∗i ‖0,ni ≤ C‖g∗i ‖2,nih
2
ni, (5.26)

where C is a positive constant, ‖·‖0,mj (‖·‖0,ni) and ‖·‖2,mj (‖·‖2,ni) are respectively

the L2 and H1 norms on Ωmj (Ωni), and hmj (hni) is the diameter of the smallest

ball containing the finite element Ωmj (Ωni) in the solution Gj (G∗
i ). Similarly,

‖∇ej‖0,mj ≤ C‖gj‖2,mjhmj, (5.27)

‖∇e∗i ‖0,ni ≤ C‖g∗i ‖2,nihni. (5.28)

5.2.2 Approximation of T and γ with finite element solutions Gj and G∗
i

Following the discretization of the forward problem and the solution of the

resulting discrete forward problem, we can rewrite the inverse problem formula-

tion (5.19) by replacing gj and g∗i with Gj and G∗
i in T and γ. Consequently, we

get the following inverse problem formulation, which is an approximation to the

regularized inverse problem formulation in (5.19):

T̃ σ̃λ = γ̃, (5.29)

where

T̃ := K̃ + L
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:=


 Ã ÃB

B̃A B̃


 +


 λa 0

0 λb


 (5.30)

γ̃ :=


 γ̃a

γ̃b


 :=


 Ã∗

aΓ

B̃∗bΓ


 . (5.31)

are the approximations to T and γ, respectively, and σ̃λ is an approximation to the

solution σλ as a result of the forward problem discretization:

σ̃λ =
[
α̃λ β̃λ

]T

.

In (5.30), the kernels of the integral operators Ã, B̃, ÃB, and B̃A are given respec-

tively by

κ̃A(x, x́) :=

Nd,Ns∑
i,j

H̃a∗
i,j (x)H̃a

i,j(x́), κ̃B(x, x́) :=

Nd,Ns∑
i,j

H̃b∗
i,j(x)H̃b

i,j(x́),

κ̃AB(x, x́) :=

Nd,Ns∑
i,j

H̃a∗
i,j (x)H̃b

i,j(x́), κ̃BA(x, x́) :=

Nd,Ns∑
i,j

H̃b∗
i,j(x)H̃a

i,j(x́),

where

H̃a
i,j(x) = −G∗

i (x)Gj(x),

H̃b
i,j(x) = −∇G∗

i (x) · ∇Gj(x),

Note that H̃a∗
i,j = H̃a

i,j and H̃b∗
i,j = H̃b

i,j.

Similar to the operator T −1, T̃ −1 can be interpreted as:

T̃ −1 :=


 T̃ −1

11 T̃ −1
12

T̃ −1
21 T̃ −1

22


 (5.32)

where the operators T̃ −1
ij are bounded by:

‖T̃ −1
ij ‖L2(Ω)→L2(Ω) ≤ χ̃ij (5.33)
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for some scalar value χ̃ij > 0, for i, j = 1, 2.

In the following section, we describe the discretization of the inverse prob-

lem (5.29) which uses the finite element approximations Gj and G∗
i of gj and g∗i in

its formulation.

5.2.3 Discretization of the inverse problem

For the discretization of the inverse problem (5.29), we use projection by the

Galerkin method. Below, we give the details of the Galerkin method.

Let Xa, Xb ⊂ L2(Ω) denote the finite-dimensional subspaces spanned by first

order Lagrange polynomials {L1, . . . , LNa} and {L1, . . . , LNb}, associated with ver-

tices located at xa
p p = 1, · · · , Na and xb

r r = 1, · · · , N b, respectively, where Na and

N b are the dimensions of Xa and Xb. Note that Xa and Xb are not necessarily

identical.

Let {Ωt}, t = 1, · · · , Na
∆ denote a set of linear finite elements such that

⋃Na
∆

t Ωt = Ω and {Ωu} be a set of linear finite elements used for u = 1, · · · , N b
∆

such that
⋃Nb

∆
u Ωu = Ω. Then, we express σ̃λ

n,m = [α̃λ
n β̃λ

m]T on these finite elements

as

α̃λ
n(x) =

Na∑

k=1

akLk(x), (5.34)

β̃λ
m(x) =

Nb∑

l=1

blLl(x). (5.35)

Next consider the test function ζ = [ζa ζb]
T ∈ Xa ×Xb given by

ζa(x) =
Na∑

k=1

ca
kLk(x),

ζb(x) =
Nb∑

l=1

cb
lLl(x).

Then, the Galerkin method approximates the solution of (5.29) by an element σ̃λ
n,m =
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[α̃λ
n β̃λ

m]T ∈ Xa ×Xb, which satisfies

(
T̃ σλ

n,m, ζ
)

= (γ̃, ζ) (5.36)

for all ζ ∈ (Xa × Xb). We note that by Lax-Milgram theorem, a unique solution

σλ
n,m ∈ (Xa × Xb) exists for (5.36) owing to the regularization which results in

the positive-definiteness of the operator T̃ [20, 57]. Equivalently, (5.36) can be

interpreted as follows:

Pa,bT̃ σλ
n,m = Pa,bγ̃, (5.37)

where Pn,m is the matrix of orthogonal projection operators

Pa,b =


 Pa 0

0 Pb


 (5.38)

where Pa : L2(Ω) → Xa and Pb : L2(Ω) → Xb are the orthogonal projection

operators [57]. We note that the following condition holds for (Pa,bT̃ ) : Xa×Xb →
Xa ×Xb (see proof of theorem 13.27 in [57]):

‖(Pa,bT̃ )−1Pa,b‖L2(Ω)×L2(Ω)→Xa×Xb ≤ 1

min(λa, λb)
. (5.39)

5.2.4 Summary: The inverse problem and its approximations

In this work, we consider the regularized inverse problem in (5.19) as the base-

line for the error analysis. In this respect, we first consider the effect of discretization

of the forward problem on the optical imaging accuracy, thus consider the inverse

problem (5.29), i.e.

T̃ σ̃λ = γ̃,

Next, to show the effect of inverse problem discretization, we project the above

equation on the finite-dimensional subspaces Xa × Xb, and consider the resulting
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inverse problem formulation (5.36)

Pa,bT̃ σ̃λ
n,m = Pa,bγ̃.

Thus, we have three different inverse problem formulations:

1. The exact inverse problem formulation (5.19),

2. the inverse problem formulation (5.29) with the degenerate kernels, and

3. the full discrete inverse problem (5.36), which is the projection of (5.29) onto

the finite dimensional subspaces (Xa×Xb) ⊂ (L2(Ω)×L2(Ω)) using Galerkin

method.

5.3 Discretization-based Error Analysis

As a result of operator approximation and discretization of the inverse problem,

the reconstructed images σ̃λ
n = [α̃λ

n β̃λ
n]T are approximations to the actual images

σλ = [αλ βλ]. Projecting the inverse problem onto finite-dimensional sub-spaces Xa

and Xb and the discretization error in the solutions of the forward problem result

in error in the reconstructed images. Therefore, the accuracy of the reconstructed

image is challenged by the discretization schemes followed in the numerical solutions

of the forward and inverse problems.

The error in the solution σ̃λ
n,m of (5.36) with respect to the actual solution σλ

of (5.19) has two contributors: We write σ̃λ
n,m = σ̃λ − en,m, where en,m = [ea

n eb
m]T

is the error resulting from projection of the inverse problem with the operator ap-

proximation and denote σ̃λ = σλ − ẽ, where ẽ = [ẽa ẽb]T is the error due to forward

problem discretization. As a result, we arrive at the following conclusion:

σ̃λ
n,m = σ̃λ − en,m = σλ − en,m − ẽ. (5.40)

Therefore, we can write an upper bound for the error σλ − σ̃λ
n,m as follows:

‖σλ − σ̃λ
n,m‖ = ‖σλ − σ̃λ + σ̃λ − σ̃λ

n,m‖ = ‖ẽ + en,m‖ ≤ ‖ẽ‖+ ‖en,m‖. (5.41)
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5.3.1 Effect of forward problem discretization

The following theorem presents a bound for the L2(Ω) norm of the error be-

tween the solution σ̃λ of (5.29) and the solution σλ of (5.19).

Theorem 1:

Let {Ωmj} denote the set of linear elements used to discretize (5.6) for m = 1, . . . , N j
∆;

such that
⋃Nj

∆
m Ωmj = Ω, and hmj be the diameter of the smallest ball that contains

the element Ωmj in the solution Gj, for all j = 1, . . . Ns. Similarly, let {Ωni} de-

note the set of linear elements used to discretize (5.7) for n = 1, . . . , N∗i
∆ ; such that

⋃N∗i
∆

n Ωni = Ω, and hni be the diameter of the smallest ball that contains the ele-

ment Ωni in the solution G∗
i , for all i = 1, . . . Nd. Assume further that the solutions

gj and g∗i admit smoothness such that gj, g
∗
i ∈ H2(Ω) and σλ is bounded, that is

σλ ∈ (L∞ × L∞). Let

a(j, m) :=

Nd∑
i=1

‖g∗i αλ‖0,mj‖gj‖2,mj

b(j, m) :=
‖α‖0 + ‖β‖0

2

Nd∑
i=1

‖g∗i ‖∞,mj‖gj‖2,mj,

c(j, m) :=

Nd∑
i=1

∥∥|∇g∗i |βλ
∥∥

0,mj
‖gj‖2,mj

d(j, m) :=
‖α‖0 + ‖β‖0

2

Nd∑
i=1

‖∇g∗i ‖∞,mj‖gj‖2,mj,

and

a∗(i, n) :=
Ns∑
j=1

‖gjα
λ‖0,ni‖g∗i ‖2,ni

b∗(i, n) :=
‖α‖0 + ‖β‖0

2

Ns∑
j=1

‖gj‖∞,ni‖g∗i ‖2,ni,

c∗(i, n) :=
Ns∑
j=1

∥∥|∇gj|βλ
∥∥

0,ni
‖g∗i ‖2,ni

d∗(i, n) :=
‖α‖0 + ‖β‖0

2

Ns∑
j=1

‖∇gj‖∞,ni‖g∗i ‖2,ni.
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Given the a priori discretization error estimates (5.25)-(5.26) and a generic constant

C > 0, a bound for the error between the solution αλ and the solution α̃λ of (5.19)

due to the approximations T̃ and γ̃ is given by:

‖αλ − α̃λ‖0 ≤ 2C max
i,j

‖g∗i gj‖1

×



Ns∑

j=1

Nj
∆∑

m=1

[(χ̃11 + χ̃12)a(j, m) + χ̃12b(j,m)]h2
mj + [(χ̃11 + χ̃12)c(j,m) + χ̃12d(j,m)]hmj

+
Nd∑

i=1

N∗i
∆∑

n=1

[(χ̃11 + χ̃12)a∗(i, n) + χ̃12b
∗(i, n)]h2

ni + [(χ̃11 + χ̃12)c∗(i, n) + χ̃12d
∗(i, n)]hni




and a bound for the error between the solution βλ and the solution β̃λ of (5.19)

due to the approximations T̃ and γ̃ is given

‖βλ − β̃λ‖0 ≤ 2C max
i,j

‖g∗i gj‖1

×



Ns∑

j=1

Nj
∆∑

m=1

[(χ̃21 + χ̃22)a(j, m) + χ̃22b(j, m)]h2
mj + [(χ̃21 + χ̃22)c(j, m) + χ̃22d(j, m)]hmj

+
Nd∑

i=1

N∗i
∆∑

n=1

[(χ̃21 + χ̃22)a∗(i, n) + χ̃22b
∗(i, n)]h2

ni + [(χ̃21 + χ̃22)c∗(i, n) + χ̃22d
∗(i, n)]hni




Proof : See proof in appendix (C.1) ¤.

