The Analytical Design

of Discrete Systems

7.1 Introduction

The analytical design of discrete systems presents a most interesting
challenge. A digital processor, which may be a general-purpose computer or
a special-purpose switching circuit, may be effectively employed to generate
a control input to a system. The use of a digital computer asa controiler of a
system is particularly attractive, since the implementation of a control 1a;w
requires only the preparation of a computer program. A program perpits
almost unlimited flexibility.

In this chapter we shall investigate a variety of design techniques, all of
which are aimed at defining a control algorithm implementable as a computer
program. As with all design techniques, it will be necessary Fo e‘mpl‘oy a _design
objective or performance criterion. Usually a design ob;_ectwe implies the
optimization or minimization of a certain factor influencing system perfor-
mance. In so doing, we are applying the concepts of optimal control theory,
which has been developed in the last decade. Most of the optimization Qrob-
lems postulated in this chapter have solutions that are obtained by solving a
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set of linear equations. Such is not the case in the continuous counterpart of
optimization theory.

7.2 Time-domain Synthesis with Minimum Settling Time

Io this section we will consider procedures that utilize state transition
matrices to generate computer algorithms. The design objective will be to
achieve minimum settling time in system response. In order to make the pre-
sentation of the required calculations possible, it is necessary to restrict the
discussion to simple examples. However, in each example given, an attempt
will be made to outline a more general case.

A number of different design approaches may be taken to insure that the
system’s output e{r) will equal its input #(¢) in the minimum number of
sample times (¥). For example, it is possible to synthesize a controller such
that c(¢) = r(z) at the sampling times but not necessarily in between. Alter-
natively, it may be desired to have ¢(¢) == () for all > NT for the smallest
value of N. A design based on the first approach will be less complex to
implement than the laiter because of its simpler control task. The complexity
of each will depend on the nature of the input signal #(z) and the order of
the system being controlled. '

Consider the system shown in Figure 7.2-1. It will be our objective to
determine the digital transfer function D(z) so that the system may réspond
with minimum settling time on a closed-loop basis. First we will consider
the solution of this problem in the time domain. A later section will present
a paraliel solution in the z domain,
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Figure 7.2-1. Digital control system,

7.2-1 Response to a Step Input

For the continuous plant of the system shown in Figure 7.2-1,
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For T == 1.0 second, the discrete state equations are
i 368 .63
[xloc + 1] _[3 0} “®)] [ 2}32(@ 122
x,(k + 1) 632 1] x(k) 368
k=0,12,...
and

¢(k) = x,(k)

The sequence e, (k) represents the input to the zero-order hold.
The objective of minimum settling time requires us to determine the
control inputs e,(0), e,(1), . . ., which drive the plant from an arbitrary initial

state
[xl(O)}
x,(0)
to a state such that the output c(¢) is equal to the input r(#) forz =1¢, > 0.

Furthermore, the output is to remain equal to the input from that time on.
For the case at hand, the input is a step function; i.c.,

r{f) =R, £=0 (7.2-3)
Therefore, we require that
ety =R
and t=>t >0 (7.2-4)
&ty == 0

The derivative of the output must be set equal to zero to guarantee that
¢(f) will not change after it has reached the magnitude of the input. Condi-
tions (7.2-4) may be related to the discrete state variable by use of the state
equations (7.2-1); that is,

x() =R
x 1(“) =0
The time ¢, at which conditions (7.2-5) are satisfied is unknown at this

time. Since the input to the zero-order hold circuit occurs only at the discrete
times 0, T, 27, . . ., it is necessary to modify equations (7.2-5) to

} t>1,>0 (7.2-5)

%, (NT) = R

2, (NT) = (}} for some integer N > 0 (7.2-6)
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Then the desired system state is synchronized timewise with the input.
The integer N for which (7.2-6) holds is unknown. We must, therefore,
investigate for what value of N it is possible to satisfy (7.2-6). We will
investigate three cases; thatis, N =1, 2,and 3. For ¥ =1, it will be possible
for the output to be equal to the input at the sampling instants; however,
the system’s response shows an undesirable ripple. This type of response is
called the minimal prototype response. It is generally possible for any order
systern to exhibit a minimal prototype response (N = 1) to a step inpuf.
For N =2, we will see that the system responds in a deadbeat manner;
that is, the output equals the input at all times, not just at the sampling
instants. In general, an nth order system requires N = n sampling periods
for deadbeat response. For N = 3, the system will be seen to respond in a
deadbeat manper; in addition, it will be possible to impose some con-
straints on the magnitude of the control variable. These three cases will be
investigated in detail for the second-order system which we are presently
considering, '

Case a. N = 1 (Minimal Prototype Design)

The transition equations for the first period are obtained from (7.2-2) by
setting k = 0. This vields

x,(1) - 368 O x, (0 632 -
[xz(l)} - [.632 Ijl{xz({))} + [.353]32(0) (7.2-7)

If initial conditions are assumed to be zero,* equationms (7.2-7) yield

x,(1) = 0 = .632¢,(0) (7.2-84)
and '

%,(1) = R = .368¢,(0) (7.2-8b)

which have to be satisfied simnultaneously for a single e,(0). This is not possi-
ble. We conclude that a single period is not sufficient to accomplish the desired
objective. Despite this negative result, it is interesting to pursue this case
further to determine what can be accomplished in one period.

Solving (7.2-8b) for e,(0) yields

e,(0) — %g = 2.72R

Setting ,(0) to this value will assure that x,(I) = R, or ¢(}) = R, but
will not produce the desired condition ¢(1) = 0. Thus, the system output will

*No loss of generality arises by assuming the initial state to be zero.

.
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be equal to the system input at the sampling instant, but it will not stay there.
Indeed, for e,{0) = 2.72R

x,(1) = ((632)2.T2R == 1.74R
Proceeding to the second interval, we have, from the transition equations,
vl Lo ek
Again we seek to satisfy the position equation x,{2) = R and disregard
the velocity condition x,{2). This yields
e,(1) = —2.95R
and
x,(2) = —1.225R
For the next period a similar calculation yields
e,{2) = 2.12R

The remaining terms of the sequence e,(k) may be calculated accordingly.
Since the z-transform of e,(k) is given by

E,(z) = g}oez(k)z"‘
we can write
E(z) = 2.72R — 2.95Rz™' 4+ 2.12Rz"? 4+ ... (7.2-9)
From the diagram of Figure 7.2-1 it is clear that
E,(z) = D(z}-E\(z) (1.2-10)
Therefore, if E,(z) is known, D(z) may be specified. Now
e () = r(t) — ct) t=0 (7.2-11)
For t = kT
eBy=rk)—clk)y k=0,1,...

Thus, for k =0
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e {0)=R—0=R
and fork >0 _
| " e,(k) = 0
Thus

E(z)=R (7.2-12)
Now, dividing (7.2-9) by (7.2-12) yields

2,972 — 2.95z"% 4 21227 o - .-

Diz) = 1

(7.2-13)

From developments to be introduced later, this transfer function can be
shown to be expressible as

Dz) = (292 — z7Y)1 — T17z7Y + (TN — (717278 4+ - - -]

272 — 77t
= T (7.2-14)
Equation (7.2-14) prescribes the program for the digital processor as the
familiar ratio of two polynomials in z™1. It will drive the system from the zero
state to that for which the output of the system matches up with the input at
the sampling instants but ror in between, since the derivative of the output is
not zero. The response of the system to a unit step input is shown in Figure
7.2-2. A system that has a step response as shown by this plot is called a
minimal prototype system. It shows a pronounced ripple, which is sustained
over a large number of periods. Because of this, its practical application is
severely limited, and it is primarily of academic interest.
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Figure 7.2-2. Response -of system. ’
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Case b, N = 2 (Ripple-free System)

If two sampling periods are allotted to reach the desired state as given
by (7.2-6) it will be possible to insure that the system output will be ripple-
free. To show this, we consider the state transition equation over two periods:

% (2] [368 072x,(0)]  [.368 07632 632
ch(z)} - [.532 J LZ(O)] + [.632 1][.368]32(0) + [.368}‘(1)
(7.2-15)

Since
=] _ 0] ond xI(O)} _ m
x,(2) R x,(0) 0
we may simplify (7.2-15) to
07 7.233 .6321[e,(0)
R 768 368 || e,{1)
which may easily be solved to yield
ez(ﬁ))} _ 1.58 R
e,{1) —.58
The numerical values of e,(0) and e,(1) uniquely define the first two mem-
bers of the control sequence e,{k) required to drive the system from the state

o)™ o)
o)~ |

Since the desired state has been reached at the end of the second period,
the remaining members of the control sequence will be zero. To verify this

fact, apply (7.2-2) with
x@7] [0
ch(z)} B LR]

and e, (k) == 0 for k = 2. This yields

to the state
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x,(k + 1)} _ [.368 oo _ [0 for k> 2
xk+ 1) 632 13|R R
The z-transform of the entire sequence is then

E,(z) = R(1.58 — .58z71) (7.2-16)

Equation (7.2-16) establishes the numerator for the digital computer transfer
function.
To determine E,(z), we again make use of (7.2-11). Thus

e,{0) =R
and

e, (1) =R — (1)
=R — x,(D)

But from (7.2-7) we have

x,(1) = (:368)e,(0)

= (.368)1.58R
= .582R
Thus
e, (1) = R(1 — .582) = .418R
Furthermore,

e (k) =0, k=2

since the error is zero.
Collecting terms, we have

E,(z)= (1 + .4182"")R (1.2-1T)
The digital transfer function is, therefore,

1.58 — .58z7¢

D@ = g

(1.2-18)

‘This transfer function will permit a ripple-free response of the system
to a step input of any magnitude within two sampling periods of one second
each, provided the system is initially at rest. A typical response 1o a sequence
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Figure 7.2-3. System response to a sequence of step inputs.

of unit step functions is shown in the response traces of Figure 7.2-3, con-
sisting of input, error, plant input, and output.

In the previous two cases it was shown that for the example presently
being discussed each sampling period thatis allotted for the transition provides
for one degree of freedom. Thus for N = 1, one degree of freedom existed;
this was used to specify the conditions on one state variable, i.e., x,(k). For
N =2, two degrees of freedom existed; they were used to implement the
constraints on two state variables x,(k) and x,(k). This resulted in ripple-
free response. If more than two periods are available to complete the response
to a step input, additional degrees of freedoms are provided which may be
used to advantage in incorporating additional constraints. Of interest in this
respect are amplitude constraints on the plant input, or on the maximum
velocity or acceleration that may be tolerated during a typical transition.
In what follows we shall give an illustration of this idea in the form of an
input amplitude-constrained system.

Case c. N> 3 (Input Amplitude-constrained Systent)

The specific case to be considered here is

i. The plant is to respond ripple-free to a unit step input in the smallest
number of sampling periods.

ii. The plant input m() must satisfy the condition

i) = M =1

In general, this problem is extremely difficult to solve. An approximation
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to the desired control will now be obtained. The digital computer output e,(k)
is calculated for two consecutive periods starting with & = 0. If the desired
state can be reached without violating the plant input constraint, the problem
is completed. If the constraints are not satisfied, we set e,(k) equal to £1,
depending on its polarity, and add one more period to the total response
time.

