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Properties of Transition Matrix

Using the above relations, we may show the following properties of the
transition matrix:

1. @z, 1) = @z, 1)

2. oty tz)‘p(tz; t3) = @1, t3)
d 5 _ wor

3 ¢ ¢ = Fet*

4. Fe¥ = e™F

In general,

F1E)(F) = fo(B)f 1 (F)
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The Analysis of
Discrete~time Systems:

Time-domain Approach

3.1 Introduction

Several examples were given in Chapter 1 of typical systems operating in
discrete time. The common characteristic of these systems is that they contain
at least one discrete-time component. It is possible, for instance, for the feed-
back information to be available only at periodic instances when the feedback
channel is time shared. Such a system requires a data-hold circuit, since it
essentially operates on an open-loop basis between data transfers. An illustra-
tion of this type of system is given by Figure 3.1-1.

Another example of a system containing a discrete component is shown
in Figure 3.1-2. Illustrated is a closed-loop system that operates in continuous
time except for a digital computer inserted into the control loop as an active
systems component. Again, a hold circuit is required to maintain control over
the system during intervals between data transfers.

A third class of systems operating in discrete time may be distinguished as
one in which all components operate in discrete time. Consider, for instance,
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Figure 3.1-1, Systernt with time-shared feedback channel.
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Figure 3.1-2. Computer control system.
Discrete

Input  + Digital Pulse Stepping Output
Computer Amplifier Motor

-

Shaft
Encoder

Figure 3.1-3. Digital control system, operating entirely in discrete
time.

the system shown in Figure 3.1-3, which consists of a digital computer driving
a digital stepping motor with the feedback being provided by a digital shaft

- encoder. The output of this system is continuous in time, although limited to
quantized levels.
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Discrete-time systems may be operated in an open-loop or closed-loop
manner. The analysis of these systems is generally carried out by using one
of two approaches: (1) by discrete state equations or (2) by the use of the
z-transform. This chapter serves to demonstrate the application of discrete
state techniques.

3.2 Data-hold Techniques

An essential ingredient in the satisfactory operation of a hybrid discrete-
time system having components that operate both in discrete time and con-
tinuous time is a data-hold device. Its function is to convert a discrete-time
function (sequence of numbers) into a continuous-time function in order to
provide a suitable input to a continuous-time component.

When the input is a sampled analog signal, it is called a data-hold circuit.
However, when the input is a discrete data signal in digital form, such as
might originate from a digital computer, the data-hold device provides
digital-to-analog conversion in addition to the hold action. Then it is simply
called a digital-to-analog converter. As is shown in Chapter 7, a digital-
to-analog converter autoratically provides hold action. Since mathematically
there is no distinction between the two cases, we can treat them alike and pro-
vide an identical analysis.

Figure 3.2-1 shows a block diagram representation of a digital-to-analog
converter (DAC).

Discrete Continacus
nT kit
Digital 20 DAC = Analog

Signal Signal

Figure 3.2-1. Block diagram representation of a DAC,

In general, the purpose of a DAC is that of generating a function of con-
tinuous time 4(z) from a sequence of numbers g(nT") that are separated in
time by T-second intervals. It is usually desirable to have the function A(f)
correspond roughly to an envelope of the input sequence g(nT). Between
sampling times [l.e., N7 <{f<(N - 1)T], the DAC must extrapolate
between the most recent sample and the next to follow.

In effect, the DAC has the properties normally ascribed to an extrapolator.
An mth-order extrapolator will be defined as an extrapolator whose present
output depends on m - 1 past sample values. At each sampling time, a new
member of the input sequence g(xT) is available so that the extrapolating
process must be reinitiated at the sampling instants.

A useful form of extrapolation is that of polynomial extrapolation. Here,
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it is assumed that the desired signal A() may be adequately approximated by
an mth-order polynomial; that is,

T + 1) = @7 4+ @ 7 F 0 g for 07 <T (3.2-1)

Since it is desired that A(f) be the envelope of the sequence g(nT), it isnatural
to require that the output signal /() have the value of the input sequence at
the sampling times ¢ = kT'; that is,

B(E) ooy = AET) = g(kT) for all values of k

The coefficients a,,, @,_, - -, &y for any time interval nT' < 1 < (n + 1T
may be evaluated by forcing A(f) to satisfy the constraints

hkT) = gkT) fork=n—mn—m-+1,...,n (3.2-2)

That is, #(nT - ) is a polynomial that passes through the immediate m -+ 1
past values of the input g(kT). At each sampling time the coefficients 4.,
a ., @, must be reevaluated, since a new data point is available.

m=lr

Zero-order Hold (m = 0)

The simplest type of polynomial extrapolator arises when A(¢) is assumed
to be a zero-order polynomial (m = 0). In this case, we have, by (3.2-1),

AT + 1) =gmT) for 07 <T

n=0,+1,42,... (3.2-3)
Figure 3.2-2(a) illustrates a typical response of a zero-order hold.
First-order Hold (m = 1)
If A(z) is assumed to be a first-order polynomial, then
WeT +1) =a7+a, ford<z<T ‘ (3.2-9)

with the requirements corresponding to (3.2-2) being

hnT) = g(nT’)
h(in — 1T} = g(fn — 1]T)

which, when 7 is set equal to 0 and —T in (3.2-4), gives us

_ gnT) — g(ln — 1IT)
! T

ag = gnT), a
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Figure 3.2-2, Typical responses of zero- and first-order hoids.

Therefore, the first-order extrapolator is characterized by

KT -+ 7) = g(”T)—gg,E“ U0 L orT) for0<t<T
n=10,+1, 4+2,...

