Computer Methods

in Systems Studies

9.1 Introduction

In the preceding eight chapters, we have given an introduction to the
study of discrete systems. It has been continually demonstratef:i that the
electronic computer is integrally involved in this study. Not only is the' cOm-~
puter required as an essential tool in the analysis, simulation, and deSI'gn of
discrete systems, but we also see the computer assume a significant rol§ in the
control and general operation of discrete systems and mixed continuous-
discrete systems. Throughout the material presented in the eight _chapters,
computer techniques are used. Mention has been made of the existence of
computer routines to carry out a number of computational ‘tasks. Several com-
puter techniques have been recommended for the analysis of sampled-data
systemns and for the optimum design of discrete systems. .

Because of the rather important role played by the modern computer 1in
the analysis, design, development, and control of a great variety of systems,
we consider it highly appropriate to introduce the reader to some'of t_he
detailed aspects of computer methods. We will concern ourselve's primarily
with the programming and application of computers, not with their construc-

376

Sec. 8.2 Numerical Methods of Simulating System Dynamics 377

tion. Furthermore, attention will be given to a discussion of a selected number
of numerical techniques that are useful in system simulations.

Historically, it has been customary to divide computers into analog and
digital. In recent years, a third important kind of computer has been added to
the computer family—the Aybrid computer. This particular variety of compu-
ter has found extensive use in systems studies of all kinds (particularly simula-
tion, optimum design, high-speed iterative solutions, etc.). We will assume a
background in basic analog and digital programming (FORTRAN) for the
purpose of studying the material presented in this chapter, This will be
sufficient to follow the development on hybrid programming.

To a large extent computer programs are prepared by expert program-
mers to handle a great many different tasks. However, it is often very helpful
for the systems designer, the user of these programs, to have an elementary
understanding of some of the techniques upon which these programs are
based. It is for this purpose that this chapter has been prepared.

9.2 Numerical Methods of Simulating System
Dynamics

In almost every digital simulation of dynamic systems the programming
of the solution of differential and/for difference equations is required. These
equations characterize the dynamics of the system under study. The digital
machine performs its basic operations involving arithmetic, memory, and
logic operations, in terms of variables which are always represented in dis-
crete form. All continuous mathematical operations must be converted into
a corresponding discrete form before they can be processed by the computer.
Subject to this requirement are the frequently occurring operations such as
integration and differentiation, for example. Also affected, although some-
what differently, are the computations of basically continuous response
curves such as root-locus and frequency response,

To handle these and a great many other tasks, suitable digital programs,
called subroutines, are available for use by the systemns designer. In this section
we will examine a number of routines which are frequently used in the solu-
tion of differential equations. We will direct our attention to a presentation
of the discrete approximation technique and errors that are incurred by it.
Briefly, two basic types of errors are introduced: the truncation error, which
is due to finite approximations of infinite expansions, and the round-off
error, which is due to the finite bit capacity of the digital computer. Further-
more, consideration has to be given to the possibility of an unstable discrete
representation.

In the solution of differential equations by a digital computer it is assumed

378 Computer Methods in Systems Studies Sec. 9.2

that the system to be simulated is characterized in first-order differential
equation form, or state variable equations, i.e.,

: %ximf,(xi,xz, Cxaf) i=12...n (9.2-1)

or, in the case of a linear system,
X == Fx | Gr {9.2-2)

Techniques dealing with the derivation of these equations have been
presented in numerous texts on modern system theory.

Numerical integration of these equations is based upon a recursive eval-
uation of their discrete equivalent, which is essentially of the form

x(k + 1) = gile k), x,(B)s .., %00, K1) i=1,2,...,n 0.23)

where x(k) is the ith state variable of the simulated system at time # == kT.
We shall now present four methods of generating a digital simulation model
and discuss their relative merits.

9.2-1 Euler Methaod

Probably the simplest approximation to (9.2-1) is obtained from a first-
order Taylor series expansion of the state variables x,(z). Such an expansion
yields

x{t + Ty = x,() + T8 (9.2-4)
If we let
x(t +Ty=xk +1) and x() = x(k)

where k denotes the kth evaluation, corresponding to ¢ = kT, and also sub-
stitute (9.2-1) into (9.2-4), we obtain

xfk + 1) = x(k) + Ty, Xa5 + - X K) 9.2-5)

This approximation is generally referred to as the Euler approximation.
It is simple and can be programmed in a straightforward fashion. As an
illustration, consider the following differential equation.

