
1

Interfacing a Hitachi HD44780 to a
Silicon Laboratories C8051F120

Table of Contents
 Page

Introduction 1
Hardware Operation 2
 Memory 4
 Instructions 5

Software Operation 8
 C Code Function Descriptions 8
 Test Code 12
 Assembly Code 13

Appendix A: Wire Connections 14
Appendix B: LCD.h, LCD.c and LCDTEST8051.c 15

2

Introduction:

This document is intended to explain the basics of interfacing a Hitachi HD44780 LCD
Controller with the Silicon Laboratories C8051F120 microcontrollers and to provide sample
code in the form of a C header file for the 8051. All code for this document was developed and
tested with SDCC 2.7.0. All tables, diagrams, and charts from the Hitachi data sheets unless
credited otherwise.

Notes on the LCD panel document:

These are some notes to clarify the LCD screen manual.

This was developed for use in Microprocessor Systems, which is taught at Rensselaer
Polytechnic Institute. The LCD display is used in one of the lab experiments conducted by the
students.

This document covers the basic operation of the screen with one exception. There is no coverage
of how to use the character ram. This is a memory block into which custom characters may be
stored and then displayed on the screen. This is beyond what is used in class and so this material
was omitted from the manual. People interested in this should refer to the Hitachi data sheets on
the HD44780.

Permission to copy and distribute this document is given for educational purposes. We request
that when redistributing this you please give credit to Rensselaer Polytechnic Institute for the
document. We also request that if you make any changes to the document that you please send a
copy to Steve Dombrowski.
Email: steved@ecse.rpi.edu
Snail mail: Steve Dombrowski, JEC 6th floor, RPI, Troy, NY 12180.

3

Hardware Operation:

The hardware in the HD44780 is mostly transparent to the programmer. As a result many of the
features do not need an in depth explanation. Those readers interested in more detailed
information should refer to the Hitachi Data Sheet for the HD44780. For this project the Optrex
DMC-16204 Display Module (DigiKey part number 73-1033ND) was used. This incorporates
the HD44780 as the on board LCD Screen controller.

The Optrex DMC-16204 Display Module has 14 connections between itself and the
microprocessor. On the Optrex DNC-16204, pin 2 provides power and pin 1 is connected to
ground. Pin 3 controls the brightness level of the screen and is connected to the wiper of a 10
kOhm potentiometer. Pin 4 is the register select of the LCD screen. This is used to select
between the instruction register or address counter of the HD44780. When the input to the pin is
low the instruction register is active and the data register is active when the input is high. Pin 5 is
the Read/Write select. When the input to the pin is high, the HD44780 is in read mode, when the
input is low it is set up for a write. Pin 6 is the LCD enable. This is used to clock data and
instructions into the HD44780. Pins 7 to 14 are the data pins. Pin 14 also doubles as the Busy
Flag for the LCD screen. While many LCD screens use this order for the pins, the exact pin
configuration may vary by part type and manufacturer. Be sure to refer to the LCD
documentation before using this code to ensure that they are compatible. Schematics for wiring
the LCD screen to the C8051 are included in appendix A.

The basic operation of the screen is controlled by the state of the Register Select (RS) and the
Read/Write (R/W) pins. These operations are summarized in Table 1.

Table 1: Register Selection

4

Figure 1: HD44780U Block Diagram

5

Memory:
The HD44780 provides an 80x8 bit Display Data RAM (DDRAM). This is used to store the data
that is being displayed on the screen. This allows the HD44780 to store up to 40 characters per
line. It is important to note that the DMC-16204 will display only 16 characters per line. The
extra memory here can be used to store characters that may then be shifted onto the screen. All
data to be displayed must be stored in the form of an 8 bit ASCII code character.

Figure 2: 1 Line Display

Figure 3: 2 Line Display

6

Instructions:
The HD44780 has a number of different instructions that it can execute. These instructions are
listed in the following table:

Table 2: Instructions

7

It is important to note that the HD44780 can only execute one instruction at a time. Before
sending an instruction to the display, the busy flag must to be read. If the busy flag is zero, then

the instruction can be sent to the display, otherwise the instruction must be held by the
microprocessor until the current instruction has completed execution and the busy flag is cleared.