(3.2-5)

A typical response of the first-order hold is shown in Figure 3.2-2(b).
The higher-order holds (m => 2) may be generated in a like manner. In
general, most modern systems do not use higher-order holds because of the

—-
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inherent delay which they introduce into the system’s response. Also, they
are highly noise-sensitive and much more difficult to implement.

3.3 Open-loop Sampled-data Systems

An example of a basic discrete-time system consists of a sampling element,
a hold circuit, and a continuous-time system, as shown schematically in Figure
3.3-1. The input r(¢) is sampled periodically at intervals T seconds apart to

Continuous
Input Qutput
P / }.{01{.1 Time —p
Wty T r(aT) Cireuit m(t) System clt)

Figure 3,3-1. Open-loop sampled-data system.

generate the sequence of numbers #(nT). The hold circuif changes this discrete-
time function to a piecewise continuous function. If it is a zero-order hold,
then a function of the form shown by Figure 3.2-2(a) is produced. For higher-
order holds, more complicated forms will be generated. The output of the
hold circuit represents the input to the continuous-time system. The analysis
of such systems is directed at determining the response of the continuous-time
system. We shall, therefore, derive a mathematical model suitable to carry
out this objective.

The zero-order hold is the most commonly employed hold device. In view
of the graph of Figure 3.2-2(a), the output of a zero-order hold is a period-
jcally piecewise constant function. That is,

mit, + 1) = r{ty), U R

where r(z,) is the value of the sampled function #(2), at time 1 = 1,. If the
sampling occurs at constant intervals then ¢, = kT and £, — fp, = T. In
this case, the hold-circuit output can be written as

mkT +7) = r(kT), 0<t<T (3.3-1)

In Chapter 2 we developed the state equations for a linear, time-invariant,
continuous system governed by the continuous state equations

x(2) = Fx(#) -+ Gm(?)
o(r) = Cx(2) + dm(t)

when its input m(z) is of the form (3.3-1). Namely,

Xk + DT] = ADxET) + Br(kl) (3.3-2)
(kT = Cx(kT) + dr(kT) (3.3-3)
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where x(k7T) is the continuous system’s state at time kT, r(kT} is the value of
the input signal r(¢) at time k7, and

AT)=em, B = T G dr
13

The matrices F and G are the system matrix and the input matrix of the
continuous-time system, respectively. Equations (3.3-2) and (3.3-3) may be
used to calculate the open-loop system response to the input r(z) at the sam-
pling times k7. It must be understood that the sampling operation permits
the passage of the function r(¥) only at the sampling instants n7. We consider
an example to demonstrate the use of (3.3-2) and (3.3-3).

EXAMPLE

Compute the response of the system shown in Figure 3.3-2 to a square
wave input and a sinusoidal wave input for various sampling rates.

ré) / - Zero
T r(nT) Hold m(t)

- G(s) e (f)

Figure 3.3-2. Open-loop sampled system with zero-order hold.

Let the transfer function of the continuous time system be

- § <1
S ) GES V) @34

Using nested programming to develop a state model, we obtain
d[xl} [—12 }.} x, + 1 @ 33.5
—_ s i "
dtix,| |20 Olix, 1 ) (3:3-5)
o) =x,

By any one of the methods of Appendix 2 we determine that

_1,-2T 3 §,—10T ~37 1,18
o ay = [T | 69
____25_e'* T + ‘g_e—lﬂf' K5‘8—21" — al_e-lﬂT
and
vl
B(T) = f A(T)Gdr
:}
_ T ""‘ée-—h +%e—10r
_j 8 ,-2t | 9,~107 dt
0| —3z€ -+ 2e
11 -2T g »—10T
. 7o 7 18f T wof
- {_2. 5 ,—T 9 _p~10T (3.3-7)
4+ gem — %0
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For the specific case, where T = 1 for instance, we obtain

A = -.0338 .0169
—-.338 169
and
B(l) = .0584]
| —.315

Thus, for this example, the discrete state equationé for a piccewise constant
input are

[xlﬁ(k + 1)1’]} 3 [~ 0338 .0169][x1(k1')]

%[+ DT [ — 338 169 {lx,(kT)
0584
[_ s ]r(kT) (3.3-8)

e(kTY = x,(kT)
Equations (3.3-8) serve as the mathematical model for this problem.

It is interesting to study the effect of the sample and hold operations on
the input signal. Figure 3.3-3 and 3.3-4 show waveforms for m(f) and ¢(f)
for the square wave and sinusoidal wave inputs at various sampling fre-
quencies. A study of these waveforms reveals two important aspects of
sampling a signal and then passing it through a zero-order hold circuit.
First, we note that the higher the sampling frequency, the better the zero-
order hold is capable of generating a time function that represents a good
reproduction of the input.

The second observation we wish to make is that the output of the zero-
order hold is an approximate reproduction of the input but appears with a
time lag relative to the unsampled signal. An exact reproduction is possible
in the case of the square wave. However, the sinusoidal wave may suffer
greatly when passed through the zero-order hold.

Both figures show the output c(z) for each of the sampling periods used.
For the square wave input, the output ¢(¢) is identical to the output for the
equivalent unsampled system (7' = 0) except with time lag equal to the
sampling period as long as T'is less than one-half the period of the square
wave input. For the sine wave input, the output becomes seriously affected
as the sampling period increases. For 7' = .1 the output is very nearly equal
to that for the unsampled system (T == 0). However, when the sampling
period is increased to T'== Sand T == 1.0, it is very apparent that the output
cannot be regarded as the sinusoidal response of a linear system.

