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ABSTRACT

Synthetic Aperture Radar (SAR) is a valuable imaging modality in civil and en-

vironmental monitoring, defense and homeland security applications. This thesis

presents novel analytic and computationally efficient SAR image formation meth-

ods in the presence of noise and clutter using a priori models for target, clutter and

noise.

The first part of the thesis presents statistical SAR inversion methods to

suppress noise and clutter using spatially-varying quadratic priors. We present

a novel class of non-stationary stochastic processes, which we refer to as pseudo-

stationary, to model radar targets and clutter. First, we develop analytic filtered-

backprojection- and backprojection-filtering-type SAR inversion methods based on

the minimum mean square error criterion when the target and the clutter are pseudo-

stationary. Next, we develop an analytic inversion formula based on a best linear

unbiased estimation criterion when the clutter is a pseudo-stationary process.

In the second part of the thesis, we investigate non-quadratic prior models to

represent target scenes. Specifically, we consider edge-preserving prior models. First,

we present a simultaneous analytic, image formation and edge detection method.

Then, we formulate the SAR image reconstruction as non-quadratic optimization

problems. We solve these optimization problems approximately with sequences of

filtered-backprojection operators.

The methods presented in this thesis have the advantages of computational

efficiency, applicability to arbitrary imaging geometries and several different SAR

modalities.

The methods and algorithms derived in this thesis are extensively tested using

high-fidelity simulated data and real SAR data.

xvi



CHAPTER 1

INTRODUCTION

1.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) is a coherent imaging technique used in a

wide range of applications from civil and environmental monitoring to defense and

homeland security. SAR has the advantage of providing rich information, long-range,

all-weather operation and large area coverage.

A typical SAR system involves a source of electromagnetic (EM) illumination

and (a) receiving antenna(s). The movement of the source and/or receiver(s) allows

mathematical synthesis of an image from the backscattered EM waves.

SAR can be used in a variety of modes depending on the number and geomet-

ric configurations of antennas, transmitted waveforms, center frequency and other

operating parameters.

In mono-static SAR configuration, receiving and transmitting antennas are

located on the same platform [3].

In a bi-static SAR, receiving and transmitting antennas are sufficiently far

apart so that the transmitter and the receiver look directions are different [1]. Re-

cently, bi-static configuration has received increasing attention in the context of

passive radar applications.

A multi-static SAR configuration involves three or more sufficiently far apart

antennas that are receiving, transmitting or both [4]. With the recent advances

in unmanned air vehicle (UAV) and microsatellite technologies [5]–[11], there is a

growing interest in multi-static SAR [4], [12]–[15].

Hitchhiker is a novel SAR modality that involves multiple receiving anten-

nas [16]. It takes advantage of ambient EM waves provided by the transmitters

of opportunity to perform radar tasks. Hitchhiker SAR may be useful in urban

areas where there are many transmitters of opportunity such as GSM, TV, Wi-Fi

transmitters.

In addition to these, there are many other SAR modalities that can be derived

1
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by configuring imaging parameters in space, time, polarization state, frequency etc.

These modalities include the along-track and cross-track interferometric SAR, po-

larimetric SAR to mention a few.

1.2 SAR Image Reconstruction Problem

There are analytical and numerical optimization-based SAR inversion tech-

niques. Analytical techniques are widely used and they are computationally efficient.

However, they cannot accommodate the measurement noise and clutter explicitly.

Moreover, there are limitations to the antenna trajectories. In order some of the

assumptions to hold for image formation with some of these techniques, antennas

need to traverse short, linear trajectories.

The range-Doppler algorithm is the most commonly used analytical method

in SAR image formation [17], [18]. The method is easy to implement and requires

calculation of a matched-filter. However, the method has some limitations since

the ideal matched-filter depends on the location of the target which is unknown

and the calculation of the matched-filter can be computationally burdensome. The

chirp-scaling algorithm [19] offers a solution to the computational load by bypass-

ing some of the interpolation needed for the range-Doppler algorithm via scaling

the chirp signal, which is a special type of transmitted waveform in SAR. There is

also ω-k algorithm that formulates the SAR inversion problem by using the wave

equation [20], [21]. This algorithm is also referred to as the wave number domain

algorithm and performs focusing via Stolt interpolation [22] to deal with the wide

aperture issues inherent with the range-Doppler and chirp-scaling methods. The

polar-format algorithm compensates for the limitations of range-Doppler method

by exploiting the fact that the SAR received signal is collected in a spherical ge-

ometry (polar coordinate system) [23], [24]. Finally, there are backprojection-based

analytic inversion methods [1], [3]. Our research group has been extensively work-

ing on backprojection-based analytic inversion methods from a generalized Radon

transform (GRT) point of view [1], [4], [16], [25]. [25] was the first work in the lit-

erature to incorporate a priori statistical information about the target and clutter

scenes with an analytic inversion method. We consider SAR collected data as a
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GRT of the scene reflectivity function (representing the scatterers on the ground)

weighted and projected onto some smooth manifolds. Backprojection-based meth-

ods can accommodate arbitrary imaging geometries. In Chapter 2, we describe the

SAR image formation from a GRT point of view.

Numerical optimization-based techniques are a second class of SAR inversion

methods. They use discrete models and can be statistical or deterministic. Nu-

merical optimization-based techniques consider the measurement noise and clutter

present in the scene, however most of the time they are computationally intensive.

Numerical optimization-based methods treat SAR image formation operator as a

forward matrix and attempt to find inverse matrices to form SAR images. Detailed

literature survey on numerical optimization based methods are given in Section 3.1

and Section 6.2.

In this thesis, we wish to develop computationally efficient, backprojection-

based, analytic SAR inversion methods that are robust in the presence of noise

and clutter and use a priori information to accurately characterize SAR target and

clutter scenes.

1.3 Challenges in SAR Image Formation

1- Noise and clutter: The measurement noise and clutter are ubiquitous

in SAR data. The classical SAR image reconstruction techniques, such as matched

filtering, range-Doppler [17] and chirp scaling algorithms [19] do not take into ac-

count noise and clutter, explicitly. Noise and clutter reduce the detectability and

the recognition of targets.

2- Computational efficiency: SAR images cover large swaths. For exam-

ple, a typical TerraSAR-X image of New Orleans area is a 14, 000 × 14, 000-pixel

image. Therefore, SAR is a computationally demanding, large inversion problem.

Fast algorithms are desired to achieve computational efficiency. There are analytical

and numerical optimization-based techniques to address these problems. Analytical

techniques are widely used and they are computationally efficient. However, they

cannot explicitly accommodate noise and clutter. Numerical optimization-based

techniques can use statistical or deterministic models. However, most of the time
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they are computationally intensive.

3- Use of “accurate” a priori information: The spectral estimation-

based techniques generally require a priori information about clutter and suitable

initialization for the convergence of the algorithms [26]. In the knowledge aided

space-time adaptive processing (KA-STAP) methods, this prior information is col-

lected when there are no targets in the imaging scene and provided as a clutter

covariance matrix to be used as training data. To overcome the requirement on

prior information, parametric techniques are proposed [27]–[29] but they are com-

putationally intensive.

4- Non-stationary nature of clutter and target: Often times, in nu-

merical optimization based methods, measurement noise is modeled to be additive

Gaussian [30]–[34] without any specification on the statistical nature of the target

and the clutter. This induces model-based errors to the reconstructed SAR images

due to non-stationary nature of the target and the clutter in reality.

5- Limited data: SAR systems can be used to operate in multiple modes

such as imaging and ground-moving target imaging. Such systems are referred to

as the interrupted SAR systems. Switching between different operation modes may

result in missing or undersampled data. Moreover, the amount of data collected

for a single acquisition may be very large to transmit and process in real time.

Also, in many practical applications the data may be incomplete to apply analytic

inversion methods, effectively [35]–[38]. Therefore, it is desirable to develop SAR

reconstruction algorithms using limited aperture data.

1.4 The Goal of the Thesis

In this thesis, we wish to develop computationally efficient, analytic image

reconstruction methods that are (1) robust in the presence of noise and clutter; (2)

based on specific a priori information that can accurately characterize SAR target

and clutter scenes.

Towards this goal, the thesis develops the following:

1. A novel class of non-stationary processes to model radar targets and clutter.
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2. Analytic and computationally efficient inversion methods within the minimum

mean square error (MMSE) and best linear unbiased estimator (BLUE) frame-

works when target and clutter belong to this class of processes.

3. Analytic, iterative and computationally efficient inversion methods using edge-

preserving non-quadratic prior models on radar targets.

1.5 Contributions and Organization of the Thesis

This thesis comprises of two parts. In the first part, we investigate quadratic

priors to model radar targets and clutter. In the second part, we use non-quadratic

priors for the target scenes.

The contributions of this thesis are as follows:

In Chapter 2:

• We briefly describe the SAR image reconstruction problem from a GRT point

of view.

In Chapter 3:

• We develop analytic, computationally efficient solutions to SAR image forma-

tion problem in the presence of noise and clutter. The methods described in

this thesis are of backprojection-type. Therefore, they can be implemented

with the computational complexity of the fast backprojection algorithms [39],

[40].

• We develop a novel class of statistically non-stationary processes to model

radar targets and clutter. We refer to this new family of processes as the

pseudo-stationary processes and they are locally stationary.

• We further show that the stochastic processes that can be represented by using

pseudo-stationary processes are outputs of time-varying convolution filters.

• By using this new family of processes, we develop an FBP-type, analytic SAR

reconstruction method that suppresses noise and clutter based on MMSE cri-

terion. We use MMSE locally which overcomes the over-smoothing effect of

MMSE.
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• We introduce backprojection-filtering as a novel SAR inversion method.

• Implementation of FBP- and BPF-type noise and clutter suppression meth-

ods require the space-varying spectral density (SVSD) functions for the target

and clutter. We develop an algorithm similar to the one described in [41] to

estimate target and clutter SVSD functions directly from the radar data in

the same chapter.

In Chapter 4:

• We develop an analytic SAR image reconstruction method that suppresses

noise and clutter based on BLUE criterion.

In Chapter 5:

• We describe a novel direct edge-enhancement method that simultaneously re-

constructs images and enhances edges along desired directions. The method

is also capable of smoothing edges along desired directions.

In Chapter 6:

• We use non-quadratic priors to model radar targets.

• We model SAR image formation problem as an Lp-norm constrained mini-

mization problem. We approximate this problem with a sequence of L2-norm

constrained inversion problems.

• We present iterative reweighted- and shrinkage-type algorithms to solve this

non-quadratic optimization problem.

• We use the method described in Chapter 5 to sharpen the reconstructed im-

ages.

• Different than other noise/clutter suppression techniques, Lp-type regulariza-

tion can be applied to limited data.

We demonstrate the performance of the proposed methods with synthetic data

formed by MATLAB, real data from Wide Angle SAR experiment [2] and the Civil-

ian Vehicles (CV) dome data set [42], both provided by the Air Force Research

Laboratories (AFRL). Chapter 6 concludes the thesis.
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CHAPTER 2

SAR IMAGE RECONSTRUCTION AS A GENERALIZED

RADON TRANSFORM

In this chapter, we first derive the SAR received signal model starting from the scalar

wave equation. Then, we describe the SAR image formation from a generalized

Radon transform point of view. Finally, we derive a filtered-backprojection type

filter for SAR in a deterministic setting.

2.1 SAR Received Signal Model

For a bi-static SAR system, where transmitting and receiving antennas are

located on different platforms, we model the transmitted EM waves as a time-

varying source jTR(t,x) distributed over an aperture. jTR(t,x) is proportional to

an effective current density on the transmitting antenna and can include arbitrary

waveforms. We assume that the earth’s surface is located at x = [x1, x2,ψ(x1, x2)]

where ψ : R2 → R, is a known smooth function of the ground topography, and

scattering takes place in a thin region near the surface. Throughout this thesis, the

bold Roman, bold italic, and Roman small letters will denote points in R3, R2 and

R, respectively, i.e. x ∈ R2, x3 ∈ R, and x = [x, x3] ∈ R3.

The source term satisfies the scalar wave equation given by:

(
∇2 − c−2∂2

t

)
uin(t,x) = −jTR(t,x) (2.1)

where ∇ denotes the gradient operator, c is the speed of light in free-space, ∂ is the

partial derivative operator and uin(t,x) is the incident field at time t and location

x. Using the Green’s function

g0(t,x) =
δ(t− |x|/c)

4π|x|
=

∫
e−iω(t−|x|/c)

8π2|x|
dω (2.2)

8
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where ω is the angular frequency. Using the fact that

(
∇2 − c−2∂2

t

)
g0(t,x) = −δ(t,x) (2.3)

we obtain

uin(t,x) = (g0 ∗ jTR)(t,x) =

∫
e−iω(t−|x−y|/c)

4π|x− y|
ĵTR(ω,y)dxωdy, (2.4)

where ∗ denotes the convolution and

ĵTR(ω,y) =
1

2π

∫
jTR(t,y)eitωdt (2.5)

is the Fourier transform of jTR.

For a pulsed radar system it is assumed that the pulses are transmitted at

ti and the antenna position at the ith pulse transmission is γ(ti). Let s := ti

denote the time at which a pulse is transmitted. Since the time scale at which

the electromagnetic wave moves is much smaller than the time scale at which the

antenna moves, we refer to s as the slow-time and t as the fast-time. We further

assume that the antenna is small compared with the distance to the scatterers.

Using the far-field expansion we write

|x− y| = |(x− γ(s)) + (γ(s)− y)| ≈ |x− γ(s)|+ ̂(x− γ(s)) · (γ(s)− y) (2.6)

since |γ(s) − y| � |x − γ(s)| where ̂x− γ(s) = x−γ(s)
|x−γ(s)| is the unit vector in the

direction x− γ(s). Then,

uin(t,x) ≈
∫

e−iω(t−|x−γ(s)|/c)

4π|x− γ(s)|
ĵTR(ω, ̂x− γ(s))dωdy, (2.7)

and

jTR(ω, ̂x− γ(s)) = eiω ̂(x−γ(s))·γ(s)/c

∫
e−iω ̂(x−γ(s))·y/cĵTR(ω,y)dy. (2.8)
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The Fourier transform (2.8) gives the antenna beam pattern at each fixed

frequency in the far-field. It is seen from (2.7) that the field transmitted by the

antenna is a superposition of the fixed-frequency point sources that are each shaped

by the antenna beam pattern. Using the scalar wave equation for the total field

utot(t,x) we obtain

(
∇2 − c−2(x)∂2

t

)
utot(t,x) = −jTR(t,x) (2.9)

where c(x) is the speed of the EM wave in the medium. We write total field as

utot(t,x) = uin(t,x) + usc(t,x) (2.10)

and use (2.1)-(2.9) to get

(
∇2 − c−2∂2

t

)
usc(t,x) = −V (x)∂2

t u
tot(t,x) (2.11)

where

V (x) =
1

c2
− 1

c2(x)
. (2.12)

Here, we refer to V (x) as the ground reflectivity function that contains all the

information related to the scattering nature of the ground.

Under the single-scattering (or Born) approximation utot(t,x) is replaced by

uin(t,x) and solving (2.11), we obtain

uscB (t,x) =

∫
g0(t− τ,x− z)V (z)∂2

τu
in(τ, z)dτdz, (2.13)

which for the incident field (2.7) becomes

uscB (t,x, s) =

∫
e−iω(t−(|x−z|+|z−γ(s)|)/c)

(4π)2|x− z||z− γ(s)|
ω2JTR(ω, ̂z− γ(s))V (z)dωdydz. (2.14)
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2.2 SAR Image Formation as Inversions of GRTs

Under the Born (single scattering) and start-stop approximations, for many

SAR modalities [1], [3], [16] the ideal scattered field data can be modeled as follows:

f̃(s, t) ≈ F [V ](s, t) :=

∫
e−i2πω(t−R(s,x)/c)A(x, s, ω)V (x) dωdx, (2.15)

where ω is the angular frequency, c denotes the speed of light in free-space, A is

a complex amplitude term that includes the antenna beam patterns, transmitted

waveform, geometrical spreading factors, etc. s ∈ [s0, s1] ⊂ R is the slow-time and

t ∈ [t0, t1] ⊂ R is the fast-time.

V (x) is given by

V (x) =
1

c2
− 1

c2(x)
(2.16)

where c(x) is the speed of the EM wave in the scatterer and V (x) is the ground

reflectivity function. V (x) recovered from the backscattered EM waves is called the

SAR image. R(s,x) can be interpreted as the distance between the antennas and

the scatterer at x.

Depending on the SAR modality, the antenna range, R(s,x), takes different

forms.

Rm(s,x) = 2|γ(s)− x| (2.17)

for mono-static SAR [3] where γ(s) denotes the antenna trajectory;

Rb(s,x) = |γT (s)− x|+ |γR(s)− x| (2.18)

for bi-static SAR [1] where γT (s) and γR(s) denote the transmitter and the receiver

antenna trajectories, respectively; and

Rh(s,x) = |γi(s)− x| − |γj(s)− x| (2.19)

for hitchhiker SAR [16] where γi(s) and γj(s) denote the trajectories of the ith and
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jth receiver antennas, respectively. Note that x = [x, ψ(x)] in (2.17)-(2.19).

For all SAR modalities, it is assumed that for some mA, the amplitude term

A satisfies the symbol estimate [1], [16]:

sup
(s,x)∈K

| ∂αω∂βs ∂ρxA(x, s, ω) | ≤ BK,α,β,ρ (1 + |ω|)mA−|α| (2.20)

where K is any compact subset of R×R2, BK,α,β,ρ is a K,α, β,ρ dependent constant,

and ρ is a multi-index. This assumption holds since most SAR modalities involve

waveforms that are slowly varying in frequency domain. This assumption makes the

“forward” operator F , a Fourier Integral Operator (FIO) [43]–[46].

The image of the scene is reconstructed from the data collected from the

measurements of the scattered waves. An FIO can be viewed as a GRT where

the input function is weighted and projected onto some smooth manifolds. SAR

measurement data can be viewed as a GRT of the scene reflectivity function in

which the reflectivity is weighted and projected onto some smooth manifolds. These

manifolds can be circles (mono-static SAR), ellipsis (bi-static SAR) or hyperbolas

(hitchhiker SAR) depending on the imaging geometry assuming a flat topography.

The weighting or filtering is defined by the amplitude term and the smooth

manifolds are defined by the phase function of the FIO which is determined by

the antenna configuration. If the amplitude function, A(x, ω, s) equals to 1, which

corresponds to an isotropic antenna radiating a delta-like impulse and compensating

for the geometric spreading factors, then the FIO simply projects the input function

onto the manifolds defined by its phase term as given in (2.17)-(2.19). Figures 2.2

(a)-(c) illustrate the smooth manifolds onto which the scene reflectivity function is

projected assuming that the topography is flat.

2.2.1 SAR Image Reconstruction by Using the Deterministic Filtered

-Backprojection

Since the forward operator F in (2.15) is a Fourier integral operator, an image

T̃ of the target scene T is formed by another Fourier integral operator K that is of
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(a)

(b)

(c)

Figure 2.1: Imaging geometries for (a) mono-static SAR where γ(s) is
the antenna trajectory, (b) bi-static SAR where γT (s) and γR(s) are the
transmitter and receiver antenna trajectories, (c) hitchhiker SAR where
γRi(s), γRj(s) are receiver trajectories.
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(a) (b)

(c)

Figure 2.2: Iso-range contours for a fixed pulse. Red circle and green
square depict transmitter and receiver, respectively. When intersected
with a flat topography, iso-range contours form (a) circles in mono-static
SAR (b) ellipsis in bi-static SAR (c) hyperbolas in hitchhiker SAR modal-
ities.

filtered-backprojection (FBP) type as follows [1]:

T̃ (z) := KF [T ](z) :=

∫
Q(z, s, ω)ei2πω(t−R(s,z)/c)d(s, t) dtdsdω, (2.21)

≈
∫

ei2π(x−z)·ξη(x, z, ξ)A(x, ξ)Q(z, ξ)T (x)dxdξ (2.22)
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where η is the determinant of the Jacobian coming from the change of variables

(s, ω)→ ξ =
ω

c
Ξ(s, z, z) =

ω

c
∇zR(s, z, z) (2.23)

and for x = z. The filter is given by

Q(z, ξ) = χΩ(z, ξ)
A(z, ξ)

|A(z, ξ)|2η(z, z, ξ)
(2.24)

which satisfies a symbol estimate of the form (2.20) where χΩ(z, ξ) is a smooth func-

tion that prevents division by 0. It is important to note here that the most important

part of the filter is η(z, z, ξ) which is also known as the Beylkin determinant [47].

Microlocal analysis shows that FBP filter given in (2.24) reconstructs and

preserves the location, orientation, order, and the strength of the edges of the scene

[1]. Moreover, this filter can be implemented with fast backprojection algorithms

which are computationally efficient.

Some of the abbreviations and notations used in this thesis are shown in Table

2.1 and Table 2.2.
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Table 2.1: Table of Notations Part 1.

Symbol Designation

t Fast-time variable

s Slow-time variable

c Speed of light in free space

x = [x,ψ(x)] Earth’s surface

V (x) 3D reflectivity function

f̃(s, t) Ideal radar measurement without noise

F Forward modeling operator

ω Angular frequency component

A Complex amplitude function including the transmitter and

receiver antenna beampatterns, geometric spreading factors,

etc.

γ(s) Flight trajectory of the antenna

R(x, s) Travel distance or range between antennas and the scatterer

at x

T (x) Scene containing target scatterers

C(x) Scene containing clutter scatterers

d(s, t) Received measurement containing noise and clutter

n(s, t) Additive measurement noise

B(x) Zero-mean Wiener process (Brownian motion)

δ(x) Dirac delta function

∇x Gradient with respect to x

E Expectation operator

RT (x,x′) Autocorrelation function of the target

RC(x,x′) Autocorrelation function of the clutter

Rn(x,x′) Autocorrelation function of the noise
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Table 2.2: Table of Notations Part 2.

Symbol Designation

|ST (x, ζ)|2 Space-varying spectral density function of the target

|SC(x, ζ)|2 Space-varying spectral density function of the clutter

|Sn(s, ω)|2 Power spectral density function of the noise

K Filtered-backprojection operator

T̃ (z) Reconstructed image of the target scene

Kns, Qns FBP operator and reconstruction filter with non-stationary

models

Kbp, Qbp BPF operator and reconstruction filter with non-stationary

models

Kbl, Qbl imaging filter and reconstruction filter with BLUE criteria

Jns(Qns) Mean square error between target scene, T (x) and recon-

structed scene with Qns

Jbp(Qbp) Mean square error between target scene, T (x) and recon-

structed scene with Qbp

Jbl(Qbl) Mean square error between target scene, T (x) and recon-

structed scene with Qbl

Jre Objective function for iterative reweighted-type reconstruc-

tion

Jsh Objective function for iterative shrinkage-type reconstruction

η Determinant of the Jacobian coming from the change of vari-

ables

Ωz Data collection manifold at z = [z,ψ(z)] ∈ R3

χ̃Ωz Characteristic function associated with the data collection

manifold Ωz

IΩ Bandlimited identity operator

χ̃Ω A smooth function that prevents division by 0



CHAPTER 3

SYNTHETIC APERTURE INVERSION FOR

STATISTICALLY NON-STATIONARY TARGET AND

CLUTTER SCENES

In this chapter, we present a class of non-stationary stochastic processes that is

suitable for modeling radar targets and clutter. This class of processes, which we

refer to as pseudo-stationary, can be characterized by pseudo-differential operators

driven by the Wiener process. A space-varying spectral density (SVSD) function

can be defined, characterizing the spectral behavior of a pseudo-stationary process,

through the symbol of the underlying pseudo-stationary process. We derive analytic

filtered-backprojection (FBP) and backprojection-filtering (BPF)-type formulae for

SAR image reconstruction when the target and clutter belong to this class of pro-

cesses. We present results based on simulated and real SAR data to demonstrate

the performances of the reconstruction methods. The inversion formulae are derived

based on minimum square error estimation criterion. The underlying FBP and BPF

filters depend on the SVSD functions of target and clutter.

3.1 Related Work

The measurement noise and clutter are ubiquitous in SAR data. Classical

SAR image reconstruction techniques, such as matched filtering, range-Doppler [17]

and chirp-scaling algorithms [19] do not take into account noise and clutter.

A number of different methods has been introduced to reconstruct SAR images

in the presence of measurement noise and clutter explicitly. These methods can be

roughly categorized into two classes: Numerical optimization-based methods [26]–

[29], [48]–[64] and analytic image reconstruction methods [4], [25], [65]–[70].

Portions of this chapter to appear in: H. C. Yanık and B. Yazıcı, “Bi-static synthetic aperture
Inversion for non-stationary target and clutter,” to be presented at the IEEE Int. Conf. Image
Process., Paris, France. Oct. 2014.

Portions of this chapter have been submitted to: H. C. Yanik and B. Yazici, “Synthetic aperture
inversion for statistically non-stationary target and clutter scenes,” SIAM J. Imag. Sciences.
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The numerical optimization-based methods use discrete received signal mod-

els. They are typically iterative and computationally demanding. These include

the feature-enhanced methods [30], [32], [33], [50], [54], [71] and spectral estimation-

based methods [53], [55]–[62], [64], [72]. The feature-enhanced methods consider

typically quadratic data-likelihood constrained by feature-enhancing prior terms,

such as the Lp-norm constraint [50]. The numerical optimization methods employed

vary from conjugate gradient to heuristic greedy approaches. Quadratic optimiza-

tion functionals in conjunction with majorization-minimization or greedy-type ap-

proaches are also used in SAR image reconstruction [30], [32], [33], [54].

The spectral estimation-based SAR image reconstruction methods vary from

classical techniques [61], [73], [74] to non-parametric, adaptive and compressive sens-

ing based methods [53], [56], [58], [64], [75]. These methods are limited to certain

imaging geometries or assumptions, such as linear flight trajectory and linear wave-

front curvatures.

In [53], [56], [57], [64] it is assumed that the scene consists of point scatterers

and the radar data is a collection of sinusoidal point scatterers. Li et al. presents

amplitude and phase estimation of a sinusoid algorithm in [56], which is an adaptive

filter-bank estimation method and compares its performance with the Capon method

[75]. In [57], Bi et al. develops super resolution SAR image formation methods

that suppress noise and clutter based on parametric data models using fast Fourier

transform (FFT). Larsson et al. extends the algorithms presented in [56] and [75]

to the periodically missing SAR data in [58] by interpolating the data under some

conditions. [59] presents a computationally efficient parametric approach for image

formation and feature extraction when the radar data has clutter and noise. In [61],

Xiao et al. extends the algorithms in [74], [76] to 3D SAR image formation problem.