EXAMPLE 9-2.1
Determine the Euler approximation of the differential equation

Etax$+bx=1 t=0 (5.2-6)

Sec. 9.2 Numerical Methods of Simulating System Dynamics 279

First, a set of state equations is given by

X == —ax, — bx, +1 ©.27)
X, = X4)
Consequently, the Euler approximation is
x (k4 1) = x, (k) + T(—ax (k) — bx,(k) + 1) 929

%k + 1) = x,(k) + Tx,(k)

where T is the incremental time used in the numerical integration of (9.2-6}.
The Euler approximation works both for linear and nonlinear system
models. Despite these attractive features, however, it suffers serious short-
comings in accuracy and stability and is therefore rarely used. Discussion of
these drawbacks will serve well to point out some of the important consid-
erations that go into the selection of a numerical technique in general.

Truncation Error

The series expansion (9.2-4) is truncated after the first derivative term.
The error in the solution which is due to this effect is called the trumncation
error,

The significance of the truncation error can be further emphasized by the
fact that it tends to accumulate with time. However, differential equations
which characterize stable dynamic systems contain built-in feedback which
is preserved in modified form in their discrete approximation. This feedback
acts in support of the accuracy of the solution. In addition, the numerical
approximation solution will seek the same steady-state as the original con-
tinuous model, provided, of course, that the stability of the equivalent
discrete model is not adversely affected. Let us illustrate this problem by
reconsidering Examaple 9.2-1.

EXAMPLE 9.2-2

Investigate the steady-state and stability characteristics of the Euler ap-
proximation of Example 9.2-1,

It is quite clear that the steady-state of (9.2-6)ic., ¥ =% =0, is 1/b
with- no problems of stability, provided both ¢ and & are positive. From
(9.2-8) it can be seen as k — oo 'that x,(k) — 0 and x,{k) — 1/b. Thus, the
discrete approximation has the same steady-state value,

We next examine the stability of the discrete approximation. For this
purpose we determine eigenvalues of the system matrix of (9.2-8). In matrix
format we have

x4+ 1] [1—al —bT|[x(] [T
ch(km}_[T i}[xz(k)}“g“ M 029

380 Computer Methods in Systems Studies Sec, 8.2

The eigenvalues are

WEE ST c

If, for instance, @ = 2 and b = 10, then the eigenvalues are given by
A, =1—4Tand 1, = 1 4 2T. It is seen that the Buler approximation is
unstable for any choice of T. If, however, @ = .2 and b == .I, then Aya =
1 — 1T + 3T For T'= .1, 4,,, = .99 = j.03. For this choice of a, b and
T we have |4, ,| < 1; hence, the Euler approximation is stable. However, if
T is increased to 1, one may readily verify that the discrete simulation would
be unstable.

The effect of the truncation error may be partially countered by making
the time interval T sufficiently small. This is accompanied, however, by an
increase in the number of steps in the solution reguiring more computer time
and eventually making another type of error, round-off error, prominent.
Similarly, the stability of the solution may be controlled by the selection of the
step size.

Round-off Error

Round-off error is the second basic error encountered in digital computa-
tion. Tt results as a consequence of the finite number of digits with which a
digital computer can carry out arithmetic operations. This number may range
from four digits for digital machines with 12-bit words to 15 digits for digital
machines with 60-bit words. Round-off affects the last digit of a given digital
word. For instance, in a word with eight digits the first seven digits are exact,
while the last digit is rounded off. By this process it is possible to represent
a real number by an eight-digit word that conceivably could have an infinite
number of digits for exact definition. The first seven digits match, while the
eighth digit is adjusted up if the ninth digit is larger than .5; otherwise it
stays the same.

Round-off error affects every digital computation. In numerical integra-
tion it assumes particular importance when the integration step has to be
selected as very small. Under this condition the significant changes in the
values of dynamic systems variables occur more and more in the last few
digits of the computer words. An jllustration of the influence of round-off
error is given by the next example.