Sec, 3.3 Open-loop Sampled-data Systerns

i
rér)
0
1
m(e)
0
Unsampled Input
1 ’/\ /\\
cit)
0 T
Unsampled Response\/,
1
m({} T =35
a
g
L’
cft) \ T=35
. .
N
H
mit}
0
T=1
LA JaN N
c(t) /
0 \/r e
. =10
n(t) =
; T=40.1
1A AN
={t) T=0.1
. .
k/ \./
0 2 4 6 8 10 12

Figure 3.3-3. Response of a sampled-data system to a squarewave

input for various sampling rates,



84 Analysis of Discrete-time Systermns: Time-domain Approach Sege. 3.3
rét)
Unsampled [nput
mir)
Unsampled Iaput
ity T=0
T=0.1 ’
m{t} S~ . Py \\/,?
et) - - &:’7
J-—-’""‘*“w 4 T=035
mle) - ] (-
olt) f\\,\ ..J"ﬁ\’\ f/\’\ =035
N MV A
=10
m(l}
T=10
=~ Y /
2 4 6 8 10 12

Figure 3.3-4. Response of a sampled system to a sinuseidal input
for various sampling rates.
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The sampled-data system described above was simulated on an analog
computer at a speed 10 times slower than real time. A diagram of the analog
computer circuit used is shown in Figure 3.3-3. The sample and hold circuif
is implemented by use of an integrator, which is switched between the
OPERATE and RESET modes in synchronism with the sampling rate. The

Input
(oD
() Xy
b 1 p——= Cutput
10
Timing Signal 0 ‘\1/
for
Sample and
Hold Network
~(o)—:
Xy “Xg
-~ 10

Figure 3.3-5. Analog simulation of sampled-data system.

input is supplied through the initial condition terminal. When the integrator
is in RESET mode, it tracks the input function; when it is in OPERATE
mode, it stores the input function. If the RESET time is kept very short and
the integrator’s time constant is very small, the integrator effectively sampies
the input during RESET and holds it during OPERATE. An integrator
operating in this fashion is cailed a rrack-store unir, which is frequently
utilized in hybrid computations (see Chapter 9, Section 9.5).

The timing signal may be generated by means of the circuit shown in
Figure 3.3-6(a). A triangular wave generator output is fed into a comparator
network, which is bilased with a fixed voltage slightly less than the peak out-
put of the triangular wave generator. The comparator produces a pulse
signal of the same frequency as the wave generator. The wave shapes are
shown in Figure 3.3-6(b).

The above example effectively demonstrates several important character-
istics of sampled systems with zero-order holds. Most outstanding are the
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facts that the sampling process introduces data loss and that the holding
process introduces time lag.

/\/\/————] +5Vl

Wave Generator O Fiin1ing Signal

L

Bias

{2)

BEAS oo oo e e N e o e e sty o e s o s

Generator Qutput

/

Timing Signal
(b)

Figure 3.3-6. Generation of timing signal,

3.4 Discrete State Equations of Closed-loop
Sampled-data Systems

When certain signals in a conventional closed-loop feedback system are
used only at discrete times, such a system may be viewed as a sampled-data
system. A symbolic representation of a typical sampled-data system is shown
in Figure 3.4-1. Here the sampling operation is applied to the error signal.
Frequently, it is required to sample the feedback signal. To illustrate pro-
cedures applicable to the analysis of sampled-data closed-loop systems,
let us consider the following example.

EXAMPLE 3.4-1

For the system shown in Figure 3.4-2 calculate the response to a step
input for sampling periods of .1, 1, and 4 seconds.

Sec. 3.4 Discrete State Equations of Closed-foop Sampled-date Systems 87

Hold - m(f) e}
Circuit - Gis)

H(s)

Figure 3.4-1. Closed-loop sampied-data systent.

r{t} +m e{t} /e(kT) Zero-order mit) 1 eft)
= r Hold - PPy
Plant

Figare 3.4-2. Block diagram of a sampled system.
Since e(t) = r(t} — c(), we have
elkTYy = r(kT) — e(kT) {3.4-1)

The state equations for the plant under control (see Section 1.5) are

d [xl} —1 0x, n 1 ; 342

—_— e Yor! -

dtix, I 0fix, 0 © (3.4-2)
‘ Since m{f) is the output of a zero-order hold, it is a piecewise constant
input. Consequently, we may develop discrete state equations relating ¢(AT)

to e(kT).

The transition matrix corresponding to (3.4-2) is obtained from Section

A(T) = &7 = { e 0]

]—eT 1

1.5

and the discrete input matrix is

A
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The discrete state equations are given by

[xii(k + E)T}} _ [ e T 0}[;;1(1:1")] . [ 1—eT i\e(k.’l")
x,[(k -+ 1)T] 1—eT 1ix,(kT)]  T—1+€7

(3.4-3)
c(kT) = x,(kT)
Substituting (3.4-1) into (3.4-3) yields
x,{(k 1)1‘]] _ [ e T O][xl(kT)}
[xz[(k + DTT] L1 —eT 1jixy(kT)
1—e7
— xy(k
+ [T L e e
e(kT) = x,(kT)
which simplifies to
x [k + 1)1’]} B { e 7 e T — 1 }[xl(kf‘)}
Lz[(k + D71 [l—e? 2—1T—eTilx,kT)
1—e”
3.4-4
s Cy (34

kT = x,(kT)