Instruction Descriptions:

Clear Display
This instruction writes a 0x20 to all locations in the DDRAM. It also sets the DDRAM address to
zero and unshifts the display, if it had been shifted. It also sets the display to increment mode.

Return Home
The DDRAM Address is set to zero and the display is unshifted, if it had been shifted.

Entry Mode Set
This instruction has two parameters, which it controls. The first is I/D. If this bit is high, the
display increments the DDRAM address by one every time a character is written to the screen. If
it is low, then the display address will be decremented by one every time a character is written.
The second parameter is S. When S is high, the display shifts after a character is written to the
screen. It will shift to the right if I/D = 0 or to the left if I/D=1. When S is low, the display does
not shift when a character is written.

Display Control On/Off
This instruction has 3 parameters that the user can set. The first is D. This turns the display on
when it is high and off when it is low. The second parameter is C. This displays the cursor when
it is high and turns the cursor off when it is low. The last parameter is B. When this is high the
character indicated by the cursor will blink. When it is low the display will not blink.

Cursor or Display Shift
This instruction shifts either the cursor or display by 1 character, without modifying the data
stored in the DDRAM. The direction of the shift is determined by the value in the R/L bit. Both
lines shift simultaneously. The shifting type and direction are summarized in the following table:

Table 3: Shift Functions

8

Figure 4: 2 Line by 16 Character Display

Function Set
This instruction is used to initialize the display and what format the display will be using. This is
done only during the initialization process and it may not be changed later in the program. DL is
the data length of the interface. For this program, DL is always high, since the only the 8 bit
interface is used. N is the number of display lines and F is the font size.

Table 4: Function Set

Set DDRAM Address
This sets the DDRAM to the address included in the instruction. When the display is in single
line mode the addresses range from 0x00 to 0x4F. In 2 line mode, the instructions range from
0x00 to 0x27 for the first line and from 0x40 to 0x67 for the second line.

Read Busy Flag
This instruction sends the state of the Busy Flag to the microcontroller. This appears on bit 7 and
is used to determine if the LCD screen controller is still executing an instruction. If the bit is
high, then there is an instruction executing that must be completed before another instruction can
be written to the LCD screen controller

Write Data to DDRAM
This instruction writes an 8-bit pattern to the DDRAM.

9

Software Operation:

The code to control the LCD screen was developed as a C header file for the C8051F120. The C
header files were written to provide an easy interface to the LCD screen. The two files are
similar with the only differences being the ports used by the screen and the delay cycles used.
The assembly code is much smaller then the C code and is also in many ways far more flexible.
The code for these files is included in the Appendices.

C Code:
The C code was written as a header file that could be included in any program that interfaces
with an LCD screen. For the C8051, the header file uses Port 2 for writing data and Port 1.5 to
P1.7 for the control signals.

The header file contains six functions to control the LCD screen. These are OpenXLCD,
SetDDRamAddr, BusyXLCD, WriteCmdXLCD, WriteDataXLCD, and WriteBuffer. These
functions provide all the basic features needed to display data on the screen and to position the
cursor.

lcd_init:
This function executes all the initialization routines required by the HD44780 before it can be
used. This routine sets the controller for 8-bit data entry but doesn’t initialize the number of
display lines and the character font of the LCD screen. This is done separately by passing the
desired type of display to the controller when after lcd_init is called. The choices available are:

Screen Display Value
5x8 single line 0x30
5x8 double line 0x3F
5x10 single line 0x34

These values may only be changed on startup using the function lcd_cmd. They cannot be
changed after the LCD screen has been initialized. The initialization routine ends by turning on
the display and cursor, clearing the entire display and setting the DDRAM address to 0.