- For the first two periods we consider (7.2-15) for R = L.

x (2] [0] _[.368 07.632 632
Lz@} N M N [.632 1][.353}2“’) + [.363}’2@ (7.2:19)

Solving for e,(0) and e,(1), we obtain

[ez(O)} [ 158
e, (1) —.58
It is seen that €,(0} > 1. This exceeds the allowable limit. Consequently,

we set e,(0) equal to the closest admissible value -1, and calculate the state
of the plant at the end of the first period in response to this input,

':xl(}.)} _ [.632}
x,(1) .368
Proceeding now to the next two sampling periods, we have
2
W R e el o TR o
Solving for e,(1} and e,(2) yields
[62(1)} _ [ .215}
e,(2) -—.215
These values satisfy the constraints. Thus the complete control sequence is
e {k)y = [1, .215, ~.215,0,0, .. ]
or

E,(z) = 1 + 215771 — 21577 (7.2-20)

Having determined the plant input sequence, we can now calculate the
error sequence ¢, (k). Using (7.2-11), we have, for k = 0, I, 2,
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k=0 £,(0) = 7(0) — <(9)
=1—0=1

o= 1 e (1) =r(@) D)
= (1} — x,(1)
= 1 - .368
== B32

k=2 e,(2) =r(D) — %D

but x,(2) is calculated from the transition equations for the second interval

xi(z) _ 368 0l x,(D) 632
Lc;(z)] - [.632 J[xzu)] + {.368}62“)

or
[xI(Z)} _ \:.368 0][.632] N ,632]‘ 515
x,(2) 632 111368 368

]38
T84T

s0 that
e,(2) = 1 — 847 = .153

k=3 e, (k) =0
Consequently,

E(7) = Z{1, 632,.153,0,.. .} = 1 + 63227 + 15327 (1.2-21)

With E,(z) and E.(2) determined, we can now specify D(z).

Efz) 1+ 215271 — 215272 (1.2-22)

Do) =5 =15 6327 ' + 153z

Equation (7.2-22) represents the digital transfer function that will
guarantee a ripple-free response of the system shown in Figure 7.2-4 when
subjected to a unit step input. The design of this system is limited to a unit
step input and a unit input amplitude constraint. Should either of these two
conditions be changed, a new digital transfer function will have to be deter-
mined. It seems plausible, for instance, that if the magnitude of the step input
is increased it would take more than three sampling periods to complete the
desired transition, since the plant input would be saturated for more thap one

period. It will be left as an exercise to explore this point.
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Figure 7.2-4, Block diagram of ri i
! ppie-free sampled syste
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7.2-2 Response to a Ramp Input

. An approach six}iiIar to the one presented in the previous section may be
ollowed when the input is a ramp function. Let us consider the design of a

g

Hy="Vt fort >0

and the initial state is taken fo be zero.

r{ty + . ()
P o d
@) T=1 Gols) s{s :— 1)

Figure 7.2-5. Sampied systerh with digital compensation.

. The- objecti}fe, as b.efore, is to determioe a digital transfer function D(z)
that will provide a ripple-free system response in a minimum number of

{xl(N)} v P .
() e [VN:I or some integer N > 0 (7.2-23)

These conditions derive from the requirement that

="V
oy ="t

and from the relationships between state variables and output variables as

given by (7.2-4) through (7.2-6).
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The number of sampling periods required to reach steady state, which is
indicated by the integer N, is to be minimized. We consider the following
cases.

Case a. N =1

This case is meaningless, since no input can be generated to the digital
processor during the first period. This input is generated from equation
(1.2-11).

e () =r(f) —c(f) fort=10,€{0)=0

Thus, the first period cannot be used for generating an output from the
digital computer. Hence, this problem does not become meaningful unti
N=2

Case b. N == 2 (Minimal Prototype)

It is possible to design a digital processor that is functional within two
periods. However, it can be shown to suffer from the same shortcoming as
demonstrated for Case a of the step input design: only one of the conditions
of (7.2-23) can be satisfied. If the condition selected is

x(N)=VN, N=2

then the design will contain a ripple between sampling periods. Such a design
represents the minimal prototype for a ramp input. It is left as an exercise to
the student to verify this.

Case ¢. N = 3 (Ripple-free Response)

When N is selected as 3, it is possible to design a system that will satisfy
both conditions of (7.2-23). From the state transition equations (7.2-2) we

have
%] T V] _[368 0632 | 632 ]
[xz@)] a [SV] B [632 1}{.358}62“) + [_363}%@) (7.2-24)

Use has been made of the fact that the initial conditions are zero and that
e,{0) is taken as zero as per discussion of Case a. Solving for e,(1) and €,(2),

we obtain
[e;(l)} _ [3.810}/
2,{2) 173

In determining the remainder of the computer output sequence e,(k),
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it is readily seen that
e(fy=V, k=3
For instance, for X = 3 we have from the state transition equations,
!:xl(df)] _ [.368 O][ V:l n {.632} V- [ V:I
%,{4) 632 1413F 368 4v
In summary, then,
Efz)=@0 +381z7' + 173272 4z +z7* + .. )V (71.2:25)

"l"he iterative application of the error equation permits the computation of the
input sequence to the digital computer, This yields

EZy=0+z"1+ 6279V {7.2-26)
To determine the digital transfer function, E,(z) is divided by E,(2).

D(z) = 381 4 173270 772 e g7t L

I 4 6zt

‘Th‘e numerator may be expressed in closed form by use of the geometric
series identity.

381073 g
Do) == taorya ey
_ 381 4263727 + 82722
i o —

(1.227)

7.2-3 The General Case (for Step Inputs)

A digital control system with minimum settling time as the performance
objective may be designed in a very general sense. The examples presented so
f{u: were selected subject to two important restrictions. First, the plant was a
single input-single output plant; second, the plant contained at least one free
integrator. The latter condition provides a simple way of guaranteeing that the
ou‘gput equal the input with all derivatives of the output equal to zero, such
as 1s, for instance, specified by equations (7.2-4). The presence of a free inte-
grator in the plant lets the output of the digital computer in the steady state
reach zero. It will now be shown that identical control characteristics may
be obtained for plants without a free integrator.

Consider the system shown in the vector block diagram of Figure 7.2-6,
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Figure 7.2-6. Multiple input-multiple output computer control
system.

It is a multiple input-multiple output system. The plant is described by the
linear vector differential equations
d

LxX == 7.2-28
7 Fx + Gu ( )

€=y = Cx (1.2-29)

where x is an » X 1 state vector
u is the m x 1 control vector
y is the p x 1 output vector.
Furthermore, let N be the number of sampling intervals until deadbeat

response is achieved.

The objective of this problem is to design D(z) to cause ¢(z) to respond in
a deadbeat manner to a step input r(f).

The computation of D(z) proceeds in two parts. First, the sequence of
vectors for e,{k) is computed to obtain the deadbeat response of y(z) in a
minimum number of sampling periods. From the y(¢) response, the sequence
of vector e (k) may be computed. D(z) is to be computed such that e, (k) is

generated from e, (k).
The output at the kth sampling period is related to the e, sequence and the

disturbance in the following way.
Because of the zero-order hold, x(k) may be computed as follows:

x() = []x0) + 5 [ [ G l)  (1.2:30)

The initial condition x(0) is taken as zero for this problem.
Let

A =T
and

T
B=— j FTAG
Q
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Since x(0) = 0, x(k) may be written as

k=1

x(k) = 3, AFT1Bey(l)

i=o

Thus, y(k) becomes
k=1
y(k) = :Z-a CA*iBe,(]) {7.2-31)

Following a vector step input of arbitrary size, denoted r,, we want e,
to go te zero in the minimum number of sampling periods. Thus,

N—1
r, = s‘\:ﬁ CAN~1Be, () {1.2-32)
or, in matrix form,
e,(0}
e,(1)
[CA""'B CAY?B .., CB] - = Yy (7.2-33)
e, (N — 1)

This expression does not guarantee that the response will be deadbeat as
required; it only forces the output to r,. To guarantee a deadbeat response,
X(NT) must be zero. Since u(¢) is constant in the interval NT'<C ¢ < (N 4+ )T
and X(NT) = 0, then X(7) cannot change from N7 to (N + 1)T. Thus, u(NT)
will be the control required to effect the step change in the output respounse.

u(f) = u(NT) = e,(NT) for > NT (7.2-34)

The expression for X(NT) may be computed as follows. From the state equa-
tion

X(NT) = Fx(NT) + Ge,(NT)

Equating £(NT') = 0 and substituting the expression for x{NT), we can write
that

0= Fﬁg AN“““IBez(l)] + Ge,(V)

or

0= ':'ﬁ:: FAY-=1Be,(I) + Ge,(N)
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In matrix form, this equation may be written

e, (0)
e,(1}

[FAY-'B FA"2B ... FB G] - == [0] (7.2-35)

ez(j\ir -1
.e,(N) _

Equations (7.2-33) and (7.2-35) may be combined to form the system of equa-~
tions that must be solved to determine the e, sequence.

“e,(0)
ex(D)
[CA”‘IB CA¥2B ... CB 9} . _ [rg] (7.2:36)
FAY- 1B FA" B ... FB G ) 0
e (N — 1)
o)

A discussion of the solution to equation (7.2-36) will be given later, but
first let us consider computation of the e, sequence and of D(z). From the
error equation we have that

e, (k) = r, — ¥(k)
But y(k) may be computed from equation (7.2-31).

e (k) = T, — E C{A* 1Bey(D)} (7.2-37)

On the other hand, e,(/) is obtained from the solution of equation (7.2-36).
Let us denote that solution in the following way:

*

o) =PUr, I1=0,1,...,N
Thus, equation (7.2-37) may be written
e (k) = [1 -5 {(:Ak-f-IBPU)}];[-0 (7.2-38)
1=¢

Finally, D(z) may be computed as follows. Taking the z-transform of the
e,(k) and e, (k) sequences, we get
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E(z) = 3, e,(k)z™*
N2 g k1
=% 4{1-% earmeay]r, (7.2:39)

' The infinite s_eries due to the z-transform of e, (k) is terminated at N — 1,
since the coefficients e, (k) for £ > N ~ 1 are identically zero.

E@) = T P(roz*

Since the input to the plant is constant after N — 1 sampli i
pling periods, we have
e,(k) = P(N) for k > ¥, so that

E) =5 B0 + P00 £ 2t

or

E,(z) — [”‘; 2 #P(k) + P(N)—E };—B (7.2-40)

e 1zt
Since
E,(z) = D(z)E\(2)
Wwe may combine equations (7.2-39) and (7.2-40) to obtain
N-1 —x z“'N
[ =2 + P 2
_ D N=—1 g Kl _
- (z)[ P (1 ~ 3 (oA IBP(I)})}rQ (7.2-41)
Since ec%uat.ion (7.2-41) must hold for arbitrary r,, the coefficient matrices
premultiplying r, must be equal, Thus,

5 o+ oo ]

N-1 " k1
— D(z)[kg;} z k(I -3 {CA""‘IBP(I)})] (1.2-42)
Solving equation {7.2-42) for D(z), we obtain the result
D(z) ==
N1 "kP Z—-N N3 _ N 1 =i
|5 e + P S [ (1= 8 owmmeay)|

(7.2-43)
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The computation of P(k) may be demonstrated in the course of the devel-
opment of four cases.