[53] and [64] are iterative spectral estimation-based methods. In [64] a weighted

least-squares approach is used and [53] is an iterative minimization method similar

to maximum a priori estimation. [60] and [62] develop spectral estimation methods

for tomographic SAR. An adaptive spectral estimation method is presented in [60]

for tomographic SAR using an adaptive Capon estimator. [62] presents a spectral

estimation method-based on compressed sensing for super resolution SAR image
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formation with L1-norm minimization using analytic data model.

Space-time adaptive processing (STAP) is another numerical optimization-

based method to tackle with the noise and clutter in SAR imaging [77]–[80]. STAP-

based methods are widely used specially for moving target imaging in which sta-

tionary objects are considered as clutter. STAP methods can be classified as para-

metric [27]–[29] and knowledge aided STAP (KA-STAP) [26], [48], [49], [51], [52]

depending on the availability of prior information about clutter and noise. This

prior information is collected when there are no targets in the imaging scene and

provided as a clutter covariance matrix to be used as training data in KA-STAP

methods. The dependency on prior information on clutter and suitable initialization

for the convergence of the algorithm [26] restrict the efficacy of KA-STAP methods.

The second class of SAR image reconstruction methods that take into account

noise and clutter is the analytical inversion methods [25], [65]–[68], [70]. Unlike the

numerical optimization-based methods, these methods formulate the image recon-

struction problem as an inversion of an operator and seek to determine an explicit

inverse operator. The resulting methods are often computationally more efficient

than the numerical optimization-based methods. Our current work falls into this

class of methods.

In [65] and [66] interferometric methods to suppress noise, clutter and phase

errors were presented. In [25], we presented an FBP-type SAR inversion method

in the presence of noise and clutter based on minimum mean square error (MMSE)

criterion. This method was extended and applied to multi-static SAR imaging

in [4], SAR imaging in multiple scattering environments in [69] and polarimetric

SAR imaging in [70].

The method in [25] relies on the assumption that the target, clutter and noise

are statistically stationary. This assumption, however, may not be valid for typical

SAR scenes that include electromagnetically heterogenous objects.

In this thesis, we wish to develop computationally efficient, analytic and

backprojection-based SAR inversion methods that are robust in the presence of

noise and clutter and use a priori information to accurately characterize SAR tar-

get and clutter scenes.
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3.2 Statistical Models for Target, Clutter and Noise

3.2.1 Non-stationary Target Model

In radar applications, the scatterers of interest, such as certain vehicles or

buildings, are typically referred to as the target and those scatterers that result in

unwanted reflections, such as a tree or a lamp-post, are referred to as the clutter.

Thus, the scene of scatterers V can be decomposed into target T , and clutter C:

V (x) = T (x) + C(x). (3.1)

Taking into account the measurement noise, we extend (2.15) and model the mea-

sured scattered field data by:

d(s, t) = F [T + C](s, t) + n(s, t), (3.2)

where n(s, t) denotes the receiver noise.

Let ΩT be a compact subset of R2 and T (x), x ∈ ΩT be the target scene.

Without loss of generality, we assume that T (x) is a zero-mean stochastic process

for all x ∈ ΩT . We assume that T (x), x ∈ ΩT can be characterized in the mean

square sense as follows:

T (x) =

∫
ei2π(x−x′)·ξST (x, ξ) dξdB(x′) (3.3)

where B(x′) denotes the zero-mean Wiener process (or Brownian motion).

For ST , we make the following assumptions:

Assumption 1: ST is an even function of ξ, i.e. |ST (x, ξ)| = |ST (x,−ξ)|.
Assumption 2: ST is sufficiently rapidly decreasing in ξ so that the variance of

T (x) satisfies

E[|T (x)|2] =

∫
|ST (x, ξ)|2 dξ < +∞ (3.4)

for all x ∈ ΩT .

Assumption 3: ST satisfies

sup
x∈U
| ∂αξ ∂βxST (x, ξ) | ≤ BT

U,α,β(1 + |ξ|)mT−|α| (3.5)
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where U is any compact subset of R2, BT
U,α,β is a constant that depends on the

multi-indices α,β and U , and mT is some real number.

Thus, Assumption 3 makes

h̃(x,x′) =

∫
ei2π(x−x′)·ξST (x, ξ) dξ (3.6)

the kernel of a pseudo-differential operator with symbol ST satisfying Assumptions

1-3. We refer to stochastic processes defined in (3.3) as the pseudo-stationary pro-

cesses. Note that if ST (x, ζ) is independent of x, (3.3) defines T (x) as a stationary

process.

Let

hT (x,x− x′) =

∫
ei2π(x−x′)·ξST (x, ξ) dξ. (3.7)

Then, (3.3) can be alternatively expressed as follows:

T (x) =

∫
hT (x,x− x′) dB(x′). (3.8)

(3.8) shows that T (x) is generated as the output of a “time-varying convolution

filter” driven by dB(x), the zero-mean “white noise process”.

We write the autocovariance of T (x) as follows:

RT (x,x′) := E[T (x)T (x′)] =

∫
ei2π(x−x′′)·ξST (x, ξ) dξE[dB(x′′)dB(x′′′)]

× ei2π(x′−x′′′)·ξ′ST (x′, ξ′) dξ′ (3.9)

where E denotes the expectation operator. Since B(x) is an orthogonal increment

process satisfying

E[dB(x)dB(x′)] = δ(x− x′)dxdx′. (3.10)

We express (3.9) as

RT (x,x′) =

∫
ei2π(x−x′)·ξST (x, ξ)ST (x′, ξ) dξ (3.11)

for all x,x′ ∈ ΩT .
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Let T be the pseudo-differential operator whose symbol is ST (x, ξ). Then,

(3.11) shows that the autocovariance RT (x,x′) of T (x) is the kernel of the operator

T T † where T † is the L2-adjoint of T .

We make another interesting observation by rearranging the terms of (3.11).

Let x→ x+ τ/2, x′ → x− τ/2. Then (3.11) becomes

RT (x+ τ/2,x− τ/2) =

∫
e−i2πτ ·ξST (x+ τ/2, ξ)ST (x− τ/2, ξ)dξ. (3.12)

Taking the Fourier transform of the right hand side of (3.12) with respect to

τ , we obtain the Wigner distribution function [81] of ST (x, ξ) with respect to x

integrated over ξ.

Similarly, we assume that the clutter, C(x), x ∈ ΩC where ΩC is a compact

subset of R2, and it is a zero-mean, pseudo-stationary process with the following

spectral representation:

C(x) =

∫
ei2π(x−x′)·ξSC(x, ξ) dξdB(x′) (3.13)

with the autocovariance functionRC and the space-varying spectral density function

|SC(x, ξ)|2 by making similar assumptions while defining ST .

3.2.2 Model for the Measurement Noise

We model the additive measurement noise to be a zero-mean, stationary pro-

cess in fast-time and statistically mutually independent in slow-time. We write

Sn(s, ω) = σ(s)S̃n(ω). (3.14)

To avoid peculiar behavior, we assume that∫ ∣∣∣S̃n(ω)
∣∣∣2 dω < +∞. (3.15)
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Note that σ(s) allows noise process to have a different variance for each slow-time

s ∈ [s0, s1]. The autocovariance function of noise is denoted by

E[n(s, t)n(s′, t′)] = σ2(s)δ(s− s′)Rn(t, t′) (3.16)

where

Rn(t, t′) =

∫
ei2πω(t−t′)|S̃n(ω)|2 dω. (3.17)

and we refer to |Sn(ω)|2 as the power spectral density function of noise. Finally,

without loss of generality; we assume that the target, clutter and noise are mutually

statistically independent.
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3.3 Filter Design Based on MMSE Criteria

Since the forward operator F is a Fourier integral operator, we can form an

image Tns of the target scene T by another Fourier integral operator Kns that is of

filtered-backprojection-type as follows:

Tns(z) := Kns[d](z) :=

∫
Qns(z, s, ω)ei2πω(t−R(s,z)/c)d(s, t)dωdtds, (3.18)

where Qns is a filter that satisfies a symbol estimate similar to the one in (2.20).

Since Kns is an FBP-type operator, we call Tns the FBP image of T .

We form a second image Tbp of T as follows:

Tbp(z) = Kbp[d](z) :=

∫
Qbp(z,x

′)

∫
ei2πω(t−R(s,x′)/c)d(s, t)dωdtdsdx′ (3.19)

where Qbp is the kernel of a pseudo-differential operator with symbol Q̂bp, i.e.,

Qbp(z,x
′) =

∫
ei2π(x′−z)·ξ′Q̂bp(z, ξ

′)dξ′. (3.20)

We assume that Q̂bp satisfies a symbol estimate similar to the one in (2.20). Since

Kbp performs backprojection followed by filtering with Qbp, we refer to Tbp as the

BPF image of T .

Our objective is to design the filters Qi, for Qns and Qbp so that the following

mean square error (MSE) of the reconstructed images are minimized:

J (Qi) =

∫
E
[
|Ti(z)− T (z)|2

]
dz. (3.21)

The image Ti is related to the target T as follows:

Ti = Ki[d] = Ki[F [(T + C) + n]] = KiF [T + C] +Ki[n]. (3.22)

Inserting (3.22) for Ti into (3.21), we obtain

J (Qi) =

∫
E
[
|Ki [F [T + C] + n] (z)− T (z)|2

]
dz

= JT (Qi) + JC(Qi) + Jn(Qi), (3.23)
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where

JT (Qi) =

∫
E[|(KiF − IΩ)[T ](z)|2] dz (3.24)

JC(Qi) =

∫
E[|KiF [C](z)|2] dz (3.25)

Jn(Qi) =

∫
E[|Ki[n](z)|2] dz. (3.26)

IΩ in (3.24) stands for the bandlimited identity operator which will be defined later

in this section.1

Before we determine the filters Qns and Qbp, we simplify KiF as in [1], [25],

[46] and next approximate each of the qualities in (3.24)-(3.26).

Let f(x), x ∈ Ωf , ⊆ R2 be a distribution. Under appropriate assumptions on

A and Qns [1], [3], [16], [25], [43]–[45], [67], we write

KnsF [f ](z) =

∫
ei2π(x−z)·ξQns(z, ξ)A(x, ξ)η(x, z, ξ)f(x) dξdx, (3.27)

where

(s, ω)→ ξ =
ω

c
Ξ(s,x, z). (3.28)

and

η(x, z, ξ) =

∣∣∣∣∂(s, ω)

∂ξ

∣∣∣∣ , (3.29)

is the Jacobian that comes from the change of variables (3.28). Ξ is given by

ω

c
[R(s,x)−R(s, z)] =

ω

c
(x− z) ·Ξ(s,x, z), (3.30)

where for x = z,

Ξ(s, z, z) = ∇zR(s, z), (3.31)

1The mean square errors defined for Kns and Kbp, hence the corresponding functionals J , JT ,
JC and Jn, defined in (3.21)-(3.26) are not necessarily equal. However, to simplify our notation,
we use the same notation for both cases.
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and A(x, ξ) = A(x, s(ξ), ω(ξ)).

(3.27) shows that KnsF as a pseudo-differential operator. The main contri-

butions to KnsF [f ] comes from x = z [46], [82]. Substituting z for x in Ξ, we

conclude that the leading-order singularities of KnsF [f ] is given by

KnsF [f ](z) ≈
∫

ei2π(x−z)·ξQns(z, ξ)A(x, ξ)η(x, z, ξ)f(x) dξdx. (3.32)

Given a flight trajectory and the bandwidth, the best possible image (in the least-

squares sense) one could reconstruct would be

IΩ[f ](z) :=

∫
Ωz

ei2π(x−z)·ξf(x) dξdx, (3.33)

where Ωz is the data collection manifold given by

Ωz = {ξ =
ω

c
∇zR(s, z) : A(z, s, ω) 6= 0}. (3.34)

We refer to IΩ as the bandlimited identity operator and denote its kernel by χ̃Ω.

Following the steps in (3.27)-(3.31), we express KbpF as follows:

KbpF [f ] ≈
∫
Qbp(z,x

′)

∫
ei2π(x−x′)·ξA(x′, ξ)η(x′,x′, ξ)f(x)dxdξdx′. (3.35)

Inserting

Qbp(z,x
′) =

∫
ei2π(x′−z)·ξ′Q̂bp(z, ξ

′)dξ′ (3.36)

into (3.35), we obtain

KbpF [f ] ≈
∫

ei2π[(x′−z)·ξ′+(x−x′)·ξ]Q̂bp(z, ξ
′)A(x′, ξ)η(x′,x′, ξ)f(x)dxdξ′dξdx′.

(3.37)

We now apply the method of the stationary phase in the variables x′ and ξ′
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simultaneously2 and obtain the critical points at

ξ′ = ξ and x′ = z. (3.38)

The leading-order term of (3.35) is then

KbpF [f ](z) ≈
∫

ei2π(x−z)·ξQ̂bp(z, ξ)A(z, ξ)η(z, z, ξ)f(x)dxdξ. (3.39)

Note that (3.32) and (3.39) show that the operators KnsF and KbpF are the same

to the leading-order, i.e., KnsF [f ] and KbpF [f ] differ only by a smoother function.

Having simplified Kns and Kbp, we now approximate each term given in (3.24)-

(3.26).

Lemma 1: Let the images Tns and Tbp be formed as in (3.18) and (3.19) where

the filters Qns and Qbp satisfy symbol estimates similar to the one in (2.20). We

assume that the geometric conditions on the flight trajectories and the antenna

beam patterns satisfy certain conditions such that artifacts are avoided [46], [82].

(i) Then, the leading-order singularities of each term in the mean square error is

given by

JT (Qns) ≈
∫ ∣∣Qns(x, ξ)A(x, ξ)η(x,x, ξ)− χ̃Ω(x, ξ)

∣∣2|ST (x, ξ)|2dξdx

(3.40)

JC(Qns) ≈
∫ ∣∣Qns(x, ξ)A(x, ξ)η(x,x, ξ)

∣∣2|SC(x, ξ)|2dξdx (3.41)

Jn(Qns) ≈
∫
|Qns(x, ξ)|2|Sn(ξ)|2η(x,x, ξ)dξdx (3.42)

whereQns(x, ξ) = Qns(x, s(ξ), ω(ξ)), A(x, ξ) = A(x, s(ξ), ω(ξ)) and η(x,x, ξ)

is the Jacobian that comes from the change of variables (3.28).

2In order to apply the method of the stationary phase the determinant of the Hessian of the
phase function must be non-zero. Here, the Hessian of the phase function φ1(x, ξ′, ξ,x′) = (x′ −

z) · ξ′ + (x − x′) · ξ is given by H(φ1) =

[
∇ξ′2φ1 ∇ξ′x′φ1

∇x′ξ′φ1 ∇x′2φ1

]
=

[
 

 

]
where  =

[
0 0

0 0

]
,

 =

[
0 1

1 0

]
and det(H(φ1)) = −1.
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(ii) The leading-order singularities of JT (Qbp), JC(Qbp) and Jn(Qbp) are given by

(3.40)-(3.42) with Qns replaced by Q̂bp where

Qbp(z,x
′) =

∫
ei2π(x′−z)·ξ′Q̂bp(z, ξ

′)dξ′. (3.43)

Note that JT,C,n(Qbp) is equal to JT,C,n(Qns) up to the leading-order terms. They

differ only by a smoother function.

Proof: See Appendix B.

Theorem 1: Let the data d be given by (3.2) and Ti(z) for Tns and Tbp be as

defined in (3.18) and (3.19).

(i) Then, the following filter minimizes the leading-order MSE J (Qns):

Qns(z, ξ) =
A(z, ξ)|ST (z, ξ)|2χ̃Ω

|A(z, ξ)|2η(z, z, ξ)[|ST (z, ξ)|2 + |SC(z, ξ)|2] + |Sn(ξ)|2
(3.44)

where ξ ∈ Ωz, Ωz is given by (3.34), |ST (z, ξ)|2 and |SC(z, ξ)|2 are the SVSD

functions of target and clutter defined in (3.11) and (3.13), Sn(ξ) is the noise

power spectral density function defined in (3.17) and χ̃Ω is a smooth cut-off

function that prevents division by zero.

(ii) The leading-order singularities of the filter Qbp that minimizes the (leading-

order) MSE J (Qbp) is given by

Qbp(z,x
′) =

∫
ei2π(z−x′)·ζQns(z, ζ)dζ. (3.45)

(iii) With these choices of filters, the leading-order MSE of J (Qi) for Qns and Qbp

is given by

J (Qi) ≈
∫

α(x, ξ)|ST (x, ξ)|2

|ST (x, ξ)|2 + α(x, ξ)
χ̃Ω(x, ξ)dξdx (3.46)

where

α(x, ξ) = |SC(x, ξ)|2 +
|Sn(ξ)|2

|A(x, ξ)|2η(x,x, ξ)
. (3.47)
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Proof : See Appendix C.
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3.4 The Image Reconstruction Algorithm

The filters derived in the previous section require a priori information, specif-

ically the SVSD functions of target and clutter and noise power spectral density

function. In many radar applications, it is assumed that the prior information on

clutter can be obtained by collecting radar data in the absence of the target in the

scene of interest [26], [48], [49], [51], [52]. Similarly, thermal noise prior information

can be obtained in the absence of scattered field data. However, a priori informa-

tion on the target is often not available. In this section, we describe an algorithm to

estimate the target SVSD function and to reconstruct target scene simultaneously

using the measured data. Finally, we describe the computational complexity of the

algorithm in comparison with the algorithms available in the literature.

3.4.1 The Estimation of the Space-Varying Spectral Density Function

In this subsection, we briefly describe a method introduced in [41, Ch. 11] for

the spectral density function estimation of non-stationary processes. The method

can be viewed as a straightforward extension of the spectral density function esti-

mation for stationary processes.

Let Φ(x) be a square integrable, compactly supported windowing function and

f(x) denote a realization of a zero-mean pseudo-stationary process. We define

Y (x, ξ) =

∫
ΩΦ

eiξ·(x−y)f(x− y)Φ(y)dy (3.48)

where y ∈ R2 and ΩΦ is the support of the windowing function Φ. It is assumed

that the “width” of the windowing function is much smaller than the support of

the observations. (See [41, pp. 837].) (3.48) can be viewed as the time-frequency

transform of the observations. It was shown that |Y (x, ξ)|2 is an unbiased estimate

of Sf (x, ξ), the SVSD function of f . This estimate is analogous to the classical

periodgram estimate of the spectral density function of stationary processes. Similar

to the results of the classical spectral estimation theory, better bias-variance trade-

offs can be achieved by convolving |Y (x, ξ)|2 with another windowing function. (See

[83, pp. 838-839] for details.) A detailed implementation of the method described
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in [83] to our model can be found in Appendix E.

3.4.2 The Steps of the Algorithm

We observe that the filter Qns can be factored into two components as follows:

Qns(z, ξ) = Q1
ns(z, ξ)Q2

ns(z, ξ) (3.49)

where

Q1
ns(z, ξ) =

A(z, ξ)χ̃Ω(z, ξ)

|A(z, ξ)|2η(z, z, ξ)
, (3.50)

Q2
ns(z, ξ) =

|ST (z, ξ)|2

|ST (z, ξ)|2 + |SC(z, ξ)|2 + |Sn(ξ)|2
|A(z,ξ)|2η(z,z,ξ)

(3.51)

Q1
ns is the filter derived in [1] under the assumptions that the target is deterministic

and the received data do not have noise or clutter components. Clearly, this filter

does not involve any target information. The second filter, Q2
ns, is a low pass filter

that can be expressed solely by the target-to-clutter ratio (SCR) and target-to-noise

ratio (SNR). Dividing the numerator and the denominator by the target SVSD, we

obtain

Q2
ns(z, ξ) =

[
SCR(z, ξ)−1 + (SNR(z, ξ)|A(z, ξ)|2η(z, z, ξ))−1

]−1
(3.52)

where

SCR(z, ξ) =|ST (z, ξ)|2/
[
|ST (z, ξ)|2 + |SC(z, ξ)|2

]
(3.53)

SNR(z, ξ) =ST (z, ξ)|2/|Sn(ξ)|2. (3.54)

Q2
ns is the component of the filter Q1 that suppresses noise and clutter. If a priori

information on SCR and SNR is available, then this information can be used to build

the filter Q2
ns. Otherwise, the target SVSD function can be estimated from the data

itself to build the filter Q2
ns. To facilitate the estimation of the target SVSD, we
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define the following images:

T̃0(x′) =

∫
ei2πω(t−R(s,x′)/c)d(s, t)Q(x′, s(ξ), t(ξ))dωdtds (3.55)

and

T̃ (z) =

∫
Q2
bp(z,x

′)T̃0(x′)dsdx′ (3.56)

where

Q2
bp(z,x

′) =

∫
ei2π(z−x′)·ζQ2

ns(z, ζ)dζ. (3.57)

The first and second order statistics of the image Tns and the image Tbp given in

(3.18) have the same leading-order singularities and only differ by smoother func-

tions. To build the filter Q2
ns, we use the image T̃0 to estimate the target SVSD as

described in the previous section.

A pseudo-code describing the estimation of the target SVSD and the recon-

struction of the images T̃0 and T̃ is described in Algorithm 1.

3.4.3 The Computational Complexity of the Algorithm

The computational complexity of our method is determined by the following

major steps: estimating the SVSD functions, filtering in the Fourier domain using

Q1
ns, the backprojection operation and filtering using Q2

bp. Below, we summarize the

computational complexity of each of these steps.

We assume that the image to be reconstructed is N×N and that the measured

data have O(N) samples in both the fast-time and slow-time variables.

1. As described in [1], the filtering in the Fourier domain and backprojecting

the filtered data can be computed with O(N2 logN) computational complex-

ity using either the fast-backprojection [39], [40] or the fast FIO calculation

algorithms [84].

2. The estimation of the SVSD function requires computing the magnitude of the

Fourier transform around each pixel within a window. Assuming that the win-

dow size is m×m, the estimation of the SVSD function has the computational
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Algorithm 1 SAR image reconstruction algorithm for non-stationary target and
clutter.

T̃0 ← 0X1×X2 , T̃ ← 0X1×X2

Define x = (x1, x2), x′ = (x′1, x
′
2)

Define x = [x, ψ(x)]
%Form T̃0 using the filter Q1

ns as in [1]
%Form C̃0 using the filter Q1

ns as in [1] in the absence of target
for x1, x2 = 1→ X1, X2 do

for s = 1→ Ns do
R← |γi(s)− x|+ |γj(s)− x|
1/η ← ω/c2|Ξ1Ξ̇2 − Ξ̇1Ξ2|
D(ω, s)← FFT{d(:, s)}
Tη(t, s)← IFFT{D(ω, s)R/η(ω, s)}
T̃0(x, s)← Tη(R/c, s), t = R/c
T̃0(x)← T̃0(x) + T̃0(x, s)

% Form T̃ as in (3.56)
for x1, x2 = 1→ X1, X2 do

% Estimate target and clutter SVSD as in [41]
TΦ(x, ξ)← FFT{Φ(u)T̃0(x− u)} & ST ← |TΦ|2
CΦ(x, ξ)← FFT{Φ(u)CΦ(x− u)} & SC ← |CΦ|2

ξ ← ω/c[ ̂(γi(s)− z) + ̂(γj(s)− z)]
Q2
ns(x, ξ)← ST (x, ξ)/(ST (x, ξ) + SC(x, ξ) + Sn(ξ)/η)

Q2
bp(x,x

′)← IFFT{Q2
ns}

T̃ (x1, x2)←
∑
x′ T̃ (x′)Q(x,x′)

return T̃

complexity of O(N2m2 logm). Since m � N , the computational complexity

of this step is O(N2).

3. Q2
bp is the kernel of a pseudo-differential operator. Therefore, the computa-

tional complexity of filtering with Q2
bp isO(N2 logN) when fast-backprojection

of fast FIO calculation algorithms are used.

Thus, our algorithm can be implemented with the computational complexity

of O(N2 logN).

The feature-preserving reconstruction techniques, such as the one in [50], can

be implemented with the computational complexity of O(N4)-O(N6) depending on

the optimization method and the nature of the regularization employed. STAP is

one of the most widely used noise/clutter suppression techniques in moving target
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imaging with a computational complexity of O(N4) [85]. Parametric STAP tech-

niques reduced the computational complexity from O(N4) to O(N3) [29]. Compu-

tational complexity of the spectral estimation-based methods are generally governed

by matrix inversions. For an N2-by-N2 matrix, inversion with Gauss-Jordan elim-

ination is O(N6). Recently developed spectral estimation-based methods, such as

the ones in [64], [86], [87], have the computational complexity of O(N4), O(N4),

O(N6), respectively. In [53], computational complexities of the methods described

in [64], [87] were reduced to O(N2 logN)-O(N3) and O(N2 logN)-O(N5) depending

on the length of the radar data and the frequency sampling. The linear program-

ming and orthogonal matching pursuit based techniques described in [88] have the

computational complexity of O(N7/2), O(N3). The subspace pursuits based tech-

nique presented in [88] has the computational complexity of O(N2 logN)-O(N3),

depending on the sparsity of the underlying data. Thus, our algorithm has a lower

computational complexity than those of the algorithms in [50], [64], [86]–[88] and it

is O(N2 logN) without “any restriction” on the data.
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3.5 Numerical Simulations

We performed numerical simulations to evaluate the performance of our image

reconstruction method and compared the results with the methods presented in [1]

and [25].

3.5.1 Simulation Setup

We consider a 100m×100m scene as shown in Figure 3.1(a). The scene is

discretized into 64 × 64 pixels. A bi-static antenna system, with π/18 separation

between the transmitter and receiver, traverses a circular trajectory given by γ(s) =

[11 cos s, 11 sin s, 6.5] km. The trajectory is uniformly sampled for s ∈ [0, 2π] at 128

points. We set A(x, ω, s) ≡ 1, which corresponds to an isotropic antenna radiating

a delta-like impulse and precompensation of the geometric spreading factors in the

data.

The target is the airplane-like figure placed at the center of the scene as shown

in Figure 3.1(a). Three rectangles shown in Figure 3.2(a)) form the localized clutter

patches. The reflectivity of the clutter patches is generated using the Rayleigh

distribution, a commonly used statistical model for clutter in radar data [89]. The

additive thermal noise is white Gaussian in both fast-time and slow-time parameters.