These relationships represent the closed-loop discrete state equations.
We consider now the response of this system for three sampling periods
(T'=.1, 1, and 4 seconds) subject to the step input; therefore,

rkTy =1, E=0,1,2,...
and we make the assumption that the system is initially at rest; that is,
x,(0) = x,(0) =0
For T = .1, expression (3.4-4) becomes
x, 1k -+ 1)]] [.905 —.095}{%(.1.%)} _ [.095}
= +
x, L1k + 1) 095 995 || x,0. 1K) 005
e(.1k) = x,{.1k)
By repeated application of these equations fork=20,1,..., we obtain

[c©), c(l), o2, ---}
= {0, .005, .019, .041, .071, .106, .146, ...}
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For T == 1 the equations are
[xl(k + 1)} _ [.368 —.632} x,(k) + 632
ok + 1)) 1.632 632 x,(k) .368
and the first few numbers in the output sequence are

{e0), e @, ...}
={0, .368, 1.000, 1399, 1399, 1.147, .8%4, ...}

For T = 4 we have

x,[4(k + 1)]} _ [.0183 —.98 x1(4k)] + .98}
ch[éi(k + 11 .98 2.02}{x2(4k) [3.02
The output is

((0), c(d), c(8), ...}
=0, 3.02, —2.11, 534, —4.82, 86, —88, ...}

The responses for the three cases are plotted in Figure 3.4-3. Clearly, for
T == _1and T = 1, the response is underdamped. For both cases the response
is stable and follows the input. On the other hand, when the sampling period
is increased to T" == 4, the response shows that the sampled system has become
unstable, since the oscillation amplitude grows with time.

It is interesting to compare these three responses with the equivalent
unsampled system. The closed-loop transfer function is

1

C(S)msz~§-s+l

R(s)

and for R(s) = 1/s the output is

1 1
=gy iy

From the trapsfer function it is indicated that the damping factor is
{ = .5. The response can be easily computed; when compared with the
response of the .1 second sampled system, it is found to be almost identical
to it. The difference is so small that the plot over the time scale selected in
Figure 3.4-3 would not reveal it.

The above example serves to demonstrate a procedure to be followed in
the analysis of a sampled system using discrete state techniques. It further-
more alerts the designer to the fact that the selection of the sampling rate is no
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Figure 3.4-3, Response of system for various sampling rates. Input
is unit step. (Note scale change on bottom curve.)

arbitrary matter. For reasons of design simplicity a low sampling rate is
advisable; this, however, works against the requirement of good data passage
through the sample and hold devices. Furthermore, the stability of the system
is threatened if the sampling period is selected too large. More will be said
about the stability of a sampled system in a subsequent section.

In order to generalize the concepts developed by this example, let us con-
sider the configuration shown in Figure 3.4-4. Since m(f) is a piecewise
constant signal, it follows by the discussion of Chapter 2, Section 2.5, that a
state variable representation for the plant will be of the form

Xk + DT = ADRKET) + BT)m{T)

(3.4-5)
y(kT) = c(kT) = Cx(kT)
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’(“)iﬁ e(t) /e(kT) Zero-order m(e) G c(z_}_
- T Hold

Plant

Figure 3.4-4. Generalized sampled-dats system.
where the direct transmission matrix is assumed zero. Now
(kT = e(kT) = r(kT) — c(kT) = r(kT) — Cx(kT)
so that (3.4-5) becomes

xl(k + DT] = {A(T) — B(T)CIx(kT) + BI)rkT)
= A(T)x(kT) + B(T)r(kT) (3.4-6)
(k") = Cx(kT) (3.4-T)

A comparison of the open-loop dynamics of the plant under control
(3.4-5) with its closed-loop form as given by (3.4-6) indicates that an essential
difference lies in the makeup of the transition matrix.* The open-loop transi-
tion matrix A(T) has been transformed to A(T) ~— B(T)C by the feedback
process. This feedback property may generate many desirable characteristics,
such as a more rapidly responding system, a more stable system, etc. However,
it is important that one investigate these characteristics carefully, as feedback
can also have a destabilizing effect and can generate other undesirable char-
acteristics.

This generalization approach may be extended to more complex systems
(e.g., the system shown in Figure 3.4-1) in a straightforward manner.

3.5 The Discrete-state Analysis of Computer
Control Systems

A computer control system is inherently a sampled-data system. Typically,
it is of the form shown in Figure 3.5-1, where a digital computer is included
in the forward loop of the system. As will be seen in later chapters, the
presence of a digital computer opens up a wealth of considerably more sophis-

*The closed-loop terminology arises because the output signal c(#) is fed back and
subtracted from the input signal r(t) to zenerate e(t). With no feedback (open-loop) we
would have e(r) = r(z).
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ticated design approaches than are possible from a more conventional ap-
proach. For this reason, it will be desirable to have computer control systems
requiring the feedback of more variables than just the output. Although
Figure 3.5-1 represents the basic structure of a computer control system, it is

{1}
input + e, (nT) Digitat | e, 4T Hold ey Control 0]

o T Computer Circuit Etements Output

Figure 3.5-1. Schematic of a compuier control system.

insufficient to indicate the sophisticated details of 2 computer control system
in which the capabilities of the computer are fully exploited. Let the system
shown above suffice as an introduction to the analysis of a system containing 2
digital computer as an active system element.

In the simplest application of a computer control system, the digital com-
puter is employed to implement the linear recursion equation

e (kT) = boe,(kT) + bie,[(k — DT] + - -+ + b,e)[(k — n)T]
— a,e,[(k — DT] — aye,f(k — 27T — -+ — a,e,[(k — n)T]
(3.5-1)

where e, (kT) and e,(kT) represent the input and output sequence of the
digital computer at the discrete time k7.