7.2-4 Scalar Case: n=m=p =1
State equation
% == gx -+ bu
Qutput equation
V== X

A=er, B=]| T ot dth = a[e” — 1]b
G

In this case equation (7.2-36) has two rows (i.e., two equations), so at the end
of the first sampling period the output will be zero.

ca et — 110 O ez({))} T
fel? — 115 biie, (1) 0
Solving for e,(0) and e,(1), we determine the inverse of the coefficient matrix,
obtaining

o] [ oln
aw| | -2 Lo
Thus
€,(0) = b—(éﬁaf_ﬂﬁfg and e,(1) = m?%ro
and
P(@)mm and P(l)m—u-wgic

Itis seen that V == 1 in this case. The digital transfer function is, therefore,

D(z) = [z-°(1 — O)}"*[:z‘“”P(O) + P(EJT?;:;]

Upon substituting for P(0) and P(1), we obtain the following:
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gl — ez
Dz} = Be(l — ear)(lz__)zwj)

7.2-85 Single Input-Second-order System: n=2, m=p=1
Let the system be represented by the state equations

dix| [—1 0i[x 1

)= ollel Lok

with the output given by
y=p 17|

An inspection of equation (7.2-36) reveals that N = 2.
The state transition matrix for thecase T=11is

A= e”! 0
1—et 1

The input transition matrix is

Other expressions needed are

CAB = [0 1][ ¢ 0][1 - ""’} (1 — ety 4 o

1—et 1 e”!

CB = ¢!
FAB — [wl 0 et Ot — et _ —e" Y1 —e™t)
1 0jj1l—et 1 e~ e} (] — ™)
FBm[WI O - gt _ et — 1
1 0 et I —et
Thus, equation (7.2-36) becomes

(—e ) fe?t gt 0 e, (0) ry
—e {1l —e"t) el 1 1llef)|=]|0
e (] — e} et 0le(2) 0
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With the exponentials evaluated, this becomes

768 368 0 0] [re
—232 632 1lleD)|=]0
232 632 0jle,@] 10

When the inverse of the coefficient matrix is computed, the vector e, can
be calculated.

e,(0) 1.58
e,(1}| = —.58
2,{2) 0
Thus
P{0) = 1.38, P(1) = 0.58, P(2y=00

P(2) in this case is zero, because the system contains a free infegrator.
The digital transfer function becomes, by use of (7.2-43),

D) = [PO) + POz + POpE = |2*() +27'[1 — CBRO)
With the numbers substituted, this is

1.58 — .58z"1

P = T g

It is seen that this is identical to the expression derived earlier by equation
(7.2-18).

7.2-6 Muftipie Input-Multiple Qutput
Fourth-order System: n=4, m=p=2

The state equations of this system are given as

% 11 =5 —1Tx, 11
X|_p 0 =2 0 oxz+0 Z{ui]
% 2 1 =6 —1|x; 0 2w
ER —2 —1 2 -3f=x 0 —1

The output equations of this system are

Sec. 7.2
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I:yl]_F 2 =3 2} Xy
Y2 I 2 I 3 x;

Xq
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For T == .1 the state transition matrix is computed as

1.0 0779
0 .
A 319
164 0779
w164 e Q779

Similarly, the input transition matrix is

104

.0

088
—.0088

—.398

0

164

.0734
1813
169

—.0861

I

0705

.0
5060 —.
741

0705

267

Because the system has two inputs and two outputs, it follows that N == 2,
Hence, equations (7.2-36) take on the form

214 —.086 268 —.095
064 259 .086 346
019 —.346 068 501 1.
.0 —.297 .0 —.362
106 —.432 164 —.597

 —.106 211 —.164  -—.267

ei(0) ]
ex(1)
e3(2)
e3(0)
ez(1)

0 07
0 0
0 1.0
0 20
0 20
0 —1.0]

.€5(2). ]

o OO

where the corresponding entries are computed by using the matrices F, A, B,

and C.

The matrices P(/) may be obtained upon inverting the coefficient matrix

of the last equation, Thus,

— 1.969

Py || 15750
962

L —.118

L5757

9.843
195
—4.814
353

588 |
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Now,
2401 1.575 -15.750 195
P(0) == } P(l) = }
—1.969 9.843 962 —4.814
529 .35
P(2) = 3
—.118 588

Finally, the digital transfer function may be computed by use of equation
(7.2-43) for k = 2.

-2
D) = [PO) + 271B() + PO E=r i1+ 27 — CBRO)™
Upon substitution of the numerical values of the respective matrices, this
becomes a matrix of four transfer functions; that is

D(z) =
24.01 — 39.76z-! -+ 16.339z-2  1.575 — 1.38z7" 4~ .25827*
[ —6.621z1 — 1.08z7* 515z7% — 515272

1.969 + 2,931z~ 4 1.08z72 9.843 — 3.542z-1 4 540272
1393277 — 1.393z72 I — 3.542z~7 4 2.542:7

7.3 Minimal Prototype Design Using z-Transform
Method

We now consider an alternative to the time-domain approach of designing -

a system with minimum settling time by using methods available to us from
the study of sampled-data systems using the zetransform. Namely, design a
controlled syster such that for a given continuous plant:

1. The overall response and the response of all elements of the system
must be nonanticipative.
2. The steady-state error for all polynomial inputs of degree equal to or

less than g is zero.
3. The transient response should be as fast as possible, and the settling

time should be equal to a finite number of sampling intervals.

Consider the system shown in Figure 7.3-1 for a typical example. From
(6.5-13), the relationship

CZ) v DDZIG ()G ]
R’ = KO = 1T 0 #e, )60 (7.3-1)
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e(nT) Digi
0 + igital
7 7 —= Computer DAC G(s) )
i D ne

Figure 7.3-1. Sampled-data feedback system.

was established. For rational G{s), we have

FIG()G(s)] = —LeE b ok p
OGN = G T F g

=c¢ izt ezt 4 - (7.3-2)

In order that Z[G, (s)G(s)] be nonanticipative, the integer / must be equal to
or greater than zero. If this is not true, then the output precedes the input,
which corresponds to an anticipative system. Thig is predicated on the
presence of g, in (7.3-2), which is a necessary condition for nonanticipa-
tiveness.

The transfer function D{z) is of the form

@y tazrtteo4qgz
Xz} = 1 e R W M Yo (1.3-3)

Inserting (7.3-2) and (7.3-3) into (7.3-1) and simplifying, we obtain

kg™ -t kpa

K(Z)m lo +112“1 + e + lqz—q

(7.3-4)

In order that K{z) be nonanticipative, its nutnerator must contain z7! toa
power equal to or greater than the lowest power of [ appearing in
FG (G in (7.3-2). Again, I, must appear for reasons similar to the
appearance of ¢, in (7.3-2). The requirement of nonanticipativeness is met
if the above properties are satisfied.

It is further desired that D(z} be selected so that the steady-state error at
the sampling times is zero. If the desired form of E(z) can be found, then D{z)
may be determined by using the identity (7.3-1); that is,

- E{(z)
e = ZIG G — K(z)] (7.3-3)

From Figure 7.3-1, the relationship
E(z) = R(z) — ((2)
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follows. Since C(z) = K{z)R{z), we have
E@) =i — KQIRG) (7.3-6)

Since the steady-state error at the sampling time is required to be zero, this
implics e(co) == 0. Using the final value theorem, we have

e(o0) = lim {(1 — z"H{1 — K(Z)IR(z)}

For polynomial inputs of order less than or equal to g, R(z) is of the form

A(z)

R} = ==y

with A(z) being 2 polynomial in z~*. Therefore,

e(e=) = lim (1 — 2711 — K2y (7.3-7)

To guarantee that the steady-state error is zero for all such polynomials, the
term 1 — K(z) must be selected so that

1 — K@Z) = (1 — 271 F(z) (1.3-8)

where F(z) is a ratio of polynomials in z™* that is analytic at z = 1. Sub-
stituting (7.3-8) into (7.3-6) gives

E@) = (I — z 1y F@RE)

— FAQ) = %%A{z) (7.3-9)

By dividing D(z) into N(z)A(z), the time history of the error will evolve;
that is,

ERy=¢,dez+ --- Feyz¥ -

Requirement 3 is satisfied if this expression is terminated with a finite number
of terms and the highest power of z™1 is the minimum possible. An investiga-
tion of (7.3-9) reveals that these properties are satisfied if F(z) is set equal toa
constant; for convenience we choose F(z) = 1. From (7.3-8), we have

1 — K(z) = (1 —z71p*! (7.3-10)

so that the expression for the desired transfer of the digital computer com-
pensator is, by (7.3-5),
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(g
PO = =76, 731

EXAMPLE 7.3-1

‘ Determine K{z) and the settling times for a step, ramp, and acceleration
input,

() Step Input

For a step input g = 0; therefore, (7.3-10) gives us

K)=1—(1—z )Y =z7!

(i) Ramp Input

For ramp inputs g == 1; therefore,

K)=1—(1—zV¥=2z"1~2z"2
(iti} For acceleration inputs g = 2; therefore,
Kz)=1—(1 -z =3z2"' —3z72 273

The settling times for the various inputs can be determined by noting
that for F{z) = 1, E(z) is given by

E(z) = [1 — K(z)]R(z)
For different values of g, we have
Step input of magnitude R:

R

E(z)=[1 — Zﬂ[ii—__z_l =

Therefore,

eIy =0 forn=12,...
e(0) =R

Ramp input of slope ¥

=1
E(z) = [l — Pt e = VT

Therefore,

e(T)=V¥VT
enT) =0 forn=2,3,4,...
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Acceleration input of magnitude A:

-1 -1
B = [0 — P AT A2

= ATz~ 4+ ATz
Therefore,
e(Ty= AT
e(2Ty = AT

e(nT)=10 forn=3,4,3, ...

Table 7.3-1 summarizes these resulis.

Table 7.3-1 Minimal Response Characteristics

Settiing"rime
Taput R RE) K@) = %ﬁ% Sampling Periods
Step anit) T—:“‘?l- z~t T
Ramp atu(t) ﬁﬁ‘%ﬂm 221 — g2 27
Acceleration  af2u(?) %{m 3z1 — 3272 4 22 r

In the minimal response design, the value of the error sign.ai is driven to
zero at the sampling instants. However, between sampling per.lods, th'e error
signal need not be zero. If this is the case, the actual output szgnai will te_nd
to oscillate about the desired output, which for unity feedback is the applied

input.
EXAMPLE 7.3-2

Design a minimal response digital computer compensa'tor for the system
shown in Figure 7.3-1 when a unit step is applied. For this problem

-1
6 =T
This is the same problem treated in Section 7.2.