3.5.2 Evaluation Method

We reconstructed SAR images using four different image reconstruction meth-

ods and compared the results. These methods are as follows:

• Method 1: We used the reconstruction method described in [1]. This method

assumes that the scene is deterministic and the measurements are ideal without

any noise or clutter components.

• Method 2: We used the method described in [25]. This method assumes

that the target and clutter are statistically stationary processes and that their

spectral density functions are known a priori.

• Method 3: We used the FBP method with filter Qns given in (3.44) under the

assumptions that the target and clutter are pseudo-stationary processes and



37

that their SVSD functions are known a priori. We determined these SVSD

functions from target- and clutter-only images.

• Method 4: We used the algorithm described in Section 5. In this case, the tar-

get and clutter SVSD functions were estimated from the images reconstructed

by Method 1 described above.

In Method 3 and 4, the SVSD function of target and clutter were estimated using

an 11-by-11 Bartlett window [83, Sec. 9].

We generated data at different signal-to-clutter and signal-to-noise ratios.

These measured quantities are defined as follows:3

SNR = 20 log10

{
1

NSNT

∑NS
i=1

∑NT
j=1(d(si, tj)− µd)2∑NS

i=1

∑NT
j=1 n

2(si, tj)

}
, (3.58)

SCR = 20 log10

{
1
N

∑N
i=1(T (xi)− µT )2

1
N

∑N
i=1(C(xi)− µC)2

}
(3.59)

where NS is the number of slow-time samples, NT is the number fast-time samples,

µT is the mean of the target scene, µd is the mean of its data. We used the mean-

square error (MSE) as a figure of merit to compare the reconstructed images. We

define MSE in dB as follows:

MSE = 20 log10

{
1

MN

M∑
r=1

N∑
i=1

|T (xi)− T̃r(xi)|2
}
, (3.60)

where M is the number of realizations used in an experiment, N is the number of

pixels and T̃r(x) is the reconstructed image using the rth realization.

3.5.3 Results

We performed two sets of experiments:

1. In the first set of experiments, the clutter level was kept constant at 10dB

SCR, and the noise level was changed from −20dB to 40dB SNR with 4dB

3Note that the measured SNR and SCR defined for simulations are related to, but different
than the spatially and spectrally resolved SNR and SCR concepts defined in Section 5.
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increments. Ten different realizations of noise were produced and added to

the clutter contaminated data simulated using (3.2).

2. In the second set of experiments, the noise level was kept constant at 10dB

SNR, and the clutter level was changed from −20dB to 40dB SCR with 4dB

increments. For each SCR level, ten different realizations of clutter were gen-

erated. The measurement data was simulated using (3.2).

We computed the MSE for each SNR and SCR level using the ten reconstructed

images, each one corresponding to a different noise or clutter realization. Figure 3.6

and Figure 3.10 show the MSE versus SNR and MSE verssus SCR performances of

the four methods described above. We see that for both sets of experiments Method

3 produces the lowest MSE values for all SNR and SCR levels. This is followed

by Method 4, Method 2 and Method 1. As SNR (or SCR) increases the difference

between the MSE values of Method 1 and Method 2 gets smaller as expected. We

also observed that as the SNR (or SCR) value increases, the difference between the

MSE values associated with Method 4 and Method 2 becomes larger. This can be

explained with better target SVSD estimation at higher SNR levels (or SCR) levels.

Figures 3.3 - 3.5 show the reconstructed images (averaged over ten realizations)

for SNR levels of −20, 8, 40dB and 10dB SCR. We see that at −20dB SNR, the

method described in [1] cannot recover the scene. At 10dB SNR, however, all four

methods can recover the scene, but Method 1 retains singularities induced by noise

and clutter and Method 3 produces visually the cleanest image.

Figure 3.7 - 3.9 show the reconstructed images for SCR levels of −20, 8, 40dB

and 10dB SNR. We see that all four methods recover a visually recognizable scene at

all SCR levels. However, at low SCR the clutter patches are visually more prominent

than the target in images produced by Method 1, 2 and 4. Only Method 3, which

uses SVSD function estimated from a clutter free scene, can suppress clutter and

recover target with good contrast. At high SCR levels, the target intensity dominates

and therefore all four methods can recover the target scene. Method 3 and 4 perform

better than Method 1 and 2 in suppressing the clutter strength.
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Figure 3.1: (a) Target and (b) radar data, where horizontal and vertical
lines correspond to slow- and fast-time variables s and t respectively.
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Figure 3.2: (a) Target embedded in clutter and (b) its radar data when
SCR is 10dB.

3.5.4 Numerical Simulations with Real Data

As a second set of simulations, we apply the Algorithm 1 to real data pro-

vided by Air Force Research Laboratories’ Wide Angle SAR experiment [2]. In this

experiment, radar data is collected by an X-band system over a parking lot that

includes 33 civilian vehicles. The average range to a target is 10km and the radar

data provided contains 14243 pulses with 47 frequency bins. Figures 3.11 (a)-(b)

show the SAR images reconstructed from wide-angle SAR data [2] by Method 1

and Method 4 for Chevrolet Impala (dataset PH fcara1 0216.mat). We observe
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that there is strong clutter in the lower-left part of the image reconstructed by FBP.

However, this clutter is suppressed when we use the non-stationary reconstruction

algorithm.

3.6 Conclusion

In this chapter, we presented novel SAR inversion methods when the data is

noisy or clutter is present in the scene. First, we described a novel statistical model

for SAR target and clutter. We performed numerical simulations to demonstrate the

performance of the method both with synthetic and real data. These simulations also

included image reconstruction with three other methods to compare the performance

of the method. Numerical simulations show a reduction in the MSE of the images

as well as improved image quality compared to other SAR image reconstruction

methods.
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Figure 3.3: Reconstructed images using (a) the method in [1], (b) with
stationary target and clutter assumption, (c) non-stationary target and
clutter assumption with known SVSD, (d) non-stationary target and clut-
ter assumption with known SVSD when SNR is -20dB and SCR is 10dB.
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Figure 3.4: Reconstructed images using (a) the method in [1], (b) with
stationary target and clutter assumption, (c) non-stationary target and
clutter assumption with known SVSD, (d) non-stationary target and clut-
ter assumption with known SVSD when SNR is 8dB and SCR is 10dB.
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Figure 3.5: Reconstructed images using (a) the method in [1], (b) with
stationary target and clutter assumption, (c) non-stationary target and
clutter assumption with known SVSD, (d) non-stationary target and clut-
ter assumption with known SVSD when SNR is 40dB and SCR is 10dB.
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Figure 3.6: MSE (vertical axis, in log scale) versus SNR (horizontal axis)
averaged over ten reconstructed images for each SNR level using four
different image reconstruction methods.
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Figure 3.7: Reconstructed images using (a) the method in [1], (b) with
stationary target and clutter assumption, (c) non-stationary target and
clutter assumption with known SVSD, (d) non-stationary target and clut-
ter assumption with known SVSD when SCR is -20dB and SNR is 10dB.
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Figure 3.8: Reconstructed images using (a) the method in [1], (b) with
stationary target and clutter assumption, (c) non-stationary target and
clutter assumption with known SVSD, (d) non-stationary target and clut-
ter assumption with known SVSD when SCR is 8dB and SNR is 10dB.
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Figure 3.9: Reconstructed images using (a) the method in [1], (b) with
stationary target and clutter assumption, (c) non-stationary target and
clutter assumption with known SVSD, (d) non-stationary target and clut-
ter assumption with known SVSD when SCR is 40dB and SNR is 10dB.
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Figure 3.10: MSE (vertical axis, in log scale) versus SCR (horizontal
axis) averaged over ten reconstructed images for each SCR level using
four different image reconstruction methods.

(a) (b)

Figure 3.11: (a) Real SAR image reconstructed from wide-angle SAR
data [2] by Method 1, (b) and Method 4.



CHAPTER 4

AN ANALYTIC SAR INVERSION METHOD BASED ON

BEST LINEAR UNBIASED ESTIMATION

In this chapter, we develop an analytic SAR inversion formula based on best lin-

ear unbiased estimation criterion. For a brief review of the best linear unbiased

estimation method, see Appendix F.

We assume that the clutter is a pseudo-stationary process and additive noise is

stationary in fast-time and uncorrelated in slow-time. We formulate the image for-

mation as a constrained optimization problem. We present an approximate solution

for the optimization problem using microlocal analysis, the methods of Lagrange

multipliers and variational derivatives. The resulting estimator is a composition of

two linear operators, one of which is a pseudo-differential operator and the other

one is an FIO in the form of a filtered-backprojection operator. The filters associ-

ated with these two operators are given in terms of the noise power spectral density

function, spatially-varying clutter spectral density function, as well as the Beylkin

determinant, antenna beam patterns, transmitted waveform and geometric spread-

ing factors. The inversion formula has the advantages of computational efficiency,

applicability to arbitrary imaging geometries and multiple SAR modalities.

4.1 Received Signal Model

4.1.1 Forward Model

Under the start-stop approximation, for many SAR modalities [1], [3], [16],

noise-free scattered field data, d̃, can be modeled as follows:

d̃(s, t) ≈ F [V ](s, t) :=

∫
e−i2πω(t−R(s,x)/c)A(x, s, ω)V (x) dωdx, (4.1)

where s and t denote slow-time and fast-time, respectively, and V denotes the scene

reflectivity function. R denotes the range between the antenna(s) and the scatterer
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located at x at slow-time s. For a bi-static configuration, R is given by

R(s,x) = |γT (s)− x|+ |γR(s)− x| (4.2)

where γT (s) and γR(s) denote the transmitter and the receiver trajectories, respec-

tively.

We assume that for some mA, the amplitude term A satisfies the symbol

estimate [1], [16]:

sup
(s,x)∈K

| ∂αω∂βs ∂ρxA(x, s, ω) | ≤ BK,α,β,ρ (1 + |ω|)mA−|α| (4.3)

where K is any compact subset of R×R2, BK,α,β,ρ is a K,α, β,ρ dependent constant,

and ρ is a multi-index. Under the assumption in (4.3), F becomes a Fourier integral

operator [43]–[46]. For the rest of this chapter, we refer to F as the forward operator.

Let T (x), x ∈ ΩT ⊆ R2 denote the target scene. We assume that the target

is embedded in clutter and write

V (x) = T (x) + C(x). (4.4)

Taking into account the additive thermal noise we model the received signal

as

d(s, t) = F [V ](s, t) + n(s, t) = F [T + C](s, t) + n(s, t). (4.5)

4.1.2 Target, Clutter and Noise Models

Unlike the target models in Chapters 3 and 6, in this chapter, we model target

as a deterministic quantity.

We model clutter, C(x), x ∈ ΩC ⊆ R2, as a zero-mean, pseudo-stationary

process with the following spectral representation:

C(x) =

∫
e−i2π(x−x′)·ζSC(x, ζ) dζdB(x′) (4.6)

where B(x′) is the Wiener process and SC(x, ζ) satisfies the following symbol esti-
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mate

sup
x∈U
| ∂αζ ∂βxSC(x, ζ) | ≤ BC

U,α,β(1 + |ζ|)mC−|α| (4.7)

where U is any compact subset of R2, BT
U,α,β is a constant that depends on the

multi-indices α,β, and U , mC are real numbers.

The autocovariance function of C is given by

E
[
C(x)C(x̃)

]
=

∫
ei2π(x−x̃)·ζSC(x, ζ)SC(x̃, ζ) dζ. (4.8)

We assume that the additive measurement noise is a zero-mean, stationary

process in fast-time and statistically mutually uncorrelated in slow-time and write

Sn(s, ω) = σ(s)S̃n(ω). (4.9)

The autocovariance function of the noise is given by

E[n(s, t)n(s′, t′)] = σ2(s)δ(s− s′)Rn(t, t′) (4.10)

where

Rn(t, t′) =

∫
ei2πω(t−t′)|S̃n(ω)|2 dω (4.11)

and |Sn(s, ω)|2 is the power spectral density function of the noise. To avoid peculiar

behavior, we assume S̃n satisfies the following condition

E[|n(s, t)|2] = σ2(s)

∫ ∣∣∣S̃n(ω)
∣∣∣2 dω < +∞. (4.12)

Finally, without loss of generality, we assume that the clutter and noise are

mutually statistically uncorrelated.
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4.2 Image Formation based on BLUE Criterion

4.2.1 Problem Statement

Let Kbl be a linear operator and

Tbl(z) = Kbl[d](z) (4.13)

be an image of the target. We wish to design Kbl so that the following conditions

are satisfied:

1. Kbl is a composition of two FIOs, i.e., Kbl = K2
blK1

bl. Specifically, K1
bl is the

following filtered-backprojection (FBP) operator:

T (x′) = K1
bl[d](x′) :=

∫
ei2πω(t−R(s,x′)/c)Q1

bl(x
′, s, ω)d(s, t) dωdsdt (4.14)

where Q1
bl satisfies a symbol estimate similar to the one stated in (4.3).

K2
bl is a pseudo-differential operator with the following kernel:

Q2
bl(z,x

′) =

∫
ei2π(x′−z)·ζQ̂2

bl(z, ζ)dζ (4.15)

where Q̂2
bl satisfies a symbol estimate similar to the one stated in (4.3). Note

that Q1
bl is a filter applied prior to the backprojection and Q2

bl is a filter applied

after the backprojection operation.

2. Tbl(z) = Kbl[d](z) is an unbiased estimate of T (x), x ∈ ΩT ⊆ R2 up to the

leading-order term of Kbl.4

3. The total variance of the estimate∫
E
[
|Tbl(z)− E[Tbl(z)]|2

]
dz (4.16)

is minimum among all the linear estimates satisfying Condition 1 and 2 above.

4Here the “leading-order” is in the microlocal sense [43]–[46], meaning that the higher order
terms are smoother than the leading-order one. In other words, the bias of the estimate is one
degree smoother than E[Tbl].
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We refer to Tbl(z) = Kbl[d](z) satisfying Conditions 1-3 as the best linear

unbiased estimate (BLUE) of T (z) and Kbl as the BLUE operator. Note that we

require the estimator to be not only linear, unbiased and minimum variance, but

also of a particular form as stated in Condition 1.

Clearly, determining the BLUE operator is equivalent to determining the filters

Q1
bl and Q2

bl satisfying Conditions 1-3.

4.2.2 The Bias and Total Variance of BLUE

We begin by defining a bias image

B(z) = E[Tbl(z)]− IΩ[T ](z) (4.17)

where

IΩ[T ](z) :=

∫
Ωz

χΩ(z, ξ)ei2π(x−z)·ξT (x) dξdx (4.18)

and χΩ(z, ξ) is a smoothed version of the characteristic function of Ω given by

Ω = ∪zΩz with

Ωz =
{
ξ : ξ =

ω

c
∇xR(s,x) |x=z, A(z, s, ω) 6= 0

}
. (4.19)

The image IΩ[T ] is the best image (in the least square sense) we can obtain given

the bandwidth of the transmitted waveform and the effective length of the synthetic

aperture. Ω can be viewed as the set of target Fourier coefficients that can be

obtained from our measurements.

Let

CTbl(z, z′) := E
[
(Tbl(z)− E[Tbl(z)])(Tbl(z′)− E[Tbl(z′)])

]
(4.20)
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denote the autocorrelation function of Tbl(z). We next define

J C
bl (Q1

bl, Q̂
2
bl) =

∫
E[|KblF [C](z)|2]dz, (4.21)

J n
bl (Q

1
bl, Q̂

2
bl) =

∫
E[|Kbl[n](z)|2]dz. (4.22)

Lemma 2: We assume that the image Tbl is formed by the BLUE operator as

outlined in Conditions 1-3, where the filters Q1
bl and Q̂2

bl satisfy the symbol estimates

similar to the one stated in (4.7) and where the data d are given by (4.5). We

assume that the geometrical conditions on the flight trajectories and the antenna

beam patterns satisfy certain conditions such that artifacts are avoided [82].

(i) Then, the leading-order singularities of the bias image are

B(z) ≈
∫

ei2π(x−z)·ξ
(
Q̂2
bl(z, ξ)Q1

bl(z, ξ)A(x, ξ)η(x, z, ξ)− χΩ(z,ξ)

)
dξdx.

(4.23)

(ii) The total variance of the BLUE image is given by∫
CTbl(z, z)dz ≈ J C

bl (Q1
bl, Q̂

2
bl) + J C

bl (Q1
bl, Q̂

2
bl) (4.24)

where the leading-order singularities of each term in (4.24) are

J C
bl (Q1

bl, Q̂
2
bl) ≈

∫
|Q̂2

bl(x, ξ)Q1
bl(x, ξ)A(x, ξ)η(x,x, ξ)|2|SC(x, ξ)|2 dξdx

(4.25)

and

J n
bl (Q

1
bl, Q̂

2
bl) ≈

∫
|Q̂2

bl(x, ξ)Q1
bl(x, ξ)|2η(x,x, ξ)|Sn(ξ)|2dxdξ. (4.26)

Proof:
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(i) Let

T 1
bl(z) := K1

blF [T ](z). (4.27)

We simplify K1
blF as in [1]. Using (4.1) in (4.14) and carrying out the t

integration and one of the ω integrations results in

K1
blF [T ](x′) :=

∫
ei2π 2ω

c
(R(s,x)−R(s,x′))Q1

bl(x
′, s, ω)A(x, s, ω)T (x)dωdsdx

(4.28)

Next, we use the identity

h(x)− h(x′) = (x− x′) ·
∫ 1

0

∇h(x′ + λ(x− x′))dλ. (4.29)

For h(x) = 2ω
c
R(s,x) we write

2ω

c
(R(s,x)−R(s,x′)) =

ω

c
(x− x′) ·Ξ(s,x,x′), (4.30)

where for x = x′ we can write

Ξ(s,x′,x′) = ∇h(x′) = L(x′, s) ·Dψ(x′), (4.31)

and Dψ(x′) is given by

Dψ(x′) =

1 0 ∇x′1
ψ(x′)

0 1 ∇x′2
ψ(x′)

 (4.32)

and

L(x′, s) =
γT (s)− x′

|γT (s)− x′|
+
γR(s)− x′

|γR(s)− x′|
(4.33)
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is the bi-static antenna look direction. We make the change of variables

(s, ω)→ ξ =
2ω

c
Ξ(s,x,x′) (4.34)

where the geometrical assumptions made for the trajectory makes the change

of variables non-singular [82]. Then, (4.28) can be written as

K1
blF [T ](x′) ≈

∫
ei2π(x−x′)·ξQ1

bl(x
′, ξ)A(x, ξ)η(x,x′, ξ)T (x)dxdξ (4.35)

where

η(x,x′, ξ) =

∣∣∣∣∂(s, ω)

∂ξ

∣∣∣∣ (4.36)

is the determinant of the Jacobian coming from the change of variables.

Combining (4.35) with K2
bl we obtain

KblF [T ](z) =

∫
Q̂2
bl(z, ζ)ei2π[(x−x′)·ξ+(x′−z)·ζ]Q1

bl(x
′, ξ)

× A(x, ξ)η(x,x′, ξ)T (x)dξdxdx′dζ. (4.37)

We next apply the method of the stationary phase in the variables x′ and ζ

simultaneously for the phase function:5

φ1(x,x′, z, ζ, ξ) = (x′ − z) · ζ + (x− x′) · ξ. (4.38)

The method of the stationary phase results in the critical points at

∇x′φ1 → ζ = ξ, (4.39)

∇ζφ1 → x′ = z. (4.40)

5 The determinant of the Hessian of φ1 is −1. See Appendix G.1 for the computation of the
Hessian of φ1.
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The leading-order term of (4.37) is then

KblF [T ](z) ≈
∫

ei2π(x−z)·ξQ̂2
bl(z, ξ)Q1

bl(z, ξ)A(x, ξ)η(x, z, ξ)T (x)dξdx.

(4.41)

Combining (4.41) and (4.18), the leading-order singularities of the bias image

is given by

B(z) =E[Tbl(z)]− IΩ[T ](z) (4.42)

≈
∫

ei2π(x−z)·ξ
(
Q̂2
bl(z, ξ)Q1

bl(z, ξ)A(x, ξ)η(x, z, ξ)− χΩ(z, ξ)
)

× T (x)dξdx. (4.43)

(ii) The total variance of the BLUE image is given by:∫
CTbl(z, z)dz =

∫
E
[
|(Tbl(z)− E[Tbl(z)|2])

]
dz, (4.44)

=

∫
E
[
|KblF [T + C](z) +Kbl[n](z)− T (z)|2

]
dz. (4.45)

Using the facts that Tbl is unbiased up to its leading-order singularities, the

noise and clutter are statistically uncorrelated, and the approximation in

(4.37), we get∫
CTbl(z, z)dz ≈

∫ (
E[|KblF [C](z)|2] + E[|Kbl[n](z)|2]

)
dz. (4.46)

Using the approximation to Kbl given in (4.41), J C
bl can be expressed as

J C
bl (Q1

bl, Q̂
2
bl) =

∫
E
[
(KblF [C](z))(KblF [C](z))

]
dz,

≈
∫

ei2π(x−z)·ξQ̂2
bl(z, ξ)Q1

bl(z, ξ)A(x, ξ)η(x, z, ξ)

× e−i2π(x̃−z)·ξ̃Q̂2
bl(z, ξ̃)Q1

bl(z, ξ̃)A(x̃, ξ̃)η(x̃, z, ξ̃)

× E[C(x)C(x̃)]dxdξdx̃dξ̃dz. (4.47)
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The phase function of the integrand in (4.47) is given by

φ2(x, ξ, x̃, ξ̃, z) = (x− z) · ξ − (x̃− z) · ξ̃. (4.48)

to approximate z and ξ̃ integrations, we apply the method of the stationary

phase in the variables z and ξ̃, simultaneously.6 We obtain the critical points

at

∇zφ2 → ξ̃ = ξ, (4.49)

∇ξ̃φ2 → z = x̃. (4.50)

Hence, the leading-order term of (4.47) is

J C
bl (Q1

bl, Q̂
2
bl) ≈

∫
ei2π(x−x̃)·ξ|Q̂2

bl(x̃, ξ)Q1
bl(x̃, ξ)|2A(x, ξ)η(x, x̃, ξ)

× A(x̃, ξ)η(x̃, x̃, ξ)E[C(x)C(x̂)]dxdξdx̃. (4.51)

Inserting (4.8) in (4.51), we obtain

J C
bl (Q1

bl, Q̂
2
bl) ≈

∫
ei2π(x−x̃)·ξ|Q̂2

bl(x̃, ξ)Q1
bl(x̃, ξ)|2A(x, ξ)η(x, x̃, ξ)

× A(x̃, ξ)η(x̃, x̃, ξ)e−i2π(x−x̃)·ζSC(x, ζ)SC(x̃, ζ) dζdxdξdx̃.

(4.52)

We apply the method of the stationary phase to the phase function one more

time in variables x̃ and ζ, simultaneously:7

φ3(x, x̃, ξ, ζ) = (x− x̃) · ξ − (x− x̃) · ζ (4.53)

6The determinant of the Hessian of φ2 is −1. See Appendix G.2 for the computation of the
Hessian of φ2.

7The determinant of the Hessian of φ3 is −1. See Appendix G.3 for the computation of the
Hessian of φ3.
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which results in the critical conditions

∇x̃φ3 → ζ = ξ, (4.54)

∇ζφ3 → x̃ = x. (4.55)

Hence, the leading-order term of (4.52) is

J C
bl (Q1

bl, Q̂
2
bl) ≈

∫
|Q̂2

bl(x, ξ)Q1
bl(x, ξ)A(x, ξ)η(x,x, ξ)|2|SC(x, ξ)|2 dξdx.

(4.56)

Following steps similar to those in (4.47)-(4.52) and using (4.11), it can be

shown that the leading-order term of J n
bl is

J n
bl (Q

1
bl, Q̂

2
bl) ≈

∫
|Q̂2

bl(x, ξ)Q1
bl(x, ξ)|2η(x,x, ξ)|Sn(ξ)|2dxdξ. (4.57)

4.2.3 Derivation of the Imaging Filters

The leading-order singularities of the bias image is given by

B(z) ≈
∫

ei2π(x−z)·ξ
(
Q̂2
bl(z, ξ)Q1

bl(z, ξ)A(x, ξ)η(x, z, ξ)− χΩ(z, ξ)
)
T (x)dξdx.

(4.58)

The leading-order contribution to (4.58) occurs when x = z. Let

B(Q1
bl, Q

1
bl) := Q̂2

bl(z, ξ)Q1
bl(z, ξ)A(z, ξ)η(z, z, ξ)− χΩ(z, ξ). (4.59)

For the leading-order singularities of Tbl to be unbiased, the following must

hold

B(Q1
bl, Q̂

2
bl) = 0 (4.60)

for all z ∈ ΩT . Our objective is to design the filters Q1
bl and Q̂2

bl so that the leading-
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order singularities of the total variance∫
CTbl(z, z)dz ≈

∫ (
E[|KblF [C](z)|2] + E[|Kbl[n](z)|2]

)
dz (4.61)

is minimized subject to the constraint in (4.60).

We use the method of Lagrange multipliers to address this constrained op-

timization problem. Let λ(z, ξ) be the Lagrange multiplier associated with the

constraint B(Q1
bl, Q̂

2
bl) = 0. Recall that∫
CTbl(z, z)dz ≈ J C

bl (Q1
bl, Q̂

2
bl) + J n

bl (Q
1
bl, Q̂

2
bl) (4.62)

where

J C
bl (Q1

bl, Q̂
2
bl) =

∫
E[|KblF [C](z)|2]dz, (4.63)

J n
bl (Q

1
bl, Q̂

2
bl) =

∫
E[|Kbl[n](z)|2]dz. (4.64)

To incorporate the constraint (4.60) into the minimization, we define

J λ
bl (Q

1
bl, Q̂

2
bl, λ) :=

∫
λ(z, ξ)B(Q1

bl, Q̂
2
bl)dzdξ. (4.65)

We next define the following objective functional:

Jbl(Q1
bl, Q̂

2
bl, λ) = J C

bl (Q1
bl, Q̂

2
bl) + J n

bl (Q
1
bl, Q̂

2
bl)− J λ

bl (Q
1
bl, Q̂

2
bl, λ). (4.66)

Theorem 2: Let the data d be given by (4.5) and Tbl be given by (4.13). If the

filters Q1
bl and Q2

bl in (4.14) and (4.15) are chosen as

Q1
bl(x

′, ξ) =
A(x′, ξ)η(x′,x′, ξ)χΩ(x′, ξ)

|A(x′, ξ)η(x′,x′, ξ)|2|SC(x′, ξ)|2 + η(x′,x′, ξ)|Sn(ξ)|2
(4.67)

and

Q2
bl(z,x

′) =

∫
ei2π(x′−z)·ξ |A(z, ξ)η(z, z, ξ)|2|SC(z, ξ)|2 + η(z, z, ξ)|Sn(ξ)|2

|A(z, ξ)η(z, z, ξ)|2
dξ.