Remark 2

1. Theorem 1 shows that the error in the reconstructed absorption image α̃λ de-

pends on the diffusive heterogeneity and the solutions of the forward problem.

Similarly, the error in the reconstructed diffusion image β̃λ depends on the ab-

sorptive heterogeneity and the solutions of the forward problem. With these

observations, theorem 1 suggests the use of meshes designed individually for

the solutions Gj, j = 1, · · · , Ns and G∗
i , i = 1, · · · , Nd. Note also that the

position of the detectors with respect to the sources is another factor that

affects the error bound in theorem 1.
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2. Note that the conventional interpolation error estimates given in (5.25)-(5.26)

and (5.27)-(5.28) depend on only the smoothness and support of gj and g∗i [20].

On the other hand, the error estimates in Theorem 1 show that the accuracy of

the reconstructed images α̃λ and β̃λ depend on the location of the absorptive

and diffusive heterogeneities with respect to the sources and detectors, as well

as on the bounds (5.25)-(5.26) and (5.27)-(5.28).

3. The parameters χ̃ij i, j = 1, 2 affect the bounds on ‖αλ − α̃λ‖0 and ‖βλ −
β̃λ‖0. Note that the parameters χ̃ij, i, j = 1, 2 depend on the regularization

parameters λ1, λ2 and on the kernels of the operator T . We also note that

the kernels of T can be scaled to make χ̃ij almost identical for all i, j = 1, 2

[REF]. Otherwise, the effect of forward problem discretization may be greater

on one of the reconstructed optical coefficients as compared to the other one.

4. Increasing the number of sources and detectors increases the bounds on ‖αλ−
α̃λ‖0 and ‖βλ − β̃λ‖0.

5.3.2 Effect of inverse problem discretization

In this section, we show the effect of inverse problem discretization on the

optical imaging accuracy. In the analysis, we consider the inverse problem formula-

tion and derive a bound for the L2(Ω) norm of the error en,m between the solution

of (5.29) and the solution of (5.37).

Theorem 2:

Let {Ωt} denote the set of linear elements used to discretize (5.34) for t = 1, . . . , Na
∆;

such that
⋃Na

∆
t Ωt = Ω, and hta be the diameter of the smallest ball that contains

the element Ωt in the solution. Similarly, let {Ωu} denote the set of linear elements

used to discretize (5.35) for u = 1, . . . , N b
∆; such that

⋃Nb
∆

u Ωu = Ω, and hub be

the diameter of the smallest ball that contains the element Ωu. Assume that the

solutions α̃λ and β̃λ are sufficiently smooth such that

α̃λ, β̃λ ∈ H1(Ω).
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Then,

‖α̃λ − α̃λ
n‖0 ≤ C(1 + λaπ11)

N∆
a∑

t=1

‖α̃λ‖1,tahta + Cλbπ12

N∆
b∑

u=1

‖β̃λ‖1,ubhub

+C(π11 + π12) max
i,j

‖G∗
i Gj‖1

×



N∆
a∑

t=1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta +

N∆
b∑

u=1

Nd,Ns∑
i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub


 .

and

‖β̃λ − β̃λ
m‖0 ≤ C(1 + λbπ22)

N∆
b∑

u=1

‖β̃λ‖1,ubhub + Cλaπ21

N∆
a∑

u=1

‖α̃λ‖1,tahta

+C(π21 + π22) max
i,j

‖G∗
i Gj‖1

×



N∆
a∑

t=1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta +

N∆
b∑

u=1

Nd,Ns∑
i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub


 .

Proof : See appendix (C.2).

¤

Remark 3

1. The theorem shows that the accuracy of the reconstructed image α̃λ
n depends

on the discretization scheme followed to discretize β̃λ as well as the discretiza-

tion scheme followed to discretize α̃λ itself.

2. Similarly, the theorem shows that the accuracy of the reconstructed image β̃λ
m

depends on the discretization scheme followed to discretize α̃λ as well as the

discretization scheme followed to discretize β̃λ itself.

3. Theorem 2 shows the spatial dependence of the inverse problem discretization

on the forward problem solution. The position of the detectors with respect

to the sources is another factor that determines the extent of the error bound

in theorem 2.
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4. The parameters πij i, j = 1, 2 affect the bounds on ‖α̃λ − α̃λ
n‖0 and ‖β̃λ −

β̃λ
m‖0. Note that, similar to χ̃ij, the parameters πij, i, j = 1, 2 depend on the

regularization parameters λ1, λ2 and on the kernels of the operator T̃ . Similar

to the kernels of T , the kernels of T̃ can be scaled to make πij almost equal

[REF].

5. Increasing the number of sources and detectors increases the bounds on ‖αλ−
α̃λ

n‖0 and ‖βλ − β̃λ
m‖0.

5.3.3 Iterative linearization by Born approximation

In this section, we explore the error in the inverse problem solution within an

iterative linearization approach.

The error analysis presented in this paper covers the error which results from

the discretization of the forward and inverse problems. If the optical heterogeneities

α and β are sufficiently low, then one iteration suffices to solve the inverse problem

and the error analysis discussed in theorems 1 and 2 applies.

When iterative linearization is considered to address the nonlinearity of the

inverse problem, we can make use of the error analysis at each linearized step as

follows: Let σλ
(τ) and σ̃λ

n,m(τ) be the actual solution of the regularized inverse prob-

lem (5.19) and the solution of (5.36) at the τth linearization step, respectively. At

the end of the (L− 1)th linearization step, the optical coefficient estimates at x are

given by

µ̂(L−1)
a (x) = µ(0)

a (x) +
L−1∑
τ=1

α̃λ
n(τ)(x),

D̂(L−1)(x) = D(0)(x) +
L−1∑
τ=1

β̃λ
m(τ)(x),

where α̃λ
n(τ) and β̃λ

m(τ) possess errors due to discretization with respect to the actual

solutions αλ
(τ), βλ

(τ), and µ
(0)
a and D0 are the initial guesses for the background

absorption coefficient and diffusion coefficient, respectively.

In the next linearization, an error on the new solution updates µ̂
(L)
a , D̂(L) will

be introduced due to:
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1. the error (T̃ − T )(L−1) in the operator (T̃ )(L−1) and the error (γ̃ − γ)(L−1) in

(γ̃)(L−1) resulting from the forward problem discretization,

2. the projection (inverse problem discretization).

Another error in the (L−1)th updates µ̂
(r−1)
a , D̂(L−1) which is rather difficult to

see arises in an indirect way: Note that µ̂
(L−1)
a and D̂(L−1) appear as the coefficients

of the boundary value problems (5.1)-(5.2) and (5.3)-(5.4), which constitute the

forward problem. An error in these coefficients implies perturbation in the solutions

of (5.1)-(5.2) and (5.3)-(5.4). As a result, the finite element solutions Gj and G∗
i of

the forward problem will possess error terms in addition to the discretization error,

which leads to additional errors in the operator T̃ and γ̃ other than the ones caused

by the discretization of the forward problem.

As a result, the errors in µ̂
(L)
a and D̂(L) at the Lth iteration are bounded by:

∥∥µa − µ̂(L)
a

∥∥ =

∥∥∥∥∥
L∑

τ=1

αλ
(τ) − α̃λ

n(τ)

∥∥∥∥∥ ≤
L∑

τ=1

∥∥αλ
(τ) − α̃λ

n(τ)

∥∥ ,

∥∥∥D − D̂(L)
∥∥∥ =

∥∥∥∥∥
L∑

τ=1

βλ
(τ) − β̃λ

m(τ)

∥∥∥∥∥ ≤
L∑

τ=1

∥∥∥βλ
(τ) − β̃λ

m(τ)

∥∥∥ ,

assuming that the initial guesses µ
(0)
a and D(0) for the background absorption and

diffusion coefficients are approximated accurately while solving the boundary value

problems (5.1)-(5.2) and (5.3)-(5.4) at the first iteration, that is

µ(0)
a (x)−

n∑

k=1

µ(0)
a (xk)Lk(x) → 0, x ∈ Ω, (5.42)

D(0)(x)−
m∑

k=1

D(0)(xk)Lk(x) → 0, x ∈ Ω. (5.43)

Assuming that the error due to discretization which is induced indirectly is small

as compared to the direct errors, theorems 1 and 2 can be considered to summarize

the error due to discretization at each linearization step, which can be summed to

obtain the overall error due to discretization at the end of iterative linearization.
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5.4 Adaptive Mesh Generation

In this section, we discuss the design of adaptive mesh generation algorithms

based on the error bounds presented in theorems 1 and 2. In this respect, we

first consider the case in which the adaptive mesh generation aims to bound the

error due to the discretization below some preset tolerance value and determine

the requirements to establish such a tolerance value. This is followed by a practical

realization of the adaptive mesh generation which is constrained by a predetermined

maximum number of nodes in the final adaptive mesh.

5.4.1 Adaptive mesh generation for the forward problem

In this section, we make use of theorem 1 to devise an adaptive mesh gener-

ation algorithm for the discretization of the forward problem. The main objective

of the discretization scheme is to uniformly distribute the error bound in theorem 1

onto the finite elements. We start with the following theorem that states the con-

dition to ensure a pre-specified bound on the error resulting from forward problem

discretization. Next, we propose a practical adaptive mesh generation algorithm

that uses the results in theorem 1 and the theorem below.

Theorem 3:

Consider theorem 1. Let εf be the allowable bound on the error in α̃λ and

β̃λ with respect to respectively αλ and βλ, due to the discretization of the forward

problem. Then, we define the parameter ε with the following equation:

ε :=
εf

C maxi,j ‖g∗i gj‖1

(
Ns∑
j=1

N j
∆ +

Nd∑
i=1

N∗i
∆

)−1

, (5.44)

where C is the generic constant in theorem 1. Let

Hmj :=
− [C1c(j, m) + C2d(j, m)] +

√
[C1c(j, m) + C2d(j, m)]2 + 4 [C1a(j, m) + C2b(j, m)] ε

2[C1a(j,m) + C2b(j,m)]
,

(5.45)
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and

Hni :=
− [C1c

∗(i, n) + C2d
∗(i, n)] +

√
[C1c∗(i, n) + C2d∗(i, n)]2 + 4 [C1a∗(i, n) + C2b∗(i, n)] ε

2[C1a∗(i, n), +C2b∗(i, n)]
(5.46)

for some C1, C2, 0 < C2 < C1 such that

(χ̃11 + χ̃12), (χ̃21 + χ̃22) ≤ C1, (5.47)

χ̃12, χ̃22 ≤ C2. (5.48)

Then, if hmj > 0 and hni > 0 satisfy

hmj ≤ Hmj

hni ≤ Hni

for m,j, m = 1, · · · , N∆
j , j = 1, · · · , Ns and for n,i, n = 1, · · · , N∗∆

i , i = 1, · · · , Nd,

the following hold

‖αλ − α̃λ‖0 ≤ εf .

‖βλ − β̃λ‖0 ≤ εf .

Proof. See proof in appendix (C.3).