From Table 7.3-1, we have K(z) == z™! for the step inpuf. Now

1 ] L 4 (e — 2)z7Y

1 -1
26| = = 2 e = T =
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Inserting this result along with K(z) = z™ into (7.3-5) gives us the desired
digital computer compensator transfer function. Narmely,

€ - 271
D@ =t ey

which is in agreement with the results (7.2-13) found in Section 7.2,
EXAMPLE 7.2-3

Design a minimal-response digital computer compensator for the system
shown in Figure 7.3-2 when ramp inputs are applied.

e(nT)
odult) ~ o(t) Zero-order
+ T "\'("' D(z) Hold P i p
h DAC ()

Figure 7,3-2. Minimal response system for step inputs.

From Table 7.3-1, we can find that the desired transfer function K{(z) is

K(z) = %% =2z7% — 772 (7.3-12)
{t can be shown that
-1
Q"[Go(s)s a a] (1 — er)[w] (7.3-13)

Inserting (7.3-12) and (7.3-13) into {7.3-5), we find the desired transfer func-
tion of the digital computer compensator to be

- (2 _— "‘!)(1 — '-[e—aT)
.D(Z) - (1 ___ze—aT)(i __zz—l)z

A typical response of this system is shown in Figure 7.3-3.

1tis possible to design systems that have both finite settling times and zero
error for all time after the system has settled. The design of such systems was
treated in Section 7.2. We have treated unity feedback systems exclusively
for minimal-response design. However, similar methods may be used if the
output signal C(s) is fed back through a system with transfer function H(s).
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Figure 7.3-3. Typical minimal ramp response.

7.4 Controllability and Observability

Before an in-depth discussion of the design of controllers for linear dis-
crete systems may be made, it is first necessary to introduce the concept of
controllability. Consider a linear discrete system characterized by the vector
difference equation

x(k + 1) = Ax(e) + Bu(k) (1.4-1)

where x(k) is the n X 1 state vector at the kth iteration
A is the n % n transition matrix that has an inverse
B is the » x 1 control vector
u(k) is the scalar input at the kth iteration
k is the discrete iteration time.

7.4-1 Controlfability

System (7.4-1) is said to be completely controllable if it is possible to
force the system from any arbitrary initial state x(0) to any arbitrary desired
state X, in a finite number of iteration times.

Essentially, controllability indicates whether a system may be propetly
controfled. In order to determine what properties a linear discrete system must

274
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satisfy so as to be controllable, we repeatedly apply (7.4-1), obtaining
x(1) = Ax(0) + Bu(0)
(2} = Ax(1) + Bu(l)
== AZx(0) <4 ABu(0) -+ Bu(1)

x.z(N.) _ A”;x(d} n Af;“Bu(O) dee o ABU(N — 2) + Bu(N — 1)
(7.4-2)

According to the definition of controllability, system (7.4-1) is controllable
if it is possible to select a value of N and u(0), u(1), . .., w(N — I) such that
x(N) = x, with both x(0) and x,, being fixed but arbitrary. Assume that such
a selection has been made; that is,

Xp — AMX(0) = by u(0) + by_yw() + - +hu(N—1)  (7.43)
where
h, =A*B fork=20,1,2,...

isann X 1 vector.

For (7.4-3) to be satisfied for arbitrary x(0) and x,,, it is necessary that there
be » linearly independent vectors in the set {hy, h,,...,by_,}. This im-
mediately implies that ¥ > n. In fact, it may be shown that for the nth-order
linear discrete system of (7.4-1) to be controllable, it is necessary and sufficient
that the n vectors hy, by, . . ., h,_, form a set of linearly independent vectors.
To help comprehend this fact, rewrite (7.4-3) for ¥ == n as

u(0)
u(l)
Xy — Ax(0) == [by, by, ..., h,_ ] ' = H,u, (7.4-4)

uén — 1)

where H, is an n X » matrix whose jth column is h;,_,
u, is an n X 1 vector whose jth element is #{j — 1).

Equation (7.4-4) will have a solution u, for arbitrary vectors x(0) and x,
if and only if H, is nonsingular. This immediately implies that the columns
h,_; of H, are linearly independent.

Conventionally, it is said that system (7.4-1) is conirollable if the vectors
{f,,f,,...,1) are linearly independent, where

f, = —A~*B (7.45)

is an n X 1 vector.
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1t is an easy exercise to show thatifhg, hy, ..., h,_, are linearly indepen-

dent then so are f,, f;, . . ., £, and vice versa. _
Fortunately, most practical linear discrete systems are controllable.

EXAMPLE 7.4-1

To illustrate how one determines the controllability characteristics of a
specific system, consider a system governed by the second-order differential

equation

d’c , dec _ 7.4-6
Loy ey (7.46)

as shown in Figure 7.4-1

u 1 LN
ss+1)

Figure 7.4-1, Second-crder system.

The system (7.4-6) may be characterized by
dlx -1 0 P‘fx} [1]
—- = 4| ()
dt L‘:z] [ 1 0] sz 0 (

o) =10 E]Eﬂ

2z

and

where x,(f) = ¢ and x,(t) = dc/dt.

Taking into account the fact that the input u(s) is constrained to be con-
stant over one-second intervals, we find

x,(k 4+ i)} . [1 .632}{):,(.&:)] + [.368}4 @®
x,{k+ 1) 0 3681 x,(k) 632
from which we have

i -1.718 {368}
Al = , B=
[0 2.7118 632

The vectors f, and f, as given by (7.4-5) are

g [ 36
L= Li.ﬂs SN S X5
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which we may verify to be linearly independent. This system is therefore
controllable.

Some simplification, in the thought process at }east, is obtained if the
desired state x,, is set equal to the zero state {origin in state space). No loss
of generality results from this assumption, since it is possible to define a new
state vector x,,. related to the former state vector X, by

Frew = Ko — Xi)

for which when x4 = X, it follows that x,,,, = 0 (the origin in the new state
space). This is merely a shifting of the origin of the original state space by the
amount Xp.

Unless otherwise noted, the desired state vector x, will be taken to be
equal to the zero vector in all discussions following.

Let us now determine thoese initial states x(0) that may be forced to the
zero state (x, = () as a function of the number of iteration times N. Pre-
multiplying both sides of (7.4-2) by A™¥ and setting x(¥) = 0, we obtain

X(0) = £,u(0) + Lu(l) + - -+ LN — 1) (7.4-7)

where f, = —A™*B. If (7.4-7) is satisfled, then it is guaranteed that x(N) = 0.
Specifically, let N = 1. Therefore, any initial state that may be forced -
to the zero state must be representable as

x(0) = £,u(0) (1.4-8)

where f, is an n x 1 vector and u(0) is a scalar. Any initial state that lies on
the line passing through the tip of vector f; and the origin in state space may
be forced to the zero state (the origin) in one iteration time. All other initial
states not positioned on this line cannot be forced to the zero state in one
iteration time.

For example, consider the system given in Example 7.4-1. For this sys-
tem the vector f; was given by

g
£, = 18
—1.718
Figure (7.4-2) shows all initial states that may be forced to the origin in one

iteration time.
For N = 2, equation (7.4-7) becomes

x(0) == £,u(0) + £,21) {7.4-9)

Expression (7.4-9) is simply a linear combination of the two n X 1 vectorsf,
and f,. The set of initial states that may be forced to the zero state has been
expanded (if it is assumed that the order of the system is greater than one)
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0.718
] Xy
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Figure 7.4-2. Initial states lying on line through tip of £; and origin
may be forced to the zero state in one iteration for the system of

Example 7.4-1.

over the case # = 1 under the assumption that the vectors f; and fz.ai't? linearly
independent. However, if f, and f, are linearly dependent, that is, if

f, = af, for some scalar

then (7.4-9) becomes
x(0) = £, {u(0) + au(1)} = £,a(0)

and the same set of initial states may be forced to the oxz‘igin as was the case
for N = 1. Therefore, it is desirable, from a control viewpoint, 1o have f,
inearly independent.
andT%eliector}s: i, ani:i f, for Example 7.4-1 are shown in .Figure 7.4-3 for the
system given in Example 7.4-1. We see rea‘dlly ifrom. Figure 7.4-3 that the
vectors f, and f, are linearly independent. §1nce, in this example, state space
is two-dimensional, it follows that any initial state x(0) may be \jmttcn as a
tinear combination of the vectors f, and f,. To demonstrate this fact alge-

braically, rewrite (7.4-9) as

(0 718 36717 .. [ 718 3.671][@:(\0)]
E Eoﬂ - [-1.718}‘@ * [m4.671}u(1) B [——1.’?18 —4.671| ()
1 (7.4-10)
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b x;

8 3.671

et e ot

—1.718 -

bl
[y

T TV .
67 4

Figure 7.4-3, Vectors f; and f; for the system of Example 7.4-1,

Now the matrix multiplying the vector

7))
L(l)}
is invertible, so (7.4-10) has a unique set of scalars {u(0), w(1)}, which will
satisfy this equation for arbitrary x,(0), x,(0).

For systems that are of order exceeding 1 or 2, it follows that not all
initial states may be forced to the zero state in one or two iteration times.
For example, if (7.4-9) were viewed as a set of # equations in two unknowns
[1.., u(0), u(1)], only under very specific choices of x(0) will (7.4-9) have a
solution.

We might think of the set of initial states as written in (7.4-8) as forming
a one-dimensional subspace of the n-dimensional state space. Similarly, if
f, and f, are linearly independent, the set of vectors written in the form given
by (7.4-9) can be thought of as forming a two-dimensional subspace of the
n-dimensional state space.

This notion may be extended to N == 3,4, 5, . ... The set of initial states
that may be forced to the origin in N iteration times is given by

' Ry = {x(0): X(0) =%, f.,u00)] (7.4-11)

For N <{n, R, is a subspace of state space. If the vectors f.f,, ..., fyare
linearly independent, subspace R, has dimension N.
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7.4-2 Control Amplitude Limitations

All practical control systems have some limitation on the amplitude of
the control that may be applied. In such cases, the set of initial states that
may be forced to the zero state in N iteration times changes drastically. For
example, let the control inputs be constrained by

—1<up)<<l fori=10,1,2,... (7.4-12)

The set of initial states that may be forced to the origin in N iteration
times and this constraint is given by

Ry, — {x(()): x(O)mNz:;: R0 with|u(z‘)]g1} (7.4-13)

For the system considered in Example 7.4-1, Rj and Rj are shown in

Figures 7.4-4 and 7.4-5, respectively.
An investigation of Figures 7.4-1 through 7.4-4 reveals the control loss
one suffers when control amplitude constraints are imposed.

lxg,

f;

Figure 7.4-4. Region Ri.