(4.68)
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where χΩ(x′, ξ) is a smooth function that prevents division by 0 and η(x′,x′, ξ),

SC(z, ξ) and Sn(ξ) are as defined in (4.36), (4.6), (4.9), respectively. Then, the

followings hold:

(i) The leading-order singularities of E[Tbl(z)] is equal to the leading order singu-

larities of T (z).8

(ii) CTbl(z, z) is minimized at its leading-order singularities.

(iii) With these choice of filters, the variance of Tbl at its leading-order singularities

is given by

CTbl(z, z) ≈
∫
|A(z, ξ)η(z, z, ξ)|2|SC(z, ξ)|2 + η(z, z, ξ)|Sn(ξ)|2

|A(z, ξ)η(z, z, ξ)|2
dξ. (4.69)

Proof: Our objective is to determine Q1
bl, Q̂

2
bl, λ that minimizes the following

objective functional:

Jbl(Q1
bl, Q̂

2
bl, λ) = J C

bl (Q1
bl, Q̂

2
bl) + J n

bl (Q
1
bl, Q̂

2
bl)− J λ

bl (Q
1
bl, Q̂

2
bl, λ). (4.70)

(i)-(ii) Having obtained approximations to each functional in (4.70), we study the

variational derivative of (4.70) with respect to Q̂2
bl, Q

1
bl and λ. We evaluate

the variational derivative with respect to Q̂2
bl as follows:

d

dε
J C
bl (Q̂2

bl + εQε)

∣∣∣∣
ε=0

+
d

dε
J n
bl (Q̂

2
bl + εQε)

∣∣∣∣
ε=0

− d

dε
J λ
bl (Q̂

2
bl + εQε)

∣∣∣∣
ε=0

= 0

(4.71)

which is given by

0 = 2 Re

∫
Qε(x, ξ)

{
Q̂2
bl(x, ξ)|Q1

bl(x, ξ)|2

× (|A(x, ξ)η(x,x, ξ)|2|SC(x, ξ)|2 + η(x,x, ξ)|Sn(ξ)|2)

}
dξdx

−
∫
λ(x, ξ)Qε(x, ξ)Q1

bl(x, ξ)A(x, ξ)η(x,x, ξ)dξdx. (4.72)

8The bias image B(z) is one degree smoother than the E[Tbl(z)].
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We rewrite (4.72) as follows:

0 = 2 Re

∫
Qε

(
Q̂2
bl|Q

1
bl|2(|Aη|2|SC |2 + η|Sn|2)− 1

2
λQ1

blAη

)
dxdξ

+ Im

∫
QελQ

1
blAηdxdξ. (4.73)

(4.73) must hold for all Qε including real-valued Qε. Hence, we obtain the

following two relations on the filter Q1
bl:

Q̂2
bl|Q

1
bl|2(|Aη|2|SC |2 + η|Sn|2)− 1

2
λQ1

blAη = 0 (4.74)

and

Im λQ1
blAη = 0. (4.75)

The variational derivative with respect to Q1
bl provides an equation equivalent

to (4.73). Therefore, we only use the variational derivative with respect to Q̂2
bl

and λ to determine the BLUE filters Q1
bl and Q̂2

bl. Finally, we evaluate the

variational derivative of Jbl or J λ
bl with respect to λ and set it equal to 0 as

follows:

d

dε
J λ
bl (Q

1
bl, Q̂

2
bl, λ+ ελε)

∣∣∣∣
ε=0

≈
∫
λε(x, ξ)

(
Q̂2
bl(x, ξ)Q1

bl(x, ξ)A(x, ξ)η(x,x, ξ)− χΩ(x, ξ)
)

dξdx = 0.

(4.76)

Since (4.76) must be true for all λε, we obtain

Q̂2
bl(x, ξ)Q1

bl(x, ξ)A(x, ξ)η(x,x, ξ) = χΩ(x, ξ) (4.77)

where χΩ(x, ξ) is a smooth function that prevents division by 0. Using (4.77)
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in (4.74), we obtain

λ(x, ξ) = 2
|A(x, ξ)η(x,x, ξ)|2|SC(x, ξ)|2 + η(x,x, ξ)|Sn(ξ)|2

|A(x, ξ)η(x,x, ξ)|2
. (4.78)

To satisfy the condition in (4.75), we choose the filter Q1
bl

Q1
bl(x

′, ξ) =
A(x′, ξ)η(x′,x′, ξ)χΩ(x′, ξ)

|A(x′, ξ)η(x′,x′, ξ)|2|SC(x′, ξ)|2 + η(x′,x′, ξ)|Sn(ξ)|2
, (4.79)

and from (4.77) we evaluate Q2
bl

Q2
bl(z,x

′) =

∫
ei2π(x′−z)·ξ |A(z, ξ)η(z, z, ξ)|2|SC(z, ξ)|2 + η(z, z, ξ)|Sn(ξ)|2

|A(z, ξ)η(z, z, ξ)|2
dξ.

(4.80)

(iii) Recall from (4.61) that the variance of the estimator is given by

CTbl(z, z) ≈E[|KblF [C](z)|2] + E[|Kbl[n](z)|2]. (4.81)

Inserting the approximations to E[|KblF [C](z)|2] and E[|Kbl[n](z)|2], we get

CTbl(z, z) ≈
∫ (
|A(z, ξ)η(z, z, ξ)|2|SC(z, ξ)|2 + η(z, z, ξ)|Sn(ξ)|2

)
× |Q̂2

bl(z, ξ)Q1
bl(z, ξ)|2dξ. (4.82)

Inserting the expression forQ1
blQ̂

2
bl in (4.77) into (4.82), we obtain the minimum

variance

CTbl(z, z) ≈
∫
|A(z, ξ)η(z, z, ξ)|2|SC(z, ξ)|2 + η(z, z, ξ)|Sn(ξ)|2

|A(z, ξ)η(z, z, ξ)|2
dξ. (4.83)
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4.3 Numerical Simulations

We consider a scene with an airplane-like object in the center as the target.

The object has various intensity levels to show that the algorithm reconstructs the

target scene with correct intensities at correct locations.

A scene of 100 m×100 m is discretized into 64×64 pixels. A bi-static antenna

system with π/18 separation between the transmitter and receiver, flies over the

scene on a circular trajectory γ(s) = [11 cos s, 11 sin s, 6.5] km uniformly sampled for

s ∈ [0, 2π] at 128 points. It is assumed that A(x, ω, s) = 1, which corresponds to an

isotropic antenna radiating a delta-like impulse and pre-compensation of geometric

spreading factors in the FBP data.

Gaussian noise is added to the projection data to simulate the additive thermal

noise. The clutter model described in Section 3.5 with the mask shown in Figure 3.2

is used here as well. The images are reconstructed via deterministic FBP, statistical

FBP with stationary target and clutter models; and BLUE criterion at various SNR

and SCR levels. For this set of simulations, the BLUE reconstruction method is

applied under the stationary clutter assumption, hence we drop the x dependence on

the spectral density function in filter (4.67). The target and clutter spectral densities

are provided a priori to the reconstruct images under stationarity assumption. The

reconstructed images are shown in Figures 4.1-4.10.

We performed ten sets of experiments. Figures 4.1-4.5 show the averages of

the ten reconstructed images using (a) deterministic FBP, (b) statistical FBP under

stationarity assumption, (c) BLUE after applying filter Q1
bl, (d) BLUE after applying

filter Q2
bl. We kept SCR constant at 10dB and increased SNR from 0dB to 30dB.

Similarly, Figures 4.6-4.10 show the average of the ten reconstructed images using

the same reconstruction methods at before. The SNR is kept constant at 10dB and

SCR is increased from 0dB to 32dB with 8 dB increments.

The plots in Figure 4.11(a) show the MSE in log scale versus SNR (horizontal

axis) at a 10dB SNR and at 5 different SNR levels. The plots in Figure 4.11(b) show

the MSE versus SCR (horizontal axis) at a constant SNR level of 10dB averaged over

ten reconstructed images. It can be observed from these plots that the performance

of the BLUE method is almost as good as the stationary reconstruction method
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even though the stationary reconstruction method requires both target and clutter

spectral density functions whereas BLUE method only requires the spectral density

function of the clutter.

The performances of these methods are similar when the SNR is constant

and SCR is changed since the filter (4.67) used in the reconstruction with BLUE

includes the spectral density function of the clutter. As compared to the determin-

istic FBP reconstruction there is an average of 15% improvement in the MSE of

the reconstructed images when the BLUE method is used. At high SNR levels, the

deterministic FBP method works well. Therefore, the performances of the deter-

ministic FBP and the BLUE are similar at 32dB SNR as shown in Figure 4.11(a).

4.4 Conclusion

In this chapter, we developed a novel analytic inversion method based on the

best linear unbiased estimation criterion where target is embedded in clutter and

received signal data is corrupted by thermal noise. The BLUE-based method only

requires the first and second statistics of the unknown, spectral density of the clutter

which can be estimated from the data by using the method described in the previous

chapter. The filter successfully suppresses the effect of noise and clutter.



66

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4.1: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SNR is 10dB and SCR
is 0 dB.
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Figure 4.2: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SNR is 10dB and SCR
is 8 dB.
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Figure 4.3: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SNR is 10dB and SCR
is 16 dB.
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Figure 4.4: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SNR is 10dB and SCR
is 24 dB.
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Figure 4.5: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SNR is 10dB and SCR
is 32 dB.



71

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

 

 

10 20 30 40 50 60

10

20

30

40

50

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4.6: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SCR is 10dB and SNR
is 0 dB.
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Figure 4.7: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SCR is 10dB and SNR
is 8 dB.
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Figure 4.8: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SCR is 10dB and SNR
is 16 dB.
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Figure 4.9: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying
filter Q1, (d) BLUE after applying filter Q2. The SCR is 10dB and SNR
is 24 dB.
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Figure 4.10: The reconstructed images averaged over 10 realizations using
(a) the deterministic FBP, (b) MMSE FBP, (c) BLUE after applying filter
Q1, (d) BLUE after applying filter Q2. The SCR is 10dB and SNR is 32
dB.
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Figure 4.11: MSE (vertical axis, in dB) versus (a) SNR (horizontal
axis) with constant SCR level at 10dB and (b) SCR (horizontal axis)
with constant SNR level at 10dB averaged over ten reconstructed images
using four different image reconstruction methods.
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CHAPTER 5

FBP-TYPE DIRECT EDGE ENHANCEMENT OF

SYNTHETIC APERTURE RADAR IMAGES

In this chapter, we consider a synthetic aperture radar (SAR) system traversing an

arbitrary trajectory on a non-flat topography. We present, a novel edge detection

method that is applicable directly to SAR received signal. The method first filters

the received data, and then backprojects. We design the filter to detect the edges

of the scene in different directions at each pixel reconstructed. The method is com-

putationally efficient and may be implemented with the computational complexity

of the fast-backprojection algorithms. The method described in this chapter is used

in the next chapter to sharpen the reconstructed images. We provide numerical

experiments both with the synthetic data and the high-fidelity radar data provided

by Air Force Research Laboratories (AFRL) to demonstrate the performance of the

method.

5.1 Introduction

SAR images are subjected to automated pattern recognition algorithms that

require segmentation of the reconstructed images in many applications. In general,

segmentation is an important image processing task to recognize objects or edges in

a SAR image, such as houses, vehicles etc. Moreover, segmentation can be addressed

by different methods such as clustering and boundary detection-type algorithms [90].

In this chapter, we present a filtered-backprojection (FBP) type image segmen-

tation method that is applied to SAR received signal. The method detects edges

directly from the radar data and bypasses the image reconstruction step without any

need for image processing. First we model the SAR received signal as a Fourier in-

tegral operator (FIO). Next, we describe an FBP-type image reconstruction method

to recover and enhance the visible edges of the scene to be imaged. The FBP-type

Portions of this chapter previously appeared as: H. C. Yanik et al., “Computationally efficient
FBP-type direct segmentation of synthetic aperture radar images,” in Proc. SPIE, Algorithms for
SAR Imagery XVIII, vol. 8051, 2011, 80510C.
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segmentation involves a backprojection step which is given by the L2-adjoint of the

phase of the underlying FIO and a filtering step. The filter is designed so that the

resulting point spread function (PSF) of the FBP operator is a differential operator

that reconstructs the derivative (or anti-derivative) of the image in desired directions

for each pixel reconstructed.

5.2 Forward Modeling and Image Formation

We assume that the earth’s surface is located at the position x = [x,ψ(x)],

where ψ : R2 → R, is a known smooth function, and scattering takes place in a

thin region near the surface. Following [1] and under the single scattering (Born)

approximation, we model the received signal d(s, t) as follows:

d(s, t) ≈ F [T ](s, t) =

∫
e−i2πω(t−R(s,x)/c)A(x, ω, s)T (x) dω dx (5.1)

where s ∈ R denotes the slow-time variable parameterizing the trajectory. R(s,x)

is the total travel distance of the electromagnetic waves that takes different forms

depending on the imaging modality (see (2.17)-(2.19)), t denotes the fast-time, c

is the speed of light in vacuum, T (x) denotes the surface reflectivity, and A is a

complex amplitude function that depends on antenna beam pattern, the transmitted

waveform, geometrical spreading factors, etc. [91]

By following similar assumptions as in previous chapters, for some mA, A

satisfies the symbol estimate

sup
(s,x)∈K

|∂αω∂βs ∂ρ1
x1
∂ρ2
x2
A(x, ω, s)| ≤ B (1 + ω2)(mA−|α|)/2 (5.2)

where K is any compact subset of R×R2, and the constant B depends on K,α, β, ρ1,

and ρ2. This assumption makes the forward operator F a Fourier Integral Operator

(FIO) [43]–[45].

The reconstruction of the target reflectivity, T (x) requires the inversion of the

forward operator, F . Since F is an FIO, we can form an approximate inverse of F
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by another FIO, say K, such that

T (z) ≈ T (z) = KF [T ](z) (5.3)

Let L = KF . We refer to the kernel L of L as the point spread function (PSF) of

the system which relates the target scene T (x) to the reconstructed scene Ted(z).

For a perfect reconstruction, L must be a Dirac-delta function. Thus, we choose

K operator such that the kernel of L becomes as close to Dirac-delta function as

possible.

It was shown in [1] that an FBP-type operatorK can be designed to reconstruct

an image of the scene

T̃ (z) = K[d](z) :=

∫
ei2πω(t−R(s,z)/c)Q(z, ω, s)d(s, t) dω ds dt. (5.4)

Thus, the PSF of the imaging operator K is given by

L(z,x) =

∫
ei2πωφ(x,z,s)Q(z, s, ω)A(x, s, ω) dω ds (5.5)

where the filter Qed is chosen such that L(z,x) = δ(z − x) and φ is given by

φ(x, z, s) = R(s,x)−R(s, z). In this chapter, we design a new filter Qed so that K
reconstructs the edge map of SAR images. The edge map image can be viewed as

an approximation to the magnitude of the gradient of the image, i.e. |∇T (z)|.

5.3 Segmentation via Edge Detection

Segmentation is an important image processing operation to extract and locate

objects (lines, curves, points etc.) from a given image. These objects are distinctive

features of the image and they are utilized to describe, characterize and give meaning

to an image.

A basic image segmentation process requires assigning a label to every pixel in

an image. Pixels with the same label have similar characteristics. There are many

ways to perform image segmentation such as level set methods, graph portioning

methods, clustering methods, region growing methods and edge detection [90]. Here,
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we describe an edge detection method that can be used for image segmentation

tasks for SAR images by applying a differential filter directly to the SAR data at

the backprojection step.

Edges can be defined as points at which the transition in pixel intensity is

significantly stronger than that of the background at that point. It is known from

vector calculus that the gradient vector of a scalar field is a vector field and it points

in the direction of the greatest rate of change of the scalar field. Furthermore,

magnitude of the vector field corresponds to the greatest rate of change. Thus, edge

detection is closely related to the gradient of the image.

A simple method to perform edge detection is applying an operator such as

Prewitt, Sobel and then thresholding the image [90]. In [92] an edge detection

method is described that contains several steps: First, the image is smoothed with

a Gaussian to get rid of the noise and then its gradient is calculated. Depending

on the magnitude of the gradient and the angle of the gradient, pixels are labeled,

image is thresholded and finally the edge map is formed.

For segmentation of SAR images, the methods described above can be applied

after forming the SAR image. Here the goal is to incorporate image formation and

edge detection in a single step. The method involves derivation of an edge enhancing

(or smoothing) filter and the backprojection operator. The new method reconstructs

an approximation to the magnitude of the gradient of the scene, |∇T |. With this

new filter, we can view PSF of the system as an approximation to the derivative (or

anti-derivative) of the Dirac-delta function

Led(z,x) ≈
∑
i

αiδ
(pi)(z − x) (5.6)

where αi > 0 and pi ∈ R. Here, pi stands for the pthi derivative and αi controls the

strength of the edges in the final image.
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5.4 Direct Segmentation of the SAR Data

5.4.1 Derivation of an Edge Detection Filter

In this subsection, we derive a new filter Qed so that the PSF of the imaging

system behaves like the derivative of the Dirac-delta function. Thus, reconstructed

SAR image will be approximately the edge map of the scene. The filter that results

in an approximate Dirac-delta function PSF is given as

Q(z, ω, s) = χΩz(ξ(ω, s))
A(z, ξ(ω, s))

|A(z, ξ(ω, s))|2
1

η(ξ(ω, s), z)
(5.7)

where η(ξ(ω, s), z) is the Jacobian that comes from change of variables

(ω, s)→ ξ =
ω

c
∇z R(s, z). (5.8)

With this choice of filter, the PSF of the imaging system is given by

L(z,x) =

∫
ei2π(x−z)·ξχΩz(ξ) dξ. (5.9)

Here χΩz is a function that prevents division by 0

Ωz = {ξ(ω, s,z) |A(z, s, ω) 6= 0}. (5.10)

Here we modify the PSF so that when the resulting filter is applied directly

to the SAR received data it reconstructs the edge map of the scene. Recall that the

relation between actual scene T (x) and the reconstructed scene Ted(z) is given by

Ted(z) = L[T ](z) =

∫
Led(z,x)T (x)dx, (5.11)

=

∫
Ωz

ei2π(x−z)·ξχΩz(ξ)T (x) dξ dx, (5.12)

=

∫
Ωz

e−i2πz·ξχΩz(ξ)T̂ (ξ) dξ (5.13)

where T̂ (ξ) stands for the Fourier transform of T (x).

To enhance the edges of the SAR image, an approximate of |∇T (z)| needs to
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be reconstructed. If the gradient operator is applied to both sides of (5.11)

∇zT (z) ≈
∫

Ωz

∇ze−i2πz·ξχΩz(ξ)T̂ (ξ) dξ, (5.14)

≈
∫

Ωz

(−i2πξ)e−i2πz·ξχΩz(ξ)T̂ (ξ) dξ. (5.15)

The limited aperture directional derivative of T in the direction of the unit

vector µ̂ is defined as follows:

µ̂ · ∇zT (z) ≈ (−i2π)

∫
Ωz

e−i2πz·ξ µ̂ · ξ χΩz(ξ)T̂ (ξ) dξ. (5.16)

Next, an operator, ∆p
µ̂ is defined such that:

∆p
µ̂T (z) :=

∫
Ωz

e−i2πz·ξ|µ̂ · ξ|pχΩz(ξ)T̂ (ξ) dξ, p ∈ R. (5.17)

The operator ∆p
µ̂ can be interpreted as the pth directional derivative for p > 0,

or pth integral for p < 0. Note that by using this operator, we can represent the

magnitude of the gradient of the scene as

|∇zT (z)|2 = ∆2
ê1
T (z) + ∆2

ê2
T (z) (5.18)

where êi, i = 1, 2 is the ith column of the 2× 2 identity matrix.

With the modified PSF, filter Qed becomes

Qed(ξ) = αp|µ̂p · ξ|pQ(ξ) + αq|µ̂q · ξ|qQ(ξ) (5.19)

where p > 0 and q < 0, αp, αq ≥ 0 and µ̂p, µ̂q are two possibly orthogonal unit

directions. The directional derivative of the image is enhanced along µ̂p while it is

smoothed in the direction of µ̂q. Note that if p = q = 0, then Qed(ξ) = Q(ξ); and if

µ̂q = µ̂⊥p , then the derivative of the image is enhanced in the direction of µ̂p while

it is smoothed in the direction perpendicular to µ̂p.
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More generally,

Qed(ξ) =
∑
i

αi|µ̂pi · ξ|
piQ(ξ) (5.20)

where αi > 0 and pi ∈ R so that edges can be enhanced (or smoothed) in different

directions.

5.4.2 Point Spread Function of the Edge Enhanced Reconstruction

With new filter given in (5.20), the PSF of the edge enhancing (smoothing)

reconstruction operator becomes

Led(z,x) ≈
∑
i

αpi

∫
e2πiξ·(z−x)|µ̂i · ξ|pi dξ. (5.21)

Furthermore, with this choice of PSF, the location and orientation of the edges are

preserved.

- If m = arg max
{i}

pi, and pm > 0, the strength of the edges is increased (en-

hanced) by an order of pm in the direction of µm.

- If n = arg min
{i}

pi and pn < 0, the strength of the edges is decreased (smoothed)

by an order of pn in the direction of µn.

Thus, with this choice of filter, we can control the directions along which the edges

will be enhanced (or suppressed).

5.5 Numerical Experiments

We perform two sets of simulations to demonstrate the performance of the

edge-enhanced reconstruction. First set is a synthetic data set simulated by using

MATLAB. In the second set of simulations, we use the Civilian Vehicles (CV) dome

data set provided by AFRL [42].

5.5.1 Synthetic Data Simulations

We consider two scenes for synthetic data simulations. In the first scene, we

have a 4.9km × 4.9km square target and a 4.9km × 9.8km rectangular target in a
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22km× 22km scene. Their centers are located at [−4.1,−0.7]km and [4.5,−4.1]km,

respectively. In the second scene, we consider a 12.8km×12.8km square target with

its center located at [2.2,−0.4]km, and there is a 1 pixel-wide (86m) wire-like line

that makes a 26◦ angle with the horizontal axis inside the square. The scene is

discretized with 256× 256 pixels.

A(x, ω, s) is assumed to be 1, which corresponds to an isotropic antenna ra-

diating a delta-like impulse and compensating for the geometric spreading factors

in the data. Then, using the definition of Dirac-delta function and its homogeneity

property,

d(s, t) ≈ c

∫
δ (ct− 2|x− γ(s)|)T (x) dx (5.22)

where we use a discrete version of (5.22) to generate the simulation data. In these

experiments, we consider a circular flight trajectory γ(s) = [11 + 22 cos s, 11 +

22 sin s, 6.5] km uniformly sampled for s ∈ [0, 2π] at 512 points. (See Figure 5.1)

Figures 5.2,5.3,5.4,5.5,5.6 show reconstructed (part a) and thresholded (part

b) images with different values for p, α and µ. p denotes the order of derivative (or

anti-derivative) operation, α controls the strength of the edges in the final image

and µ is the direction along which edges will be enhanced (or smoothed).

To threshold the reconstructed image, we use Algorithm 2.

Algorithm 2 An iterative thresholding method for the reconstructed images [90].

Choose an initial threshold, α0 for image I(x, y)
αnew ← α0 and αprev ← 0
while |αnew − αprev| > ε do

αprev ← αnew
I1 = {I(x, y) : I(x, y) > αnew}
I2 = {I(x, y) : I(x, y) ≤ αnew}
m1 ← mean of pixel values of I1(x, y) and m2 ←mean of pixel values of I2(x, y)
αnew ← m1+m2

2

In Figures 5.2 and 5.3, edges are enhanced in all directions. In Figure 5.4,

edges along y-direction are enhanced with µ = [0, 1]. In Figure 5.5, edges along

x-direction are enhanced with µ = [1, 0]. Finally in Figure 5.6, edges along x and

y-directions are enhanced with µ1 = [0, 1] and µ2 = [1, 0]. Note that, in Figures
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5.4, 5.5, 5.6 wire is not reconstructed since its direction is not along µ’s used in the

examples.

The numerical simulations show that the edges are enhanced (or smoothed)

in desired directions and the edges are reconstructed directly from the SAR data

successfully.
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Figure 5.1: Imaging scenes used to generate the radar data.

5.5.2 Civilian Vehicles Dome Data Set

We use CV dome data set as a second set of simulations to demonstrate the

performance of the method [42]. In CV dome data set, SAR data is simulated for

various civilian vehicles by using high-fidelity electromagnetic wave simulating codes.

Cars are modeled by using realistic CAD models and electromagnetic properties of

different parts of the cars (glass, metallic, plastic etc.). The radar data provided

includes 5760 pulses with 512 frequency bins. The results are shown in Figures

5.7-5.10. We see that the edges are enhanced along desired directions.

5.6 Conclusion

In this chapter, we presented a novel edge detection method applicable directly

to SAR received signal. The method first filters the received data, and then back-

projects. The filter detects the edges of the scene in different directions at each pixel
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Reconstructed Image : p = 1   α = 0.2  
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(a) Reconstructed image for the first scene.

Thresholding with intensity = 0.57
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(b) Reconstructed image after thresholding for
the first scene.

Figure 5.2: Enhancement of edges in all directions for the first scene.

reconstructed. The method is computationally efficient and may be implemented

with the computational complexity of the fast-backprojection algorithms.
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Reconstructed Image : p = 1   α = 0.8  
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(a) Reconstructed image for the second
scene.

Thresholding with intensity = 0.55
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(b) Reconstructed image after thresholding
for the second scene.

Figure 5.3: Enhancement of edges in all directions for the second scene.

Reconstructed Image : p = 2   α = 0.8  
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(a) Reconstructed image for the second
scene.

Thresholding with intensity = 0.68
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(b) Reconstructed image after thresholding
for the second scene.

Figure 5.4: Enhancement of edges in x-direction for scene 2 with µ = [1, 0].
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Reconstructed Image : p = 1   α = 0.8  
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(a) Reconstructed image for the second
scene.

Thresholding with intensity = 0.7
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(b) Reconstructed image after thresholding
for the second scene.

Figure 5.5: Enhancement of edges in y-direction for scene 2 with µ = [0, 1].