¤

In practice, Hmj and Hni in (5.45)-(5.46) can not be computed since α, αλ,

βλ, gj, and g∗i are unknown. However, Hmj and Hni can be estimated by using

approximations for the functions involved in these bounds, based on either a priori

information or on the recent forward and inverse problem solution updates [40]. If

there is no a priori information, αλ and βλ can be assumed to be spatially constant

at the first linearization step. We note that for the initial mesh design, we use a

model problem to compute the terms in the error bound relevant to the forward

problem solution [40, 53, 85].
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After each sweep of refinement, one has to update the ε value; on the other

hand, after the first sweep of refinement, one can compute the bound Hmj and Hni

only for the new elements.

In case εf in (5.44) can not be chosen in prior, we consider a posterior approach.

Let

εf (j,m) := [C1a(j, m) + C2b(j, m)] h2
mj + [C1c(j, m) + C2d(j, m)] hmj,(5.49)

εf (i, n) := [C1a
∗(i, n) + C2b

∗(i, n)] h2
ni + [C1c

∗(i, n) + C2d
∗(i, n)] hni. (5.50)

which are increasing functions in hmj and hni, respectively. Then, for each source j

(for each detector i) for the given initial hmj (hni) values, compute εf (j, m) (εf (i, n))

on each element and take the average to obtain εj (εi). Then, for the elements for

which εf (j, m) > εj (εf (i, n) > εi), refine the element so that the new εf (j, m)

(εf (i, n))for that element will be smaller. We note that, in this case, the algorithm

has to be stopped when the number of nodes in the mesh (that is the number of un-

knowns in the discrete forward problem: Nj or N∗
i ) exceeds the allowable number of

nodes which is determined by the computational power at hand. To compute (5.49)-

(5.50) one has to estimate the bounds χ̃ij, for i, j = 1, 2 (see experiments section for

an example) and gj, g
∗
i as well. gj, g

∗
i can be approximated by either the analytical

solution on an unbounded domain [40] or their finite dimensional approximations

(see algorithm 3). Finally we note that we use the approximation ‖gj‖2,m ≈ ‖gj‖1,m

and ‖g∗i ‖2,n ≈ ‖g∗i ‖1,n for practical purposes, which is true for the finite element

approximations Gj and G∗
i . In algorithm 3, we outline the practical adaptive mesh

generation algorithm described above.

5.4.2 Adaptive mesh generation for the inverse problem

In this section, we use theorem 2 to devise an adaptive mesh generation al-

gorithm for the discretization of the inverse problem formulation (5.29). Similar to

the adaptive mesh generation algorithm for the numerical solution of the forward

problem, the main objective of the discretization scheme is to uniformly distribute

the error bound in theorem 2 onto the finite elements. We start with the follow-

ing theorem that states the condition to ensure a pre-specified bound on the error
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Algorithm 3 The pseudocode for the mesh generation algorithm for the forward
problem.

¦ Generate an initial uniform mesh:

(∆j,N j
∆), ∆ =

⋃Nj
∆

m=1{∆m}
(
(∆∗i, N∗i

∆ ), ∆i∗ =
⋃N∗i

∆
n=1{∆n}

)

¦ Set the maximum number of nodes N f
max

while Number of nodes in ∆j (∆∗i) less than N f
max

for each element ∆m ∈ ∆j with mesh parameter hmj (for ∆n ∈ ∆∗i with hni)
if first linearization

¦ Use analytical solutions for gj and g∗i and a priori anatomical
information about α and β to compute εf (m, j) in (5.49) (εf (n, i) in (5.50))

else

¦ Use current solution updates Gj, G∗
i and α̃λ

n, β̃λ
m

to compute εf (m, j) in (5.49) (εf (n, i) in (5.50))
end

¦ Compute εj (εi)
¦ Refine the elements with εf (m, j) > εj (εf (n, i) > εi)
¦ Update the mesh ∆j (∆∗i)

end
¦ Solve for Gj (G∗

i )

resulting from inverse problem discretization. Next, we propose a practical adap-

tive mesh generation algorithm that uses the results in theorem 2 and the theorem

below.

Theorem 4:

Consider theorem 2. Let ξinv be the allowable bound on the error in α̃λ
n and β̃λ

m

with respect to respectively α̃λ and β̃λ, due to the inverse problem discretization.

We define the parameter ξ > 0 with the following equation

ξ :=
ξinv

C(N∆
a + N∆

b )
, (5.51)

where C > 0 is the generic constant in theorem 2. Let

Hta :=
ξ

P1‖α̃λ‖1,ta + P2 maxi,j ‖G∗
i Gj‖1

∑Nd,Ns

i,j ‖G∗
i Gj‖0,ta‖α̃λ‖1,ta

, (5.52)
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and

Hub :=
ξ

P1‖β̃λ‖1,ub + P2 maxi,j ‖G∗
i Gj‖1

∑Nd,Ns

i,j ‖G∗
i Gj‖0,ub‖β̃λ‖1,ub

(5.53)

for some P1, P2 > 0 such that

(1 + λaπ11), (1 + λbπ22) ≤ P1 (5.54)

(π11 + π12), (π21 + π22) ≤ P2 (5.55)

Then, if if hta > 0 and hub > 0 satisfy

hta ≤ Hta,

hub ≤ Hub,

for all t,u, t = 1, · · · , N∆
a , u = 1, · · · , N∆

b , then the error in the reconstructed images

α̃λ
n, β̃λ

m due to inverse problem discretization is bounded by

‖α̃λ − α̃λ
n‖0 ≤ ξinv,

‖β̃λ − β̃λ
m‖0 ≤ ξinv.

Proof. Substituting the bounds (5.52)-(5.53) in theorem 2 leads to the theorem.

¤

In practice, Hta, Hub in (5.52) and (5.53) can not be computed since α̃λ, β̃λ.

Similar to the approach described in Section 3.3.1, Hta and Hub can be estimated

by using approximations for the functions involved in these bounds, based on either

a priori information or on the recent inverse problem solution updates. If there is

no a priori information, α̃λ and β̃λ can be assumed to be spatially constant at the

first linearization step.

After each sweep of refinement, one has to update the ξ value; on the other

hand, after the first sweep of refinement, one can compute the bound Hta and Hub

only for the new elements.
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In case ξinv in (5.51) can not be chosen in prior, we consider a posterior

approach. Let

ξinv
a (t) :=

(
P1‖α̃λ‖1,ta + P2 max

i,j
‖G∗

i Gj‖1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,ta

)
hta (5.56)

ξinv
b (u) :=

(
P1‖β̃λ‖1,ub + P2 max

i,j
‖G∗

i Gj‖1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ub‖β̃λ‖1,ub

)
hub. (5.57)

Then, for the discretization of the absorptive heterogeneity (of the diffusive het-

erogeneity) for the given initial hta (hub) values, compute ξinv
a (t) (ξinv

b (u)) on each

element and take the average to obtain ξinv
a (ξinv

b ). Then, for the elements for which

ξinv
a (t) > ξinv

a (ξinv
b (u) > ξinv

b ), refine the element so that the new ξinv
a (t) (ξinv

b (u))

for that element will be smaller. We note that, in this case, the algorithm has to

be stopped when the number of nodes in the mesh exceeds the maximum number

of nodes reserved for the inverse problem discretization. To compute (5.58)-(5.59),

one has to estimate the bounds Πij, for i, j = 1, 2 as well (see experiments section

for an example). In algorithm 4, we outline the practical adaptive mesh generation

algorithm for the inverse problem discretization described above.

5.4.3 Computational complexity of the adaptive mesh generation algo-

rithms

In this section, we briefly discuss the computational complexity of the adap-

tive mesh generation algorithms described in the previous sections. We first start

with the adaptive mesh generation algorithm for the forward problem discretization,

which is followed by the adaptive mesh generation algorithm for the inverse problem

discretization.

Using triangular finite elements with first order Lagrange basis functions and

an analytical (exact) integration on each finite element, the number of multiplica-

tions required to compute the L2 or H1 norm of a finite dimensional function (or two

functions) on each triangular element is ofO(1) complexity [40]. Then, the computa-

tional complexity of computing the bound (5.49) becomesO(NdNs) for each element.

For all elements, the computational complexity amounts to O(N j
∆NdNs). Similarly,
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Algorithm 4 The pseudocode for the mesh generation algorithm at every lineariza-
tion step of the inverse problem.

¦ Generate an initial uniform mesh

(∆a,Na
∆), ∆a =

⋃Na
∆

t=1{∆t}
(
(∆b, N b

∆), ∆b =
⋃Nb

∆
u=1{∆u}

)

¦ Set the maximum number of nodes Na
max (N b

max)
while Number of nodes Na (N b) less than Na

max (N b
max)

for each element ∆t ∈ ∆a with mesh parameter hta (for ∆u ∈ ∆b with hub)
if first linearization

¦ Use current solution updates Gj and G∗
i and a priori information

about α and β to compute Hta in (5.52) (Hub in (5.53))
else

¦ Use current solution updates Gj and G∗
i and α̃λ

n (β̃λ
m)

to compute ξinv
a (t) in (5.58) (ξinv

b (t) in (5.59))
end

¦ Compute ξinv
a

(
ξinv
b

)

¦ Refine the elements with ξinv
a (t) > ξinv

a

(
ξinv
b (u) > ξinv

b

)

¦ Update the mesh ∆a (∆b)
end

¦ Solve for α̃λ
n and β̃λ

m.

one can obtain the same computational complexity to compute the bound (5.50).

It is possible to even reduce the complexity by making the following modifi-

cations in a(j,m), b(j, m), c(j, m), d(j, m) and in a∗(j, m), b∗(j,m), c∗(j, m), d∗(j, m)

in theorem 1:

a(j, m) ≈
∥∥∥∥∥

Nd∑
i=1

g∗i α
λ

∥∥∥∥∥
0,mj

‖gj‖2,mj

b(j, m) ≈ ‖α‖0 + ‖β‖0

2

∥∥∥∥∥
Nd∑
i=1

g∗i

∥∥∥∥∥
∞,mj

‖gj‖2,mj,

c(j, m) ≈
∥∥∥∥∥

Nd∑
i=1

|∇g∗i |βλ

∥∥∥∥∥
0,mj

‖gj‖2,mj

d(j, m) ≈ ‖α‖0 + ‖β‖0

2

∥∥∥∥∥
Ns∑
j=1

∇g∗i

∥∥∥∥∥
∞,mj

‖gj‖2,mj,
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and

a∗(i, n) ≈
∥∥∥∥∥

Ns∑
j=1

gjα
λ

∥∥∥∥∥
0,ni

‖g∗i ‖2,ni

b∗(i, n) ≈ ‖α‖0 + ‖β‖0

2

∥∥∥∥∥
Ns∑
j=1

gj

∥∥∥∥∥
∞,ni

‖g∗i ‖2,ni,

c∗(i, n) ≈
∥∥∥∥∥

Ns∑
j=1

|∇gj|βλ

∥∥∥∥∥
0,ni

‖g∗i ‖2,ni

d∗(i, n) ≈ ‖α‖0 + ‖β‖0

2

∥∥∥∥∥
Ns∑
j=1

∇gj

∥∥∥∥∥
∞,ni

‖g∗i ‖2,ni.

Then, the computational complexity of adaptive mesh generation for each source or

detector becomes of O(NsN∆) +O(NdN∆) complexity.

Next, we discuss the computational complexity of adaptive mesh generation

for the discretization of the inverse problem. In a similar way as above, the computa-

tional complexity of computing (5.58) and (5.59) can be shown to be of O(NdNsN∆).