7.4-3 Observability

To develop some of the basic properties of system observability, we shall
study the discrete system

x(k -+ 1) = Ax(k) + Bu(k) | (7.4-14)
yiky = Cx(k) (7.4-15)
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wfy wfy  x;

_'fl

—f + 1,

fl —fz

Figure 7.4-5. Region RJ.

where x(k)is a n % 1 state vector, u(k) is the m x 1 input vector, p(k) is the
measurable output signal, while A, B,and Care n X m,z x m, and I x n
ma.tri.ces, respectively. The lack of a Du(k) term in (7.4-15) is not very re-
strictive, since any system whose transfer function has more poles than zeros
may always be put into this form.

It is frequently desirable to be able to determine the state of the system
x(k) from a knowledge of the measurable output signal y(k). Since the state
vector x(k) has n components while the output signal is only a scalar, it is
apparent that we need many values of y(k), both present and past, in order to
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determine x(k). In essence, this is basically the meaning of observability.
A system such as (7.4-14) and (7.4-15) is said to be “completely observable”
if it is possible to determine the state x(k} from present and past values of
the measurable output signal.

Since the control imput vector u{k) and input matrix B are known
quantities, we may investigate the zero input case [i.e., u(k) == 0] to develop
the necessary and sufficient condition for system observabﬁ;ty Namely, we
shall be concerned with the system

x(k 4 D) = Ax({k) (7.4-16)
y(k) = Cx(k) (1.4-17)

Tteratively applying (7.4-16), we have
x(k —m) = A""x(k) form=0,12,...
so that
y(k — m} = CA™"x(k) = g, x(k)
where g, is a 1 X n vector. Therefore,

y(k) = gox(k)
yl - 1) = g x(k)
yk—n+1) =g, xk)

or, equivalently,

y(&)

yk—1)

. == Gx(k) (1.4-18)
yk—n+1)

where G is an n X »r matrix whose first row is gy, whose second row is g,
ete. A sufficient condition that {7.4-18) have a unique solution is that the
matrix G be invertible. If this be the case, then

yik)
ywk—1)

x(k) = G| - (7.4-19)
vk —n+1)
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Expression (7.4-19) indicates that if the value of the output signal at titues
k,k—1,..., k—n-1 is retained, then the state x(k) may be directly
determined. Therefore, the invertibility of G is a sufficient condition for
“complete observability,” and it turns out to be a necessary condition also.
G is invertible if and only if it has independent rows, which implies that
an alternate necessary and sufficient condition for “complete observability”
is that the set of 1 X 2 vectors

{A, CA,CA?, ..., CA»1)

must be linearly independent. This gives us a very straightforward method
for determining the “complete observability” of a system.

With the concepts of controllability and observability established, we shall
now treat some of the more important optimal control problems.

7.5 Regulator Problem

The most basic control problem is one of regulation. Suppose that we
wish to control a system governed by the vector difference equation

x(k + 1) = Ax(k) -+ Bu(k) (7.5-1)

in such a manner as to transfer the system from some arbitrary initial state
%(0) to a desired state x,,. What is the form of the required control sequence
and the control law that generates this sequence?

it will be assumed that this nth-order discrete system with one control
input is completely controllable; that is, the set of vectors {f,, f,,...,{},
where

f,=—A*B (ann x Ivectorfork=1)

forms a set of linearly independent vectors,
Repeatedly applying equation (7.5-1) gives

X(N) = A¥X(0) -+ AY 1 Bu(0) -+ A¥ 2 Bu(l)
+ oo 2+ ABu(N — 2) 4+ Bu(N — 1)
If it is possible to select a confrol sequence w(Q), u(l),..., (N — 1}
so that the state x(¥) = x,,, this implies that the control sequence must
satisfy the relationship

X(0) — AVx, = £,u(0) + Lu(l) + - + TV — 1)
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or in matrix form
x(0} — A V%, = Fu, (1.5-2)

where Fis an # X N matrix with columns £, f,, ..., fy whileuyisan N X 1
vector whose first element is #(0), whose second element is u(l), etc. Equa-
tion (7.5-2) is, in fact, a system of # equations in N unknowns [the u(i)’s].
If Nis less than #, that is, if the number of control sequences is less than the
order of the system, it may not be possible to find a control vector wy to satisfy
(7.5-2). With this in mind, let N = #; now the n X » matrix F, has an inverse,
since it has » linearly independent columns {(the f.’s) because of the assump-
tion of system controllability. Premultiplying both sides of (7.5-2) by ¥’
gives the required control vector to effect the desired state transformation;
that is,

u, = Fri[x(0) — A~¥x,] (7.5-3)

The control law as given by (7.5-3) is an open-loop control law, since the
required control vector u, depends only on the initial state x(0). Therefore,
once the initial state x(0) is monitored and the desired state x,, given, the con-
trol sequence #(0), u(1), . . ., u{n — 1} is immediately calculated from (7.5-3).
This sequence is unique because for N = n, equation (7.5-2) is a set of n
equations in » unknowns and, since ¥, is a nonsingular matrix, there exists
one selution, which is given by (7.5-3).

For controllable systems, expression (7.5-3) gives the control vector that
will drive the system from any initial state to any desired state in » iteration
times. If N' < n, it is not always possible to select the control sequence {u(k)}
so that x(N) = x,. When N > n, the control engineer bas some design
freedom. In this latter case (i.e., N = n), there exists an infinite number of
different control sequences to effect the desired control, and the designer
may select from this multitude of choices one that may satisfy secondary
constraints such as minimum energy regulation, minimum amplitude reg-
ulation, eic.

EXAMPLE 7.5-1

Consider the system studied in Example 7.4-1. Suppose that it is desired
to drive this system from any arbitrary initial state to the zero state in two
iteration (sample times) times. From (7.5-2) with x, == 0 and N == 2, we have

{xl(ﬂ}} x[ 7183 3.6708}[14{0}} .54
x,(0) 17183 —4.6708 ]| w(D)

Premultiplying both sides of (7.5-4) by F3! yields
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[u((})] _ [—1.5820 “—1.2433j| x,{0)
u(1) 5820 2433 [ x,()
which, when we set x,(0) = ¢(0) and x,(0) == de(0)/dr, results in

u(0) = ~1.5820¢(0) — 1.24332%0_)
(7.5-5)
w(1) = .5820¢(0) + .24334_2(;1)

The conirol law as given by (7.5-5) reveals the open-Joop nature of this
type of control.

In the regulation problem, it is not necessary t{o equate the number of
control iterations (¥) to the order of the linear discrete system under control
{n}. Let us now investigate the case when N = # for controllable systems.
Equation (7.5-2) is a set of » equations in N [the u(f)’s] unknowns, and
v:fhen N> n, we have more unknowns than equations. When these equa-
tions are consistent (have at least ome solution), there exists an infinite
number of different solutions. Because the system under control is assumed
controllable, this set of » equations in N unknowns is always consistent for
N = n. This fact is best illustrated by means of an example.

EXAMPLE 7.5.2

For the system investigated in Example 7.4-1, determine the properties of
the control sequence needed to force x(3) == 0.
In this case, for N = 3, we find that

7183 3.6708 11.6965
f, w= , f= , L=
—1.7183 —4.6708 —12.6965
so that (7.5-3) becomes

w(0)
u(1}

{xl(ﬂ)} _[ 7183 3.6708 11.6965}
u(2)

x0)]  [—1.7183 —4.6708 —12.6965

or, in equation form,

%,(0) = 7183u(0) -+ 3.6708u(1) + 11.6965u(2)
x,(0) = ~—1.7183u(0) — 4.6708u(1) — 12.6965u(2)

that is, 2(» = 2) eguations in 3(N = 3) unknowns. We may easily verify
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that this set of equations has at least one solution [e.g., let #(2) = 0 and see
Example 7.5-1].

7.6 Minimum Energy Control

In many applications, we desire to accomplish a given control task, using
the minimum amount of control energy necessary. Such a problem will now
be formulated. (See also Ref. 5.) '

The system under study is governed by the vector difference equation

x(k + 1) = Ax(k) + Bu(k) (7.6-1)

A linear, time-invariant vector difference equation of the form given by
(7.6-1) will occur whenever a continuous system that is characterized by a
linear, time-invariant differential equation is driven by a single input that is
constant over fixed intervals of time (sampled-data systems). This was
demonstrated in Chapters 2 and 3.

We desire to drive such a system from any arbitrary initial state x(0) to a
desired state x,, in NV iteration times, using a minimum of control energy.
Control energy will be measured by the quantity

N1
Ey = s?;"_; u*(k) : (7.6-2)
If the alotted number of control iterations N is smaller than the order of the
systern #, it will not always be possible to accomplish the desired control
action. In order to take this factor into account, a slightly different control
problem is postulated.

Given a discrete system governed by (7.6-1), design a controller that

generates the control input w(0), (1), ..., u{(N -~ 1) that

1. Takes the system from any initial state x(0) to a desired state X, in N
iterations while minimizing control energy [as measured by (7.6-2)] and, if
this is not possible,

2. Minimizes the Euclidean distance of the state of the discrete system
from the desired state at the end of N iteration times; that is,

(xp — X(N)F'(xp, — X(N)) (7.6-3)

Expression (7.6-3) gives a measure of the distance that the error vector
X, — X(N) is from the zero vector. For the remainder of this section, the
desired state is taken to be the zero state. No loss in generality is incurred
under this assumption, since if the zero state can be reached in N iteration
times, then so can any other state.
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It is desired to force x() = 0 by a proper selection of control inputs
w(0), u(1), . . ., u(V — 1). If this is to be possible for any initial state x(0), then
it must be possible to select the parameters (control inputs) w(0), u(1), .. .,
(N — 1) so that

X(N) =0 = A%(0) + AY"'Bu(0) - --- + ABu(N — 2) + Bu(N — 1)
or, if we premultiply both sides by A~ and use the identity f, = —A"*B,
X(0) = u(O)f, + u()f; + -+ + u(N — Dfy (7.6-4)

Equation (7.6-4) indicates that if x(N) = 0, then the initial state x(0) must be
expressible as a linear combination of the vectors £, £, . . ., fy. For control-
lable systems, the vectors f;,f,,...,f, form a set of linearly independent
vectors, so that any n X 1 vector may be expressed as a linear combination
of such a set. This suggests that for controilable systems it is always possible
to force x(N) = 0 for N > » for arbitrary initial states x(0). When N < n, it
is not possible to force all initial states to the zero state. Two cases will then
be considered: (i) N > n, and (i) ¥ < =

Case (i) N=>n

For N = n, the state vector after N iteration times may always be forced
to the zero state.
Thus, expressing 7.6-4 in matrix form,

x(0) = ¥u (1.6-5)

where F = the # X N matrix with columns f,
u == the N x 1 control sequence vector with elements w,

‘The optimal control sequence must satisfy the matrix equation (7.6-5)
and also must be a minimum energy solution. It should be noted that if the
control sequence satisfies equation (7.6-5), then x(N) = 0 is guaranteed.