EXAMPLE 9.2-3
Consider the numerical solution of the differential equation

i+ wtx=10, {0 = 4

40— B (9.2-10)

Sec. 8.2 Numerical Methods of Simulating System Dynarnics 381

This is the equation of a simple harmonic oscillator with resonant
frequency w. When x(¢) and X(¢) are computed and plotted against one
another in (x,) space, the resulting curve, for instance, is a circle with radius
R = ~/4* + BZ when o == 1. Qur objective here is to use an Euler approxi-
mation to obtain x(¢) and #(f) and to determine how close the result agrees
with a circle.

Results of this experiment are shown at the end of this section and com-
pared with other methods.

9.2-2 Tustin Method

A technique that offers some appeal in the simulation of linear systems is
the Tustin method. It is basically an approximation of differentiation by a
difference equation. Consider the following relationships.

The definition of the discrete transform variable z is given by

z=e7 (9.2-11)

Solving for s yields
1

$ = Inz {(9.2-12)

The logarithmic term may be approximated by the series

Inz==20¢-+4 4 1’ +...) (9.2-13)
where
"]~ z74
14zt

Truncating the series after the first term and substituting into (9.2-12),
we obtain the so-called Tustin approximation for the derivative operator
8.

21—zt
Sl {9.2-14)

This relationship is used in converting the continuous-time models of
linear systems into difference equations. This difference equation may be
readily solved recursively on a digital computer, which yields a fairly accurate
digital simulation of the linear system.

The substitution (9.2-14) may be applied to an nth-order linear differen-
tial equation, to » first-order linear differential equations, or to an nth-order
transfer function. The result can usually be arranged into one of two forms,
(1) » first-order difference equations or (2) one nth-order difference equation.
This may best be illustrated by two examples.

382 Computer Methods in Systems Studies Sac. 9.2

EXAMPLE 9.2-4

Derive the difference equation that represents a Tustin simulation of the
transfer function

_as+b
Gs) = s+ ¢)

Upon substitution of the approximation given by equation (9.2-14) we
obtain

21—zt
T
G(z) =
(_2__1—-2*‘)2_’_6_2.1-—2"1
T14 271 T1+2z71

which is simplified to

2aT -+ BT% — 2bT%z71 + (T? — 2qT)z 72
4 2¢T —Bz™ o (4 — 2T)27

G(Z) ==

This second-order digital transfer function may be readily programmed for
computer execution.

EXAMPLE 9.2-5

Derive 2 difference equation for the harmonic oscillator of Example 9.2-3,
using the Tustin approximation.

The differential equation of the harmonic oscillator is given by (9.2-10),
or in state variable representation

k= —@%x,
X, =X
Using (9.2-14), we have
21—z 2
TWX:(Z) = — X (2)
and
2 o w1
2 LG = 5@

Converting into difference equations, we obtain

Sec. 8.2 MNumerical Methods of Simulating Systemn Dynarnics 383

)=k — 1= 2L @ +mE -1 ©.219)
x,(R) = %k — 1) + L[,) + 2,k — 1) (9.2-16)

In order to evaluate these difference equations recursively, we must
eliminate x,(k) from the first equation. This yields

N1, o)) %
x,(k) = (%%)xl(k — D+ 2(370%%)%@ —1) (9217

The digital simulation of the harmonic oscillator now involves (9.2-17)
and (9.2-16), to be recursively evaluated, in that order.

This simulation is carried out for various values of 7" and is compared
with the results of the Euler and Runge-Kutta methods. The results of this
comparison are summarized at the end of this section.

The Tustin method obviously requires a considerable amount of manip-
ulation to make the substitution (9.2-14) and to rearrange the result into a
suitable form. This job can be easily handled by a digital computer subrou-
tine. For instance, one program may start with the description of the system
by a transfer function and generate a digital transfer function of the form

R e T N
D(z) = ldaz 4 ... +az™

This may then be easily programmed as a digital recursion equation.

9.2-3 Runge-Kutta Method

The Runge-Kutta method and its various modifications are the most
widely employed of the single-step methods. These are methods of a class for
which x(k - 1) can be obtained from x,(k) alone and the differential equa-
tions. The methods are seif-starting and are not difficult to program. The basic
Runge-Kutta method is partially an extension of the Euler method, which,
as was mentioned, is based upon the first-order Taylor series (9.2-4). This
series expansion suggests inclusion of higher-order terms to reduce the trun-
cation error. Although the first derivative is available from the differential
equation, higher-order derivatives must be evaluated separately, possibly by
difference methods, This would result in an effective method, except that the
evaluation of the higher-order derivatives can be very tedious. The Runge-
Kutta method makes use of the higher-order Taylor approximations indi-
rectly so as to avoid this problem.