Further reduction is possible by making the following approximations in (5.58)

and (5.59):

ξinv
a (t) ≈


P1‖α̃λ‖1,ta + P2 max

i,j
‖G∗

i Gj‖1

∥∥∥∥∥
Nd,Ns∑

i,j

G∗
i Gj

∥∥∥∥∥
0,ta

‖α̃λ‖1,ta


 hta (5.58)

ξinv
b (u) ≈


P1‖β̃λ‖1,ub + P2 max

i,j
‖G∗

i Gj‖1

∥∥∥∥∥
Nd,Ns∑

i,j

G∗
i Gj

∥∥∥∥∥
0,ub

‖β̃λ‖1,ub


 hub. (5.59)

Then, the computational cost of adaptive mesh generation for the discretization of

the inverse problem becomes of O(Na
∆) +O(N b

∆) complexity.

5.5 Conclusion

In this work, we presented an error analysis to show the relationship between

the error in the simultaneously reconstructed optical absorption and diffusion coef-

ficient images and the discretization of the forward and inverse problems.

We summarized the results of the error analysis in two theorems which provide
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an insight into the effect of forward and inverse problem discretizations on the

accuracy of diffuse optical imaging. These theorems show that the error in the

reconstructed optical images due to the discretization of each problem is bounded by

roughly the multiplication of the discretization error in the corresponding solution

and the solution of the other problem. One important implication of the error

bounds is the dependence of the error in the reconstruction of one optical parameter

(say the absorption coefficient) on the discretization of the other optical parameter

(say the diffusion coefficient).

Based on the error analysis, we developed two new adaptive mesh generation

algorithms, one for the forward and one for the inverse problem, which take into

account the interdependence between the solutions of the two problems.
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(a) Reconstructed absorption image with crosstalk.
Red circles indicate the reconstructed absorptive het-
erogeneities and the light blue circle on the top right
is the ghost image introduced as a result of crosstalk
from the diffusion image.

(b) Reconstructed diffusion image with crosstalk.
Blue circles indicate the reconstructed absorptive het-
erogeneities and the pink circle on the top left is the
ghost image introduced as a result of crosstalk from
the absorption image.

Figure 5.1: An example of crosstalk in simultaneous reconstruction of
absorption and diffusion coefficients.
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Table 5.1: Definition of variables, functions, and operators.
Notation Explanation
Ω Bounded domain in R3 with Lipschitz boundary
∂Ω Lipschitz boundary of Ω
x Position vector in Ω ∪ ∂Ω
gj(x) Solution of the diffusion equation at x for the jth

point source located at xj
s

g∗i (x) Solution of the adjoint problem at x for the ith

adjoint source located at xi
d

Gj(x) Finite element approximation of gj at x
G∗

i (x) Finite element approximation of g∗i at x
ej(x) The discretization error at x in the finite element

approximation of gj

e∗i (x) The discretization error at x in the finite element
approximation of g∗i

α(x) Small perturbation over the background absorption coefficient µa at x
β(x) Small perturbation over the background diffusion coefficient D at x
Γi,j Differential measurement at the ith detector

due to the jth source
Aa The integral operator mapping α ∈ L2(Ω) to Γ ∈ CNd×Ns

Bb The integral operator mapping β ∈ L2(Ω) to Γ ∈ CNd×Ns

A∗
a The adjoint of Aa mapping from CNd×Ns to L2(Ω)

B∗b The adjoint of Bb mapping from CNd×Ns to L2(Ω)
Ha

i,j(x) The kernel of Aa at x
Hb

i,j(x) The kernel of Bb at x
Ha∗

i,j (x) The kernel of A∗
a at x

Hb∗
i,j(x) The kernel of B∗b at x

γ(x) [A∗
aΓ B∗bΓ]T at x

λa, λb The regularization parameters
σλ [αλ βλ]T , solution of the regularized inverse problem

σ̃λ [α̃λ β̃λ]T , solution of the regularized inverse problem
with degenerate kernels

σ̃λ
n,m [α̃λ

n β̃λ
m]T , solution of the discretized regularized inverse problem

with degenerate kernels
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Table 5.2: Definition of function spaces and norms.
Notation Explanation

f The complex conjugate of the function f
C(Ω) Space of continuous complex-valued functions on Ω ∪ ∂Ω
L∞(Ω) L∞(Ω) = {f | ess supΩ |f(x)| < ∞ }
Lp(Ω) Lp(Ω) = {f | (

∫
Ω
|f(x)|pdx)1/p < ∞ }, p ∈ [1,∞)

Dz
wf zth weak derivative of f

Hp(Ω) Hp(Ω) = {f | (
∑

|z|≤p ‖Dz
wf‖2

0)
1/2 < ∞ }, p ∈ [1,∞)

‖f‖0 The L2(Ω) norm of f
‖f‖p The Hp(Ω) norm of f
‖f‖∞ The L∞(Ω) norm of f
‖f‖0,m The L2 norm of f over the mth finite element Ωm

‖f‖p,m The Hp norm of f over the mth finite element Ωm

‖f‖∞,m The L∞ norm of f over the mth finite element Ωm
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Figure 5.2: Samples of the reconstructed images in the second simulation
study.



CHAPTER 6

Conclusion

In this thesis, we present an error analysis to show the relationship between the

error in the reconstructed optical images and the discretization of the forward and

inverse problems. We first present the error analysis which provide an insight into

the impact of forward and inverse problem discretizations on the accuracy of the

reconstructed optical absorption images. Next, we extend the analysis to show the

relationship between the error in the simultaneously reconstructed optical absorption

and diffusion coefficient images and the discretization of the forward and inverse

problems.

We summarize the results of the error analysis in theorems which display the

parameters that control the extent of the effect of discretization on the accuracy of

optical imaging. The two most important implications of the error analysis can be

stated as follows:

1. For both cases (that is optical absorption imaging and simultaneous recon-

struction of optical absorption and diffusion coefficients), the analysis indicates

that one has to take into account the solution of one problem (say the forward

problem) while discretizing the other problem (that is the inverse problem).

2. In the case of simultaneous reconstruction of optical absorption and diffu-

sion coefficients, the error in the reconstruction of one optical parameter (say

the absorption coefficient) depends on the discretization of the other optical

parameter (that is the diffusion coefficient).

The error analysis presented in this thesis motivates the development of novel

adaptive discretization schemes based on the error estimates presented in chapters 2

and 5. In this respect, we developed two new adaptive mesh generation algorithms,

one for the forward and one for the inverse problem in the case of optical absorption

imaging. For the simultaneous reconstruction problem, the analysis lead to another

set of new adaptive mesh generation algorithms, which are presented in chapter 5.
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The new adaptive mesh generation algorithms take into account the interde-

pendence between the solutions of the forward and inverse problems. Our numerical

experiments in chapter 3 provided a verification of the error estimates presented in

chapter 2 and showed that the proposed mesh generation algorithms significantly

improve the accuracy of the reconstructed optical images for a given number of

unknowns in the discrete forward and inverse problems.

Finally, we note that the error analysis and the adaptive mesh generation algo-

rithms introduced in this thesis are not limited to DOT, and can easily be adapted for

similar inverse parameter estimation problems such as electrical impedance tomog-

raphy, bioluminescence tomography, optical fluorescence tomography, microwave

imaging etc.

In chapter 3, we present an error analysis to show the effect of linearization of

the inverse problem based on Born approximation on the accuracy of DOT image

reconstructions. First, we derive an upper bound for the norm of the scattered op-

tical field due to an absorptive perturbation. The bound is shown to depend on the

spatial orientation of the optical heterogeneity and the optical field generated by the

light sources. The bound provides a sensitive measure of the scattered field, since it

takes the spatial variations of both the optical field and the optical heterogeneities

into account. This makes the error bound significant especially in optical media

with relatively small sizes. Next, we present an error analysis to show the effect of

zeroth-order Tikhonov regularization and Born approximation on the accuracy of

DOT imaging. The analysis shows that the error in the reconstructed image due to

Born approximation depends spatially on the optical heterogeneity, the optical field

generated by the light sources, and the source-detector orientation. The error anal-

ysis indicates that there is a tradeoff between the norm of the scattered field and the

accuracy of the inverse problem solution. Furthermore, the error analysis provides a

good measure for the choice of step length in iterative linearization based nonlinear

optimization methods, such as trust-region algorithms. The error analysis presented

in this work can be extended to show the effect of linearization on the accuracy of

simultaneous reconstruction of scattering and absorption coefficients. Note that the

presented error analysis is not limited to DOT, and can easily be adapted for similar
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inverse parameter estimation problems, in which Born approximation is applicable.
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APPENDIX A

Appendix for chapter 2

A.1 Boundedness of Aa

‖Aaα‖l1 =

Nd,Ns∑
i,j

∣∣∣∣
∫

Ω

Hi,j(x)α(x)dx

∣∣∣∣ . (A.1)

We can write the following inequality:

‖Aaα‖l1 ≤
Nd,Ns∑

i,j

∫

Ω

|Hi,j(x)α(x)|dx

≤
(

Nd,Ns∑
i,j

∫

Ω

|Hi,j(x)|dx
)
‖α‖∞. (A.2)

Using Schwarz’ inequality, we can write an upper bound for the summation as

follows:

Nd,Ns∑
i,j

∫

Ω

|Hi,j(x)|dx =

Nd,Ns∑
i,j

‖g∗i gj‖L1(Ω)

≤
Nd,Ns∑

i,j

‖g∗i ‖0‖gj‖0

≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0, (A.3)

which leads to

‖Aaα‖l1 ≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0‖α‖∞.

Therefore an upper bound for the norm of Aa is given by

‖Aa‖L∞(Ω)→l1 ≤ NdNs max
i
‖g∗i ‖0 max

j
‖gj‖0. (A.4)

The boundedness of gj and g∗i imply that Aa is bounded. ¤
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A.2 Compactness of Aa

Aa is bounded by (A.4). Furthermore Aa maps the infinite dimensional sub-

space L∞(Ω) to a finite dimensional subspace CNd×Ns , that is the range R(Aa) of

Aa satisfies R(Aa) ∈ CNd×Ns due to the finite number of sources and detectors. As

a result, Aa is compact [57]. The inverse problem is ill-posed as a consequence of

compactness [57]. ¤

A.3 Proof of the Lemma

The identity operator I is a bounded operator with bounded inverse and

(PnI)−1 = I : Xn → Xn. Furthermore, ‖Pn‖X→Xn is bounded for first order

Lagrange basis functions [8, 57]. Thus, projection by collocation converges for the

identity operator. A is bounded and compact, and K = λI + A is injective, with

bounded inverse given by (4.33). As a result, by Theorem 13.7 in [57], the projection

method also converges for K = λI + A. Convergence of projection for K implies

(PnK)−1PnKαλ → αλ, n →∞ for (PnK)−1PnK : X → Xn [57].

It follows from the proof of Theorem 13.7 in [57] that (I+ 1
λ
PnA)−1 : Yn → Xn

exists and is uniformly bounded for all sufficiently large n. Then from PnK =

λPn(I + 1
λ
PnA) = λ(I + 1

λ
PnA), it follows that PnK : Xn → Yn is invertible for all

sufficiently large n with the inverse given by

(PnK)−1 = (I +
1

λ
PnA)−1 1

λ
. (A.5)

As a result we can write (PnK)−1PnK as follows:

(PnK)−1PnK = (I +
1

λ
PnA)−1 1

λ
PnK. (A.6)

Thus,

‖(PnK)−1PnK‖X→Xn ≤ CM
‖K‖X→Y

λ
(A.7)

where CM > 0 is independent of n, using the facts that projection by collocation

method converges for the identity operator and (I+ 1
λ
PnA)−1 is uniformly bounded.
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APPENDIX B

Appendix for chapter 3

B.1 Solution of the Model Problem (shorter version)

In order to initialize the adaptive mesh for the solution of the forward problem

(provided D(x) = D and µa(x) = µa are spatially constant), we use an analytical

solution to compute the estimates of gj and g∗i . Below, we give the solution in

2D for (5.1). Under the same conditions, an analytical solution for the adjoint

problem (5.3) can be obtained in a similar way.