Case (i) N<n

The case when the plant is confroflable and N <C n is treated analogously
to the case when N 2= n, but with one basic difference. The assumption that
any initial state can be forced to the zero state after N sampling periods is
not valid. If x(¥') can be forced fo the zero state, the control sequence required
for N < n is unique, and if it is not possible to force x(N) = 0 then the
Euclidean distance

I = (& %)™ (7.66)
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must be minimized. It will be observed that no mention of {ninixnlffm energy
is made for N < n. Thus the minimum energy problem in this case is equiva-
lent to selecting a control sequence that minimizes|| x(}\_f ) [j. The soluu_on tothe
minimum energy problem for controllable systems 1s illustrated in Table

7.6-1.

Table 7.6-1 Seclution of Minimum Energy Problem
for Controllable Plants

Case Solution
N=n Minimum energy solution of x{0) = Fu
N<n Minimize | x(N)1]

Before we consider the techniques of obtaining the solution to this prob-
lem, a few developments in inverse matrix theory will be presented.
7.6-1 Right and Left Inverse Matrix Theory

To demonstrate the use of inverse matrix theory in the solving ofa sy.stem
of 1 linear equations in  unknowns, the following set of equations will be

considered.
a.4%, -+ Ty Xy g + Gy == bl
Ay Xy F dyoXy o F Gan¥m = b,
dy3 Xy Gy Xy e G Xy = bﬂ

or in its equivalent matrix form

Ax =" (71.6-7)
where
Ay G1z - Gip
A= | % dyy Gam
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Consider the special case when m == #; it can be easily shown that if the
rank of matrix A is n, then equation (7.6-7) has a unique. solution given by

x=A"

where the n X # matrix A™! is that unique matrix that satisfies the two prop-
erties

AATl =T,
AA =1,

I, is the 7 % n identity matrix, and A™! is the inverse matrix of A.

An alternate necessary and sufficient condition for a square matrix A
to have an inverse matrix A™' is for det (A) 5= 0. If the determinant of A
is equal to zero, then equation (7.6-7) may have infinitely many solutions
or in fact may have no sofutions at all.

When m = n, matrix theory can still play an important role in the seeking
of solutions to a system of linear equations.

Definition. Ann x m matrix A is said to have a right inverse AR if AAR = 1.
Similarly, the # X m matrix A is said to have a left inverse A%
if AfA =1,

Theorem 7.6-1. If the n X m matrix A has a right inverse matrix A%, then
x = ARb

is a solution to the consistent matrix equation Ax = b, The term
consistent as used above indicates that the matrix equation has at
least one solution.

Proof. Substitute the assumed solution into the matrix equation; if it is
indeed a solution it will satisfy the matrix equation

Ax = b
Let
x == A¥b
AX = AAfD == b

Theorem 7.6-2. If the n x m matrix A has a right inverse matrix A%, then
x = (I — AFA)y

is a solution to the homogeneous matrix equation Ax == 0,
where v is “any” m x 1 vector.
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Proof. Ax =10
Let

x = (I, — AFA)Y
Ax = A, — A®RA)y = (A — AAFA)y = §
Corollary. If the n X m matrix A has a right inverse matrix A%, then
% = A% 4 (I, — ARA)Y (7.6-8)
is a general solution to the consistent matrix equation AX = b,

where y is any m x 1 vector.

Tt will be noted that the solution space of the matrix equation Ax = b is
of dimension equal to the rank of I, — A®A. So that, in general, if the
matrix of A has a right inverse, there is an infinite numaber of solutions all
contained in the subset specified by

x = ARb + (I, — ARA)y

where the vector A%b is fixed (for a given A%®) and the vector ¥ is allowed to
span the m-dimensional space.

It should be pointed out that a right inverse matrix A%, if it exists, is in
general not unique, as will be demonstrated in the next example.

EXAMPLE 7.6-1
Consider the set of equations

x, +2x,=23

C(1.6-9)
x, + 2% =3
Therefore,
A= 1 2 0 , b— [3
0 1 2 3
and, as is easily verified, one right inverse of A is given by
1 2
AR=10 —1 (7.6-10)
0 1

The general solution using equation (7.6-8) becomes
x, 9 0 —4 4l
xyl=1|—-3}4+10 2 21 ¥,
X, 3 ¢ —1 —1jilys
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The rank of I, — A®A in this example is one so that in general any solu-
tion to equations (7.6-9) is located on a line in three-dimensional real space
which passes through the peint (9, —3, 3). The equation of this line is specified
by (I, — A®A)y and is obtained in the following manner:

0 —4 —40y, —4(y, + 7s) 4
0 2 2y, = Ay, +yi) | = 2y, +ya)
0 -1 —1]y, ~{ys + ¥1) —1

The range of y, 4 y; is (-0, oo). The solutions to equations (7.6-9)
become

x, 9 —4dq
X, 1= =34 2a|, —oo << g << oo
X3 3“""‘"@

To demonstrate that the right inverse of matrix A as given by equation
(7.6-10) is not unique, we may easily verify that the following matrix is also a
right inverse of A.

3 2
A= ] —1
% H

It can be shown that an n X m matrix A has a right inverse if and only if
A is of rank » and has a left inverse if and only if the rank of A is m.

7.6-2 Minimal Right and Left Inverse
Matrices

If the # X m matrix A has a right inverse, then the solutions to the matrix
equation Ax == b are given by

X = A% -+ (I, — ARA)y

Of all the solutions existent, we are particularly interested in the solution
x°, which is smallest in the Buclidean norm sense; i.e.,

T () = 13| = min [} A% + (T, — ARy (] (7.6-11)
= ¥
The problem to be considered here is the determination of that right
inverse of A (which will be denoted by A®*) that will yield the solution x*
given by equation (7.6-11); i.e.,

X% = ARMp
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Definition. x° is the “minimal Euclidean” solution to the consistent matrix
equation Ax = b if

(i) Ax°=D .
() ||x°|l =< lix|} for all x that satisfy Ax = b

Thearem 7.6-3. If the n % m matrix A is of rank », then the “minimal
Fuclidean™ solution to the consistent matrix equation Ax = b

is given by
x? = ARMh (7.6-12)

where ARM = AT(AAT)™! and A7 is the transpose of A. A*™ will
be called the minimal right inverse of A.

EXAMPLE 7.6-2

The “minimal Euclidean” solution to Example 7.6-1 will now be deter-

mined.
We recall that

Therefore,
5 2
AAT =
2 3
5 =2
A = ATAATY = 8
—4 10
and
2
2
X == ARMh = | £
'?"

. Definition. x° is the “minimal Euclidean” approximation solution to the
matrix equation Ax = b if

[[Ax — b|| > ||Ax® — b]] forall x = x°

Theorem 7.6-4. If the n x m matrix A is of rank m, then the “minimail
Euclidean” approximation solution to the matrix equation Ax
= b is given by

x? = AMp (7.6-13)
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where A™™ = (ATA)"'A” and will be called the minimal left in-
verse of A.

7.6-3 Application of the Minimal Right
Inverse Matrix to the Minimum Energy
Problem for Controllable Plants

In the case where the plant is controllable and N > #, it was shown that
the minimum energy problem was obtained by satisfying the matrix equation

*(0) = Fu (7.6-14)

and the control sequence vector u which satisfies this equation must be a
ninimal energy solution. As N > #, this control sequence will guarantee that
the state of the plant after NV sampling periods will be the zero state vector.

Since the plant is assumed controllable, the #» X N matrix has rank 7
thus it has a minimal right inverse. Using Theorem 7.6-3, we find that the
matrix ¥ takes the place of matrix A and the “minimal Euclidean” solution to
equation (7.6-14) becomes

u® = F7(FF?)" x(0)

That u® is the minimal energy solution follows from the fact that u®
is the “minimal Euclidean” solution to equation (7.6-14); l.e.,

which is 2 measure of the energy. Since u® satisfies equation (7.6-14), it follows,
by the remarks leading to Theorem 7.6-3, that u® is the minimal energy control
sequence that forces x(W) == 0.

The matrix F(FF7y ' is an N X » matrix and right-multiplying it by x(0)
requires Nn multiplications to generate the minimal energy control sequence
vector u®. When the optimal controller first senses the initial disturbance
x(0), it performs the » multiplications needed to generate the control function
for the first sampling period; i.e.,

H(0) = 3} oy, (7.6-15)

where &, = the (7, j) element of F7(FFT)~!
x; == the jth component of x({0).
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The optimal controller then applies u(0) during the first sampling period
and simultaneously determines the remaining components u(1), u(2), ...,
(N — 1). The time between when the initial disturbance is detected and
when ©(0) is applied to the plant is essentially the time required to carry out
the » multiplications as given by equation (7.6-15). If this time is small in
comparison to the sampling period and the plant time constants, then a real-
time minimum energy control strategy is feasible.

Tt is felt that the case when the plant is controllable and N = n is the most
practical situation a control engineer will meet. This is because the great
majority of plants encountered in practice are controilable and by selecting
N > nit is guaranteed that any initial disturbance will always be completely
extinguished in N sampling periods.

The optimal controller for this case is illustrated in block diagram formin
Figure 7.6-1.

% FT(FFT)~ ::%

Figure 7.6-1, Optimal controller for a controllable plant, N =>n.

7.6-4 Numerical Example

The plant under study is characterized by the transfer function

1
G6) =D

For this plant we have

The fundamental matrix A is evaluated by standard techniques, and for
a sampling period of one second it is given by

] ] —et
A = 7.6-16
[0 s } (7.6-16)
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B is given by

e"i
B = L ] (7.6-17)

—_ e_l
The vectors f, which are the columns of F, are given by

fo=—A""B (7.6-18)

A‘§=F 1—e¢
0 e

Evaluating f;, f;, f;, and f, as given by equation (7.6-18) we obtain
P 7183 3.6708 11.6965
1= 3 fz == s f3 =
—1.7183 —4.6708 ~12.6965]
-1: 33.512
f, =
—34.5126

Since f, and £, are linearly independent, the plant is controllable.

it can be shown that

Problem. Find the control sequence vector for the minimal
problem for N == 2,3, 4. al energy

Since the order of the system under study is # = 2, the minimal energy

solution for N =2, 3,4 will force any initial disturbance to zero. The
results of Section 7.6 with N >> # are used.

Solution. The problem will be solved in detail for N = 4., The results for
N =2 and N = 3 will be given without detail.

Fu = x(0)

for N = 4, F becomes

[ 7183 3.6708 11.6965 33.5126
—1.7183 —4.6708 —12.6965 -~34.5126}

Thus

FF [ 1273.8524 --1323.4916
—1323.4916 1377.0897
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Therefore,
. 5225 .5022]
FEYT =" soo2 4833
and the minimal right inverse becomes
— 4876 —.4698
— 4275 —.4143
FRM
—.2643 —.2632
1794 1473

The minimal energy solution for N = 4 becomes

w(0) — 4876 —.4698
w(ly| | —4275 —.4143 {x(())] (7.6-19)
u2)| | —.2643 —.2632 [ X(0)
u(3) 1794 L1473
Similarly, for N =3
w(0) —7910 —.7191 A0)
7.6-20
u(l) | = | —.5000 —.4738 [x(g)] ( )
w(2) 2910 .1929
and finally for N=2
#(0) —1.5820 —1.2433}[;;(0)] (7.621)
L(l)}{ 5820 .2433}[%(0)

A specific initial condition will now be considered.
x( —40.9067
X0y =1 e
X0 43,5067
Substituting this initial condition into the matrix equations (7.6-19),

(7.6-20), and (7.6-21}, we obtain

N=4
w0) = —.4963,  u(l) = —.5352,
W2) = —.6408,  u(3) = ~.9277
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N=3
uf() = 1.0732, ull) == — . 1602, u(2) = -3.5130
N=2
u(0} = 10.6225, u(l) = —13.2225
Although each of the above control sequences will force the plant with

the specific initial condition to the zero state vector, it will be noted that by

making N progressively larger the emergy requirements are drastically
reduced; i.e.,

N=2
" — 287.6720
(=0

N=3
S = 13,5186
=0

N=d

S = 1.8040
&0 .