Reconstructed Image : p = 1   α = 0.8  
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(a) Reconstructed image for the second scene.

Thresholding with intensity = 0.6

x (km)

y 
(k

m
)

 

 

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Reconstructed image after thresholding for
the second scene.

Figure 5.6: Enhancement of edges in x and y-directions for scene 2 with
µ1 = [1, 0] and µ2 = [0, 1].
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(a) Reconstructed image for the Jeep data. (b) Reconstructed image after thresholding for
the Jeep data.

Figure 5.7: Original image reconstructed with FBP.

(a) Reconstructed image for the first scene. (b) Reconstructed image after thresholding for
the Jeep data.

Figure 5.8: Enhancement of edges in all directions.
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(a) Reconstructed image for the first scene. (b) Reconstructed image after thresholding for
the Jeep data.

Figure 5.9: Enhancement of edges along x1 direction, i.e. µ = [1, 0].

(a) Reconstructed image for the Jeep data. (b) Reconstructed image after thresholding for
the Jeep data.

Figure 5.10: Enhancement of edges along x2 direction, i.e. µ = [0, 1].



CHAPTER 6

ITERATIVE ANALYTIC SAR INVERSION WITH

Lp-TYPE REGULARIZATION

In this chapter, we formulate the SAR image formation problem with non-quadratic

edge-preserving prior models and address the resulting optimization problems it-

eratively by sequences of FBP operators. These algorithms are computationally

efficient with the complexity equal to that of the fast-backprojection. Additionally,

they are applicable to the so-called interrupted SAR systems [93], [94] where data

samples are limited and measured data is corrupted by noise.

First, we develop an iterative reweighted-type SAR image formation algo-

rithm. SAR image reconstruction problem is modeled as an Lp-norm constrained

minimization problem. Then, we approximate this problem by a sequence of L2-

norm constrained quadratic minimization problems as inversions of the underlying

GRT. We approximate the solution of each optimization problem iteratively with

a sequence of analytic, FBP operators. At every iteration, we use the solution

obtained in the previous iteration to determine the filter of the next FBP operator.

Next, we develop an iterative shrinkage-type algorithm that is applicable to

limited data. The algorithm includes iterative applications of forward projection

and backprojection operators.

The methods that are developed in this chapter have the following advantages:

(1) They can be implemented efficiently using the fast-backprojection algorithms.

(2) They do not require a priori information. (3) They are applicable to a wide range

of image reconstruction problems including other SAR modalities, X-ray computed

tomography and acoustics where GRTs naturally arise. (4) They are particularly

suitable for SAR reconstruction with limited aperture.

We demonstrate the performance of the methods using both synthetic data

and the Civilian Vehicles (CV) dome data set provided by the Air Force Research

Laboratory (AFRL) [42] and compare its performance to those of the other state-

of-the-art sparse signal recovery techniques.

92
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6.1 Introduction

SAR image reconstruction is a challenging problem. From a real world appli-

cation point of view, the challenge is threefold: (1) The amount of data collected for

a single acquisition may be very large to transmit and process in real time. As an

example, in Air Force Research Laboratories’ (AFRL) wide-angle SAR experiment,

2.718Gb/seconds data was collected over 647 seconds. This resulted in terabytes of

data [2]. Therefore, it is desirable to reduce the data needed for image reconstruc-

tion. (2) Measured data in many practical applications may be incomplete [35]–[38].

(3) Finally, there is a growing interest in SAR systems that are capable of operating

in multiple modes. These systems are referred to as the interrupted SAR systems

and have various operation modes such as imaging, target recognition and track-

ing [93]–[97]. Switching between different operation modes may result in missing or

incomplete data.

All these limitations require the development of high fidelity SAR image re-

construction with under-sampled or missing data. In addition to the undersampled

data, the noise is always present in the measurements. To address this, the sparse

signal recovery techniques offer a powerful approach and have been extensively used

in the SAR imaging community [98]–[102]. In [103], [104], it was shown that given

the knowledge about sparsity of a signal, i.e. the number of non-zero elements, the

signal may be reconstructed with fewer samples than the Nyquist theorem requires.

6.2 Related Work

Many solutions with performance guarantees are developed and presented in

recent years for sparse signal recovery. These methods can be broadly categorized

into four classes: (1) Lp-norm constrained optimization algorithms [30], [50]; (2)

greedy pursuits-type algorithms [88], [101], [105]–[112]; (3) iterative reweighted-

type algorithms (IRtA) [34], [113]–[115]; and (4) iterative shrinkage-type algorithms

(IStA) [116]–[128].

Within Lp-norm constrained optimization framework, Cetin et al. used Lp-

norm constraint for 0 < p ≤ 1 in [50] with a non-quadratic data fidelity term to

suppress noise and a total variation term to enhance features in the image. Kragh
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et al. applied an iterative majorization-minimization scheme to a quadratic cost

function in [30].

A second class of algorithms for sparse signal recovery is the greedy-pursuits-

type algorithms. The basis pursuits (BP) [101], [111], [112], matching pursuits (MP)

[105] and orthogonal matching pursuits (OMP) [109] are widely used within this

class of algorithms. The BP algorithm decomposes a signal into a superposition of

dictionary elements by means of L1-norm minimization [101], [111], [112]. Mallat et

al. introduced the MP algorithm in [105]. Matching pursuits are used to decompose

signals into a linear expansion of waveforms that are selected from a redundant

dictionary of Gabor functions to give adaptive signal representations. Many greedy

algorithms are derived from the MP method. In [106], Burns et al. decomposed

radar signals using a dictionary of functions. In [33] an MP method was used with

a nonlinear iterative algorithm. In [32], another MP-based algorithm used a tree

search algorithm. In [109], Tropp used OMP to solve the sparse signal recovery

problem and unified the prior BP-based methods and extended them to OMP.

Another set of algorithms for the sparse signal recovery techniques is the iter-

ative reweighted-type algorithms. In [113], iterative reweighted least squares min-

imization procedures are used while forming the SAR image with a sequence of

L2-norm based minimizations to solve an L1-norm minimization problem. Bayesian

estimation techniques are also used within this framework [31], [53]. In [53], Vu et

al. proposed an approach similar to maximum a priori estimation with iterative

minimization procedures. In [115], Candes et al. solved a sequence of weighted

L1-norm minimization problems where the weights used for the next iteration are

calculated from the current solution with fewer measurements. In [114] algorithms

for optimal basis selection are derived by minimizing various diversity measures

such as Lp-norm, Gaussian and Shannon entropies. It was shown that the Gaussian

entropy minimization is equivalent to the L0-norm minimization problem. In [54],

the SAR image reconstruction problem was formulated as an Lp-norm constrained

quadratic inversion problem approximated with a sequence of L2-norm constrained

problems analytically.

The last set of algorithms belongs to the family of iterative shrinkage-type al-
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gorithms, first introduced by Donoho et al. in [116]–[118]. Iterative shrinkage-type

algorithms can be considered as gradient-based algorithms for solving sparse signal

recovery problems via iterative multiplications with the underlying linear transfor-

mation matrices [126]. In radar imaging, this corresponds to iterative applications of

forward projection and backprojection operators. There are different derivations of

the iterative shrinkage-type of algorithms based on thresholding [126], expectation

maximization [121] and majorization-minimization [119], [120].

In this chapter, we develop novel iterative reweighted-type and shrinkage-type

algorithms to suppress noise that is applicable to limited data. For the rest of the

thesis, Lp-norm will correspond to the norms for 0 < p ≤ 1.

6.3 Sparse Signal Recovery Problem

The goal of the sparse signal recovery techniques is to solve an underdeter-

mined (or ill-conditioned) system of linear equations given by

FT + n = d (6.1)

where n is the measurement noise, F ∈ Rn×m, n < m is the linear transformation

matrix , T ∈ Rm is the “sparse” input signal to be recovered from the measurements

d ∈ Rn.

The objective of the sparse signal recovery techniques is to find T which solves

the equation given in (6.1) and has the minimum number of non-zero elements, i.e.

L0-norm. Therefore, the sparse recovery approach to solving (6.1) is given by

min |T|0 subject to |d− FT|22 ≤ ε (6.2)

where |n|22 < ε. This is an NP-hard problem [129].

As an alternative, under the conditions given in Appendix H, we can replace

L0-norm with Lp-norm and define

min |T|1 subject to |d− FT|22 ≤ ε (6.3)
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for p = 1. (6.3) is a convex relaxation of (6.2) [109].

Another approach to address the problem stated in (6.3) consists of the follow-

ing [130]: (1) the minimization of an objective functional that includes a quadratic

error term to suppress noise, and (2) a sparsity inducing regularization term to

represent T. This approach results in the following optimization problem:

min
T
|d− FT|22 + λ1Tρ(T) (6.4)

where 1 ∈ Rn is a vector of ones; λ is the regularization parameter that determines

the trade-off between the sparsity and the residue d − FT; and ρ, Rm → R is

a sparsity inducing scalar-valued potential function that operates pointwise on its

argument.

6.4 Received Signal, Target, and Noise Models

As described in detail in the previous chapters, we can model the measurements

in many SAR systems as follows:

d̃(s, t) = F [T ](s, t) :=

∫
eiΦ(ω,x,s,t)A(ω,x, s, t)T (x)dωdx (6.5)

where T (x) is the target to be recovered from the measurements d̃(s, t), A is the

amplitude function of the forward operator F , and

Φ(ω,x, s, t) = 2πω(t−R(s,x)/c) (6.6)

is the phase function. R(s,x) is a range function which takes different forms as

given in (2.17)-(2.19) depending on the SAR modality.

We assume that the measurements are corrupted by zero-mean Gaussian noise

n(s, t) and model the measured data as

d(s, t) = F [T ](s, t) + n(s, t). (6.7)
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The autocovariance function of the noise is given by

E[n(s, t)n(s′, t′)] = σ2(s)δ(s− s′)Rn(t, t′) (6.8)

where

Rn(t, t′) =

∫
ei2πω(t−t′)|S̃n(ω)|2 dω. (6.9)

We refer to |Sn(ω)|2 as the power spectral density function of noise.

From a Bayesian estimation point of view, (6.4) can be considered as the max-

imum a posteriori (MAP) estimation of the unknown T with an appropriate prior

from the noisy measurements d [131]. Let pT(T |d = d), pd(d|T = T ), pT(T ), pd(d)

denote the a posteriori distribution of the target given the measurements, the dis-

tribution of the measurements given the target, the distribution of the target and

the distribution of the measurements, respectively. Using the Bayes’ Theorem, we

write

pT(T |d = d) =
pd(d|T = T )pT(T )

pd(d)
(6.10)

Let L(T |d) denote the log-likelihood of the a posteriori distribution of the target

scene given the measurements. Using (6.10), we can write

L(T |d = d) = L(d|T = T ) + log(pT(T ))− log(pd(d)). (6.11)

Using the MAP estimation, we can find an estimate for T as follows:

TMAP = max
T

L(T |d = d) (6.12)

= max
T

L(d = d|T ) + log(pT(T )) (6.13)

= max
T

L(d = d, T ), (6.14)

i.e. the MAP estimate maximizes the joint distribution as well [31]. When the prior

distribution is Gaussian then (6.4) corresponds to an MMSE estimate. However,

MMSE estimates result in over-blurred images if applied globally. We overcome this

shortcoming by applying MMSE criteria locally in Chapter 3. Here, we wish to
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use sparsity promoting priors for pT to preserve edges of the reconstructed images.

The Markov random fields (MRF) offer a comprehensive framework to design such

priors [131], [132]. The probability distribution of an MRF can be expressed using

the Gibbs distribution as follows [131], [133]:

pT (T ) =
1

Z
exp

(
−
∑
c∈C

ρc(Tc)

)
(6.15)

where Z is a normalization constant, ρc is any function of a local group of points

c among all local groups of points C. Finally, under some conditions, Hammersley-

Clifford theorem states that a random field is an MRF if and only if its probability

distribution can be represented using the Gibbs distribution [134], [135].

There are many possible sparsity inducing potential functions for the choice

of ρ that are convex and non-convex. The ones that are investigated in this thesis

are listed in Table 6.1 [31], [136]–[143].

Table 6.1: Table showing the sparsity inducing potential functions, ρ(f)
for an input function f investigated in the thesis.

Convex functions f2

1+f2 f 2 log(1 + f 2) |f |
1+|f |

Non-convex functions |f | log cosh(f) min(|f |2, 2f − 1) |f |p |f |p
1+fq−p

6.5 Analytic SAR Image Formation with Sparsity Promot-

ing Prior Models

6.5.1 Problem Definition

In Chapter 3, we describe a novel SAR inversion method based on locally

defined MMSE criterion. The method results in an FBP-type analytic reconstruction

technique in which the FBP filter requires second-order statistics of the target,

clutter and the noise. Furthermore, we estimate these parameters from the data as

described in Appendix E.
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The MMSE criterion function inherently relies on the Gaussianity of the un-

derlying processes of the target, clutter and noise, hence the L2-norm. If applied

globally, the L2-norm minimization over-smooths the images resulting in loss of

features in reconstructed images. In this chapter, we develop an analytic inver-

sion method with the Lp-norm (p > 0) constraint. Furthermore, we approximate

the Lp-norm constrained inversion problem with a sequence of L2-norm constrained

inversion problems.

There are many sparse signal recovery techniques to solve the problem (6.4).

Using the target model described in the previous section and the prior exp(−ρ(T )),

we can address a solution to this problem by considering the following optimization

problem:

Jre(T ) = λ

∫
ρ(T (z))dz +

1

2
|d−F [T ]|22 (6.16)

where ρ is defined in the previous section and can be one of the functions listed in

Table 6.1. We will find solutions to solve (6.16) by using the techniques described

in [120], [123], [144]. It should be noted here that we can easily replace ρ(T (z))

with ρ(∇T (z)) to find a total-variations estimate for the target scene.

6.5.2 Approximate Solutions for the Optimization Function

6.5.2.1 Iterative Reweighted-type Analytic Reconstruction

For ρ(T ) = |T |pp,α, we write

T ∼ exp(−|T |pp,α) (6.17)

where

|T |pp,α =

∫
|T (z)|p

α(z)
dz < +∞, α(z) > 0. (6.18)

(6.17) can be considered as a MAP estimate of the target T , under a sparsity

inducing prior, i.e. Lp-norm. Similarly we can model a total variations estimate of
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the target by using the following model:

∇T ∼ exp(−|∇T |pp,α). (6.19)

Using (6.17), the MAP estimation of T is equivalent to the optimization prob-

lem given by

P1 : min{λ|T |pp,α + |d−F [T ]|22,Rn} . (6.20)

In order to solve this optimization problem efficiently, we will convert P1 to a

sequence of quadratic problems P2 and solve each problem analytically. This will

result in an analytic and fast solution to Lp-norm constrained problem described

in (6.20). To do that, we will adapt the methodology described in [144] into our

problem formulation.

Let Tk, k = 0, 1, . . . be the solution of the P2 problem at the kth iteration.

Then, we define an operator Iqα,k−1 such that

Iqα,k−1T (z) =
T (z)

α1/2(z)|Tk−1(z)|q
. (6.21)

Instead of applying this operator on T , we apply it on an edge-enhanced version of

T to enhance features in the image:

P [T ](z) :=

∫
Ωz

e−iξ·(z−x)(1 + |ξ|)T (x)dxdξ, (6.22)

P [T ](z) :=

∫
Ωz

e−iξ·(z−x)Qe(z, ξ)d(s, t)dsdtdx (6.23)

where

|∇T (z)| ≈
∫

Ωz

e−iξ·(z−x)|ξ|T (x)dxdξ (6.24)

as given in [145] and

Qe(z, ξ) = (1 + |ξ|)Q(z, ξ) (6.25)
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acts as an unsharp masking filter.

By setting p = 2− 2q for (6.18)

Iqα,k−1T (z) =
P [T ](z)

α1/2(z)|P [Tk−1](z)|1−p/2
, (6.26)

|Iqα,k−1T (z)|22 =

∫ ∣∣∣∣P [T ](z)|P [Tk−1](z)|p/2

α1/2(z)P [Tk−1](z)

∣∣∣∣2 dz, (6.27)

|Iqα,k−1T (z)|22 =

∫ ∣∣∣∣ P [T ](z)

α1/2(z)|P [Tk−1](z)|

∣∣∣∣2 |P [Tk−1](z)|pdz. (6.28)

For |P [T (z)−P [Tk−1](z)| < ε where ε is a predetermined sufficiently small threshold,

we assume that |P[T ](z)|2
|P[Tk−1](z)| ≈ 1. Therefore,

|Iqα,k−1T (z)|22 ≈
∫
|P [T ](z)|p

α(z)
dz → |Iqα,k−1T (z)|22 ≈ |P [T ]|pp,α. (6.29)

and the modified optimization problem is given by

P2 : min{λ|Iqα,k−1T (z)|22 + |g −F [T ]|22,Rn} (6.30)

This way we convert the optimization problem given by P1 which includes an Lp-

norm to P2 which only includes an L2-norm. It should be noted here that T in

(6.30) can be effectively replaced with ρ(T ) and ρ(∇T ).

A pseudocode for SAR image reconstruction with limited data using IRtA is

given in Algorithm 3.

Algorithm 3 A pseudocode for IRtA.

1: Initialize f0 ≡ 1 on its support and k = 1 where ρ(P [T ](z)) is the edge-enhanced
FBP image formed from the noisy data.

2: while |P [Tk]− P [Tk−1]|22 > ε do

3: Calculate Iqα,k−1T (z) = ρ(P[T ](z))
|ρ(P[Tk−1](z))|q for q = 1/2.

4: Derive the edge-enhancing FBP filter Qk = minQk J(Qk) using (3.44) and
[145].

5: Find P [Tk] = BQek[g].
6: Update Iqα,k−1 → I

q
α,k

7: k = k + 1

8: return T̃k
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6.5.2.2 Iterative Shrinkage-type Analytic Reconstruction

Iterative shrinkage-type algorithms (IStA) are another set of algorithms that

are used to solve the optimization problem given in (6.4) [116]–[128]. We can con-

sider IStA as gradient-based algorithms for solving (6.4) via iterative multiplications

with the matrix F and F† [126]. In radar imaging, this corresponds to repeated for-

ward and backprojections.

In the literature there are different derivations of IStA based on threshold-

ing [126], majorization-minimization [119], [120] and expectation maximization al-

gorithms [121]. In this section, we approach to solve the problem given in (6.4) by

using the proximal point and surrogate functions [120], and the fixed-point strat-

egy [123]. We define the following functional:

Js(T, T0) =
c

2

(
|T − T0|22 − |B†T − B†T0|22 − |B†(A− I)T |22

)
(6.31)

to solve (6.4) where B is the backprojection operator (without any filtering), B† is

its adjoint, A is another operator whose kernel is the amplitude function A in (2.15)

and c > 0 is a constant chosen such that Js(T, T0) is strictly convex.

After adding Js to the objective function given in (6.16) and making some

simplifications, we form a new objective function:

J̃sh(T ) = Jre(T ) + Js(T, T0) = 〈F †d− BB†T0 + cT0, f〉+ |T |22 + λ

∫
ρ(T )dz + c1

(6.32)

where F is the forward operator given in (2.15) and F † is its adjoint.

Dividing (6.32) by c and adding |h0|2 where

h0 =
1

c
(F †d− BB†T0) + T0 (6.33)
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we obtain

Jsh(T ) =
1

2
|T − h0|2 +

λ

c

∫
ρ(T (z))dz + c2 (6.34)

=

∫ {
1

2
|T (z)− h0(z)|2 +

λ

c
ρ(T (z))

}
dz + c2. (6.35)

Similar to the derivation of the optimal filter (3.44), a Topt for which (6.34) is

minimized needs to be derived. To do that, the variation of Jsh is calculated with

respect to T by fixing some Tε and considering the variation, T + εTε for some small

ε:

d

dε
Jsh(T + εTε)

∣∣∣∣
ε=0

= 0. (6.36)

Since the integrand in (6.34) is non-negative, Jsh is minimized whenever the inte-

grand is minimum. Therefore,

0 =
d

dε

{
1

2
|T + εTε − h0|2 +

λ

c
ρ(T + εfε)

}∣∣∣∣
ε=0

(6.37)

0 =
d

dε

{
1

2
|T − h0|2 +

1

2
〈T − h0, εTε〉+

1

2
|εTε|2 +

λ

c
ρ(T + εTε)

}∣∣∣∣
ε=0

(6.38)

0 =

{
1

2
〈T − h0, Tε〉+ εTε +

λ

c
〈ρ′(T + εTε), Tε〉

}∣∣∣∣
ε=0

(6.39)

0 =
1

2
(T − h0) +

λ

c
ρ′(T ) (6.40)

h0 =Topt +
2λ

c
ρ′(Topt). (6.41)

where ρ′ stands for the gradient of the sparsity inducing potential function ρ. Possi-

ble choices for ρ are given in Table 6.1. A pseudocode for SAR image reconstruction

with IStA is given in Algorithm 4.
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Algorithm 4 A pseudocode for IStA.

1: Initialize T0 ≡ 0, d̃ = A†d on its support.
2: while |P [Tk]− P [Tk−1]|22 > ε do
3: Calculate the residual: rk = d̃− B†P [Tk]
4: Backproject the residual and calculate hk: hk = Brk + P [Tk]
5: Solve Tk+1 in hk = Tk+1 + 2λ

c
ρ′(P [Tk+1]).

6: Update the residual: rk+1 = d̃− B†P [Tk+1])
7: k = k + 1

8: return Tk+1
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6.6 Numerical Simulations

We consider two data sets to demonstrate the performance of the proposed

methods: A data set formed by using MATLAB and the Civilian Vehicle (CV)

Dome data set provided by AFRL [42]. For the first dataset, we perform two sets

of experiments:

1. Undersampled System: For a 22km×22km scene, we descritize the scene

into 128 × 128 pixels. We place a 5.16km×5.16km (30 pixels-by-30 pixels)

square at the scene center. A mono-static antenna traverses a circular tra-

jectory given by γ(s) = [11 cos s, 11 sin s, 6.5] km. The trajectory is uniformly

sampled for s ∈ [0, 2π] at 32 points. This is a much sparser sampling than

required. We sample the fast-time at 384 points. This corresponds to:

• 384× 32− by − 1 vector to represent the measurement data,

• 384× 32− by − 128× 128 matrix to represent the forward operator and

• 128× 128− by − 1 vector to represent the imaging scene.

Since 384× 32 is less than 128× 128, the inverse problem is underdetermined.

2. Regularly Sampled System: For a 22km×22km scene, we descritize the

scene into 64 × 64 pixels. We place a 7.9km×7.9km (23 pixels-by-23 pixels)

square at the scene center. A mono-static antenna traverses a circular tra-

jectory given by γ(s) = [11 cos s, 11 sin s, 6.5] km. The trajectory is uniformly

sampled for s ∈ [0, 2π] at 128 points. The fast-time is sampled with 543 points.

This corresponds to

• 543× 128− by − 1 vector to represent the measurement data,

• 543× 128− by − 64× 64 matrix to represent the forward operator and

• 64× 64− by − 1 vector to represent the imaging scene.

6.6.1 Numerical Simulations for IRtA with Synthetic Data

In these simulations, A(x, ω, s) is set to 1, which corresponds to the assumption

of an isotropic antenna radiating a Dirac-delta-like impulse and the compensation
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of the geometric spreading in the measured data. We add Gaussian noise to the

projection data to simulate the thermal noise at an SNR level of 0dB. (See (3.54)

for a definition of SNR.) Then, we reconstruct the images with the limited data

using the Algorithm 3. We use the (3.44) with a known spectral density function for

the target. We use ten different potential functions given in Table 6.1 and evaluate

the performance of the algorithm for each potential function by considering the

following figures of merit:

1. Mean-square-error (MSE) between original target scene and the reconstructed

target image calculated by

MSE =
1

MN

N∑
i=1

M∑
r=1

(
T (xi)− T̃r(xi)

)2

, (6.42)

where M is the number of realizations of the experiment, N is the number of

imaging grids T̂r(x) is the reconstructed image in the rth realization.

2. The relative L2-norm difference, which we will refer to as the ∆-norm, between

the images that are reconstructed in consecutive iterations, calculated by

∆-norm =
1

MN
N∑
i=1

M∑
r=1

(
T̃r−1(xi)

)2

N∑
i=1

M∑
r=1

(
T̃r(xi)− T̃r−1(xi)

)2

. (6.43)

3. Correlation of the range profiles of the reconstructed images with the range

profile of the true target scene (See Figure 6.3) calculated via Pearson’s cor-

relation coefficient [146]:

CORR =
M∑
r=1

cov(T̃ rpr , T
rp)

MσT̃ rpr , σT rp
(6.44)

where T̃ rpr , T rp denote the range profiles of the reconstructed image at the rth

realization and the true target scene, respectively. “cov” denotes the covari-

ance and σ denotes the standard deviation.

Furthermore, ∆-norm is used to decide when the algorithm converges [50].
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6.6.1.1 Numerical Simulations for the Under-Sampled Data

As a first set of experiments, we apply IRtA on the under-sampled data. Figure

6.1(a) shows the original target scene used for these simulations and Figure 6.1(b)

shows the FBP image when the SNR is 0dB. We perform these simulations ten times

for each potential function. It should be noted here that the algorithm converges

at different iterations for each potential function. Therefore, algorithm is run thirty

times for each objective function. Figure 6.2(a) shows the reconstructed image using

the deterministic FBP, which is the initialization to the algorithms. Figures 6.2(b)-

(f) show the reconstructed images using IRtA after the first, second, third, tenth

and the twentieth iterations, respectively. The numerical values for the convergence

of the algorithm for each potential function are reported in detail in Subsection 6.7.
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Figure 6.1: (a) The original and (b) the reconstructed scene using the
deterministic FBP with a single realization. SNR is set to 0dB and the
Gaussian noise is added to the data to simulate the measurement noise.

When the SNR level is 0dB, i.e. when the noise power is comparable to the

signal power, the image reconstructed with FBP almost has no information about

the target. The target scene is vaguely visible and the background is noisy. However,

right after the first iteration (see Figure 6.2(b)), the target is visible even though

the initialization to the algorithm is the FBP image given in Figure 6.2(a) for all

possible potential functions. After several iterations, noise is suppressed around the

target and the features are more visible. Moreover, the noise is suppressed more in
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Figure 6.2: The reconstructed images (a) using the deterministic FBP
(initialization of the algorithm); and IRtA after (b) the first, (c) second,
(d) third, (e) tenth, and (f) the twentieth iterations when the SNR is

0dB and ρ(f) = f2

1+f2 for the target in Figure 6.1.
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Figure 6.3: The range profiles of the (a) reconstructed image at the
tenth iteration, and (b) the true target scene in Figure 6.1(a).

the background.