It is important to note that this function must be customized for the processor on which it is
running. This is because there are several delay loops that are executed by this routine. These are
all time dependant and were designed around the microprocessor’s clock, 49.76 MHz for the
C8051F120. If this code is ported to other processors then these delay loops will need to be
rewritten to take into account the clock frequency of the processor you are using.

10

Figure 5: 8 Bit Interface

lcd_cmd:
This function is used to write commands to the LCD screen. The command to be issued is passed
in as a parameter of the function. There are several different commands, which can be issued to
the LCD controller. These are for clearing the display, resetting the DDRAM address to 0,
turning the display and cursor on or off, and shifting the display and cursor. The basic format of
each of these is summarized in Table 2 above.

lcd_dat:
This function is used to write data to the LCD screen. The data to be written is passed in as a
parameter of this function. This is very similar in operation to the lcd_cmd routine. The data to
be displayed must be written to the display as an ASCII character. The character set stored in the
controller is listed in Table 5 below.

11

Table 5: Character Set

12

lcd_goto:
This function sets the address of the cursor. This is a special case of the lcd_cmd function. The
function is almost identical to lcd_cmd, the only difference being that the value passed into the
function is logically ORed with 0x80, which places a 1 in the leading location. This is used to
signify that an address is being sent to the display as opposed to a character or other command.

lcd_busy_wait:
This function is used to check the busy flag of the LCD screen. When the busy flag is high, the
LCD controller is still processing a previous command and cannot accept any new instructions.
As a result, the busy flag must be checked before each attempt to write a command or data to the
LCD screen. This step is incorporated in the lcd_cmd, lcd_dat and lcd_goto functions, as they all
call the lcd_busy_wait instruction as their first operation, and wait until the flag is cleared before
proceeding to issue a new instruction.

lcd_puts:
This command is used to write a string of characters, stored in a buffer, to the LCD screen. This
function contains a while loop that simply makes repeated calls to the lcd_dat function until the
entire buffer has been transmitted. The only limitation on the use of the buffer is that only data
can be sent to the screen. Instructions must be sent separately by calling lcd_cmd.

13

Test Code:
The C program LCDTEST8051.c is included with this document. The program executes the
same set of operations and is used to exercise the LCD Screen to ensure that it is working
properly by issuing a variety of instructions to the LCD screen.

The code initializes turns the display, turns it on, and then prints:

 |Good Morning, |
 |Dave. |

The message is held for about 5 s. The code then blinks the display once (off, then on again).

After another short delay, the cursor moves to address 0xCA and prints "Hello" at this location.

 |Good Morning, |
 |Dave. Hello.|

Following yet another delay, "ABCDE" is written to Address 0x41 and the display is shifted left
5 times (with delays so that they may be observed).

 |Morning, ABCDE|
 | Hello. |

The last instruction clears the display after another delay.

 | |
 | |

Assembly Code:
The assembly code for the LCD screen consists of two subroutines that can be included with any
program to provide an interface to the LCD controller to the SiLabs C8051. It is a good idea
when using these programs to allow for a large stack, since all parameters are passed via the
stack. The subroutines that are used are Writelcd, which writes the data to the LCD screen and
Initlcd, which executes all the screen initialization routines.

Writelcd:
This subroutine handles all data and instruction writes to the LCD screen. The data to be written
is passed to the subroutine by the A register and the RS and R/W states are passed by the B
register. In the subroutine, these values are then pushed onto the stack. The subroutine then
checks the busy flag. Once the busy flag is clear the data is popped off the stack and written to
Port 6. Then the control pin states are then popped off the stack and written to Port 7. Several

14

clock cycles later the enable is pulsed and the data is written to the HD44780. The control pins
are then cleared and the subroutine returns control to the calling function.

Initlcd:
This subroutine functions identically to the lcd_init function in the C code. The screen type is
passed to the subroutine in the A register and is then pushed onto the stack. It is popped off the
stack later in the subroutine so that it can be written to Port 7. The user does not need to specify
any other information when using this subroutine.