First, we use the polar coordinates (ρ,θ) to rewrite (5.1):

1

ρ

∂

∂ρ
(ρ

∂gj

∂ρ
) +

1

ρ

∂

∂θ
(ρ

∂gj

∂θ
) + K2

Ωgj = −4π

ρ

δ(ρ− ρj
s)δ(θ − θj

s)

D
,

where we consider an unbounded domain, model the point source located at (ρj
s,θ

j
s)

by the Dirac-delta function 4πδ(ρ − ρj
s)δ(θ − θj

s)/ρ, and K2
Ω = −(µac + iω)/cD.

Then, the solution gj at (ρ,θ) due to the point source located at (ρj
s,θ

j
s) is given

by [53]

gj(ρ, ρj
s; θ, θ

j
s) =

4
Dπ

{
1
2I0(kΩρ<)K0(kΩρ>) +

∑∞
m=1 cos[m(θ − θs)]Im(kΩρ<)Km(kΩρ>)

}
,

where ρ< means the smaller of ρ and ρj
s, ρ> means the greater of ρ and ρj

s, Im and

Km are the modified Bessel functions of the first and second kind, respectively [1]

and kΩ =
√
−K2

Ω.

The solution of the problem in 3D can be derived in a similar manner [53, 85].

B.2 Solution of the Model Problem

Consider a circular heterogeneity in an unbounded medium. Figure B.2 shows

such a heterogeneity. In this section, we solve the diffusion equation on such a

domain, in which the optical properties of the circular inclusion and the background

are different. For this purpose, we first derive a solution for a homogeneous optical

medium. Next, we update our solution to account for the scattered field originating
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from the cylindrical heterogeneity.

Figure B.1: The setup considered for the solution of the model problem
in equation (B.1).

B.2.1 Homogeneous Optical Background

First, consider the constant-coefficient frequency-domain diffusion equation in

3D:

(∇2 + K2
(bg))Φinc =

−δ(x− xs)δ(y − ys)δ(z − zs)

D(bg)

, (B.1)

where Φinc is the incident optical density, K2
(bg) = −(µa(bg)c + jω)/cD(bg), µa(bg) and

D(bg) are the absorption and diffusion coefficients of the background, respectively.

For our model problem, we consider a circular heterogeneity in an infinite

homogeneous medium, hence cylindrical (polar) coordinate system is appropriate

to expand the solution of (B.1). Therefore (B.1) can be rewritten in cylindrical

coordinates as follows:

1
ρ

∂

∂ρ
(ρ

∂Φinc

∂ρ
) +

1
ρ

∂

∂θ
(ρ

∂Φinc

∂θ
) +

∂2Φinc

∂z2
+ K2

(bg)Φinc = −4π

ρ

δ(ρ− ρs)δ(θ − θs)δ(z − zs)
D(bg)

.

(B.2)
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We make use of the following identities for the solution of equation (B.2) [53]:

δ(z − zs) =
1

2π

∫ ∞

−∞
dseis(z−zs) =

1

π

∫ ∞

0

ds cos[s(z − zs)],

δ(θ − θs) =
1

2π

∞∑
m=−∞

eim(θ−θs), (B.3)

and we expand the solution in cylindrical coordinates as

Φinc(x, z; xs, ys, zs) =
1

2π2

∞∑
m=−∞

∫ ∞

0

dseim(θ−θs)cos[s(z − zs)]gm(k, ρ, ρs), (B.4)

where gm(k, ρ, ρs) is the radial component of the solution Φinc, as a function of

m, k, ρ and ρs.

Substituting equations (B.3) and (B.4) in equation (B.2) and rearranging the

terms yields the following differential equation:

d2

dρ2
gm +

2

ρ

d

dρ
gm − (s2 +

m2

ρ2
−K2

(bg))gm = − 4π

D(bg)ρ
δ(ρ− ρs). (B.5)

Equation B.5 is similar to the modified Bessel equation for ρ 6= ρs. In this case, the

substitution
√

s2 −K2
(bg)ρ = τρ = r yields

d2

dr2
gm +

1

r

d

dr
gm − (1 +

m2

r2
)gm = 0. (B.6)

Thus, for ρ 6= ρs, the solution to equation B.5 is given by the modified Bessel

functions, Im(τρ) and Km(τρ).

We assume that the following conditions hold for the solution:

1. gm(k, ρ, ρs) be finite at ρ = 0,

2. gm(k, ρ, ρs) vanishes at ρ →∞.

Suppose that ψ1(τρ) is some linear combination of Im and Km which satisfies the

correct boundary conditions for ρ < ρs and that ψ2(τρ) is a linearly independent

combination which satisfies the proper boundary conditions for ρ > ρs. The sym-

metry of the solution [53] in ρ and ρs, that is gm(k, ρ, ρs) = gm(k, ρs, ρ), requires
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that

gm(ρ, ρs) = ψ1(τρ<)ψ2(τρ>) (B.7)

where ρ< means smaller of ρ and ρs and ρ> implies larger of ρ and ρs. ψ1(τρ) is the

solution for ρ < ρs, thus the finiteness requirement at ρ = 0 implies the coefficient B1

should be zero (since the modified Bessel function Km →∞ as ρ → 0) (Abramowitz

and Stegun 1968). Similarly, the second requirement implies the coefficient A2 in

ψ2(τρ) is equal to zero, since ψ2(τρ) is the solution for ρ > ρs and Im → ∞ as

ρ → ∞. Thus, we conclude that the solution gm(k, ρ, ρs) is given by gm(k, ρ, ρs) =

Aψ1(τρ)ψ2(τρ), for some constant A. The constant A is to be determined from

the Wronskian condition, which results in A = 4π
D(bg)

[53]. Then, the incident field

Φinc(ρ, θ, z; ρs, θs, zs) in 3D is given by

Φinc(ρ, θ, z; ρs, θs, zs) =
2

D(bg)π

∞∑
m=−∞

∫ ∞

0

dseim(θ−θs)cos[s(z − zs)]Im(τρ<)Km(τρ>).

(B.8)

Noting that In = I−n and Kn = K−n for n an integer [1], equation (B.8) can be

equivalently written in terms of real functions as follows:

Φinc(ρ, ρs) =
4

D(bg)π

∫ ∞

0

ds cos[s(z − zs)]{1

2
I0(τρ<)K0(τρ>)

+
∞∑

m=1

cos[m(θ − θs)]Im(τρ<)Km(τρ>)} (B.9)

In order to compute a solution in 2D, we can integrate the expression in B.9 with

respect to (z − zs) between the limits ±Z, where Z is taken to be very large. An

alternative way is to follow an approach similar to the one we followed in 3D case.

Instead, letting s → 0 and removing the related integral associated with δ(z − zs)

will yield the desired result in 2D. In this case, the solution in 2D is given by

Φinc(ρ, ρs; θ, θs) =
4

D(bg)π
{1

2
I0(k(bg)ρ<)K0(k(bg)ρ>)

+
∞∑

m=1

cos[m(θ − θs)]Im(k(bg)ρ<)Km(k(bg)ρ>)}, (B.10)
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where k(bg) =
√
−K2

(bg).

B.2.2 The scattered field due to the circular inclusion

Now consider a circular inclusion of radius ρ = a in the homogenous back-

ground with its center at the origin (that is ρ = 0). When the incident wave reaches

the cylinder, the wave front is distorted. We assume that the wave field outside the

cylinder is a superposition of the incident field and a scattered field (due to the exis-

tence of the circular inclusion), that is Φ(out) = Φ(inc) +Φ(sc). In this representation,

Φ(sc) and the field inside the circle Φ(in) are given by the modified Bessel functions,

as it should satisfy B.2 outside the circle.

The scattered field Φsc and the incident field Φinc in the presence of a circular

inclusion are given in terms of the modified Bessel functions as follows:

Φ(sc) =
∞∑

n=0

cos[n(θ − θs)]A
(sc)
n In(k(bg)ρ) + B(sc)

n Kn(k(bg)ρ), (B.11)

Φ(in) =
∞∑

n=0

cos[n(θ − θs)]A
in
n In(k(in)ρ) + Bin

n In(k(in)ρ). (B.12)

The unknown coefficients in Φsc and Φin representations are to be found by

applying appropriate boundary conditions at the interface of the circular inclusion

and for ρ = 0 and ρ →∞ [85]:

1. Φsc → 0 as ρ →∞.

2. Φin is finite everywhere.

3. (1−R21)Φout = [(1−R21) + 2(R12 −R21)D(in)
∂
∂ρ

]Φin at ρ = a.

4. D(bg)
∂
∂ρ

Φout = D(in)
∂
∂ρ

Φin at ρ = a.

where R12 and R21 are the reflection coefficients at the interface [85]. The first

two conditions suggest that A
(sc)
n (since In(x) → ∞ as x → ∞) and B

(in)
n (since

Kn(x) →∞ as x → 0) are equal to zero. The remaining coefficients, A(in) and B(sc)

can be found using the third and fourth conditions.
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B(sc)
n =

XnVn − Yn

Zn − SnXn

, (B.13)

where

Xn = D(in)k(in)I
′
n(k(in)a), (B.14)

Zn = D(out)k(out)K
′
n(k(out)a), (B.15)

Fn = (1−R(21))In(k(in)a) + 2(R12 −R21)D(in)k(in)I
′
n(k(in)a)) (B.16)

and for n = 0,

V0 =
2

πD(out)

I0(k(out)a)K0(k(out)ρs), (B.17)

Y0 =
2k(out)

D(out)

K0(k(out)ρs)I
′
0(k(out)a), (B.18)

and for n ≥ 1

Vn =
4

πD(out)

In(k(out)a)K0(k(out)ρs), (B.19)

Yn =
4k(out)

D(out)

Kn(k(out)ρs)I
′
n(k(out)a). (B.20)

As a result, the coefficients A
(in)
n are given as

A(in)
n =

SnB
(sc)
n + Vn

Fn

, (B.21)

where

Sn = (1−R21)Kn(k(out)a) (B.22)

where we assumed I ′n and K ′
n are the derivatives of In and Kn, respectively.



APPENDIX C

Appendix for chapter 4

C.1 Proof of theorem 1

We can write [39]

σλ − σ̃λ = T̃ −1
{(
T − T̃

)
σλ + (γ − γ̃)

}
. (C.1)

In the following, we will provide appropriate approximations for
(
T − T̃

)
σλ and

(γ − γ̃).