7.6-§ Minimum Energy Control
with Amplitude Constraint

There are many practical control systems in which there is an amplitude
limitation on the contro] that may be applied. A problem is now proposed
for a sampled-data control system with a control amplitude limitation that
may be solved by utilizing the techniques developed in this section.

Problem. Force any controllable plant from some initial state to the zero
state in the minimum number of sampling periods subject to the condition
that for that number of sampling periods it is the minimum epergy solution
and in addition none of the components of u, exceeds a certain positive
number « in absolute value; e.g.,

I ui£ é a
Solution. Since we are to force the plant to the zero state, use of the
minimal right inverse matrix will be made. Precalculate ¥ for N=n,

n +1,... and store these matrices in the optimal controller. First compute

) = FX¥x(0)
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If none of the components of u exceeds « in absolute value, then the optimal
control sequence is obtained. If some do, then compute

w,; = Fix(0)

and continue this process until a F§#x(0) is obtained which satisfies the ab-
solute magpitude constraint. The ug obtained is the solution to the problem.
As a practical example, consider the system studied in section 7.6-4 with

constraints

<1, i=12...

—40.
X(0) = 0.906
43.5067
1t was shown that the optimal solution for the problem proposed in this
section is given by

and the initial condition

i, = — 4693, u, = —.5352, uy=—.6408, u,=—.9277

7.7 Tracking Test Inputs

A frequent requirement of discrete systems is the ability to track certain
deterministic test input signals. The standard test input for such purposes is
the discrete step of amplitude @; that is

r) = Q fork>0

(1.7-1)
rk)=0 fork <0

By tracking, we mean the ability of the system to respond to test inputs, such

as the discrete step, so that the system’s output is equal to the system’s input

with possibly some delay involved. Expressing this mathematically, we have

e(k) = r(k — m) (1.7-2)

where c(k) denotes the system’s output and the integer n is the delay interval
given in discrete-time iterations. If m == 0, this implies that the system’s
output exactly equals its input when the test signal is applied.

As most practical discrete systems have nonzero time constants, equalities
such as that given in (7.7-2) are possible only after the transient terms have
decayed to zero. Therefore, we shall initially investigate the case when (7.7-2)
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holds for very large vatues of k(i.e., as k —» o). It is assumed that the system

to which the input is applied is linear, so the relationship b
? t
R(z) is of the form p between C(z) and

C(z) = HZR() (1.7-3)
The error signal is defined by
e(k) = o) — r(k — m) (1.7-4)

and Imeasures the amount by which the desired relationship (7.7-2) is incor-
rect. Taking the z-transform of (7.7-4) gives

E(z) = C(z) — z7™R(z)
and using (7.7-3) results in
£(z2) = [H(z) — z7"IR(z) (1.7-5)

Since we wish e(k) to be zero for large &, we apply the final value theorem to
(7.7-5) and set the result to zero; that is,

e(e0) =lim (1 — z")[H@) — z7"|R(z) = 0 (1.7-6)
Relations.hip (7.7-6) is the necessary condition that must be satisfied in order
for the discrete system with transfer function H(z) to track the input k).

{\n inves.tigation of the properties required by H(z) in order to track
spectfic test input will now be made.

7.7-1 Step Input

This test input is characterized by equation (7.7-1) so that

R
R@) = =
which when inserted into (7.7-6) yields
{15111 [H(z) — z7m] == 0 (171

Therefore, H(1) — 1 = 0, which implies that a linear discrete system will
properly Frack'a step input only i its transfer function evaluated at z = |
equals unity. Since H(z) is related to its weighting sequence 4(n) by

H@) = 3 ho)z™*
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requirement (7.7-7) is seen to be equivalent to
3 (k) = 1 (1.7-8)
k=0

that is, the sum of the terms in the weighting sequence equals unity. For
example, the discrete system with weighting sequence

BO) = 1
M) = —2
W2y = 2

W) =0 forks=0,1,2

will properly track a step input. o ‘ .
To demonstrate the potential control applications available, consider the

digitally controlled system shown in Figure 7._7-1. Suppose .it is desired that
this control system track a step input of amplitude R; that is,

c(kT)—> R forlarge k

: Digital Data o(t)
r (!} + m / J— Compﬂter Hold G(S}
T D{z) m

TG

Figare 7.7-1

What constraint does this imply on the digital computer? From (6.5-13)
it was previously shown that

C DERYFIG, ()G(S)] 7.7-9
H(z) = Rgg =1 D) ZIG,(5)GE)T(5)] 72

For proper tracking of a step input, we must have H (1) = 1, which from
(7.7-9) gives

1 i
D3| = XA = e 56m = 20,666 T
(7.7-10)

There is obviously an uncountable number of discrete systems that satisfy
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(1.7-10), all of which will guarantee ¢(nT) ~— R for sufficiently large n. It is
up to the design engineer to select that D{z) which satisfies (7.7-10) and
meets other criteria. For example, since it is desired to force ¢{f) = R identi-
cally for sufficiently large time #(and not just at the sampling times nT") we
select a D(2) that both satisfies (7.7-10) and meets this requirement. Tech-
niques for making such a selection are treated in references 2, 3, and 4.

An interesting special case occurs when T(s) = 1 (i.e., unity feedback).
In this case

D(z}],-y == o0

which implies that the transfer function of the digital computer has a pole
at z = 1,

We return to expression (7.7-7); a linear system with transfer function
H{(z) will track a step input if H{z) — z™™ has a zero of at least order one at
z == 1. Puiting this into an explicit form gives

H(D) =z"" + (1 — 2 1)8(z)

where S(z) is a ratio of polynomials in z which has a finite value at z = |
[i.e., S(z) has no pole at z = 1].

7.7-2 Ramp Input
A test ramp input signal is characterized by

rky=Vk fork=0

7.7-11
Miy=0 fork<0 ( )
which has the z-transform
Ve
Riz) = = (7.7-12)
Inserting (7.7-12) into (7.7-6) gives

. T H(z) — z“"‘] - :
lim ["”—_“z L (7.7-13)

Expression (7.7-13) is the necessary condition that the discrete system with
transfer function H(z) must satisfy in order to track a ramp input. Aninspec-
tion of (7.7-13) reveals that H{(z) — z™™ must have a zero of at least order
two at z == 1; that is,

H(z) — z7m = (1 — z71)28(z) (7.7-14)
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where S(z) is a ratio of polynomials which is anaiytic. (nf} po}e) at z m'i.
Evaluating (7.7-14) at z == 1 reveals that H(1) = I, which %mphes that a dis-
crete system that tracks a ramp input will also track a step mput. .

If it is desired that the discrete system perfectly follow a ramp input, 1.,

e(k)y =r{k) ask—> o0
we set m = O in (7.7-14), obtaining
HE) =1— (1 —27):5()

Examples of two systems that will track a ramp input are
(@) H(z)=1;set S(z) = 0.
(b) H(z)=2z"' — z7%;set S(z) = L.
7.7-3 Acceleration Input

An acceleration input of amplitude 4 is characterized by the time sequence

k) = —g»kz fork =0
k) =0 fork < 0

Therefore,

Azl +z7Y)
Z

R(z) = (Ir=2z7y

The necessary condition for proper tracking becomes

im [ 545 = ¢

which indicates that H(z) — z™™ must have a zero of order at least three at
z = 1. Therefore, the form of H(z} is given by

H(z) = 277 + (1 — z71)38(2)

with S(z) being a ratio of polynomials in z analytic at z = L.

7.8 Controller with a Quadratic Performance Index

A useful criterion for measuring the performance of a control system is
the quadratic performance index. This index, typically, will have the form

Sec, 7.8 Controfler with a Quadratic Performance Index 303

T =3 BRTOQX(K) + 4T (kIRu(k)] (78-1)

where x(k) is the n x 1 state vector and w(k) is the p X 1 control vector at
the kth iteration time. 0 is an n X n positive semidefinite symmetric matrix,
and R is a p X p positive definite symmetric matrix. These matrices may be
selected to weight the magnitudes of the state vector and comtrol vector.

The quadratic control problem is the following: Given & system charac-
terized by the vector difference equation

x(k + 1) = Ax(k) + Bu(k) (7.8-2)

which is at some arbitrary initial state x(0), determine the control sequence
u(0), u(l), . . ., u(N — 1) that minimizes the quadratic performance (7.8-1).

This problem may be treated as a minimization problem involving a
function of several variables. The objective here is to minimize J of (7.8-1)
subject to the constraint equations specified by (7.8-2). By use of a set of
Lagrange multipliers M0), A{I), ..., M¥), we may recast this problem as
one in which the augmented performance index

H =3, (3x(Qx() + 0 (kRu(k)
+ M7k + DIAX(E) + Bugk) — x(k + D} (7:83)

is to be minimized. It is known that the recast problem is equivalent to the
original problem. ,

The minimization of (7.8-3) is carried out as an ordinary problem of
finding the maximum or minimum of a function of several variables, We
merely obtain the partial derivatives of J with respect to x(k), u(k), and
A(k), for all values of k, and equate these relations to zero.

oH _ _ _

B=0 k=01... N1 (7.8-4)
0H _ — i
Fio=0 F=01L.. N1 (7.8-5)
9H _ - _ .
B=0 k=01... N1 (7.8-6)

Equations (7.8-4) through (7.8-6) constitute the necessary conditions for &
to have a minimum.

The individual relations involve the differentiation of such quadratic
expressions as z¥W,v, v"'W,, and 2"W,z. Each one of these expressions is a
scalar, but is differentiated with respect to the vector variables z and v.



304 The Analytical Design of Discrete Systems See, 7.8

For the purpose of this problem, we are interested in the following results:

AW, v _ Wiz (7.8-7)
Jv '
OoVW,z __ W,z (7.83-8)

dy
GZ;W# = Wiz + W,z (7.8-9)
z

Tt is left as an exercise for the reader to verify these resul‘ﬁs‘.

The differentiation as indicated by the necessary conditions may now be
carried out.