Test Code:
This is very simple code that shows how the Writelcd and Initlcd subroutines are used in a
program. This is not, however, intended in any way as a diagnostic tool to check the functioning
of the screen. If there is a question as to whether or not the screen is bad, it is recommended that
the sample C code be run, as it provides a far more comprehensive test of the functions and
features of the HD44780.

Function differences between the C code and Assembly code routines

There are very few actual differences between the C header file and the assembly code
subroutines. The differences between them are summarized briefly below.

1) The assembly code version reduces the number of different operations need by the
programmer as it combines the lcd_cmd, lcd_dat, lcd_goto, and lcd_busy_wait functions into a
single subroutine. This can be done since the only difference between the first 3 instructions is
the state of the RS and R/W pins. As the programmer must pass the state of the control pins to
the subroutine from the main code, the functions can be combined into a single subroutine. In
addition as there is only one subroutine, the lcd_busy_wait functions can be included in that
subroutine since it is not called by any other subroutine.

2) The C header file provides a function to write a string of ASCII characters to the screen. This
function was omitted from the assembly code subroutine. This was left as an exercise for the
students. To write a string of data or a sequence of data and instructions, the Writelcd subroutine
must be slightly modified.

The programmer simply pushes the data or instructions, and the control signals for them, onto
the stack in reverse execution order. The new Writelcd subroutine must receive the number of
instructions stored on the stack and continue processing them until all the instructions have been
transmitted. This has an advantage over the C header lcd_puts function in that it can handle both
instructions and data since the control signals are passed along with the data to be written to the
screen.

15

Appendix A: Wiring Connections

C8051 LCD Display Wiring Connections

Be sure to add a 10k pull-up on P7.2 (Enable) to +3.3 V (or +5 V) if 8051 is
configured for open-drain on P7.

16

Appendix B: LCD.h, LCD.c and LCDTEST8051.c

LCD.h

//-- Filename: LCD.h
//-- Header File for LCD display routines in LCD.c
//-- Updated for SDCC C compiler and C8051F120
//-- RPK Oct 2007

#include <C8051F120.h>

//---
// Global Defines
//---

#define LCD_DAT_PORT P6 // LCD is in 8 bit mode
#define LCD_CTRL_PORT P7 // 3 control pins on P7
#define RS_MASK 0x01 // for assessing LCD_CTRL_PORT

#define RW_MASK 0x02
#define E_MASK 0x04

//---
// Global MACROS
//---
// original delays [1]
#define pulse_E();\
 small_delay(5);\
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK;\
 small_delay(5);\
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK;\

//-- function prototypes --

void lcd_init (void); // initialize the LCD to 8 bit mode
void lcd_busy_wait (void); // wait until the LCD is no longer busy
char lcs_dat (char c); // write data to the LCD controller
//char putchar (char c); // replaces standard function and uses LCD
void lcd_puts (char string[]);// send string to LCD at current cursor location
void lcd_cmd (char cmd); // write a command to the LCD controller
void lcd_clear (void); // clear display
void lcd_goto (char addr); // move to address addr
void lcd_home (void); // home cursor
//void lcd_move_cursor (char dist);// moves cursor forward or back by dist
void lcd_cursor (bit on); // 1 displays cursor, 0 hides it
void small_delay (char d); // 8 bit, about 0.34us per count @22.1MHz
void large_delay (char d); // 16 bit, about 82us per count @22.1MHz
void huge_delay (char d); // 24 bit, about 22ms per count @22.1MHz

//---

17

LCD.c

//-- Filename: LCD.c
//-- LCD Functions Implementation
//-- Updated for SDCC C compiler and C8051F120
//-- RPK Oct 2007
//
// P7 is used for the control signals, P7.2 = E, P7.1 = RW, P7.0 = RS, output only
// P6 is used for data: P6.7 is read to get the status of the LCD
// P6 must be configured as bidirectional (open-drain) and set to FF (or at least 80)
// before reading the status of P6.7

#include <LCD.h>

//----------------------------- LCD related Functions --------------------------------
//#pragma OPTIMIZE (7)

//--
// lcd_init
//--
//
void lcd_init(void)
{
 char SFRPAGE_SAVE;

 SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 SFRPAGE = CONFIG_PAGE;

 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~E_MASK; // E = 0
 large_delay(200); // 16ms delay

 LCD_DAT_PORT = 0x38; // set 8-bit mode
 small_delay(1); //RPK
 pulse_E();
 large_delay(50); // 4.1ms delay [50]

 LCD_DAT_PORT = 0x38; // set 8-bit mode
 small_delay(1); //RPK
 pulse_E();
 large_delay(3); // 1.5ms delay [2]

 LCD_DAT_PORT = 0x38; // set 8-bit mode
 small_delay(1); //RPK
 pulse_E();
 large_delay(3); // 1.5ms delay [2]

 lcd_cmd(0x06); // curser moves right
 lcd_clear();
 lcd_cmd(0x0E); // display and curser on

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}
//#pragma OPTIMIZE (9)

//--
// lcd_busy_wait
//--
//
// wait for the busy bit to drop
//
void lcd_busy_wait(void)
{

18

 char SFRPAGE_SAVE;

 SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 SFRPAGE = CONFIG_PAGE;

 LCD_DAT_PORT = 0xFF; // Set to FF to enable input on P6
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT | RW_MASK; // RW = 1
 small_delay(3); // [1 was original delay value]
 LCD_CTRL_PORT = LCD_CTRL_PORT | E_MASK; // E = 1
 //TB_GREEN_LED = 1;
 do
 { // wait for busy flag to drop
 small_delay(2); // [1 was original delay value]
 } while ((LCD_DAT_PORT & 0x80) != 0);
 //TB_GREEN_LED = 0;

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//--
// lcd_dat (putchar)
//--
//
// write a character to the LCD screen
//
char lcd_dat(char dat)
//char putchar(char dat)
{
 char SFRPAGE_SAVE;

 SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 SFRPAGE = CONFIG_PAGE;

 lcd_busy_wait();
 LCD_CTRL_PORT = LCD_CTRL_PORT | RS_MASK; // RS = 1
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0
 LCD_DAT_PORT = dat;
 small_delay(1); //RPK
 pulse_E();

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

 return 1;
}

//--
// lcd_puts
//--
//
// write a string to the LCD screen
//
void lcd_puts(char string[])
{
 int i;
 i=0;
 while(string[i])
 {
 lcd_dat(string[i]);
 i++;
 }
}

//--
// lcd_cmd

19

//--
//
// write a command to the LCD controller
//
void lcd_cmd(char cmd)
{
 char SFRPAGE_SAVE;

 SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 SFRPAGE = CONFIG_PAGE;

 lcd_busy_wait();
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RS_MASK; // RS = 0
 LCD_CTRL_PORT = LCD_CTRL_PORT & ~RW_MASK; // RW = 0
 LCD_DAT_PORT = cmd;
 small_delay(1); //RPK
 pulse_E();

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//--
// lcd_clear
//--
void lcd_clear(void)
{
 lcd_cmd(0x01); //-- clear LCD display
 lcd_cmd(0x80); //-- cursor go to 0x00

}

//--
// lcd_goto
//--
void lcd_goto(char addr)
{
 lcd_cmd(addr | 0x80);
}

//--
// lcd_home
//--
void lcd_home(void)
{
 lcd_cmd(0x80); // cursor to 0 (home)
}

//--
// lcd_cursor
//--
void lcd_cursor(bit on) // 1 displays cursor, 0 hides it
{
 if (on)
 lcd_cmd(0x0E);
 else
 lcd_cmd(0x0C);
}

//--
// delay routines
//--
//
// delay using spin wait

20

//
void small_delay(char d)
{
 while (d--);
}

void large_delay(char d)
{
 while (d--)
 small_delay(255);
}

void huge_delay(char d)
{
 while (d--)
 large_delay(255);
}

21

LCDTEST8051.c

// Filename: LCDTEST8051.c
// Basic test program for the Hitachi HD 44780
// interfaced to the C8951F120
//-- Updated for SDCC C compiler and C8051F120
//-- RPK Oct 2007
//
// An extra 10k pull-up resistor may be needed on the E control line P7.2
// to the +3.3V supply on the P8051F120 board if P7 is configured as open-drain.