By definition,

‖(Aa − Ãa)α‖2
l2 =

Nd,Ns∑
i,j

∣∣∣∣
∫

Ω

(
g∗i (x)gj(x)−G∗

i (x)Gj(x)
)

α(x)dx

∣∣∣∣
2

. (C.2)

Similarly,

‖(Bb − B̃b)β‖2
l2 =

Nd,Ns∑
i,j

∣∣∣∣
∫

Ω

(
∇g∗i (x) · ∇gj(x)−∇G∗

i (x) · ∇Gj(x)
)

β(x)dx

∣∣∣∣
2

. (C.3)

where G∗
i , Gj are the finite element approximations to g∗i and gj, respectively. We

can expand g∗i gj −G∗
i Gj as

g∗i gj −G∗
i Gj = e∗i ej + Gje∗i + G∗

i ej, (C.4)

where e∗i := g∗i − G∗
i and ej := gj − Gj. Replacing G∗

i and Gj respectively with

g∗i − e∗i and gj − ej, we get

g∗i gj −G∗
i Gj = gje∗i + g∗i ej − e∗i ej

≈ gje∗i + g∗i ej, (C.5)
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where we neglect the term e∗i ej. In a similar way, we can write

∇g∗i · ∇gj −∇G∗
i · ∇Gj = ∇gj · ∇e∗i +∇g∗i · ∇ej −∇e∗i · ∇ej

≈ ∇gj · ∇e∗i +∇g∗i · ∇ej, (C.6)

We can express A− Ã as

A− Ã = A∗
aAa − Ã∗

aÃa. (C.7)

Following a similar approach as above,

A∗
aAa − Ã∗

aÃa = (A∗
a − Ã∗

a)(Aa − Ãa) + Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa. (C.8)

As a result, the following condition holds:

‖A − Ã‖ ≤ ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖+ ‖Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa‖. (C.9)

Since Ãa = −(Aa − Ãa) +Aa, (C.9) can be rewritten as

‖A − Ã‖ = ‖A∗
aAa − Ã∗

aÃa‖
≤ ‖(A∗

a − Ã∗
a)(Aa − Ãa)‖+ 2‖A∗

a(Aa − Ãa)‖
≈ 2‖A∗

a(Aa − Ãa)‖, (C.10)

where we neglect the term ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖. Similarly,

‖B − B̃‖ ≤ 2‖B∗b (Bb − B̃b)‖, (C.11)

‖AB − ÃB‖ ≤ 2‖A∗
a(Bb − B̃b)‖, (C.12)

‖BA − B̃A‖ ≤ 2‖B∗b (Aa − Ãa)‖. (C.13)

We can write

‖(A− Ã)αλ‖0 ≈ 2‖A∗
a(Aa − Ãa)α

λ‖0
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≈ 2

∥∥∥∥∥
Nd,Ns∑

i,j

g∗i (·)gj(·)
∫

Ω

(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)dx́

∥∥∥∥∥
0

≤ 2 max
i,j

‖g∗i gj‖0

Nd,Ns∑
i,j

∫

Ω

∣∣∣
(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)

∣∣∣ dx́. (C.14)

An upper bound for the integral in (C.14) can be obtained as follows:

∫

Ω

∣∣∣
(
gj(x́)e∗i (x́) + g∗i (x́)ej(x́)

)
αλ(x́)

∣∣∣ dx́

≤
N∗i

∆∑
n=1

‖e∗i ‖0,ni‖gjα
λ‖0,ni +

Nj
∆∑

m=1

‖ej‖0,mj‖g∗i αλ‖0,mj. (C.15)

Using (C.15) in (C.14),

‖(A− Ã)αλ‖0 ≤ 2 max
i,j

‖g∗i gj‖0

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gjα
λ‖0,ni +

Ns∑
j=1

Nj
∆,Nd∑
m,i

‖ej‖0,mj‖g∗i αλ‖0,mj


 . (C.16)

Similarly,

‖(AB − ÃB)βλ‖0 ≤ 2 max
i,j

‖g∗i gj‖0

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖∇e∗i ‖0,ni

∥∥|∇gj|βλ
∥∥

0,ni
+

Ns∑
j=1

Nj
∆,Nd∑
m,i

‖∇ej‖0,mj

∥∥|∇g∗i |βλ
∥∥

0,mj


 .

(C.17)

‖(BA − B̃A)αλ‖0 ≤ 2 max
i,j

‖∇g∗i · ∇gj‖0

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni

∥∥gjα
λ
∥∥

0,ni
+

Ns∑
j=1

Nj
∆,Nd∑
m,i

‖ej‖0,mj

∥∥g∗i α
λ
∥∥

0,mj


 .

(C.18)

‖(B − B̃)βλ‖0 ≤ 2 max
i,j

‖∇g∗i · ∇gj‖0

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖∇e∗i ‖0,ni

∥∥|∇gj|βλ
∥∥

0,ni
+

Ns∑
j=1

Nj
∆,Nd∑
m,i

‖∇ej‖0,mj

∥∥|∇g∗i |βλ
∥∥

0,mj


 .
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(C.19)

‖γa − γ̃a‖0 can be interpreted as follows:

‖γa − γ̃a‖0 =

∥∥∥∥∥
Nd,Ns∑

i,j

(
g∗i (·)gj(·)−G∗

i (·)Gj(·)
)

Γi,j

∥∥∥∥∥
0

≈
∥∥∥∥∥

Nd,Ns∑
i,j

(
e∗i (·)gj(·) + g∗i (·)ej(·)

)
Γi,j

∥∥∥∥∥
0

, (C.20)

where the error in Γi,j due to discretization is neglected and the last approximation

is derived similar to (C.10). Similarly,

‖γb − γ̃b‖0 ≈
∥∥∥∥∥

Nd,Ns∑
i,j

(
∇e∗i (·) · ∇gj(·) +∇g∗i (·) · ∇ej(·)

)
Γi,j

∥∥∥∥∥
0

, (C.21)

To compute an upper bound for ‖γ̃a − γa‖0 using (C.20), we first write

∥∥∥∥∥
Nd,Ns∑

i,j

(
e∗i (·)gj(·) + g∗i (·)ej(·)

)
Γi,j

∥∥∥∥∥
0

≤ max
i,j

|Γi,j|
∥∥∥∥∥

Nd,Ns∑
i,j

(
e∗i (·)gj(·) + g∗i (·)ej(·)

)∥∥∥∥∥
0

≤ max
i,j

|Γi,j|



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gj‖∞,ni +
Ns∑
i=j

Nj
∆,Nd∑
m,i

‖g∗i ‖∞,mj‖ej‖0,mj


 . (C.22)

Noting (5.9),

max
i,j

|Γi,j| ≤ max
i,j

‖g∗i gj‖0‖α‖0 + max
i,j

‖∇g∗i · ∇gj‖0‖β‖0,

≤ max
i,j

‖g∗i gj‖1 (‖α‖0 + ‖β‖0) . (C.23)

(C.23) leads to

‖γa − γ̃a‖0 ≤ max
i,j

‖g∗i gj‖1 (‖α‖0 + ‖β‖0)
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×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖e∗i ‖0,ni‖gj‖∞,ni +
Ns∑
i=j

Nj
∆,Nd∑
m,i

‖g∗i ‖∞,mj‖ej‖0,mj


 .

(C.24)

Similarly,

‖γb − γ̃b‖0 ≤ max
i,j

‖g∗i gj‖1 (‖α‖0 + ‖β‖0)

×



Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

‖∇e∗i ‖0,ni‖∇gj‖∞,ni +
Ns∑
i=j

Nj
∆,Nd∑
m,i

‖∇g∗i ‖∞,mj‖∇ej‖0,mj


 .

(C.25)

Since,

‖αλ − α̃λ‖ ≤ χ̃11

(
‖(Ã − A)α‖+ ‖(ÃB −AB)β‖+ ‖γ̃a − γa‖

)

+χ̃12

(
‖(B̃A − BA)α‖+ ‖(B̃ − B)β‖+ ‖γ̃b − γb‖

)
, (C.26)

‖βλ − β̃λ‖ ≤ χ̃21

(
‖(Ã − A)α‖+ ‖(ÃB −AB)β‖+ ‖γ̃a − γa‖

)

+χ̃22

(
‖(B̃A − BA)α‖+ ‖(B̃ − B)β‖+ ‖γ̃b − γb‖

)
. (C.27)

Then,

‖αλ − α̃λ‖0 ≤ 2χ̃11 max
i,j

‖g∗i gj‖1

×



Nd∑

i=1

N∗i
∆ ,Ns∑

n,j

‖e∗i ‖0,ni

(
‖gjα

λ‖0,ni +
‖α‖0 + ‖β‖0

2
‖gj‖∞,ni

)
+ ‖∇e∗i ‖0,ni

∥∥|∇gj |βλ
∥∥

0,ni

+
Ns∑

j=1

Nj
∆,Nd∑

m,i

‖ej‖0,mj

(
‖g∗i αλ‖0,mj +

‖α‖0 + ‖β‖0
2

‖g∗i ‖∞,mj

)
+ ‖∇ej‖0,mj

∥∥|∇g∗i |βλ
∥∥

0,mj


 .

+2χ̃12 max
i,j

‖g∗i gj‖1

×



Nd∑

i=1

N∗i
∆ ,Ns∑

n,j

‖e∗i ‖0,ni‖gjα
λ‖0,ni + ‖∇e∗i ‖0,ni

(∥∥|∇gj |βλ
∥∥

0,ni
+
‖α‖0 + ‖β‖0

2
‖∇gj‖∞,ni

)

+
Ns∑

j=1

Nj
∆,Nd∑

m,i

‖ej‖0,mj‖g∗i αλ‖0,mj + ‖∇ej‖0,mj

(∥∥|∇g∗i |βλ
∥∥

0,mj
+
‖α‖0 + ‖β‖0

2
‖∇gi‖∞,mj

)
 ,

(C.28)
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which can be organized as

‖αλ − α̃λ‖0 ≤ 2 max
i,j

‖g∗i gj‖1 ×




Ns∑
j=1

Nj
∆,Nd∑
m,i

[
‖ej‖0,mj

(
(χ̃11 + χ̃12) ‖g∗i αλ‖0,mj + χ̃12

‖α‖∞ + ‖β‖∞
2

‖g∗i ‖∞,mj

)

+‖∇ej‖0,mj

(
(χ̃11 + χ̃12)

∥∥|∇g∗i |βλ
∥∥

0,mj
+ χ̃12

‖α‖0 + ‖β‖0

2
‖∇g∗i ‖∞,mj

)]

+

Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

[
‖e∗i ‖0,ni

(
(χ̃11 + χ̃12) ‖gjα

λ‖0,ni + χ̃12
‖α‖0 + ‖β‖0

2
‖gj‖∞,ni

)

+‖∇e∗i ‖0,ni

(
(χ̃11 + χ̃12)

∥∥|∇gj|βλ
∥∥

0,ni
+ χ̃12

‖α‖0 + ‖β‖0

2
‖∇gj‖∞,ni

)]}

(C.29)

Using the discretization error estimates (5.25)-(5.26) with the generic positive con-

stant C, we can rewrite the upper bound as follows:

‖αλ − α̃λ‖0 ≤ 2C max
i,j

‖g∗i gj‖1 ×




Ns∑
j=1

Nj
∆,Nd∑
m,i

[
h2

mj‖gj‖2,m

(
(χ̃11 + χ12) ‖g∗i αλ‖0,mj + χ̃12

‖α‖0 + ‖β‖0

2
‖g∗i ‖∞,mj

)

+hmj‖gj‖2,m

(
(χ̃11 + χ̃12)

∥∥|∇g∗i |βλ
∥∥

0,mj
+ χ̃12

‖α‖0 + ‖β‖0

2
‖∇g∗i ‖∞,mj

)]

+

Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

[
h2

ni‖g∗i ‖2,ni

(
(χ̃11 + χ̃12) ‖gjα

λ‖0,ni + χ̃12
‖α‖0 + ‖β‖0

2
‖gj‖∞,ni

)

+hni‖g∗i ‖2,ni

(
(χ̃11 + χ̃12)

∥∥|∇gj|βλ
∥∥

0,ni
+ χ̃12

‖α‖0 + ‖β‖0

2
‖∇gj‖∞,ni

)]}
.