For k = 0 we have

dH 7 s
FNO] {05 = Qx(0) -+ ATA(1} — M0) =0 (a)
ol 7 - b 7.8-10
ﬂwu(()) = Ru(0) + B*AM(1) == § &) ( )
dH _—
0y = AX(0) -+ Bu(0) — x(1) =0 (c)

Fork=12,...,N—1

OH _ Ox(ky + ATME+1) — M) =0 ()

Ix(E)
0H r =0 by (7.8-11
oy = RuG) + BAK + 1) by ( )
dH _ — == 0
PG Ax{k) + Bu(k) — x(k + 1) (¢}

Note that equations (¢) in (7.8-10) and (7.8-11) are the system equations.
When k = N — 1, a term with the index N is present in H. We must also

include this in our conditions.

o0H - 7.8-12
I MN)=0 ( )

This condition specifies a fixed value for the last number c‘>f the set of
Lagrange multipliers which will help us in the solution of equations (7.8-10}
and (7.8-11) for the control vector u(k).

From (7.8-10a) and (7.8-11a), we obtain

AME) = Qx(k) + ATx(k + 1) (7.8-13)
Next we solve for u(k) in equations (7.8-10b) and (7.8-11b)
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u(k) = —R7IBAMk + 1) (7.8-14)
and substitute this result into equations (7.8-2).
x(k + 1) = Ax(k) — BR'BME + 1) (7.8-15)

We next stipulate an important relationship between the state vector and
the Lagrange multiplier.

M) = POX(R) (7.8-16)

This linear transformation is called a Riccati transformation and is of funda-
mental importance in the solution of this problem. An investigation of the
validity of this transformation is beyond the scope of this book. Related
discussions may be found in any advanced text on optimal control theory.
Utilizing the Riccati transformation in equations (7.8-13) and (7.8-15) enables
us to eliminate Ak) with the result

Pllox(k) = Qx(k) -+ A™P(k + Dx(k + 1) (7.8-17)
x(k + 1) = Ax(k) — BR™'B"P(k + Dx(k -+ 1) (7.8-18)
Solving for x(k <+ 1) in (7.8-18) vields
x(k + 1) = [I 4+ BRIB'P(k + D *Ax(k) (7.8-19)
Subsiéituting equation (7.8-19) into (7.8-17) vields

P()x(k) = Qx(k) + A"P(k -+ D)L + BROBP(k + 1] 'Ax(k)
(7.8-20)

Since equation (7.8-20) must hold for all x(k), it simplifies to
P(k) = Q + ATP(k -+ 1[I + BR™'B*P(k -+ D]'A (7.8-21)

This is a recursive relationship for the matrix P(k) used in the Riccati trans-
formation. It must be solved backwards, starting with P(N). Since MN) ==
P(N)x(N)and M) = 0, we have P(N) = 0. With P(k) determined the prob-
lem is essentially solved.

To compute the control vector, we eliminate A(k + 1) from equations
(7.8-14) and (7.8-13). This results in

u(k) = —RTBAT) ' ME) — Qx(k)]
= —R™IBT(AT)[P(k) — Qx(k) (7.8-22)

This is the desired expression for the optimal control law. We note that it is
of the form

u(k) = H{)x(k) (7.8-23)



306 The Analvtical Design of Discrete Systems Ssc. 7.8

which indicates the components of the control vector are proportional to the
state vector. Indeed, this expression prescribes a feedback control law with
time-varying feedback gains H(k). This is a very useful and convenient result.

EXAMPLE 7.81

Compute the feedback gain matrix H(k) for the following problem:
The system to be controlled is

{xl(k + l)j\ _ [0.8 LO][x,(k)} + [1'0}4@:}
xk+1D] 10 03]xk) 0.5
The performance index to be minimized is

= 3 GO0 + X300) + 120

The initial conditions are given as
%, _ [100.0
%01 | 00

10
o=o 1]

Thus it is seen that

'The required calculations to determine the feedback gain matrix may best
be carried out by a computer program such as that presented in Appendix
7B of this chapter. This program solves equations (7.8-2), (7.8-21), and
(7.8-22). Let the solution for the control law be represented as

uk) = hy(k)x, (k) + hy(R)x,(k)

Table 7.8-1 shows the values of the control variable, the feedback galns
and the state variables.

Table 7.8-7
k I (k) Bafk) ulk) x1 (k) xa(k)
0 —.395 —.687 —39.5 100.0 0
1 - 395 -— 687 —2.4 40.46 19.7
2 - .395 —.677 348 10.19 —11.9
3 —.355 —.555 1.42 54 —3.8
4 0 .0 .0 —1.45 —3.42

x5 (k)
hy(k
100 & W
80
- 0.9
k), N 15
x =
60 (B, N=3 407
Xy (k). N =11 hy (), N =11 1%
i ’ - 0.5
40 P-—0 *——o-—-—-—-—o— o--wo—-—---o -4 04
\ o\ - 0.3
o L k)N =S \ ~ 0.2
\ - 0.1
< o
I i ] H | i i ! ! 1\ 1
0 1 2 3 4 5 6 7 8 9 10 11 12
Figure 7.8-1. Response of linear regulator.
e
6.397
x1 (k)
xg(kl
0.687

Figure 7.8-2. Block diagram for linear regulator, where N - large.

207
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An interesting property of the linear regulator is revealed by plotting these
variables as a function of k. This is shown in Figure 7.8-1. The feedback gains
[only #,(k) is shown] are constant for low values of k and decrease rapidly
to zero as k approaches N — 1. Note that they are a function of P(k), which
is solved backwards in time. The solutions for N == 5 and N = 11 are shown.
In both cases identically shaped curves result for &,(k), except for a lateral
displacement, while the responses of x,(k) are identical. This result carries
the important implication that if N is made sufficiently large, the feedback
gains in the linear regulator become constants, permitting a closed-loop
control system design with constant feedback gains, as displayed by Figure

7.8-2.

7.9 DL Gain of a Discrete System

A meaningful characteristic in the design of linear confinuous systems
is the DC gain. It applies to systems that generate a steady-state constant
output in response to a step input. The DC gain is defined as the ratio of the
system’s steady-state output to the amplitude of the input step.

The DC gain concept may be extended to discrete systems. For example,
consider 2 system whose transfer is H(z) and which has applied to it a discrete
step input of amplitude R. What is the system’s resultant response c(n)?
Writing the familiar transfer function relationship gives

R
) = HE@RE) = B =) (7.9-1)
Expanding (7.9-1) by partial-fraction expansion gives

C(z) = lRf(Zl}l + &) (1.9-2)

where H(1) = lim H(z)
zr]

6@ = =2 lH(@) — H(D)]

The term () contains the transient response terms that depend on the
poles of H{(z). If the system is stable, these terms will decay to zero for
sufficiently large values of discrete time 7. It is, therefore, possible to express
the syster’s steady-state response to a discrete step of amplitude R as

c,, = lim ¢(n) = RH(1) (7.9-3)

o
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The DC gain of this system is defined as

_ _steady-state response _ RH()
amplitude of step input R

= H(D

Some co.mments on the partial-fraction expansion (7.9-2) should now be
made. In this expansion, it has been assumed that the transfer function H(z)
§1as no poles at z = 1. If this is not the case, then the expansion as given is
incorrect. To demonstrate this, assume that H(z) has a simple pole at z = 1
The proper partial-fraction expansion of C{z) wouid be of the form .

RH(I A
C(z)ﬂ(l W+ lfzﬂ + (2) (7.9-4)

—_ Z—S)Z
Expression (7.9-4) indicates that the system’s response, in part, will be a ramp

oi‘ slopel RH(1). This ramp was generated because the H(z) has a simple pole
atz =1,

If‘,_ as is standard, a stable discrete system is defined as one whose transfer
funct}xon has .aJ_l its poles inside the unit circle, then the partial-fraction ex-
pansion as given by (7.9-2) will be proper for all stable systems. With this
in mind, the DC gain of a stable system with transfer function H(z) is given by

K = H(l) = lim H(?) (7.9-5)

'Rexlfvriting (1.9-5) in the standard expansion of H{z) in terms of its
weighting sequence A(x), we have

K = lim H(z) = lim { 5 h(n)z“”} = 3 b (1.9-6)

It has been sho?vn in the section on the tracking of test signals that the
valu,e of tth DC gain, as given by (7.9-6), plays an important role in the sys-
tem’s tracking ability.

EXAMPLE 7.9-1
Determine the DC gain for the system characterized by

c(r 4+ 2) + Fe(r 4 1) + fe(m) = r(n -+ 1) + 2r(n)

This system has the transfer function

z -2
M=oy



370 The Analytical Design of Discrete Systems

which has poles at z == —}, z = —4, 80 1t is stable, Utilizing (7.9-5), we find

K=H(l)=%

Conclusions

Several selected optimization problems have been investigated in this
chapter. Many of the optimal control laws that resulted involved the solution
of a system of linear equations. Under very minor assumptions, it is guar-
anteed that this system of equations has a unique sofution.

The reader is reminded that only a very limited number of design tech-
niques has been treated here. For example, the concepts of dynamic program-
ming and the discrete maximum principle have not been discussed. For a
more extensive treatment of optimal design techniques for discrete systems
numerous texts are available.
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PROBLEMS

7.1 For the plant with transfer function
1
(o) = =

and step input make a time domain:

(a) Minimal prototype design

(b) Ripple-free desizgn

Let the sampling period T be an arbitrary parameter in the design process.
The initial state is zero.
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7.2 For the plant with transfer function

1
G(§) = e
© s+als+ 1D
and step input make a time domain;
(a) Minimal prototype design
(b} Ripple-free design

with T = 1 second and initial state ze i i
L 10, Investigate the comparison o
with those of Section 6.2 as g — 0., ? fresuls

7.3 For the system in Problem 7.1 and ramp input make a time domain:

(a) Minimal prototype design
{b) Ripple-free design

Check to verify that it has desirable characteristics for a unit step input,
7.4 For the system in Problem 7.1, carr i i
: 1, y out a z-domain synthesis for a mini
prototype design. Check with the results of Problem 7.1. el

7.5 For the system in Problem 7.3, can i i
1 -3, carry out a z-domain synthesis for a mini
prototype design. Check with the results of Problem 7.3. el

7.6 For the system of Problem 7.1 and a step input make a time domain;
(&) Minimal prototype design '
(b) Ripple-free design
under the assumption that the initial state is not zero.

; . ; Deteli[n{le ﬁle COBtI OH&bﬂlt Y Clla-l acteristics Of -
{he diSCE efe s ¥ Siems w lth trar 15
fet fUIlctiOﬂS

C@ | z42
@ TH=eThe Ty
(b) Clz z

Ue @+ 17

7.8 Design a digital regulator for the system characterized by

Gy _ 1
Us 5

if the input u(z) is constrained to be constant over one-second time intervals

7.9 Repeat Problem 7.8 for the system with transfer function

s 1
Uls) ™ s(s + a)
Check the resulis with (7.5-5) by letting a = 1,

. S}.gn minl 10 el l’gy g ;- f 1 the Systei“ W th fra fe}
; lu E)e a I S1¢ ¥e; uIatOI (SECUOII 6 Q
) 1 118

e _ 1
Us 7 52
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