Figure 6.4 shows the plots for the MSE, ∆-norm and correlation for the first

potential function ρ(f) = f2

f2+1
. For the other objective functions, the patterns for

the plots are similar therefore they are not shown here. Figures 6.5 (a)-(c) show

the values of these metrics for all potential functions at every iteration as an image

grid. It is seen from the image given in Figure 6.5(b) that the ∆-norm, which is the

relative L2-norm difference between images that are reconstructed in consecutive

iterations, drops sharply after the first iteration and remains almost constant after

the second iteration. Similarly, we see in Figure 6.5(a) that the MSE between the

true and the reconstructed target images decreases sharply after the first iteration

and then remains constant. Finally, we show the correlation of the range profiles in

Figure 6.5 and observe that it increases right after the first iteration, then remains

almost constant for all of the potential functions.

Considering the results with different potential functions, potential function



110

0 5 10 15 20 25 30
0

0.02

0.04

0.06

 M
S

E

(a)

0 5 10 15 20 25 30
0

1

2

3

4

 ||
f k−

f k−
1|| 22 /||

f k−
1|| 22

(b)

0 5 10 15 20 25 30
0.2

0.4

0.6

0.8

1

k−iteration number

C
or

re
la

tio
n

(c)

Figure 6.4: The plots showing (a) the MSE between the original target
scene and the reconstructed target image for each iteration, (b) ∆-norm,

(c) correlation of the range profiles when ρ(f) = f2

1+f2 for IRtA and the

scene in Figure 6.1(a).

ρ(f) = min(f 2, 2f −1) results in the reconstructed images with the minimum MSE,

∆-norm and the maximum contrast while potential function fp

1+f2−p gives the results

with the maximum MSE, ∆-norm and the minimum contrast. Tables 6.2, 6.3, 6.4

show the values for MSE, ∆-norm, correlation respectively for the first five iterations

and each potential function. The rapid decrease in MSE, ∆-norm and the increase

in correlation is clearly seen in these tables.

6.6.1.2 Numerical Simulations for the Regularly Sampled Data

As a second set of experiments, we apply IRtA on regularly sampled data. We

perform these simulations ten times.

The algorithm converges at different iterations for each potential function.

Therefore, the algorithm is run thirty times for each potential function. Figure
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Figure 6.5: Images showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)
correlation of the range profiles for the target scene in Figure 6.1(a)

with all potential functions in the order of f2

1+f2 , f 2, log(1 + f 2), f
1+f

, f ,

log cosh(T ), min(f 2, 2f − 1), f 1/2, f1/2

1+f2−1/2 for IRtA.
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Table 6.2: The MSE between the true and the reconstructed target image
for the first five iterations using IRtA for the target scene in Figure 6.1(a).
The minimum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
5.331e-02 1.104e-02 9.486e-03 9.312e-03 9.122e-03

f 2 5.331e-02 9.996e-03 9.632e-03 8.892e-03 8.984e-03

log(f 2 + 1) 5.331e-02 1.048e-02 9.509e-03 9.091e-03 9.015e-03
f
f+1

5.331e-02 1.373e-02 1.136e-02 1.138e-02 1.127e-02

f 5.331e-02 1.281e-02 1.111e-02 1.096e-02 1.084e-02

log(cosh(f)) 5.331e-02 1.022e-02 9.420e-03 8.877e-03 8.967e-03

min(f 2, 2f − 1) 5.331e-02 4.495e-03 5.358e-03 4.184e-03 4.442e-03

fp 5.331e-02 1.366e-02 1.203e-02 1.178e-02 1.182e-02
fp

1+f2−p 5.331e-02 1.332e-02 1.202e-02 1.214e-02 1.189e-02

∇f 5.331e-02 4.961e-03 6.886e-03 5.288e-03 5.715e-03

Table 6.3: The relative L2-norm difference between the images recon-
structed at every iteration for the first five iterations using IRtA for the
target scene in Figure 6.1(a). The minimum values are shown in bold
fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
3.183 3.363e-02 7.702e-03 4.151e-03 2.550e-03

f 2 3.544 3.087e-02 1.044e-02 4.382e-03 2.281e-03

log(f 2 + 1) 3.360 2.812e-02 7.530e-03 3.659e-03 2.215e-03
f
f+1

2.461 3.777e-02 8.400e-03 5.392e-03 4.241e-03

f 2.659 3.159e-02 8.015e-03 4.189e-03 2.812e-03

log(cosh(f)) 3.451 2.743e-02 9.949e-03 5.036e-03 2.894e-03

min(f 2, 2f − 1) 1.454e+01 1.460e-01 4.344e-02 4.473e-03 9.142e-04

fp 2.454 2.919e-02 8.875e-03 5.232e-03 3.617e-03
fp

1+f2−p 2.531 2.579e-02 8.626e-03 6.501e-03 4.966e-03

∇f 6.172 1.857e-02 1.243e-02 3.893e-03 3.680e-03
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Table 6.4: The correlation of the true and the reconstructed target image
range profiles for the first five iterations, using IRtA for the target scene
in Figure 6.1(a). The maximum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
2.542e-01 6.295e-01 6.923e-01 6.824e-01 6.902e-01

f 2 2.542e-01 6.755e-01 6.975e-01 7.015e-01 7.007e-01

log(f 2 + 1) 2.542e-01 6.472e-01 6.955e-01 6.882e-01 6.947e-01
f
f+1

2.542e-01 5.542e-01 6.421e-01 6.251e-01 6.302e-01

f 2.542e-01 5.762e-01 6.505e-01 6.425e-01 6.471e-01

log(cosh(f)) 2.542e-01 6.644e-01 6.984e-01 6.944e-01 6.976e-01

min(f 2, 2f − 1) 2.542e-01 8.410e-01 8.045e-01 8.445e-01 8.316e-01

fp 2.542e-01 5.498e-01 6.350e-01 6.194e-01 6.202e-01
fp

1+f2−p 2.542e-01 5.599e-01 6.307e-01 6.042e-01 6.086e-01

∇f 2.542e-01 8.237e-01 7.911e-01 8.331e-01 8.240e-01
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Figure 6.6: (a) The original and (b) the reconstructed scene using the
deterministic FBP with a single realization. SNR is set to 0dB and
Gaussian noise is added to data to simulate the additive thermal noise.
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Figure 6.7: The reconstructed images (a) using the deterministic FBP
(initialization of the algorithm); and IRtA (b) after the first, (c) second,
(d) third, (e) tenth, and (f) twentieth iterations when the SNR is 0dB

and ρ(f) = f2

1+f2 for the target in Figure 6.6.



115

0 10 20 30 40 50 60 70
−0.2

0

0.2

0.4

0.6

0.8

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Figure 6.8: The range profiles of the (a) reconstructed image at the tenth
iteration, and (b) the true target scene in Figure 6.6(a).

6.7(a) shows the reconstructed image using the deterministic FBP, which is the ini-

tialization to the algorithms. Figures 6.7(b)-(f) show the reconstructed images using

IRtA after the first, second, third, tenth and the twentieth iterations, respectively

when the target scene is Figure 6.6(a) for the potential function ρ(f) = f2

f2+1
.

When the SNR level is 0dB, again the image reconstructed with FBP almost

has no information about the target. The target scene is not visible and noisy.

After the first iteration (see Figure 6.7(b)), the target is visible even though the

initialization to the algorithm is the FBP image given in Figure 6.7(a). After several

iterations, noise is suppressed around the target and the features are more visible.

Moreover, the noise is suppressed more in the background.

In assessing the quality of the reconstructed images, we consider three figures

of merit: MSE, ∆-norm and the correlation of the range profiles with a rectangular

window defined earlier.

Figure 6.9 shows the plots for the MSE, ∆-norm and correlation for the first
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Figure 6.9: The plots showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)

correlation of the range profiles when ρ(f) = f2

1+f2 for IRtA and the scene

in Figure 6.6(a).

potential function ρ(f) = f2

f2+1
. For the other objective functions, the patterns for

the plots are similar therefore they are not shown here. Figures 6.10 (a)-(c) show the

values of these metrics for all potential functions at every iteration as an image grid.

We observe from Figure 6.10(b) that the value of the ∆-norm, drops sharply after

the first iteration and remains almost constant after the second iteration. Similarly,

we see in Figure 6.10(a) that the MSE between the original target scene and the

reconstructed image decreases sharply after the first iteration and remains almost

constant for higher iteration numbers. Finally, we show the correlation of the range

profiles in Figure 6.10. We observe that the correlation increases right after the first

iteration, then remains almost constant for higher number of iterations for all of the

potential functions.

Comparing the results for different potential functions, unlike the simulations



117

Figure 6.10: Images showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)
correlation of the range profiles for the target scene in Figure 6.6(a)

with all potential functions in the order of f2

1+f2 , f 2, log(1 + f 2), f
1+f

, f ,

log cosh(T ), min(f 2, 2f − 1), f 1/2, f1/2

1+f2−1/2 for IRtA.
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performed in the previous subsection, we conclude that any one of the potential

functions does not result in better reconstructed images than the rest for all metrics.

Tables 6.5, 6.6, 6.7 show the values for MSE, ∆-norm, correlation, respectively for

the first five iterations and each potential function. min(f 2, 2f − 1) and fp

1+f2−p

perform slightly better considering the correlation values. The rapid decrease in the

MSE, ∆-norm and the increase in the correlation are clearly seen in these results.

Table 6.5: The MSE between the true and the reconstructed target image
for the first five iterations using IRtA for the target scene in Figure 6.6(a).
The minimum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
5.632e-02 3.021e-03 4.474e-03 2.909e-03 3.359e-03

f 2 5.632e-02 2.906e-03 4.656e-03 2.787e-03 3.429e-03

log(f 2 + 1) 5.632e-02 2.969e-03 4.572e-03 2.832e-03 3.366e-03
f
f+1

5.632e-02 3.460e-03 3.854e-03 3.244e-03 3.521e-03

f 5.632e-02 3.206e-03 4.196e-03 3.415e-03 3.536e-03

log(cosh(f)) 5.632e-02 2.955e-03 4.509e-03 2.739e-03 3.338e-03

min(f 2, 2f − 1) 5.632e-02 2.580e-03 3.988e-03 2.829e-03 3.117e-03

fp 5.632e-02 3.595e-03 4.138e-03 3.361e-03 3.557e-03
fp

1+f2−p 5.632e-02 4.241e-03 3.797e-03 3.389e-03 3.402e-03

∇f 5.632e-02 9.468e-03 1.005e-02 9.062e-03 9.434e-03
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Table 6.6: The relative L2-norm difference between the images recon-
structed at every iteration for the first five iterations using IRtA for the
target scene in Figure 6.6(a). The minimum values are shown in bold
fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
2.913 4.035e-02 2.000e-02 1.180e-02 2.492e-03

f 2 2.917 4.396e-02 1.295e-02 4.340e-03 1.286e-03

log(f 2 + 1) 2.908 4.122e-02 1.353e-02 6.509e-03 1.551e-03
f
f+1

2.855 2.108e-02 4.640e-03 1.497e-03 5.400e-04

f 2.873 2.705e-02 1.300e-02 4.265e-03 1.476e-03

log(cosh(f)) 2.921 4.592e-02 1.323e-02 5.652e-03 1.414e-03

min(f 2, 2f − 1) 4.239 3.744e-02 9.151e-03 1.181e-03 3.339e-04

fp 2.819 2.648e-02 5.627e-03 9.382e-04 3.165e-04
fp

1+f2−p 2.850 3.310e-02 8.373e-03 3.649e-03 3.136e-03

∇f 1.805 3.952e-02 1.536e-02 5.372e-03 3.037e-03

Table 6.7: The correlation of the true and the reconstructed target image
range profiles for the first five iterations, using IRtA for the target scene
in Figure 6.6(a). The maximum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
3.964e-01 8.021e-01 7.691e-01 7.976e-01 7.872e-01

f 2 3.964e-01 8.026e-01 7.600e-01 8.002e-01 7.793e-01

log(f 2 + 1) 3.964e-01 8.017e-01 7.640e-01 7.988e-01 7.850e-01
f
f+1

3.964e-01 8.014e-01 7.930e-01 7.982e-01 8.042e-01

f 3.964e-01 8.021e-01 7.803e-01 8.035e-01 7.904e-01

log(cosh(f)) 3.964e-01 8.024e-01 7.605e-01 8.012e-01 7.826e-01

min(f 2, 2f − 1) 3.964e-01 8.098e-01 7.907e-01 8.032e-01 7.989e-01

fp 3.964e-01 8.005e-01 7.846e-01 7.928e-01 7.921e-01
fp

1+f2−p 3.964e-01 8.045e-01 7.935e-01 8.058e-01 8.064e-01

∇f 3.964e-01 7.325e-01 7.210e-01 7.372e-01 7.286e-01
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6.6.2 Numerical Simulations for IStA with Synthetic Data

6.6.2.1 Numerical Simulations for the Under-Sampled Data

For this set of simulations, we use the target in 6.1(a). We apply the Algorithm

4 to suppress the noise and to reconstruct images using limited data. We use 10

different potential functions given in Subsection 6.5.1 with IStA.

As noted in the previous subsection, the algorithm converges at different it-

erations for each objective function and the algorithms is run thirty times for each

potential function. Figure 6.11(a) shows the reconstructed image using the deter-

ministic FBP, which is the initialization to the algorithms. Figures 6.11(b)-(f) show

the reconstructed images using IStA after the first, second, third, tenth and the

twentieth iterations, respectively for the potential function ρ(f) = f2

f2+1
. When the

SNR level is 0dB the target is not visible in the image reconstructed with determin-

istic FBP. After the first iteration algorithm performs the following operation:

f1 ≈ T0 + B(d− B†T0)− 2λ

c
ρ′(T0) (6.45)

where f0 corresponds to the FBP image. The image is blurred since the algorithm

reconstructs images via backprojection without filtering. However, right after the

second iteration the shape of the target is revealed, but somewhat smooth. As more

iterations, are performed the level of smoothness decreases and the structure of the

target becomes more visible.

Figure 6.12 shows the MSE, ∆-norm and correlation plots for the potential

function ρ(f) = f2

f2+1
. For the other objective functions, the patterns for the plots

are similar, therefore they are not shown here. Figures 6.13 (a)-(c) show the val-

ues of these metrics for all potential functions at every iteration on an image grid.

The plots in Figure 6.12(a) show that the relative L2-norm difference between the

images reconstructed in consecutive iterations drops sharply after the second itera-

tion. However, the MSE and ∆-norm fluctuate. Note that the algorithm attempts

to reduce the residual. However, when the residual is large, the algorithm attempts

to smooth the image aggressively in the next iteration. After that, the algorithm

attempts to compensate for the over-smoothing by using the original noisy radar
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Figure 6.11: The reconstructed images (a) using the deterministic FBP
(initialization of the algorithm); and IStA (b) after the first, (c) second,
(d) third, (e) tenth, and (f) twentieth iterations when the SNR is 0dB

and ρ(f) = f2

1+f2 for the target in Figure 6.1.
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Figure 6.12: The plots showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)

correlation of the range profiles when ρ(f) = f2

1+f2 for IStA and the scene

in Figure 6.1(a).

data. This increases the MSE as compared to that of the previous iteration. Hence,

MSE and ∆-norm values fluctuate from one iteration to the next.

The algorithm is run for thirty iterations in order to compare its performance

with that of the iterative reweighted-type reconstruction algorithm. The algorithm

converges around the fifth iteration almost for all the objective functions. Addi-

tional iterations result in degradation in the image quality as well as the loss in the

correlation.

Unlike IRtA, the type of the potential function used in the algorithm does not

affect performance as can be seen in Figures 6.13. Nevertheless, potential function

given by ρ(f) = min(f 2, 2f − 1), results in reconstructed images with the minimum

MSE and the maximum contrast. Tables 6.8, 6.9, 6.10 show the values of the MSE,

∆-norm and the correlation, respectively for the first five iterations and for each
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Figure 6.13: Images showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)
correlation of the range profiles for the target scene in Figure 6.1(a)

with all potential functions in the order of f2

1+f2 , f 2, log(1 + f 2), f
1+f

, f ,

log cosh(T ), min(f 2, 2f − 1), f 1/2, f1/2

1+f2−1/2 for IStA.
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potential function.

Table 6.8: The MSE between the true and the reconstructed target image
for the first five iterations using IStA for the target scene in Figure 6.1(a).
The minimum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
6.992e-02 9.129e-03 2.427e-02 1.638e-02 3.140e-03

f 2 6.992e-02 9.131e-03 2.431e-02 1.637e-02 3.134e-03

log(f 2 + 1) 6.992e-02 9.130e-03 2.429e-02 1.637e-02 3.137e-03
f
f+1

6.992e-02 9.123e-03 2.431e-02 1.632e-02 3.112e-03

f 6.992e-02 9.123e-03 2.442e-02 1.626e-02 3.086e-03

log(cosh(f)) 6.992e-02 9.130e-03 2.422e-02 1.641e-02 3.155e-03

min(f 2, 2f − 1) 6.992e-02 9.115e-03 2.469e-02 1.608e-02 3.011e-03

fp 6.992e-02 9.123e-03 2.442e-02 1.626e-02 3.086e-03
fp

1+f2−p 6.992e-02 9.123e-03 2.431e-02 1.632e-02 3.112e-03

∇f 6.992e-02 9.126e-03 2.428e-02 1.635e-02 3.131e-03

6.6.2.2 Numerical Simulations for the Regularly Sampled Data

As a second set of experiments, we apply the IStA on regularly sampled data.

Algorithm is run thirty times for each potential function. Figure 6.14(a) shows

the reconstructed image using the deterministic FBP, which is the initialization

to the algorithms. Figures 6.14(b)-(f) show the reconstructed images using IStA

after the first, second, third, tenth and the twentieth iterations, respectively for the

potential function ρ(f) = f2

f2+1
. After the first iteration, the image is blurred since

the algorithm reconstructs images via backprojection without filtering. However,

right after the second iteration the shape of the target is revealed but somewhat

smooth. More iterations reduce the over-smoothing and the high frequency content

of the target becomes more visible.

Figure 6.15 shows the plots for the MSE, ∆-norm and the correlation for the

potential function ρ(f) = f2

f2+1
. For the other potential functions, the patterns for

the plots are similar, therefore they are not shown here. Figures 6.16 (a)-(c) show the
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Table 6.9: The relative L2-norm difference between the images recon-
structed at every iteration for the first five iterations using IStA for the
target scene in Figure 6.1(a). The minimum values are shown in bold
fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
2.944e+01 9.113 4.098 5.516e-01 6.000e-01

f 2 2.942e+01 9.145 4.088 5.526e-01 5.999e-01

log(f 2 + 1) 2.943e+01 9.127 4.094 5.520e-01 6.000e-01
f
f+1

2.938e+01 9.155 4.075 5.555e-01 6.031e-01

f 2.930e+01 9.247 4.041 5.598e-01 6.046e-01

log(cosh(f)) 2.947e+01 9.071 4.115 5.494e-01 5.988e-01

min(f 2, 2f − 1) 2.908e+01 9.490 3.947 5.732e-01 6.085e-01

fp 2.930e+01 9.247 4.041 5.598e-01 6.046e-01
fp

1+f2−p 2.938e+01 9.155 4.075 5.555e-01 6.031e-01

∇f 2.942e+01 9.119 4.090 5.526e-01 6.005e-01

Table 6.10: The correlation of the true and the reconstructed target image
range profiles for the first five iterations, using IStA for the target scene
in Figure 6.1(a). The maximum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
1.760e-01 7.679e-01 9.099e-01 9.163e-01 9.258e-01

f 2 1.760e-01 7.679e-01 9.099e-01 9.164e-01 9.259e-01

log(f 2 + 1) 1.760e-01 7.679e-01 9.099e-01 9.163e-01 9.259e-01
f
f+1

1.760e-01 7.680e-01 9.099e-01 9.163e-01 9.258e-01

f 1.760e-01 7.679e-01 9.098e-01 9.163e-01 9.258e-01

log(cosh(f)) 1.760e-01 7.680e-01 9.099e-01 9.163e-01 9.258e-01

min(f 2, 2f − 1) 1.760e-01 7.678e-01 9.096e-01 9.163e-01 9.258e-01

fp 1.760e-01 7.679e-01 9.098e-01 9.163e-01 9.258e-01
fp

1+f2−p 1.760e-01 7.680e-01 9.099e-01 9.163e-01 9.258e-01

∇f 1.760e-01 7.679e-01 9.101e-01 9.163e-01 9.258e-01
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Figure 6.14: The reconstructed images (a) using the deterministic FBP
(initialization of the algorithm); and IStA (b) after the first, (c) second,
(d) third, (e) tenth, and (f) twentieth iterations when the SNR is 0dB

and ρ(f) = f2

1+f2 for the target in Figure 6.6.
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Figure 6.15: The plots showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)

correlation of the range profiles when ρ(f) = f2

1+f2 for IStA and the scene

in Figure 6.6(a).

values of these metrics for all potential functions at every iteration on an image grid.

We see from the plot in Figure 6.15(a) that the relative L2-norm difference between

the reconstructed images in consecutive iterations drops sharply after the second

iteration. Similar to the performance of the IStA using under-sampled data, the

MSE and ∆-norm fluctuate. The same explanation for IStA using under-sampled

data applies here as well.

Like in Section 6.6.1.2, the nature of the potential function used in the algo-

rithm does not significantly change the quality of the reconstructed images as can

be seen in Figures 6.16. Nevertheless, the potential function ρ(f) = log(cosh(f)),

results in the reconstructed images with the minimum MSE. Similar to IRtA with

the regularly sampled data, iterative algorithm described here gives especially better

results than regular FBP-type reconstruction when the data is limited. Tables 6.11,
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Figure 6.16: Images showing (a) the MSE between original target scene
and the reconstructed target image for each iteration, (b) ∆-norm, (c)
correlation of the range profiles for the target scene in Figure 6.6(a)

with all potential functions in the order of f2

1+f2 , f 2, log(1 + f 2), f
1+f

, f ,

log cosh(T ), min(f 2, 2f − 1), f 1/2, f1/2

1+f2−1/2 for IStA.
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6.12, 6.13 show the values for the MSE, ∆-norm and the correlation, respectively

for the first five iterations and each potential function.

Table 6.11: The MSE between the true and the reconstructed target
image for the first five iterations using IStA for the target scene in Figure
6.6(a). The minimum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
6.889e-02 2.350e-02 1.226e-02 5.636e-03 1.433e-02

f 2 6.890e-02 2.351e-02 1.225e-02 5.709e-03 1.442e-02

log(f 2 + 1) 6.889e-02 2.350e-02 1.226e-02 5.667e-03 1.437e-02
f
f+1

6.890e-02 2.350e-02 1.216e-02 5.733e-03 1.427e-02

f 6.891e-02 2.351e-02 1.209e-02 5.922e-03 1.439e-02

log(cosh(f)) 6.889e-02 2.350e-02 1.231e-02 5.562e-03 1.429e-02

min(f 2, 2f − 1) 6.894e-02 2.354e-02 1.184e-02 6.492e-03 1.457e-02

fp 6.891e-02 2.351e-02 1.209e-02 5.922e-03 1.439e-02
fp

1+f2−p 6.890e-02 2.350e-02 1.216e-02 5.733e-03 1.427e-02

∇f 6.890e-02 2.349e-02 1.222e-02 5.660e-03 1.425e-02
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Table 6.12: The relative L2-norm difference between the images recon-
structed at every iteration for the first five iterations using IStA for the
target scene in Figure 6.6(a). The minimum values are shown in bold
fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
1.491e+01 3.304 4.656e-01 5.535 2.176

f 2 1.490e+01 3.305 4.704e-01 5.584 2.248

log(f 2 + 1) 1.491e+01 3.304 4.677e-01 5.556 2.207
f
f+1

1.490e+01 3.276 4.709e-01 5.525 2.136

f 1.488e+01 3.257 4.826e-01 5.598 2.213

log(cosh(f)) 1.492e+01 3.317 4.608e-01 5.510 2.154

min(f 2, 2f − 1) 1.482e+01 3.184 5.139e-01 5.706 2.277

fp 1.488e+01 3.257 4.826e-01 5.598 2.213
fp

1+f2−p 1.490e+01 3.276 4.709e-01 5.525 2.136

∇f 1.490e+01 3.290 4.664e-01 5.500 2.131

Table 6.13: The correlation of the true and the reconstructed target image
range profiles for the first five iterations, using IStA for the target scene
in Figure 6.6(a). The maximum values are shown in bold fonts.

Potential Iteration

Function 1 2 3 4 5
f2

f2+1
-1.539e-01 6.847e-01 7.687e-01 7.927e-01 7.538e-01

f 2 -1.539e-01 6.846e-01 7.700e-01 7.950e-01 7.565e-01

log(f 2 + 1) -1.539e-01 6.847e-01 7.692e-01 7.937e-01 7.550e-01
f
f+1

-1.539e-01 6.848e-01 7.674e-01 7.906e-01 7.519e-01

f -1.538e-01 6.847e-01 7.686e-01 7.928e-01 7.552e-01

log(cosh(f)) -1.539e-01 6.847e-01 7.686e-01 7.924e-01 7.531e-01

min(f 2, 2f − 1) -1.537e-01 6.845e-01 7.696e-01 7.948e-01 7.588e-01

fp -1.538e-01 6.847e-01 7.686e-01 7.928e-01 7.552e-01
fp

1+f2−p -1.539e-01 6.848e-01 7.674e-01 7.906e-01 7.519e-01

∇f -1.539e-01 6.847e-01 7.676e-01 7.911e-01 7.522e-01
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6.6.3 Numerical Simulations for Lp-norm Regularization with CV Dome

Data Set

We perform a second set of simulations to demonstrate the performance of the

methods using the CV dome data set [42]. This data set was generated by AFRL.

The SAR data were simulated for various civilian vehicles by using high-fidelity

electromagnetic wave simulation codes. The cars were modeled by using realistic

CAD models and the electromagnetic properties of the different parts of the cars

(glass, metallic, plastic etc.). The radar data provided includes 5760 pulses with

512 frequency bins. Note that this dataset does not include measurement noise.