Tt was shown in Chapter 2 how a linear recursion formula can be changed
into a discrete state equation. If we follow those procedures, the discrete
state equations in direct programming form corresponding to (3.5-1) are

x0T T N EXCe é
e + D71 o || %D o
' : ) ] Y ek Ty (35
x,[(k + 1)T] i 5 o o __x,,(kr)_ 6_
Fx, (kT )
x,(kT)
e, (kT) =16, b, BIl kb (kT)  (3.5-3)
% (KT).

where 13, =b,—bya;forj=12,...,n
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With the recursion equation of the digital computer converted info state
variable form, it is now an easy matter to proceed with the analysis of a
typical computer control systen.

EXAMPLE 3.5

Derive the closed-loop state equations for the system shown in Figure
3.5-2.

ey
r(t} 1 Linear Zero-order mit) 1 e{t)
Recursion Hold G+ DE+
s (1\. T) Plant
kys L ]
k, -

Figure 3.5-2. Computer control system.
Let the linear recursion equation be given as
e,(kT) == 1.2¢ (kT) — .de,[(k — DT] — 25,[(k — 1T]  (3.5-4)
The corresponding state equations are

xa[(k 4+ DT = —.25x,(kT) + e (kT

(3.5-5)
e, (kT) = —.1x,(kT) + 1.2,(kT)

The continuous state equations of the plant obtained by using the direct
programming method are

) -3 —2{=x 1
0 Tl e
ef) == x,

Since m(7) is a piecewise constant input, we can easily derive the discrete
state equations of (3.5-6) to be

[xl[(k + 1)1*}} [-me*r G 2e7  —DeT 4 2e73 [ x (KT)
x,[(k + DI 277 — &7 ]L‘z(kTJ

+ {leur - ]m(kT} (3.5-7)
-3

e—?‘ + %_e—zr

g1 . g2
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Two feedbacks paths are included in the system such that

e, (£} = r(t) — k,e(t) — k,&(0) (3.5-8)
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iE 11 S40800600 «100009 250080 dosogs 400000 508008 o009 700200 sBago0s 905000 1.0098(

1o Q.000090 +ig0000 #200080 L30G000 450050 «500200 000090 +700300 300000 503000 1.00001(

{€ =0) =,170000 =,120800 #.070000 =,320800 030000 +gog00 +132000 +18o0b0 +2309800 +280000 + 3004

{€ 0)0 0-202000 «100800 260000 +300800 400000 500800 +S02000 +TORDCO +800500 «F00H00  1eE0004
»

[T 2PE
-
I

Since the state model adopted for the plant is a direct programming ) P i : § i T i
version, we have Paz a0 i tos 1t H 1 RS
PR I Poosit g ; : - :
o) = x; (3.59) S S A L T T A N S
o) = x i 1920000 mmnaen 2] 1 LS & 1t 111 1 I
i 1 3 21 1 1% 15 1 1 n 1 1 I
. ' e P is o1 i % : ; I
At the sampling instants (3.5-8) yields Pzl poe o1 is ! : L ! f :
I 321 i L] I I 1 Ii I 1 1 1
e, (kT) = r(kT) — k,c(kT) — k,2(kT) R i« i i v b i i H
Zo"”vvt 135 1 I " 47 t§ I 1 1 1 I I 1 1
or, using (3.5-9), we obtain P& A H i RS 1 i i
1 321 I 41 1% 1 1 1 H I 1 1
1 321 I & 1 15 1 I 1 1 I 1 1
e(kT) = r(RT) ~ kyxy(kT) — k%, (kT) (3.5-10) | T3 NS i i U i H :
f ST NS H T T O S R S
Also, we note that PRI §. 1 R 13 I R 1 1 :
E I 3 el 1 4 I 15 14 T 1 1 1 T H
m(kT) == e,(kT) (3.5-11) PoodEd A is i oo H i i
1 323 1 4 1 15 i i 1 I H I 1
; b bined t 1 331 ioai iH i T i i i
Equations (3.5-53), (3.5-7), (3.5-10), and (3.(5-}.1) may now be combine 0 13z i 8 15 ; rrod i ! ;
establish the closed-loop discrete state equations. For convenience we shall ! g g I oot 13 ! Lo ; ! ;
. 58+0300mmem= “3= -— 5 w—m
write (3.5-7) in the form _ ; LT 1 s 1 i ! N [ i t
- O
[xl[(k + I)TE} _ [au a;a:![xlik)] 4 [bl}m(k) (3.5-12) Do Pt E i P : : :
2+ DT1] Lean anllxlo] 15 NOOURL IO E X TSR SRS M : SOV MR A NN IO MR N
Using this notation, we find that the combined state equations are : Figure 3.5-3.
x, [k + DT] ay; — L2biky ap 1.2k, —0.1b, 10 x,(KT) ' A computer program has been prepared to compute the response of this
xf(k + DT = | @y — 128k, @y, — 120,k —0.18, §f x,(KT) ' system to a step input. Solved iteratively are equations (3.5-5), (3.5-7), and
x5l(k 4+ DT] ey —f, —0.25 jlx,(kT) (3.5-10). The results are plotted out in Figure 3.5-3 on the computer-gen-
1.2b, erated printer plot on which the variables are identified as follows:
+ [ 1.2b, |r(kT) (3.5-13) : Plot 1: Error = e,(k)
1 Plot 2: Digital state variable = x,(k)
Plot 3: Control = e,(k)
Equations (3.5-13) may be solved iteratively to calculate the response of the f Plot 4: Vclggity = x,(k)
computer control system to any input r(¢). One should observe that the Plot 3: Position = x,(k)
resultant controlied system is of third order, as indicated by (3.5-13). T%gs is The program used to generate the printer plot is explained in Appendix
due to the fact that the system being controlled is second order and the digital ‘ 3A.