//--
// Includes
//--
#include <LCD.c>

//--
// Function Prototypes
//--
void main(void);
void SYSCLK_INIT(void);

//--
// MAIN Routine
//--
void main()
{
 unsigned int i, j;
 char buffer[]="Hello.";

 WDTCN = 0xDE; // Disable the watchdog timer
 WDTCN = 0xAD; // note: = "DEAD"!

 SYSCLK_INIT(); // Initialize the oscillator

 lcd_init(); // initialize the LCD screen
 lcd_cmd(0x3F); // set display to 2 lines 5x8
 // (0x30=1 line 5x8, 0x34=1 line 5x10)
 lcd_cmd(0x0C); // turn on display and cursor
 lcd_cmd(0x01); // clear display

 lcd_goto(0); // set cursor address to 0
 lcd_dat('G'); // write "Good Morning "
 lcd_dat('o'); // "Dave "
 lcd_dat('o');
 lcd_dat('d');
 lcd_dat(' ');
 lcd_dat('M');
 lcd_dat('o');
 lcd_dat('r');
 lcd_dat('n');
 lcd_dat('i');
 lcd_dat('n');
 lcd_dat('g');
 lcd_dat(',');

 lcd_goto(0x40); // set cursor address to 0x40=64
 lcd_dat('D');
 lcd_dat('a');
 lcd_dat('v');
 lcd_dat('e');
 lcd_dat('.');

 for(i=0; i<200; i++) // long pause for display
 for(j=0; j<50000; j++);

22

 lcd_cmd(0x08); // turn off display

 for(i=0; i<40; i++) // 1 sec. pause for display
 for(j=0; j<50000; j++);

 lcd_cmd(0x0C); // turn on display and cursor

 for(i=0; i<40; i++) // 1 sec. pause for display
 for(j=0; j<50000; j++);

 lcd_goto(0xCA); // set cursor address to 74 (=0x4A)

 lcd_puts(&buffer); // write buffer to screen

 for(i=0; i<200; i++) // long pause for display
 for(j=0; j<50000; j++);

 lcd_goto(0x10); // go to address 16 (=0x10)
 lcd_dat(0x41); // write ABCDE
 lcd_dat(0x42);
 lcd_dat(0x43);
 lcd_dat(0x44);
 lcd_dat(0x45);

 lcd_cmd(0x18); // shift display left 5 times
 for(i=0; i<15; i++) // brief pause for display
 for(j=0; j<50000; j++);
 lcd_cmd(0x18);
 for(i=0; i<15; i++) // brief pause for display
 for(j=0; j<50000; j++);
 lcd_cmd(0x18);
 for(i=0; i<15; i++) // brief pause for display
 for(j=0; j<50000; j++);
 lcd_cmd(0x18);
 for(i=0; i<15; i++) // brief pause for display
 for(j=0; j<50000; j++);
 lcd_cmd(0x18);

 for(i=0;i<200;i++) // long pause for display
 for(j=0; j<50000; j++);

 lcd_cmd(0x01); // clear display
}

//--
// SYSCLK_Init
//--
//
// Initialize the system clock to use a 22.11845MHz crystal as its clock source
//
void SYSCLK_INIT(void)
{
 int i;
 char SFRPAGE_SAVE;

 SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 SFRPAGE = CONFIG_PAGE;

 OSCXCN = 0x67;
 for (i = 0; i < 3000; i++); // Wait 1ms for initialization
 while (!(OSCXCN & 0x80));
 CLKSEL = 0x01;

 XBR0=0x04;
 XBR1=0x80;
 XBR2=0x40; // Enable Crossbar with Weak Pullups

 P7MDOUT=0x07; // Set E, RW, RS controls to push-pull

23

 P6MDOUT=0x00; // P6 must be open-drain to be bidirectional:
 // used for both read & write operations

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