Using a similar approach, the bound for ‖βλ − β̃λ‖0 can be found to be

‖βλ − β̃λ‖0 ≤ 2C max
i,j

‖g∗i gj‖1 ×




Ns∑
j=1

Nj
∆,Nd∑
m,i

[
h2

mj‖gj‖2,m

(
(χ̃21 + χ̃22) ‖g∗i αλ‖0,mj + χ̃22

‖α‖0 + ‖β‖0

2
‖g∗i ‖∞,mj

)
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+hmj‖gj‖2,m

(
(χ̃21 + χ̃22)

∥∥|∇g∗i |βλ
∥∥

0,mj
+ χ̃22

‖α‖0 + ‖β‖0

2
‖∇g∗i ‖∞,mj

)]

+

Nd∑
i=1

N∗i
∆ ,Ns∑
n,j

[
h2

ni‖g∗i ‖2,ni

(
(χ̃21 + χ̃22) ‖gjα

λ‖0,ni + χ̃22
‖α‖0 + ‖β‖0

2
‖gj‖∞,ni

)

+hni‖g∗i ‖2,ni

(
(χ̃21 + χ̃22)

∥∥|∇gj|βλ
∥∥

0,ni
+ χ̃22

‖α‖0 + ‖β‖0

2
‖∇gj‖∞,ni

)]}
.

Letting a(j,m), b(j, m), c(j, m) and d(j,m) as follows yields the first part of the

theorem:

a(j, m) :=

Nd∑
i=1

‖g∗i αλ‖0,mj‖gj‖2,mj

b(j, m) :=
‖α‖0 + ‖β‖0

2

Nd∑
i=1

‖g∗i ‖∞,mj‖gj‖2,mj,

c(j, m) :=

Nd∑
i=1

∥∥|∇g∗i |βλ
∥∥

0,mj
‖gj‖2,mj

d(j, m) :=
‖α‖0 + ‖β‖0

2

Ns∑
j=1

‖∇g∗i ‖∞,mj‖gj‖2,mj,

Defining a∗(j, m), b∗(j, m), c∗(j, m) and d∗(j, m) in a similar way concludes the the-

orem.

C.2 Proof of theorem 2

Clearly,

σ̃λ − σ̃λ
n,m =

[
I − (Pn,mT̃ )−1Pn,mT̃

]
σ̃λ

=
[
I − (Pn,mT̃ )−1Pn,mT̃

] (
σ̃λ − ψ

)
,

where ψ := [ψa ψb]
T ∈ Xa ×Xb. Note that

[
I − (Pn,mT̃ )−1Pn,mT̃

]
ψ = 0.

Without loss of generality, we can express (Pn,mT̃ )−1Pn,m as follows:

(Pn,mT̃ )−1Pn,m =


 Π11 Π12

Π21 Π22


 , (C.30)
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where Πij, for i = 1, 2, j = 1, 2 are defined on appropriate subspaces. The bound-

edness of (Pn,mT̃ )−1 implies that Πij is bounded by

‖Πij‖ ≤ πij (C.31)

for some positive πij, i = 1, 2, j = 1, 2. Note that ‖(Pn,mT̃ )−1Pn,m‖ ≤ ‖(Pn,mT̃ )−1‖,
since Pn,m is the orthogonal projection operator and ‖Pn,m‖ = 1 [57].

Let ea := α̃λ − ψa and eb := β̃λ − ψb. We write

α̃λ − α̃λ
n = (ea − λaΠ11ea − Π12λbeb)− Π11(Ãea + ÃBeb)− Π12(B̃Aea + B̃eb)(C.32)

Then,

‖α̃λ − α̃λ
n‖0 ≤ ‖(I − λaΠ11)ea‖0 + λb‖Π12eb‖0

‖Π11Ãea + Π12B̃Aea‖0 + ‖Π11ÃBeb + Π12B̃eb‖0.

We have

‖α̃λ − α̃λ
n‖0 ≤ ‖I − λaΠ11‖L2(Ω)→L2(Ω) ‖ea‖0 + π11‖Ãea‖0 + π12‖B̃Aea‖0

+π11‖ÃBeb‖0 + π12‖B̃eb‖0.

Assuming further that α̃λ, β̃λ are bounded on Ω
⋃

∂Ω, and recalling the inter-

polation error estimates [20]

‖eα‖0 ≤ C‖α̃λ‖1hta,

‖eβ‖0 ≤ C‖β̃λ‖1hub,

for some generic C > 0 and using the results of theorem 1 [39], we can write:

‖α̃λ − α̃λ
n‖0 ≤ C(1 + λaπ11)

N∆
a∑

t=1

‖α̃λ‖1,tahta

+Cλbπ12

N∆
b∑

u=1

‖β̃λ‖1,ubhub
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+Cπ11 max
i,j

‖G∗
i Gj‖0

N∆
a∑

t=1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta

+Cπ12 max
i,j

‖∇G∗
i · ∇Gj‖0

N∆
a∑

t=1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta

+Cπ11 max
i,j

‖G∗
i Gj‖0

N∆
b∑

u=1

Nd,Ns∑
i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub

+Cπ12 max
i,j

‖∇G∗
i · ∇Gj‖0

N∆
b∑

u=1

Nd,Ns∑
i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub

which can be put into a simpler form as follows:

‖α̃λ − α̃λ
n‖0 ≤ C(1 + λaπ11)

N∆
a∑

t=1

‖α̃λ‖1,tahta + Cλbπ12

N∆
b∑

u=1

‖β̃λ‖1,ubhub

+C

(
π11 max

i,j
‖G∗

i Gj‖0 + π12 max
i,j

‖∇G∗
i · ∇Gj‖0

)

×
N∆

a∑
t=1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta

+C

(
π11 max

i,j
‖G∗

i Gj‖0 + π12 max
i,j

‖∇G∗
i · ∇Gj‖0

)

×
N∆

b∑
u=1

Nd,Ns∑
i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub

Since

max
i,j

‖G∗
i Gj‖0 + max

i,j
‖∇G∗

i · ∇Gj‖0 ≤ max
i,j

‖G∗
i Gj‖1, (C.33)

we write

‖α̃λ − α̃λ
n‖0 ≤ C(1 + λaπ11)

N∆
a∑

t=1

‖α̃λ‖1,tahta + Cλbπ12

N∆
b∑

u=1

‖β̃λ‖1,ubhub

+C(π11 + π12)max
i,j

‖G∗
i Gj‖1

N∆
a∑

t=1

Nd,Ns∑

i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta
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+C(π11 + π12)max
i,j

‖G∗
i Gj‖1

N∆
b∑

u=1

Nd,Ns∑

i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub

≤ C(1 + λaπ11)
N∆

a∑

t=1

‖α̃λ‖1,tahta + Cλbπ12

N∆
b∑

u=1

‖β̃λ‖1,ubhub + C(π11 + π12)max
i,j

‖G∗
i Gj‖1

×



N∆
a∑

t=1

Nd,Ns∑

i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta +

N∆
b∑

u=1

Nd,Ns∑

i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub


 .

A similar bound can be obtained for ‖β̃λ − β̃λ
m‖0:

‖β̃λ − β̃λ
m‖0 ≤ C(1 + λbπ22)

N∆
b∑

u=1

‖β̃λ‖1,ubhub + Cλaπ21

N∆
a∑

u=1

‖α̃λ‖1,tahta

+C(π21 + π22) max
i,j

‖G∗
i Gj‖1

×



N∆
a∑

t=1

Nd,Ns∑
i,j

‖G∗
i Gj‖0,ta‖α̃λ‖1,tahta +

N∆
b∑

u=1

Nd,Ns∑
i,j

‖∇G∗
i · ∇Gj‖0,ub‖β̃λ‖1,ubhub


 .

C.3 Proof of theorem 3

The conditions (5.45) and (5.46) together with (5.47)-(5.48) imply that

[(χ̃11 + χ̃12)a(j,m) + χ̃12b(j,m)] h2
mj + [(χ̃11 + χ̃12)c(j, m) + χ̃12d(j, m)] hmj ≤ ε,

[(χ̃11 + χ̃12)a
∗(i, n) + χ̃12b

∗(i, n)] h2
ni + [(χ̃11 + χ̃12)c

∗(i, n) + χ̃12d
∗(i, n)] hni ≤ ε,

and

[(χ̃21 + χ̃22)a(j,m) + χ̃22b(j,m)] h2
mj + [(χ̃21 + χ̃22)c(j, m) + χ̃22d(j, m)] hmj ≤ ε,

[(χ̃21 + χ̃22)a
∗(i, n) + χ̃22b

∗(i, n)] h2
ni + [(χ̃21 + χ̃22)c

∗(i, n) + χ̃22d
∗(i, n)] hni ≤ ε,

since a(j, m), b(j,m), c(i, n), d(i, n) and a∗(j, m), b∗(j, m), c∗(i, n), d∗(i, n) are pos-

itive. Using this argument in theorem 1 results in the bound given in (5.44).



APPENDIX D

Appendix

D.1 Finite Element Discretization of the Forward Problem

In this section, we formulate the finite element problem for the diffusion equa-

tion in frequency domain on a bounded domain Ω ⊂ R2. We use triangular finite

elements with piece-wise linear Lagrange basis functions for the discretization.

We turn back to the boundary value problem in equations (??) and (??)

(dropping the subscript j from g):

−∇ ·D(x)∇g +

(
µa(x) +

iω

c

)
g = Q(x) (x) ∈ Ω, (D.1)

g + 2aD(x)
∂g

∂n
= 0 (x) ∈ ∂Ω, (D.2)

where Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω and outward unit

normal n̂.

Equivalently we can express the problem in equations (D.1)-(D.2) as follows:

−(D(x)gx)x − (D(x)gy)y +

(
µa(x) +

jω

c

)
g = Q(x), (x) ∈ Ω (D.3)

g(x) + 2aD(x)n̂ · ∇g(x) = 0 (x) ∈ ∂Ω (D.4)

We first formulate the variational problem by multiplying equation (D.3) by a test

function ψ ∈ H1 and integrating over Ω to obtain

∫

Ω

ψ

[
(Dgx)x + (Dgy)y +

(
µa +

jω

c

)
g −Q

]
dx = 0. (D.5)

Applying divergence theorem, we get

∫

Ω

[
∇ψ ·D∇g + ψ

(
(µa +

jω

c
)g −Q

)]
dx−

∫

∂Ω

ψD
∂g

∂n
dl = 0,

∫

Ω

[
∇ψ ·D∇g + ψ

(
(µa +

jω

c
)g −Q

)]
dx +

∫

∂Ω

ψ
1

2a
gdl = 0, (D.6)

170
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where the integrand Dgn in the boundary integral is replaced by g/(2a) using the

boundary condition in (D.2).

Equivalently we can express (D.6) as follows:

A(ψ, g) +

〈
ψ,

1

2a
g

〉
= (ψ, Q) (D.7)

where

A(ψ, g) :=

∫

Ω

[
D(ψxgx + ψygy) +

(
µa +

jω

c

)
ψg

]
dx, (D.8)

(ψ, Q) :=

∫

Ω

ψQdx (D.9)

〈
ψ,

1

2a
g

〉
:=

1

2a

∫

∂Ω

ψgdl. (D.10)

Similarly, the variational problem can be formulated for the adjoint problem

in (??) and (??) (dropping the subscript i) as follows :

A(ψ, g∗) +

〈
ψ,

1

2a
g∗

〉
=< ψ, Q∗ > (D.11)

where Q∗ is the adjoint source located at the detector position and ω is replaced by

−ω in A(ψ, g∗).