computer is programmed to implement a first-order difference equation. {n

general, for the configuration shown in Figure 3.5-1, the order of the overall _ gg\: ENS|501£~J4 )(_(FS;,L m\/(u(?) T
control system is equal to the sum of the orders of the system being controlled e §5’13; A
and the difference equation implemented by the digital computer. 14 FORMAT (2F10.4.2110)
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13 FORMAT (8A10)

R = 1

B = EXP(-T)

B2 = EXP{-2&T)

A1 = E1+2.%E2

A2 = —2.%ET+2.%E2

A21 = E1-E2

A22 = 2.%E1-E2

81 = E1-E2

B2 = .5x(E1+E2)

TIME = O,

DO 23 K = 1NV
23 X(K) = 0.

REWIND 1

WRITE (6,15)
15 FORMAT (1H‘I,BX,AHTIME,QX,SHERROR,BX,’!(}HDEG ST VAR, 7X7HCONTROL,
¥ 7HXTX,SHVELOCITY,BX,8HOUTPUT)
49 WRITE (6,11) TIMEMX(L1 = 1.0V}
11 FORMAT (7{5XF10.8)
WRITE (1,12} TIME, (X{I).1 = LNV}
12 FORMAT (7020)
IF (TIME.GT.TUMIT} GO TO b1

X(1) = R-X(5)—2.xX(4}
X(2) = .25%xX(2)+X(1)
X(3) = —1kX(2)+1.2%X(1)
Y(1) = AT1%X(4)+A12%X(5) +BI*X(3)
Y(2) = AZ1RX(4)+A224X(5)+B2xX(3)
X@) = Y(1)
X(B) = Y{2)
TIME = TIME+T
GO TO 48
51 CALL PLOTX
CALL EXIT
END

By incorporating a digital computer in a control system, the design
engineer has the capability of generating control characteristics not usually
obtainable using standard control elements. Even if the iterative processes
that the digital computer carries out are restricted to be linear, a wide design
choice is available. Linear iterative processes may be programmed to per-
form such operations as differentiation, integration, filtering, prediction, ete.

To give a simple demonstration of this, assume that the digital compu_ter
in Figure 3.5-1 has been programmed to numerically differentiate the function
e,(£). We shall use the iteration process developed in Section 1.4, namely

e,(KT) = e, (T) — e;(kT — T)] (3.5-14)

To illustrate that this iteration actually has properties ascribed to the differ-
entiation operation, let €,(f) = () so that

Sec. 3.6 Stabifity of Discrete Systems g7

KT fork>0

e kT) =
) {0 fork <0

Assume that e,(—7T) = 0; that is, the discrete system represented by (3.5-14)
is initially at rest. Evaluating (3.5-14) for k = 0, 1,2, .. ., we have

2,0 =10
ex(T) = 2T — 0] = 1

e,(2T) = %[2’1’ —T]=1

e(kT) = m%»;[kT-— T]=1 fork > 1

Thus, the output of the digital computer will be a sequence of ones, which,
when fed into the zero-order hold circuit shown in Figure 3.5-1, results in

1 fore =T

m(t)mu(ImT)={0 fore<<T

An ideal differentiating network would have produced the output m(z) =
(djdf) e,(t) = u(f). Thus, for the input e,(s) = m(z), the given iteration
process in conjunction with a zero-order hold has characteristics normally
associated with the differential operator. Again, this was a very simple ex-
ample to illustrate the fact that a digital computer may be used to implement
characteristics usually associated with analog elements. Inaddition, the digital
computer may be programmed to perform extremely complex nonlinear
operations that are difficult, if not impossible, to implement by analog ele-
ments. In summary, the inclusion of a digital computer in a control system
opens up new avenues of design not available with standard analog compo-
nents.

3.6 Stahility of Discrete Systems

The stability of linear feedback control systems depends predominantly on
the gain of the control loop, on the poles and zeros of the controlled system,
on the magnitude of transportation lags, and perhaps on several other less
important physical characteristics. A criterion for the stability of continuous-
time systems consists of testing whether the eigenvalues of the system matrix
or the closed-loop poles all have negative real parts. In the analysis of dis-
crete-time systems one other important design parameter enters into the
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consideration of stability; this is the sampling period T. In Example 3.4-1,
it was demonpstrated that a stable sampled-data system can be made unstable
by increasing the sampling period beyond a certain point.

Here we wish to consider a stability criterion for discrete-time systems.
To this effect we consider the state equations of typical linear discrete systems.

Xl(k + DT] = Ax(KT) -+ Br(kT) (3.6-1)

By an iterative approach we have shown that the solution is given by
X(kT) = A*%(0) + 3, A¥1-" Br(nT) (3.6:2)
* n={

For the purpose of a stability analysis it is necessary to consider only the
homogeneous solution to (3.6-1); that is, for r(p1) =0,

(k) = AFX(0) (3.6-3)

By the use of (3.6-3) we can establish a stability criterion for a discrete
system. The matrix A* is the state transition matrix A raised to the kth power.