Therefore, Gaussian noise is added to the data at a 20dB SNR. To show that the

algorithms work well with limited data, we use only the 10% of the data. Therefore,

the size of the data is 576 × 512. The results are provided in Figures 6.18(a)-(d)

using IRtA, 6.20(a)-(d) and 6.21(a)-(b) using IStA.
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Figure 6.17: (a) The reconstructed Jeep image via FBP using the entire
CV dome data set and (b) the left-bottom corner of the car that is used
in correlation calculations.

Figure 6.17(a) shows the original target scene reconstructed using the deter-

ministic FBP and the full aperture data without any noise. Figure 6.18(a) shows
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Figure 6.18: The reconstructed SAR images for the CV dome data set
using (a) the deterministic FBP; and IRtA after (b) the first, (c) second,
and (d) the tenth iterations, respectively when the SNR is 20dB and
ρ(f) = ∇f .
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Figure 6.19: (a) The MSE between the original target scene and the
reconstructed target image for each iteration, (b) the ∆-norm, (c) the
correlation of the reconstructed image patch shown in Figure 6.17(b)
using IRtA and the CV dome data set when the SNR is 20dB and ρ(f) =
∇f .

the reconstructed image using the deterministic FBP. Figures 6.18(b)-(d) shows the

reconstructed images after the first, second and the fifth iterations, respectively

at 20dB SNR using IRtA. The image reconstructed using the deterministic FBP

is noisy and contains limited aperture artifacts. These artifacts are the strongest

around the corners of the vehicle. However, right after the first iteration, the target

becomes visible. We can clearly see the artifact suppression around the corners of

the car.

The plots in Figures 6.19(a)-(c) show the MSE between the true and the re-

constructed target image, the relative L2-norm difference between the images recon-

structed in consecutive iterations, the correlation of the reconstructed image with

the patch shown in Figure 6.17(b) when ρ(f) = ∇f using IRtA and the CV dome

data set. It is seen that the ∆-norm drops sharply after the first iteration and
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remains almost constant after the fourth iteration. Similarly, as in Figure 6.19(a),

the MSE between the original target scene and the reconstructed image sharply

decreases after the first iteration, but then fluctuates at every iteration. As can

be seen in Table 6.14, the algorithm converges after the third iteration (see Figure

6.23(a)) and additional iterations may result in increase in the MSE.

Table 6.14: The MSE, ∆-norm and the correlation values using IRtA and
the CV dome data set for 10 iterations. The tolerance for the IRtA is
set to ∆-norm less than 1e− 3. The row in bold fonts shows the iteration
step at which the algorithm converges.

Iteration MSE ∆-norm Correlation

1 4.175e-03 3.734e-02 3.480e-01

2 4.687e-03 1.556e-03 6.823e-01

3 4.560e-03 1.533e-04 6.187e-01

4 4.593e-03 3.697e-05 6.393e-01

5 4.584e-03 2.410e-05 6.330e-01

6 4.585e-03 2.058e-05 6.326e-01

7 4.585e-03 1.910e-05 6.347e-01

8 4.586e-03 1.820e-05 6.324e-01

9 4.586e-03 1.899e-05 6.346e-01

It should be noted here that the data generation code for the CV dome data set

is not publicly available. Therefore, we assume that A(ω,x, s) = 1. This assumption

ignores the electromagnetic properties of the car which results in an initial increase

in the MSE as in Figure 6.22. Figures 6.20(a)-(d) and Figures 6.21(a)-(b) show the

reconstructed image with the deterministic FBP, the reconstructed images after the

first, second, tenth, twentieth and the thirtieth iterations, respectively at 20dB SNR

using IStA. Similar to the IRtA case, the image reconstructed using the deterministic

FBP is noisy especially due to limited aperture artifacts. These artifacts are the

strongest around the corners of the vehicle. After the first iteration of IStA, noise

and limited aperture artifacts are greatly suppressed. However, image is blurred due

to backprojection without filtering. As more iterations are performed, the target

becomes more visible and the artifact removal is more clearly seen around the corners
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of the car.

Plots in Figures 6.22(a)-(c) show the MSE between the original target scene

and the reconstructed target image, ∆-norm, and the correlation of the recon-

structed image patch shown in Figure 6.17(b) when ρ(f) = ∇f for IStA using

CV radar domes dataset at every iteration. We see that ∆-norm drops sharply after

the first iteration and remains almost constant after the third iteration. As shown

in 6.19(a), MSE between the original target scene and the reconstructed image first

increase then drops sharply. As stated earlier, not using the real data generation

code for the CV Radar Domes may cause this initial increase in the MSE. How-

ever, after the second iteration where forward projection data is now calculated by

the same code, MSE drops consistently. As can be seen from Table 6.15, the algo-

rithm converges after the eighteenth iteration (see Figure 6.23(b)) and additional

applications of the algorithm results in a decrease in the correlation.
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Figure 6.20: The reconstructed SAR images for the CV dome data set
using (a) the deterministic FBP; and IStA after (b) the first, (c) second,
and (d) the tenth iterations, respectively when the SNR is 20dB and
ρ(f) = ∇f .
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Figure 6.21: The reconstructed SAR images for the CV dome data set
using IStA after (a) the twentieth, and (b) the thirtieth iterations, re-
spectively when the SNR is 20dB and ρ(f) = ∇f .
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Figure 6.22: (a) The MSE between the original target scene and the
reconstructed target image for each iteration, (b) the ∆-norm, (c) the
correlation of the reconstructed image patch shown in Figure 6.17(b)
using IStA and the CV dome data set when the SNR is 20dB and ρ(f) =
∇f .
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Figure 6.23: Images reconstructed using (a) IRtA and (b) IStA at the con-
vergence step of the algorithms with CV dome data set. IRtA converged
at the third iteration and IStA converged at the eighteenth iteration with
the tolerance level of 1e-03 when the SNR is 20dB and ρ(f) = ∇f .



140

Table 6.15: The MSE, ∆-norm and the correlation values using IStA and
the CV dome data set for 20 iterations. The tolerance for the IStA is
set to ∆-norm less than 1e− 3. The row in bold fonts shows the iteration
step at which the algorithm converges.

Iteration MSE ∆-norm Correlation

1 4.175e-03 4.233e+00 3.480e-01

2 1.141e-02 3.718e+01 5.887e-01

3 2.791e-02 1.471e-01 6.397e-01

4 1.592e-02 1.037e-01 6.460e-01

5 9.853e-03 7.726e-02 6.503e-01

6 6.452e-03 5.861e-02 6.542e-01

7 4.469e-03 4.128e-02 6.584e-01

8 3.349e-03 2.388e-02 6.629e-01

9 2.763e-03 1.093e-02 6.678e-01

10 2.464e-03 5.042e-03 6.728e-01

11 2.289e-03 3.039e-03 6.774e-01

12 2.166e-03 2.216e-03 6.815e-01

13 2.074e-03 1.765e-03 6.850e-01

14 2.003e-03 1.489e-03 6.879e-01

15 1.951e-03 1.306e-03 6.903e-01

16 1.915e-03 1.173e-03 6.921e-01

17 1.895e-03 1.072e-03 6.933e-01

18 1.888e-03 9.939e-04 6.939e-01

19 1.896e-03 9.357e-04 6.940e-01

20 1.919e-03 8.949e-04 6.934e-01
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6.7 Comparison of IRtA and IStA with Other Sparse Re-

covery Techniques

In this subsection, we compare the performance of the novel algorithms pre-

sented in this thesis with those of other sparse recovery techniques and present nu-

merical results. We consider the following sparse signal recovery algorithms: basis

pursuits (BP) [112], iterative reweighted least squares (IRWLS) [147], iterative soft

thresholding (IST) [147], least angle regression (LARS) [148], least absolute shrink-

age and selection operator (LASSO) [149], polytope faces pursuit (PFP) [150], least

squares and stagewise orthogonal matching pursuits (StOMP) [151]. We also con-

sider two SAR reconstruction methods: backprojection and FBP [1]. We use the

algorithmic implementations provided by SparseLab package developed by Stanford

University [152] in these simulations. For IStA, the convergence is declared when

∆-norm drops below 1e-3. For all other methods, this threshold is set to 1e-4.

We consider a 22km×22km scene descritized into 64×64 pixels. As compared

to the numerical simulations in previous sections, the SNR level is set to 30dB since

most of the implementations in SparseLab package failed to converge at lower SNR

levels. There is a square of size 5.16km×5.16km (15 pixels-by-15 pixels) at the scene

center. A mono-static antenna flies over the scene on a circular trajectory given by

γ(s) = [11 cos s, 11 sin s, 6.5] km. The trajectory is uniformly sampled for s ∈ [0, 2π]

at 16 points which is much less than the typical number of aperture points. The

fast-time is sampled at 192 points. The computer used for these simulations had an

Intel Model X3460 8-core CPU clocked at 2.80GHz and 16 GB RAM. All algorithms

are implemented in MATLAB.

The reconstructed images for a single realization using different algorithms are

shown in Figures 6.24(a)-(f) and Figures 6.25(a)-(f).

As can be seen from the Figures 6.24(a)-(f) and Figures 6.25(a)-(f), IRtA

gives visually the best results followed by the IStA. MSE and the correlation values

also concur this with the lowest two MSE values and the highest two correlation

values. The fastest method is the backprojection. However, due to the absence of a

filter correcting for the intensities of the target, the reconstructed image is greatly

blurred (See Figure 6.25(c)). There is more structure in the reconstructed image
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Figure 6.24: The reconstructed images using the methods (a) BP, (b)
IRWLS, (c) IST, (d) LARS, (e) LASSO, and (f) PFP at 30dB SNR.
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Figure 6.25: The reconstructed images with the methods (a) least squares,
(b) stagewise OMP, (c) backprojection, (d) FBP, (e) IRtA, and (f) IStA
at 30dB SNR.
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when FBP is used as shown in Figure 6.25(c). The image is less blurry, nevertheless

it is noisy due to the high-pass nature of the FBP filter, i.e. η ∼ ξ ∼ ω term in

(2.24). Although, the image reconstructed using the deterministic FBP is visually

comparable to the images formed by IRtA and IStA, it should be noted that the

images reconstructed with the deterministic FBP becomes too noisy when SNR is

low. (See Figure 6.1(b) for an image formed by FBP when SNR is 0dB.) Out of eight

methods that are used from SparseLab package only BP, LARS, LASSO and PFP

produced images that have visible target scenes. However, their computation time

is 10 to 100 times greater than that of the IRtA. Only the least squares method,

which uses MATLAB’s fast implementation of singular value decomposition, has

comparable computation time and the image quality. Note that both IRtA and

IStA can be implemented with the computational complexity of fast-backprojection

algorithms which can further reduce the computation time.

As we can see in Figures 6.25(c)-(f), the artifacts in the reconstructed images

have arc-like morphology. These artifacts are direct result of the backprojection

based image formation. The backprojection operator is designed according to the

imaging geometry. Due to the limited aperture data and the full circular trajectory,

the reconstructed images have arc-like artifacts. In addition to the limited aperture

effects, there are also artifacts due to noise.

Finally, as we can see from the Table 6.17, the convergence rate of the algo-

rithm greatly depends on the potential function used for IRtA. However, the choice

of potential function does not effect the convergence for IStA. Although, IRtA con-

verges five times slower than IStA, it results in lower MSE and higher correlation.

6.7.1 Computational Complexity

Assuming that there are O(N) samples in the fast-time, slow-time variables

and in both directions (x1, x2) of the imaging domain, the computational complexity

of the IRtA is determined by the following three major steps:

1. Algorithm is initialized by forming an edge-enhanced image of the scene. Using

fast-backprojection algorithms, computational complexity of this step is given

by O(N2 logN) [40].
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Table 6.16: The MSE, correlation of the range profiles, computation time
and the iteration steps at which the algorithms converge for various
sparse reconstruction techniques. For IRtA and IStA, average values over
all possible potential functions are shown. The computer used for these
simulations has an Intel Model X3460 8-core CPU clocked at 2.80GHz
and 16 GB RAM. All algorithms are implemented in MATLAB.

Method MSE Correlation Time (sec) Convergence

BP [112] 1.519e-02 3.668e-01 7.909e+01 N/A

IRWLS [147] 1.188e-01 6.058e-02 2.282e+03 N/A

IST [147] 1.156e-01 2.474e-01 6.940e+02 N/A

LARS [148] 8.459e-02 1.408e-01 6.926e+01 1857

LASSO [149] 8.618e-02 3.344e-01 1.161e+03 10624

PFP [150] 1.543e-02 3.658e-01 1.775e+04 30720

Least Squares 1.077e-02 4.031e-01 3.518e+01 N/A

Stagewise OMP [151] 1.247e-01 1.243e-03 2.545e+01 N/A

Backprojection 1.578e-02 4.416e-01 2.408e-02 N/A

FBP 1.586e-02 4.040e-01 2.944e-01 N/A

Reweighted (Average) 4.957e-03 5.151e-01 1.631e+02 18.6

Shrinkage (Average) 2.571e-03 4.517e-01 3.195e+01 9.8

2. Then, 2D FFT of the image formed in the previous step is calculated. This

step has a computational complexity of O(N2 logN).

3. We use the filter given in (3.44) for solving each L2-norm constrained inversion

problem. The computational complexity of this step is given by O(N2 logN)

at every iteration, if fast backprojection algorithms are used [40].

Assuming that there are k iterations, computational complexity of this method is

given by O(kN2 logN). Since, k � N the computational complexity of the overall

method is given by O(N2 logN).

The computational complexity of the IStA is determined by the following three

major steps:

1. Algorithm is initialized by forming an edge-enhanced image of the scene. Us-

ing the fast-backprojection algorithms, the computational complexity of this
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Table 6.17: The MSE, correlation, computation time and the iteration
steps at which the algorithms converge for IRtA and IStA with different
potential functions. The computer used for these simulations has an
Intel Model X3460 8-core CPU clocked at 2.80GHz and 16 GB RAM.
All algorithms are implemented in MATLAB.

Method MSE Correlation Time (sec) Convergence

IRtA- f2

f2+1
4.615e-03 5.133e-01 1.432e+02 18

IRtA-f 2 5.342e-03 5.137e-01 1.100e+02 12

IRtA- log(f 2 + 1) 4.898e-03 5.103e-01 1.066e+02 12

IRtA- f
f+1

4.611e-03 5.195e-01 2.317e+02 25

IRtA-f 4.950e-03 5.175e-01 1.494e+02 18

IRtA- log(cosh(f)) 4.741e-03 5.158e-01 9.883e+01 12

IRtA- min(f 2, 2f − 1) 4.761e-03 5.058e-01 1.739e+02 19

IRtA-fp 5.248e-03 5.152e-01 2.697e+02 29

IRtA- fp

1+f2−p 5.041e-03 5.168e-01 9.761e+01 12

IRtA-∇f 5.357e-03 5.232e-01 2.497e+02 29

IStA- f2

f2+1
2.567e-03 4.511e-01 2.634e+00 10

IStA-f 2 2.586e-03 4.505e-01 3.339e+00 10

IStA- log(f 2 + 1) 2.573e-03 4.509e-01 3.327e+00 10

IStA- f
f+1

2.569e-03 4.522e-01 3.305e+00 10

IStA-f 2.582e-03 4.518e-01 3.296e+00 10

IStA- log(cosh(f)) 2.569e-03 4.510e-01 3.389e+00 10

IStA- min(f 2, 2f − 1) 2.548e-03 4.526e-01 2.645e+00 8

IStA-fp 2.582e-03 4.518e-01 3.430e+00 10

IStA- fp

1+f2−p 2.569e-03 4.522e-01 3.300e+00 10

IStA-∇f 2.560e-03 4.525e-01 3.287e+00 10

method is given by O(N2 logN) [40].

2. This image is forward projected with the computational complexity of the fast

backprojection algorithms which is O(N2 logN).

3. An image is formed via backprojection with the computational complexity of

O(N2 logN).



147

Assuming that there are k iterations, the computational complexity of IStA is given

by O(kN2 logN). Since k � N the computational complexity of the overall method

is given by O(N2 logN).

In comparison, the edge-preserving algebraic reconstruction method described

in [50] has a computational complexity of O(N4). The linear programming and

the OMP based techniques described in [88] have the computational complexities of

O(N7/2), O(N3), respectively. Finally, the subspace pursuits technique presented in

[88] has the computational complexity between O(N2 logN) and O(N3) depending

on the sparsity of the measurements.

6.8 Conclusion

In this chapter, we describe novel, computationally efficient algorithms for

SAR image reconstruction suitable for the limited (or sparse) aperture SAR data

corrupted by noise. First, an iterative reweighted-type algorithm is described in

which Lp-norm constrained SAR image reconstruction problem is approximated with

L2-norm constrained inversion problems iteratively. At every iteration, the solution

obtained in the previous iteration is used to determine the filter of the new FBP

operator. To increase the sharpness of the reconstructed target scene, we use the

edge enhancement filter described in the previous chapter. Then, we introduce an

iterative shrinkage-type algorithm which includes repeated applications of forward

projection and backprojection operators. We demonstrate the performances of the

proposed methods with both synthetic data and the CV dome data set for different

scenerios. Finally, we compare the performances of the new methods with those of

other sparse signal recovery methods.



CHAPTER 7

CONCLUSION

Measurement noise is ubiquitous in SAR data and targets are often embedded in

clutter. There are analytical and numerical optimization-based techniques to ad-

dress these challenges. Analytic techniques are widely used because of their com-

putationally efficiency. However, they do not address noise and clutter explicitly.

There are also numerical optimization-based techniques. These methods use dis-

crete statistical or deterministic models. However, these methods are known to

be computationally intensive. In this thesis, we develop computationally efficient

analytical solutions for SAR image formation in the presence of noise and clutter.

First, we describe a statistical SAR inversion method to suppress noise and

clutter. We present, a novel class of non-stationary stochastic processes to rep-

resent radar targets and clutter. We refer to this class of non-stationary pro-

cesses as pseudo-stationary. They can be considered as locally stationary processes

driven by the Wiener process. We develop analytic filtered-backprojection- and

backprojection-filtering-type methods based on the minimum mean square error

criterion for SAR image reconstruction when the target and clutter scenes belong to

this class of non-stationary processes. The optimal filter that suppresses noise and

clutter depends on the space-varying spectral densities of the target and clutter. We

describe a method to estimate these quantities directly from the SAR data during

the image reconstruction process.

We investigate the performance of this method theoretically. We apply these

methods to both synthetic data and the real SAR data. Next, we develop an analytic

inversion formula based on a best linear unbiased estimation criterion when the

clutter is a pseudo-stationary process. We assume that the target is deterministic

and demonstrate the performance of the method with numerical simulations.

We investigate non-quadratic prior models to represent target scenes in the

second part of the thesis. Specifically, we consider edge preserving prior models

that is also applicable to SAR imaging with limited data or sparse aperture. We
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formulate the image reconstruction as non-quadratic optimization problems and

describe two methods for SAR inversion. First, we present an iterative reweighted-

type algorithm. The optimization problem is approximated with a sequence of L2-

norm constrained problems and solved iteratively with a sequence of FBP operators.

At every iteration, we use the solution obtained in the previous step to determine

the filter of the FBP operator. The second method is a shrinkage-type method.

The algorithm is gradient-based and consists of iterative applications of forward

projection and backprojection operators.

We also present a novel edge enhancement method that is applicable directly

to the SAR received signal. The method enhances the edges in desired directions

in the reconstructed image. This novel filter simultaneously reconstructs SAR im-

ages and enhances edges of the objects in the reconstructed image. We use this

method to sharpen the reconstructed images for IRtA and IStA. We demonstrate

the performances of the edge enhancement and the sparse recovery methods both

with the synthetic data and the CV dome data set. We also compare the compu-

tational complexities and the computation times of these algorithms with those of

other state-of-the-art sparse signal recovery techniques.

Noise/clutter suppression techniques are essential for SAR imaging. Moreover,

it is also desirable to reconstruct SAR images with limited data and sparse aperture.

One of the biggest challenges for real-time SAR imaging is the immense computation

power required to form images and the necessity of real-time operation in many

applications. Therefore, it becomes a necessity to develop computationally efficient,

fast-backprojection algorithms and to use parallel programming techniques.

While we develop IRtA and IStA with noise as the only disturbance term, we

can easily extend these methods to include clutter. Additionally, the optimal filter

designed for the non-stationary target and clutter, and edge enhancement methods

can be modified further for object classification purposes in automatic target recog-

nition applications. Another topic to look into for the methods developed in this

thesis may be developing algorithms that do not require additional data to estimate

clutter space-varying spectral density functions.

Finally, all the methods described in this thesis can be easily applied to other
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imaging modalities such as X-Ray computed tomography, sonar and geophysical

imaging in which forward operator is modeled as FIOs.
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APPENDIX A

METHOD OF THE STATIONARY PHASE

Let u be a smooth function of compact support in Rn and let φ be a real-valued

function with only non-degenerate critical points. A point x0 ∈ Rn is called a

non-degenerate critical point if ∇φ(x0) = 0 where

∇φ(x0) =

∇x1φ

∇x2φ

 . (A.1)

and the Hessian matrix of φ has non-zero determinant. The stationary phase theo-

rem states that as λ→∞∫
eiλφ(x)u(x)dnx =

(
2π

λ

)n/2 ∑
{x0:∇φ(x0)=0}

u(x0)
eiλφ(x0)ei(π/4)sgn(Hxφ(x0))√

| detHxφ(x0)|

+O(λ−n/2−1) (A.2)

where Hx(φ(x0)) denotes the Hessian of φ given by:

Hx(φ(x0)) =

 ∇x2
1
φ ∇x1,x2φ

∇x2,x1φ ∇x2
2
φ

 . (A.3)
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APPENDIX B

PROOF OF THE LEMMA 1

(i) We write

J T
ns(Q) =

∫
E[|(KnsF − IΩ)[T ](z)|2] dz. (B.1)

By using (3.33),

J T
ns(Qns) =

∫
ei2π[(x−z)·ξ−(x′−z)·ξ′][Qns(z, ξ)A(x, ξ)η(x, z, ξ)− χ̃Ω(z, ξ)]

× [Qns(z, ξ
′)A(x′, ξ′)η(x′, z, ξ′)− χ̃Ω(z, ξ′)]

×RT (x,x′)dξdxdx′dξ′dz,

(B.2)

where χ̃Ω(z, ξ) is a function that prevents division by 0. We apply the method

of the stationary phase in the variables z, ξ′ for the phase

φ4(x, z, ξ,x′, ξ′) = (x− z) · ξ − (x′ − z) · ξ′ (B.3)

We check the Hessian:

Hz,ξ′(φ4) =

∇z2φ4 ∇z,ξ′φ4

∇ξ′,zφ4 ∇ξ′2φ4

 =

 

 

 . (B.4)

det(Hz,ξ′(φ4)) = −1 where  =

0 0

0 0

 and  =

0 1

1 0

. Therefore, we get

the critical points

∇zφ4 → ξ′ = ξ, (B.5)

∇ξ′φ4 → z = x′. (B.6)
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The leading-order term of B.2 can be written as

J T
ns(Qns) ≈

∫
ei2π(x−x′)·ξ[Qns(x

′, ξ)A(x, ξ)η(x,x′, ξ)− χ̃Ω(x′, ξ)]RT (x,x′)

× [Qns(x′, ξ
′)A(x′, ξ′)η(x′,x′, ξ′)− χ̃Ω(x′, ξ′)] dξdxdx′.

(B.7)

Writing

RT (x,x′) =

∫
ei2π(x−x′)·ζST (x, ζ)ST (x′, ζ) dζ (B.8)

we obtain

J T
ns(Qns) ≈

∫
ei2π[(x−x′)·ξ+(x−x′)·ζ][Qns(x

′, ξ)A(x, ξ)η(x,x′, ξ)− χ̃Ω(x′, ξ)]

× [Qns(x′, ξ
′)A(x′, ξ′)η(x′,x′, ξ′)− χ̃Ω(x′, ξ′)]

× ST (x, ζ)ST (x′, ζ)dxdx′dξdζ.

(B.9)

We apply the method of the stationary phase one more time in the variables

x′, ζ for the phase

φ5(x, ξ,x′, ζ) = (x− x′) · ξ + (x− x′) · ζ (B.10)

We check the Hessian:

Hx′,ζ(φ5) =

∇x′2φ5 ∇x′,ζφ5

∇ζ,x′φ5 ∇ζ2φ5

 =

 

 

 . (B.11)

detHz,ξ′(φ5) = −1, therefore we get the critical points at

∇x′φ5 → ζ = ξ, (B.12)

∇ζφ5 → x′ = x. (B.13)
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The leading order term of (B.9) is then

J T
ns(Qns) ≈

∫ ∣∣Qns(x, ξ)A(x, ξ)η(x,x, ξ)− χ̃Ω(x, ξ)
∣∣2|ST (x, ξ)|2dξdx.

(B.14)

To obtain an approximation to J C
ns(Qns), we follow the same steps (B.1)-(B.14)

and get

J C
ns(Qns) ≈

∫ ∣∣Qns(x, ξ)A(x, ξ)η(x,x, ξ)
∣∣2|SC(x, ξ)|2dξdx. (B.15)

For J n
ns(Qns), we first write

J n
ns(Qns) :=

∫
E[Kns[n](z)Kns[n](z′)] dz

=

∫
ei2πω(t−R(s,z)/c)Qns(z, s, ω)σ2(s)Rn(t, t′)

× e−i2πω′(t′−R(s,z′)/c)Qns(z′, s, ω)dωdω′dtdsdt′dzdz′ (B.16)

Inserting (3.17) into (B.16) and carrying out the integrations over t, t′, ω′,

gives

J n
ns(Qns) =

∫
ei2πω(R(s,z′)−R(s,z))/cQns(z, s, ω)Qns(z′, s, ω)

× |Sn(s, ω)|2dωdsdzdz′. (B.17)

In (B.17), we apply the same change of variables as in (3.28). This transforms

(B.17) to

J n
ns(Qns) ≈

∫
ei2π(z′−z)·ξQns(z, ξ)Qns(x′, ξ)η(z, z, ξ)|Sn(ξ)|2dξdzdz′.