D.1.1 Existence and Uniqueness of the Solution to the Variational Prob-

lem

In this section, we prove that a solution to (D.7) (and to (D.11)) exists and it

is unique. Furthermore, we show that the problem (D.7) is well-posed in the sense

that the solution g is bounded.

We first write the following sesquilinear form [47]:

b(ψ, g) = A(ψ, g) +

〈
ψ,

1

2a
g

〉
, (D.12)

and consider

b(ψ, g) = (ψ, Q). (D.13)
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We start with the following proposition:

Proposition 1 For bounded D ≤ Dmax and µa ≤ µmax, the sesquilinear form

b(ψ, g) is continuous, that is |b(ψ, g)| ≤ M‖ψ‖1‖g‖1, for some M > 0.

Proof.

|A(ψ, g)| =

∣∣∣∣(∇ψ, D∇g) +

(
ψ, (µa +

jω

c
)g

)∣∣∣∣

≤
∣∣∣∣
∫

Ω

∇ψ ·D∇g

∣∣∣∣ +

∣∣∣∣
∫

Ω

ψ

(
µa +

jω

c

)
g

∣∣∣∣

≤ Dmax‖∇ψ‖0‖∇g‖0 + ‖ψ‖0‖g‖0|µa +
jω

c
|max

≤ ‖ψ‖1‖g‖1Dmax + ‖ψ‖1‖g‖1

∣∣∣∣µa +
jω

c

∣∣∣∣
max

= ‖ψ‖1‖g‖1

(
Dmax +

∣∣∣∣µa +
jω

c

∣∣∣∣
max

)

= M1‖ψ‖1‖g‖1, (D.14)

where M1 =
(
Dmax +

∣∣µa + jω
c

∣∣
max

)
. Note that

∣∣∣∣
〈

ψ,
1

2a
g

〉∣∣∣∣ ≤
1

2a
‖ψ‖0,(∂Ω)‖g‖0(∂Ω).

By [20]

1

2a
‖ψ‖0(∂Ω)‖g‖0(∂Ω) ≤ 1

2a
C1‖ψ‖1/2

0 ‖ψ‖1/2
1 C2‖g‖1/2

0 ‖g‖1/2
1

≤ 1

2a
M2‖ψ‖1‖g‖1, (D.15)

where M2 = C1C2, for some C1, C2 > 0. Thus, |b(ψ, g)| ≤ M‖ψ‖1‖g‖1, where

M = M1 + M2/2a. ¤

Proposition 2 For some bounded Dmin ≤ D and bounded µmin ≤ µa, The sesquilin-

ear form b(ψ, g) is coercive (positive definite), that is |b(ψ, ψ)| ≥ β‖ψ‖2
1, for

some β > 0.
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Proof.

|b(ψ, ψ)| =

∣∣∣∣(∇ψ, D∇ψ) +

(
ψ, (µa +

jω

c
)ψ

)
+

〈
ψ,

1

2a
ψ

〉∣∣∣∣

=

∣∣∣∣
∫

Ω

∇ψ ·D∇ψ +

∫

Ω

ψ

(
µa +

jω

c

)
ψ +

1

2a

∫

∂Ω

|ψ|2
∣∣∣∣

≥ Dmin

∫

Ω

|∇ψ|2 +

∣∣∣∣(µa +
jω

c
)

∣∣∣∣
min

∫

Ω

|ψ|2

≥ min

(
Dmin,

∣∣∣∣
(

µmin +
jω

c

)∣∣∣∣
)
‖ψ‖2

1, (D.16)

where β = min (Dmin, |(µmin + jω/c)|). ¤

By Lax-Milgram lemma, propositions 1 and 2 ensure that the variational prob-

lem (D.12) has a unique solution. Furthermore, we establish the following stability

condition for the solution g of the frequency-domain diffusion equation:

Corollary The solution g to the variational formulation in equation (D.12) is stable

in the sense that

‖g‖1 ≤ M

β
, (D.17)

for some C > 0, which implies that g belongs to H1.

Proof. The ellipticity condition in Proposition 2 implies that the solution g is

bounded by the data f , measured in the norm of the dual space of H1, which

is H−1. The bound on the norm of the solution is given by [47]

‖g‖1 ≤ 1

β
‖Q‖H−1 , (D.18)

where the dual norm ‖Q‖H−1 is given by

‖Q‖H−1 := sup
06=v∈H1

|Q(v)|
‖v‖1

, (D.19)

where Q(v) = (Q, v). At this point, we use the Gaussian approximation for

the source Q (see Chapter 2), which implies that Q(v) = (Q, v) is a bounded



174

linear functional in H−1. Thus, the dual norm of Q(v) is given by

|Q(v)‖H−1 := sup
0 6=v∈H1

|Q(v)|
‖v‖1

≤ sup
06=v∈H1

‖Q‖0‖v‖0

‖v‖1

≤ sup
0 6=v∈H1

‖Q‖0‖v‖1

‖v‖1

= ‖Q‖0.

(D.20)

¤

D.1.2 Finite Element Discretization

Consider the integrals in equations (D.8)-(D.9) and (D.10). In order to com-

pute these integrals on a set of finite elements, we write the elemental integrals by

restricting (D.8)-(D.9) and (D.10) on the finite elements as follows:

A(ψ, g) =

N∆∑
e=1

A(g, ψ)e, (D.21)

(g,Q) =

N∆∑
e=1

(ψ,Q)e, (D.22)

〈
ψ,

1

2a
g

〉
=

N∆∑
e=1

〈
ψ,

1

2a
g

〉

e

. (D.23)

where N∆ is the number of finite elements.

These integrals may be simple or complex depending on µa, D, Q and the mesh.

Pursuing a general approach, we can consider a procedure based on transforming

these integrals on element e to a canonical element Ω0 and evaluate them on the

canonical element. Thus, we transform an arbitrary element in the physical (x, y)-

plane to the canonical element having a simpler geometry in a computational (ξ, η)-

plane. The details of this approach can be found elsewhere [9] Transformation leads

to the following integrals:

Ae(ψ, g) =

∫

Ω0

[
D0(ψ0ξ

ξx + ψ0ηηx)(g0ξ
ξx + g0ηηx)

+ D0(ψ0ξ
ξy + ψ0ηηy)(g0ξ

ξy + g0ηηy)(µa0 +
jω

c
)ψ0g0

]
det(Je)dξdη,

(D.24)

(ψ, f)e =

∫

Ω0

ψ0(ξ, η)f(x(ξ, η), y(ξ, η)) det(Je)dξdη, (D.25)
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< ψ,
1

2a
g >e =

∫

∂Ω0

ψ0
1

2a
g0dl, (D.26)

where D0, µa0 are the diffusion and absorption coefficients transformed onto the

canonical element, and Je is the Jacobian of the transformations x = x(ξ, η) and

y = y(ξ, η) and is given by

Je =


 xξ xη

yξ yη


 , (D.27)

where the subscripts denote the variable with respect to which the derivative is

taken.

D.1.3 Generation of Element Matrices and Vectors

In order to obtain the finite-element (Galerkin) formulation of (D.12), we use

the elemental integrals (D.24)-(D.25) and (D.26), select a finite dimensional subspace

SN ⊂ H1, and replace g and ψ with their finite-dimensional counterparts G and Ψ

for x = (x, y) as follows:

G(x) =
N∑

j=1

cjϕj(x) (D.28)

=
N∑

j=1

cj

Nj
∆⋃

e=1

Nj,e(x) (D.29)

Ψ(x) =
N∑

j=1

d∗j

Nj
∆⋃

e=1

Nj,e(x) (D.30)

where ϕj(x) denotes the jth basis function associated with the jth node and N is the

number of nodes. cj and dj are the coefficients of each basis function in the finite

sum for G and Ψ, respectively. Nj,e is the elemental shape function [20] associated

with the jth node and N j
∆ is the number of elements that include the jth node. Note

that we use piece-wise linear Lagrange polynomials as the basis functions and thus

the Lagrange shape functions corresponding to these basis polynomials.

Transformation to the canonical (ξ, η) plane yields the following representa-

tions for the finite element approximations G0(ξ, η) and Ψ0(ξ, η) of g(x) and ψ(x),
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respectively on the canonical element.

G0(ξ, η) = cT
e N(ξ, η) (D.31)

Ψ0(ξ, η) = dT
e N(ξ, η) (D.32)

where the vectors ce and decontain the elemental parameters and N(ξ, η) is a vector

that contains the elemental shape functions:

cT
e =

[
ce,1 ce,2 · · · ce,Ne

]
, (D.33)

dT
e =

[
de,1 de,2 · · · de,Ne

]
, (D.34)

NT
e =

[
N1(ξ, η) N2(ξ, η) · · · NNe(ξ, η)

]
, (D.35)

where Ne is the number of nodes in each element. Ne depends on the order of the

basis selected for the finite element solution of the problem. Using the equivalent

forms of G0(ξ, η) and Ψ0(ξ, η) given in equations (D.31) and (D.32) in the elemental

integrals given in equations (D.24), (D.25) and (D.26), we arrive at

A(Ψ, G)e = dT
e (Ke + Me)ce

(Ψ, Q)e = dT
e Qe〈

Ψ,
1

2a
G

〉

e

= dT
e Pe∂ce

where

Ke =

∫

Ω0

[
g1eNξN

T
ξ + g2e(NξN

T
η + NηN

T
ξ ) + g3eNηN

T
η

]
det(Je)dξdη

Me = −
∫

Ω0

(
µa0 +

jω

c

)
NNT det(Je)dξdη

Qe =

∫

Ω0

NQ det(Je)dξdη,

with the following identities

g1e = D0[ξ
2
x + ξ2

y ]
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g2e = D0[ξxηx + ξyηy]

g3e = D0[η
2
x + η2

y]

and D0 = D(x(ξ, η), y(ξ, η)) and µa0 = µa(x(ξ, η), y(ξ, η)).

The term Pe∂ is computed according to where the boundary edge is trans-

formed to. Assuming that the boundary edge of the physical element is transformed

onto the edge of the canonical triangle with η = 0 via the transformation x = x(ξ, η),

y = y(ξ, η), Pe∂ is given by

Pe∂ =
1

2a

∫ 1

0

N(ξ, 0)NT (ξ, 0)

√(
dx(ξ, 0)

dξ

)2

+

(
dy(ξ, 0)

dξ

)2

dξ. (D.36)

A similar approach can be followed for the case when the boundary edge is trans-

formed onto ξ = 0. In case the boundary edge is transformed to the hypotenuse of

the canonical element, the line integral can be evaluated as follows

Pe∂ =
1

2a

∫ 1

0

N(ξ, 1− ξ)NT (ξ, 1− ξ)

√(
dx(ξ, 1− ξ)

dξ

)2

+

(
dy(ξ, 1− ξ)

dξ

)2

dξ.

(D.37)

Assembly of the elemental matrices and vectors yields the following finite dimen-

sional problem formulation:

(K + M + P∂)c = f, (D.38)

where c = [c1, c2, · · · , cN ]T . We note that the ellipticity of the sesquilinear forms

b(ψ, g) and b∗(ψ, g∗) carries over to the finite-dimensional subspace (for conforming

finite elements) [47]. As a result, the finite element matrix (K+M+P∂) is positive

definite and thus has a bounded inverse.