If we assume that the eigenvalues of the state transition matrix are all
distinct, then A% may be expressed as a series by means of the Sylvester
expansion theorem (see Appendix 2). Thus, if A isan n X » matrix with eigen-
values A, A;, . . .y A,y then

Y W (3.6-4)
=1

where the matrices A, are the constituent matrices of A. Substituting (3.6-4)
into (3.6-3) yields

x(k) = g AAEx(0) (3.6-5)

From this equation it is apparent that the sequence of vectors

=0, x(0) ..., %@, -]

can converge to zero, for arbitrary x(0), only if the terms A¥ converge in-
dividually to zero. Therefore, for a discrete system to be stable, the eigen-
values of the state transition matrix must satisfy the following condition

[A]<1 fori=12,...,n (3.6-6)

Although we have considered here only the case where all eigenvalues are
distinct, it can be shown that the stability criterion (3.6-6) is general and
applies to systems with any degree of multiple eigenvalues.
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EXAMPLE 3.6-1

Test the stability of the system of Example 3.4-1 for T==1 and T = 4.
The state transition matrices for the two cases were found to be

(a8 T=1
A= 368 —.632
632 632
The eigenvalues are determined from the relation

(AL A=

A — 368 632
1mlz~—i—£—.632m0

—.632 A~ .632

which yields

Aio=.54j/ 380 = 5L /625
A | =] = /(5> + (625)* = 796

Since the absolute value of each eigenvalue is less than unity, the system is
stable.

by I'=4
A = [.0183 —.98
.98 —2.02

]A -~ 0183 —.98

== A2 + 2.0021 + .
98 A+ 2.021 - +93

C%early, lA,] and |4,| are greater than one, although only by a small
margin; thus, 'the system is unstable, This example effectively demonstrates
that the selection of the sampling period is a critical element in determining
a sampled system’s stability. It also verifies the conclusion that we reached

;n Example 3.4-1, namely, that this system was stable for 7' = 1 but unstable
or T =4,

3.6-1 Regions of Stability

W‘e have established that the location of the roots of the characteristic
equation of a system can be used as a criterion of stability. For the sake of

cc_)mparison we summarize here the results as they apply to continuous- and
discrete-time systems.
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Continuous Time Discrete Time

System equation:
%(£) = ¥x() + Gr(5)
¥(©) = Cx(2) + Dr(r)
System matrix:

x[(k + DT] = Ax(kKT) + Br(kT)
Y(kT) = Cx(kT) + Dr(kT)

F _ A
Characteristic equation:

|[Af—F|=20 AL A]=0
Stability criterion: .

Refd}l <0 |A4]<1

Region of stability:

5

g

m {A) Im 2k

ble Unstable Unstable

7 Re {2} % / Re IA!
Stable Unstabie

Figure 3.6-1. Regions of stability.

3.7 Analysis of a Digital Process Controller

The process control industry has a potentially large market for computer
control technology. It is not unusual to find in a single process a substantial
number of control loops, each one of which involves a single controlled
variable such as temperature, flow, heat, etc. The process control industry
has been using for many years the so-called PID controller, which provides
proportional, integral, and derivative control action for a given loop. The
configuration for this controller is illustrated in Figure 3.7-1, where it is shown
as part of a typical control loop. Ideally, the controller is intended to provide
the three control functions exactly as the transfer functions indicate. However,
because of common physical limitations, neither the derivative nor the inte-
gral operation can be perfectly achieved.

Normally a PID controller is realized by analog means. We demonstrate
now how one may replace the PID controller by a digital computer
programmed to generate the functions of differentiation and integration
numerically. The proposed digital control loop is shown in Figure 3.7-2.

The digital computer is programmed so that the output sequence is given
by

e, (k) = Ko, (k) + Ke,(k) + Ke3(k) @.7-1)
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___PID Controller _
!_ -
| |
e
! kp . ! Control
Rt ? E Variable
eference
" i | Process gon_trolled
; _ s Under ariable
=N d =
r E | Conirol 4
| |
| X |
| g |
B l
o e e e e e
Figure 3.7-1. Typical PID control loop.
Digital
Reference
r(kTY
es (k)
+ ey (k) Digital = Hold m ¢
Computer ™ Circuit - Process -
N
Sampler
Figure 3.7-2. System with digital computer repiacing PIID controller.
The three components of the sum are generated as follows:
Proportional control
ey, (k) = ¢,(k) (3.7-22)
Integral control
€ya(k) = 2,0k — 1) =+ Te, (k) {3.7-2b)
Derivative control
1
&35k} = ple, (k) — e,(k — )] (3.7-2¢)

Other forms of numerical integration and differentiation could have been
selected (e.g., see Chapter 9).
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Although equations (3.7-2a) through (3.7-2c) may be readily programmed
in their present form, it is desirable to obtain a discrete state model of the
discrete PID controller in order to facilitate other analytical studies.

We recognize that the integral and derivative control are described by
first-order linear difference equations of the general type

Xouilk) = boXin(k) + byxalk — 1) — @ Xoudk — 1) (3.7-3)

The state model according to the direct programming method corresponding
to this equation is given by

xk + 1) = —ax(k} + rk)

(3.7-4)
yik) = (b, — boa)x(k) + byr(k)
Applying equation (3.7-4) to the integrator, we have a, = —1, by, =T,
b, = 0, 50
x(k -+ 1) = x(k) + e, (k
(k + 1) = 300 + e, (k) 515

,,(k) = Tx (k) + Te (k)

where the subscript / denotes integration, Similarly, for the differentiator
we have a, = 0, b, = 1T, b, = —1/T, so

xfk + 1) = e (k)

3.7-6
e2slk) = — ) + ) GO

where the subscript d denotes differentiation.
The complete state model can now be assembled from equations (3.7-2a),
(3.7-5), and (3.7-6).

rik) iod ez (k)
+ e, (k Digital , o
) PID’ __4,,,_ Zeroorder m(t) ,
il Controller old {1%25) (1 + 10s) >