(B.18)

By following a similar argument in [25], if the noise power spectral density

decays slowly for large ξ, then Jn(Q) has singularities at x′ = x and we
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obtain

J n
ns(Qns) ≈

∫
|Qns(z, ξ)||Sn(ξ)|2η(z, z, ξ)dξdz. (B.19)

(ii) Using the approximation obtained in (3.39) for KbpF and following the steps in

(B.1)-(B.14), the leading-order singularities of J T
bp(Qbp), J C

bp (Qbp) and J n
bp(Qbp)

are given by (B.14), (B.15) and (B.19) with Qns replaced by Q̂bp where Q̂bp is

defined by (3.43)

Qbp(z,x
′) =

∫
ei2π(x′−z)·ξ′Q̂bp(z, ξ

′)dξ′. (B.20)



APPENDIX C

PROOF OF THE THEOREM 1

(i) We have

Jns(Q′) = J T
ns(Q

′) + J C
ns(Q

′) + J n
ns(Q

′). (C.1)

Let us fix a function Qε and for some small ε consider a variation of the form

Q′ = Qns+ εQε. This is substituted into (3.24) - (3.26) and differentiated with

respect to ε and then ε is set to 0. This results in

0 =
d

dε
J T
ns(Qns + εQε)

∣∣∣∣
ε=0

+
d

dε
J C
ns(Qns + εQε)

∣∣∣∣
ε=0

+
d

dε
J n
ns(Qns + εQε)

∣∣∣∣
ε=0

.

(C.2)

From (3.40), the first term on the right side of (C.2) is

d

dε
J T
ns(Qns + εQε)

∣∣∣∣
ε=0

≈
∫
QεAη|ST |2(QnsAη − χ̃) dξdx

+

∫
(QnsAη − χ̃)|ST |2QεAη dξdx (C.3)

which can be written as

d

dε
J T
ns(Qns + εQε)

∣∣∣∣
ε=0

≈ 2Re

∫
QεAη|ST |2(QnsAη − χ̃) dξdx. (C.4)

Similarly,

d

dε
J C
ns(Qns + εQε)

∣∣∣∣
ε=0

≈ 2Re

∫
QεAη|SC |2QnsAη dξdx (C.5)

and

d

dε
J n
ns(Qns + εQε)

∣∣∣∣
ε=0

≈ 2Re

∫
|Sn|2QεQnsη dξdz. (C.6)

172



173

Recall that

Jns(Qns) = J T
ns(Qns) + J C

ns(Qns) + J n
ns(Qns). (C.7)

Thus, using (C.4), (C.5) and (C.6),

d

dε
J (Qns + εQε)

∣∣∣∣
ε=0

≈2Re

∫
Qε

(∫
Aη
(
QnsAη(|ST |2 + |SC |2)− |ST |2χ̃

)
+

× |Sn|2Qnsη

)
dξdx.

(C.8)

In order for the right hand side of (C.8) to be 0 for all Qε,the second integrand

inside the parenthesis needs to be zero.∫
Aη
(
QnsAη(|ST |2 + |SC |2)− |ST |2χ̃

)
+ |Sn|2Qnsη dξdx = 0 (C.9)

which reduces to

Aη(QnsAη − χ̃Ω)|ST |2 + AηQnsAη|SC |2 +Qnsη|Sn|2 = 0. (C.10)

From (C.10) the filter Qns can be explicitly written as follows:

Qns(z, ξ) = Q1
ns(z, ξ)Q2

ns(z, ξ) (C.11)

where

Q1
ns(z, ξ) =

A(z, ξ)χ̃Ω

|A(z, ξ)|2η(z, z, ξ)
, (C.12)

Q2
ns(z, ξ) =

|ST (z, ξ)|2

|ST (z, ξ)|2 + |SC(z, ξ)|2 + |Sn(ξ)|2
|A(z,ξ)|2η(z,z,ξ)

(C.13)

where Q1
ns is the same filter derived in [1]. Ωz is the data collection manifold

given by (3.34) |ST (z, ξ)|2 and |SC(z, ξ)|2 are the SVSD functions defined in

(3.11) and (3.13). |Sn(ξ)|2 is the noise power spectral density function defined

in (3.17).
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(ii) Using the approximation obtained in (3.39) for KbpF and following the steps

in (C.1)-(C.10), the leading-order singularities of the filter Qbp that minimizes

the (leading-order) MSE Jbp(Q̂bp) is given by

Qbp(z,x
′) =

∫
ei2π(z−x′)·ζQns(z, ζ)dζ. (C.14)

(iii) We calculate the MSE between the true and the reconstructed target scenes

with filter given in (3.44) as follows

J (Qns) =JT (Qns) + JC(Qns) + Jn(Qns) (C.15)

≈
∫ ∣∣Qns(x, ξ)A(x, ξ)η(x,x, ξ)− χ̃Ω(x, ξ)

∣∣2|ST (x, ξ)|2dξdx

+

∫ ∣∣Qns(x, ξ)A(x, ξ)η(x,x, ξ)|2|SC(x, ξ)|2dξdx

+

∫
|Qns(z, ξ)|2|Sn(ξ)|2η(z, z, ξ)dξdz. (C.16)

Inserting Qns = Q1
nsQ

2
ns into (C.16), we write

Jns(Qns) ≈
∫ ∣∣Q2

ns(x, ξ)− χ̃Ω(x, ξ)
∣∣2|ST (x, ξ)|2dξdx

+

∫ ∣∣Q2
ns(x, ξ)|2|SC(x, ξ)|2dξdx

+

∫
|Q2

ns(z, ξ)|2 |Sn(ξ)|2

|A(x, ξ)|2η(z, z, ξ)
dξdz. (C.17)

We expand the first term in (C.17) and write

Jns(Qns) ≈
∫ {
|Q2

ns(x, ξ)|2
(
|ST (x, ξ)|2 + |SC(x, ξ)|2 +

|Sn(ξ)|2

|A(x, ξ)|2η(z, z, ξ)

)
+
(
|χ̃Ω(x, ξ)

∣∣2 − 2Q2
ns(x, ξ)χ̃Ω(x, ξ)

)
|ST (x, ξ)|2

}
dξdx.

(C.18)

Inserting (C.13) into (C.18), we obtain

J (Qns) = J (Q1
nsQ

2
ns) =

∫
α(x, ξ)|ST (x, ξ)|2

|ST (x, ξ)|2 + α(x, ξ)
χ̃Ω(x, ξ)dξdx (C.19)
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where

α(x, ξ) = |SC(x, ξ)|2 +
|Sn(ξ)|2

|A(x, ξ)|2η(x,x, ξ)
. (C.20)

We can obtain the MSE for BPF method by replacing Qns with Q̂bp which

results in the same MSE up to the leading-order.

We investigate the statistics of the reconstructed images in detail in Appendix D.



APPENDIX D

STATISTICS OF THE RECONSTRUCTED IMAGES

In this section, we investigate the deviation of the reconstructed target scene from

the true scene and calculate a compensation term. In Appendix C it was shown

that

J (Qns) = J (Q1
nsQ

2
ns) =

∫
α(x, ξ)|ST (x, ξ)|2

|ST (x, ξ)|2 + α(x, ξ)
χ̃Ω(x, ξ)dξdx, (D.1)

and inserting only Q1
ns into J (Qns)

J 1
ns(Q

1
ns) =

∫
α(x, ξ)χ̃Ω(x, ξ)dξdx. (D.2)

are the MSE between true and the reconstructed target scenes with (C.12) and

(C.13), respectively where

α(x, ξ) = |SC(x, ξ)|2 +
|Sn(ξ)|2

|A(x, ξ)|2η(x,x, ξ)
. (D.3)

We assume that the Fourier transform of the windowing function Φ̂ is 1. It should

be noted here that Tns(z) is an MMSE for T (x) and (C.19) is the variance of this

estimator.

Equations (C.19) and (D.2) show that an increase in clutter or noise level

results in a greater error for filter Q1
ns compared to Qns.

It is important to note that these error terms are valid with the assumption

that the full knowledge of the target and clutter SVSD functions are available. How-

ever, as it is mentioned in earlier chapters, we form an image of the target/clutter

scenes to estimate the target and the clutter SVSD functions. Therefore, the vari-

ance of the MMSE for the non-stationary reconstruction method described in Chap-
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ter 3 is:

Jns(Q1
ns, Q

2
ns) =

∫
E
[
|Tns(z)− T (z)|2

]
dz (D.4)

=

∫
E
[
|KnsF [T1 + C1](z) +Kns[n](z)− T (z)|2

]
dz (D.5)

=

∫
E
[
|KnsF [T1](z)− T (z)|2 + |KnsF [C1](z)|2 + |Kns[n](z)|2

− 2Re{KF(KF)†[T1C̄1]} − 2Re{KnsFK†ns[T1n̄]}

− 2Re{KnsFK†ns[C1n̄]}
]
dz

(D.6)

where T1(z) = K1F [T +C] +K1[n] and C1(z) = K1F [C] +K1[n] and K1 is the FBP

operator with filter Q1
ns. Now we write∫

E
[
|KnsF [T1](z)− T (z)|2

]
dz =

∫
E
[
KnsFT1T̄1F †K†ns

− 2Re{KnsF [T1T̄ ]}+ T T̄
]
dz. (D.7)

For the first term of (D.7) we write:∫
E
[
KnsFT1T̄1F †K†ns

]
dz =

∫
|QnsQ1|Aη|2|2(|ST |2 + |SC |2 + |Sn|2/|A|2η)dξdz

(D.8)

For the second term of (D.7) we have,∫
E
[
Re{KnsF [T1T̄ ]}

]
dz

=

∫
E
[
Re{KnsFK1F [T T̄ ] +KnsFK1F [CT̄ ] +KnsFK1[nT̄ ]}

]
dξdz (D.9)

=

∫
Re{QnsQ̄1|Aη|2|ST |2}dξdz (D.10)

since the target is uncorrelated with noise and clutter. For the fourth term of (D.4)
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we write∫
E
[
Re{KnsF(KnsF)†[T1C̄1]}

]
dz =

∫
|QnsQ1|2|Aη|4(|SC |2 + |Sn|2/|A|2η)dξdz,

(D.11)

for the fifth term of (D.4)∫
E
[
Re{KnsFK†ns[T1n̄]}

]
dz =

∫
Re{|Qns|2Q̄1η|Aη|2|Sn|2}dξdz (D.12)

and for the sixth term of (D.4) we have∫
E
[
Re{KnsFK†ns[C1n̄]}

]
dz =

∫
Re{|Qns|2Q̄1η|Aη|2|Sn|2}dξdz. (D.13)

Similarly, we write∫
E
[
|KnsF [C1](z)|2

]
dz =

∫
E
[
|KnsFK1F [C] +KnsFK1[n]|2

]
dz (D.14)

=

∫
|QnsQ1|2|Aη|4(|SC |2 + |Sn|2/|A|2η̄)dξdz (D.15)

and finally we write∫
E
[
|Kns[n](z)|2

]
dz ≈

∫
|Qns|2|Sn|2ηdξdz. (D.16)

Thus, Jns is given by

Jns(Q1
ns, Q

2
ns) ≈

∫
|QnsQ1|Aη|2|2(|ST |2 + |SC |2 + |Sn|2/|A|2η)dξdz

− 2

∫
Re{QnsQ̄1|Aη|2|ST |2}dξdz +

∫
|ST |2dξdz

+

∫
|QnsQ1|Aη|2|2(|SC |2 + |Sn|2/η̄)dξdz +

∫
|Q|2|Sn|2ηdξdz

− 2

∫
Re{|QnsQ1|Aη|2|2(|SC |2 + |Sn|2/|A|2η̄)}dξdz

− 4

∫
Re{|Qns|2Q̄1η|Aη|2|Sn|2}dξdz. (D.17)
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Therefore, we have

Jns(Qns) ≈
∫ |ST (x, ξ)|2(|α(x, ξ)|2 − 3 |ST (x,ξ)Sn(ξ)|2

|A(x,ξ)|2η(x,x,ξ)
)

(|ST (x, ξ)|2 + α(x, ξ))2
dξdx (D.18)

where Tns(z) is the image of the target scene reconstructed by (C.13) by using the

SVSD functions formed by (C.12).

Integrand inside (D.18) can be considered as the SVSD function of the error

term due to not using the true target and clutter SVSD functions, i.e.

Tns(z) = T (z) + εns(z) → |STns(ξ)|2 = |ST (ξ)|2 + |Sεns(ξ)|2. (D.19)

The error given in (C.19) can be reduced by compensating for the estimated target

SVSD function with |Sεns(ξ)|2. Thus, the best possible image that can be recon-

structed after compensating for the error has the variance∫
α(x, ξ)|ST (x, ξ)|4

|ST (x, ξ)|4 + α(x,ξ)(|ST (x,ξ)|2+α(x,ξ))2

|ST (x,ξ)|2+2α(x,ξ)+3
|Sn(ξ)|2

|A(x,ξ)|2η(x,x,ξ)

χ̃Ω(x, ξ)dξdx (D.20)

where α is given by (D.3), χ̃Ω is a smooth function that prevents division by 0,

|Sn|2 is the noise spectral density function, and |ST |2, |SC |2, are SVSD functions for

target and clutter, respectively.



APPENDIX E

ESTIMATION OF THE SVSD FUNCTIONS

In this section, we briefly describe a method introduced in [41], [83] for the spec-

tral density function estimation of non-stationary processes. The method can be

viewed as a straightforward extension of the spectral density function estimation for

stationary processes.

Theorem 3: Let Φ(x) be a square integrable, compactly supported windowing

function satisfying the conditions in [83, eq. (7.5), eq. (7.6)] and f(x) denote a real-

ization of a zero-mean pseudo-stationary process with the SVSD function |Sf (x, ξ)|2.

Let βf and βφ denote the maximum intervals over which f and Φ can be considered

as stationary, respectively [83, eq. (7.3)]. We define:

Uξ0
(x) =

∫
ΩΦ

Φ(u)f(x− u)e−iξ0·(x−u)du (E.1)

where

βφ � βf � ΩΦ (E.2)

and u ∈ R2, ΩΦ is the support of the windowing function and ξ0 is any constant

frequency. We assume that for each pixel x0, the neighborhood of f(x0), x0 ∈ ΩΦ

is stationary, i.e. f(x) is locally stationary for each x. Then, U(x) represents the

Fourier transform of every locally stationary neighborhood of f(x). Following [41]

we write ∫
RUξ0

(x,x+ τ)ei2πζ·τdτ ≈ |Φ̂(ζ)|2|Sf (x, ζ)|2, (E.3)

i.e. Fourier transform of RUξ0
(x,x + τ) = E

[
Uξ0

(x)Uξ0
(x+ τ)

]
is an estimator

for the space-varying spectral density function of f(x) where Φ̂(ξ) is the Fourier

transform of Φ(x) normalized to 1.

Proof: To prove (E.3), we adapt the estimation method for semi-stationary pro-
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cesses presented in [41] into our model. Let f(x) denote a zero-mean pseudo-

stationary process. f(x) can be expressed in the mean square sense as

f(x) =

∫
ei2π(x−x′)·ξSf (x, ξ) dξdB(x′). (E.4)

Using (3.8), (3.48) can be written as

Uξ0
(x) =

∫
Φ(u)e−i2π(x−x′−u)·ξ0ei2π(x−x′−u)·ξSf (x− u, ξ)e−i2πx′·ξ0dudξdB(x′).

(E.5)

Next, Ψx,λ(θ) is defined such that

Ψx,λ(θ) =

∫
Φ(u)

Sf (x− u, λ)

Sf (x, λ)
e−i2πθ·udu. (E.6)

We rearrange the terms in (E.5)

Uξ0
(x) =

∫
Φ(u)

Sf (x− u, ξ)

Sf (x, ξ)
e−i2π(ξ−ξ0)·uei2π(ξ−ξ0)·u

× Sf (x, ξ)ei2π(x−x′−u)·(ξ−ξ0)e−i2πx′·ξ0dudξdB(x′). (E.7)

We make the change of variables ξ = ξ + ξ0 and use the definition (E.6)

Uξ0
(x) =

∫
Ψx,ξ+ξ0

(ξ)Sf (x, ξ + ξ0)ei2π(x−x′)·ξe−i2πx′·ξ0dξdB(x′). (E.8)

Next, we calculate RUξ0
(x,x′) = E[Uξ0

(x)Uξ0
(x′)] as follows:

RUξ0
(x,x′) =E[Uξ0

(x)Uξ0
(x′)]

=

∫
Ψx,ξ+ξ0

(ξ)Sf (x, ξ + ξ0)ei2π(x−x′′)·ξe−i2πx′′·ξ0Ψx′,ξ′+ξ0
(ξ)

× Sf (x′, ξ′ + ξ0)e−i2π(x′−x′′′)·ξ′ei2πx′′′·ξ0E[dB(x′′)dB(x′′′)]dξdξ′.

(E.9)
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Using E[dB(x′)dB(x′′)] = δ(x′′ − x′′′)dx′′′dx′′, (E.9) can be written as

RUξ0
(x,x′) =

∫
Ψx,ξ+ξ0

(ξ)Sf (x, ξ + ξ0)ei2π(x−x′′)·ξe−i2πx′′·ξ0Ψx′,ξ′+ξ0
(ξ)

× Sf (x′, ξ′ + ξ0)e−i2π(x′−x′′′)·ξ′ei2πx′′′·ξ0δ(x′′ − x′′′)dx′′dx′′′dξdξ′

(E.10)

=

∫
Ψx,ξ+ξ0

(ξ)Sf (x, ξ + ξ0)ei2π(x·ξ−x′·ξ′)Ψx′,ξ′+ξ0
(ξ)Sf (x′, ξ

′ + ξ0)

× ei2π(ξ−ξ′)·x′′dx′′dξdξ′

(E.11)

∫
ei2π(ξ−ξ′)·x′′dx′′dξ′ = δ(ξ − ξ′)dξ′, thus

RUξ0
(x,x′) =

∫
Ψx,ξ+ξ0

(ξ)Ψx′,ξ+ξ0
(ξ)Sf (x, ξ + ξ0)Sf (x′, ξ + ξ0)ei2π(x−x′)·ξdξ

(E.12)

Now we let x′ = x+ τ and calculate the Fourier transform∫
RUξ0

(x,x+ τ)ei2πζ·τdτ =

∫
Ψx,ξ+ξ0

(ξ)Ψx+τ,ξ+ξ0
(ξ)ei2πτ ·(ζ−ξ)

× Sf (x, ξ + ξ0)Sf (x+ τ, ξ + ξ0)dξdτ. (E.13)

By using Ψx,ξ+ξ0
(ξ)Ψx+τ,ξ+ξ0

(ξ) ≈ |Φ̂(ξ)|2 and following a similar argument in [25],

we assume that Sf (x, ξ + ξ0) decays slowly for large ξ. Then, the integration in

(E.13) has singularities at ξ = ζ and we write∫
RUξ0

(x,x+ τ)ei2πζ·τdτ ≈ |Φ̂(ζ)|2|Sf (x, ζ + ξ0)|2, (E.14)

i.e. Fourier transform of RUξ0
(x,x) is an (approximately) unbiased estimator for

space-varying spectral density function of the target for frequencies around ξ0 for

each pixel x.



APPENDIX F

A SHORT REVIEW ON BLUE

Let x = [x[0], x[1], . . . , x[N − 1]] denote a dataset corresponding to measurements

of the original signal s = [s[0], s[1], . . . , s[N − 1]] given by

x[n] = θs[n] + w[n] (F.1)

where w is the disturbance term.

Let p(x; θ) denote the probability distribution function (PDF) of this random

variable depending on an unknown variable θ. Finally, let θ̂ denote an estimator for

the parameter θ.

Bias and variance of an estimator generally gives a good idea whether an

estimator is a good one or not. The bias and the variance of the estimator θ̂ are

defined as follows:

BIAS(θ̂) :=E[θ̂]− θ, (F.2)

VAR(θ̂) :=E
[
‖θ̂ − E[θ̂]‖2

2

]
. (F.3)

The mean-square-error (MSE) is a widely-used figure of merit to determine the

performance of an estimator and it is defined as

MSE(θ̂) := E
[
‖θ̂ − θ‖2

2

]
. (F.4)

MSE can be expanded as

MSE(θ̂) =E
[
‖θ̂ − θ‖2

2

]
(F.5)

=‖BIAS(θ̂)‖2
2 + VAR(θ̂) (F.6)

which shows the well-known trade-off between the bias and the variance of an esti-

mator. (F.6) shows that having a zero-bias, zero-variance estimator is not possible
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almost always. Therefore, one needs to design the estimator by considering the

fact that if the estimator has zero-bias it will have large variance and vice verse.

From a machine learning point of view, (F.6) can be interpreted as the fact that a

training dataset can be underfit (low variance, large bias) or overfit (low bias, large

variance) [153].

Having low-bias results in more generalizable estimators. Moreover, often

times only the bias depends on the unknown parameters. Therefore, it is usually

more desirable to design estimators that has zero bias and the minimum variance.

This is also equivalent to finding an unbiased estimator that minimizes the MSE

among all other estimators.

An estimator θ̂ is said to be a minimum variance unbiased estimator (MVUE)

if [154]

• E[θ̂] = θ, ∀θ ∈ Θ,

• If E[
˜̂
θ] = θ, ∀θ ∈ Θ, then VAR(θ̂) ≤ VAR(

˜̂
θ), ∀θ ∈ Θ.

where Θ is the set that includes all the estimators θ. As specified in the definition

of MVUE, one needs to look through all possible estimators to find the minimum

variance estimator. Therefore, it may not be possible to find the MVUE as PDF or

the model may not be known completely. As a solution to this problem, a suboptimal

estimator may be restricted to be a linear one. Then the linear estimator, that has

the minimum variance is called the best linear unbiased estimator (BLUE).

As stated earlier there are three conditions for an estimator to be BLUE. For

measurements x:

1. Estimator needs to be linear:

θ̂ =
N−1∑
n=0

anx[n]. (F.7)

provided that
∑N−1

n=0 an = 1
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2. Bias needs to be 0:

E[θ̂] =
N−1∑
n=0

anE[x[n]] = θ. (F.8)

3. Estimator must be a solution to the problem

min
θ

VAR(θ̂) = min
θ

E

(N−1∑
n=0

anx[n]− E

[
N−1∑
n=0

anx[n]

])2
 . (F.9)

Using a = [a0, a1, . . . , aN−1]T , (F.9) can be written as

VAR(θ̂) =E[(aTx− aTE[x])2] (F.10)

=E[aT (x− aTE[x])(x− aTE[x])Ta] (F.11)

=aTCa (F.12)

where C = E[(x − aTE[x])(x − aTE[x])T ]. Therefore, the problem given in (F.9)

becomes identical to finding a that minimizes aTCa. To minimize variance of the

estimator aTCa subject to the constraint aT s we use Lagrange multipliers

J(a, λ) = aTCa− λ(aT s− 1). (F.13)

We calculate the derivative with respect to a and set it equal to zero:

∂

∂a
J(a, λ) = 0 = 2Ca∗ + λs→ a∗ = λ

C−1s

2
(F.14)

where a∗ is a vector containing the optimal weights for the estimator. Using the

constraint equation

aT s = 1→ λ
sTC−1

2
s = 1 (F.15)
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and λ is given by

λ =
2

sTC−1s
. (F.16)

Therefore, the BLUE is given by [154]

θ̂ =
sTC−1x

sTC−1s
(F.17)

with the minimum variance

VAR(θ̂) =
1

sTC−1s
(F.18)

and the bias

E[θ̂] =
sTC−1E[x]

sTC−1s
=

sTC−1s

sTC−1s
= θ. (F.19)

Let θ̂ = q2q1x, then we have

q1 = sTC−1 (F.20)

q2 =
1

sTC−1s
=
λ

2
. (F.21)

With vector parameters, if the data model is given by

x = Hθ + w (F.22)

then the BLUE is

θ̂ =
(
HTC−1H

)−1
HTC−1x (F.23)

with the minimum variance

Cθ̂ =
(
HTC−1H

)−1
(F.24)

where C is the covariance matrix of the noise. This is also known as the Gauss-
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Markov Theorem [154] and if w is Gaussian then BLUE is MVUE.

Similar to the scalar case, if we let θ̂ = Q2Q1x

Q1 = HTC−1 (F.25)

Q2 =
(
HTC−1H

)−1
. (F.26)

If MVUE is linear then BLUE given in (F.17) is indeed the MVUE and it only

requires the first and second order statistics of the given data.



APPENDIX G

CALCULATION OF THE HESSIANS FOR CHAPTER 4

G.1 Hessian Matrix for (4.38)

Hessian for the phase function

φ1(x,x′, z, ζ, ξ) = (x′ − z) · ζ + (x− x′) · ξ (G.1)

is evaluated as follows

Hx′,ζ(φ1) =

∇2
x′2
φ1 ∇2

x′,ζφ1

∇2
ζ,x′φ1 ∇2

ζ2φ1

 =

 

 

 (G.2)

det(Hx′,ζ(φ1)) = −1 where  =

0 0

0 0

 and  =

0 1

1 0

.

G.2 Hessian Matrix for (4.48)

Hessian for the phase function

φ2(x, ξ, x̃, ξ̃, z) = (x− z) · ξ − (x̃− z) · ξ̃ (G.3)

is evaluated as follows

Hz,ξ̃(φ2) =

∇2
z2φ2 ∇2

z,ξ̃
φ2

∇2
ξ̃,z
φ2 ∇2

ξ̃
2φ2

 =

 

 

 (G.4)

and det(Hz,ξ̃(φ2)) = −1.
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G.3 Hessian Matrix for (4.53)

Hessian for the phase function

φ3(x, x̃, ξ, ζ) = (x− x̃) · ξ − (x− x̃) · ζ (G.5)

is evaluated as follows

Hx̃,ζ(φ3) =

∇2
x̃2φ3 ∇2

x̃,ζφ3

∇2
ζ,x̃φ3 ∇2

ζ2φ3

 =

 

 

 (G.6)

and det(Hx̃,ζ(φ3)) = −1.



APPENDIX H

CONDITIONS FOR THE SPARSE SIGNAL RECOVERY

Under some conditions, we can replace L0-norm with Lp-norm and define

min |T|1 subject to |d− FT|22 ≤ ε (H.1)

where p is set to 1. (6.3) is a convex relaxation of (6.2) [109]. In order to guarantee

the sparsest solution with S nonzero entries, F must satisfy the following conditions:

1. The mutual coherence of F defined by µ(F) = maxi 6=j |hHi hj| should satisfy

|T|0 ≤
1

2
(1 + µ−1(F)) (H.2)

where the superscript H denotes the Hermitian and hi is the ith column of

F [155].

2. The restricted isometric constant (RIC) of F, [156], [157] denoted by δS ∈
(0, 1), must satisfy for every submatrix FS composed from any S columns of

F

(1− δs)|T|22 ≤ |FST|22 ≤ (1 + δS)|T|22 (H.3)

where the RIC and the mutual coherence are related by [155]–[157]

δS ≤ (S − 1)µ(F). (H.4)
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