N

r

Figure 3.7-3. Digital control loop.
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x{k -+ 1)} [1 O:i[xi(k) |
. = k
[xd(fc +n) "o o xdck)] " Ue‘( )
k) . (3.7-7)
=T —=||"" :
ex(t) = | T]Ld{k)} + (&, + KT + Kep Jes(i)
e; (1)
e {t) @
\/

——— ¢ (k)

€3 (k)

o

ey (k1)

]

(2) R
(b}

K4IT

24 (1} mereeon

—e;{k — 1) —m

e (4 @

€2 (k}

€22 (k) @ R
(©)

Figure 3.7-4. Analog-hybrid impiementation of discrete PID con-
troler.
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Consider now the application of this digital controller to the control
loop shown in Figure 3.7-3. In order economically to justify the employment
of a digital computer for the control of a process, it would seem reasonable
that the computer control a great number of loops on a time-shared basis.
This is possible if the computer is switched through a multiplexor perlodxcaily
to each of the control loops. The computer’s high speed will permit the ex-
ecution of the program for this control loop in less than 100 microseconds.
It is apparent that, for example, if the sampling period is about one second,
easily 1000 such loops can be handled by a single computer without encoun-
tering time problems.

In the application of a digital computer as a PID controller, the quantities

K,, K, K;, and T must be determined. It has been the practice in the process
control industry to adjust the gain constants on the job until a desirable
response is obtained. Alternatively, a simulation of the entire system may be
performed which permits parameter adjustment.

A hybrid computer is ideally suited for this task. The plant may be simu-
lated on the analog computer, while the general-purpose digital computer is

e s e

—_— -1 ms

Figure 3.7-5. Timing signals for R,

From Digital

Input
ap Controller

e (1)

To Digital
Controiler

Figure 3.7-6. Simulation of process.
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ouUTPUT
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N \' i A

(2) | (b © {d} (e}
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e

|
!
|
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|
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!
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Figure 3.7-7.

105



106 Analysis of Discrete-time Systems: Time-domain Approach See. 3.7

available to program the PID controller. The hybrid computer also has the
necessary data converter to transform signals from analog to digital form and
vice versa. The programming of this problem by a hybrid computer is
explained in Chapter 9.

One may also use an analog computer with discrete operanon capability,
called an analog/hybrid computer. This type of computer is equipped with
digital logic timing networks with whose support integrators may be operated
as discrete memory devices. Such a computer is used here to simulate the sys-
tem.

The digital PID controller is simulated as shown in Figure 3.7-4. Figure
3.7-4(2) contains the diagram for the generation of e, (k) and ¢,(k — 1) by
use of two track-store units that are timed in a complementary fashion.
Figure 3.7-4(b) shows the circuit that implements the integrator. By means
of an analog accumulator, the integrator difference equation is generated.
Finally, Figure 3.7-4(c) shows the generation of the output by summing the
various signals making up equation (3.7-1).

The timing signal R is of the shape shown in Figure 3.7-5. It controls
the RESET mode. It is understood that the OPERATE mode is controlled
by the complement of RESET. The process to be controlled is programmed
according to the diagram of Figure 3.7-6.

Step responses for various control settings are shown in Figure 3.7-7 in
the form of a six-channel recording. Part (a) shows the response of the system
for a sampling rate of one second and only proportional control. Since the
process is a type O process and K, = 1, the steady-state error is equal to
50 percent of the input. In part (b) the result of introducing integral control
is an elimination of the steady-state error; a complete response for the
settings (T = 1, K, == 1, K, = .1) is shown. In part (c} the gain settings for
K,and K, have been increased to 4 and .25, respectively; the response now
exhlblts a definite overshoot. This overshoot is eliminated by the introduction
of derivative control for which two runs are shown with gain settings of
K, ==5and K, = 8.

3.8 Response of Sampled Systems between
Sampling Instants

It is evident by now that the analytical techniques developed in the pre-
ceding section for the analysis of sampled-data systems provide information
on the system variables only at the sampling instants. Thus, even though the
system to be analyzed has a continuous-time output such as a computer con-
trol system, the output is known only at discrete times synchronous with the
sampling period. Quite frequently, however, it is important to know the time
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history of the continuous-time variables for more than the sampling instants.
This is actually quite easily accomplished. Consider the response of a linear
system via state variable techniques. Given the arbitrary initial conditions
x(t,) at 1,, we may write

X(2) = AG — 1)x(0) + | AQ— £)Brae)a, (3.8-1)

where x;,(¢) is the input to the system.

If this linear system represents the continuous time part of a sampled
systern such as the one shown in Figure 3.3-2, then we identify x;,(¢) with
m{¢) and

mkT +7) = rkT), 0<t<T (3.8-2)

where r(kT) is the discrete input to the zero-order hold.
Letting ¢, = kT and ¢ = kT + 7, 0 < v < T, we write (3.8-1) as

X(kT + 7) = A@XGKT) + | Z AT 4+ 7 —~ t)Br(kT)dr,  (3.8-3)

The integral was shown in Chapter 2 to simplify to
kT 4+t T
[ AT 4 — 1 )Br(RT ), = { | U A(t,)Bdtl}r(kT) — B(O)r(kT)

Therefore, (3.8-3) reduces to

x(kT + 1) = A(D)x(kT) -+ Bl)r(kT), 0T (3.8-4)
This equation may be used to calculate the response of any continuous time
part in a sampled system during the sampling interval, provided that the
state variables are known at the beginning of the interval and that the input is
held constant during the interval. This equation may be best put to work by
using computer techniques to evaluate it. This is shown in Chapter 9, Section
9.2.
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