The Runge-Kutta methods used in practice are based on fourth-order
Taylor approximations. Although these are simple in their use, their deriva-

384 Computer Methods in Systems Studies Sec. 8.2

tions entail complicated developments.* It will suffice here to present only the
computational algorithm,
Let the system of equations to be solved be given in the familiar form

Eom=flxy, Xay o o0y X 1) = JAX, I
= Fi) =fix, D) 0215
xi(t{))ﬁxfo 1= 1,2,...,71
Let x,(k) be the value of x, at ¢ = #, and fi(x(k), £;) the derivative of x
at ¢ = f,. If T is the increment (step-size) of the time variable 7, the Runge-
Kutta fourth-order method uses the formulas

K, == Tf(x(k), 1:)
K,; = Tf[x(k) + .5K,, £, -+ .57
Ky, = Tfxtky + .5K,, ¢, - .5T] (9.2-19)
Ky = Tf[x(k) + Ks, 1 + T
xik + 1) = x(k) + 3K, + 2K, + 2K, + K] i=1,2,...,n

where K, K,, K;, and X, are # X 1 vectors determined by (9.2-19).

For each step of integration in (9.2-19) the Runge-Kutta method requires
four evaluations of the functions f{x,, X, ..., X, ¢), thus requiring
considerable amount of machine time. The Runge-Kutta method is charac-
terized by a high degree of accuracy, which compares well with analytical
methods of solution.

EXAMPLE 9.2-6

Consider a Runge-Kutta solution to the problem of the harmonic oseil-
lator presented in Example 9.2-3, The results are shown for various step
sizes at the end of this section.

Selection of Step Size and Control of Truncation Error

Essentially, the only factor left to the user’s discretion is the time incre-
ment T. For obvious reasons this shouid be selected as large as possible to
keep the machine running time as small as possible. Because the truncation
error is kept small, in most cases the only risk incurred by making the step
size too large is the possibility of numerical instability. For most applications
numerical instability is 2 more predominant problem than inaccuracy caused
by truncation error. The analytical complexity of the method prohibiis a
direct stability analysis, even for the simplest case. A good rule of thumb is to
keep the step size approximately at a tenth of the value of the smallest time
constant of the differential equations fo be solved.

*See, for example, Hildebrand, F. B., Introduction te Numerical Analysis, McGraw-Hill,
1958,

Sec. 9.2 Numerical Methads of Simulating System Dynamics 385

The typical dynamic transient is associated with large values.of derivatives
during the early stages, which rapidly decrease during the final stages. Con-
siderable computer time may be saved if the step is adjusted to be small when
the derivatives are large and vice versa.

The step size may be adjusted automatically during a calculation provided
there exists an explicit expression for the upper bound of the truncation
error.

With an explicit knowledge of the instantaneous, or local, truncation error
one can always select that step size which keeps the truncation error just
below an acceptable upper bound. Although it is known that the local trun-
cation error is roughly proportional to the fifth power of the step size for a
fourth-order Runge-Kutta integration method, it is not possible to obtain a
running estimate of the truncation error during the course of an integration.

A modification of the basic fourth-order Runge-Kutta method which has
a slightly smaller truncation error and provides an estimate of the truncation
error is the Runge-Kutta-Merson method. It requires five iterations per step
size and step size adjustments may be made during the course of an integra-
tion. The Runge-Kutta-Merson* algorithm is

K, = $T7Ix(k), 1]
Ky = %Tft[x(k) + Kyt + %{l

Ky = 1Tﬁ[x(k) + 5K, + 5K, 2, -+ %i] (9.2:20)

Ky = "}Tfs(x(k) + K, + %K;, e+ 5T
K5 = $TfHx(k) + 3K, — 3K, + 6Ky, 1, + 1)
x(k + 1) = x(k) + 5K, + 4K, +Ks) i=12,...,n (9.2-21)
The estimate of the error is given by

truncation error = max (K, — 2K,, + 4K,, — £K:) (9.2-22)

The operation of automatic step size adjustment in the Runge-Kutta-
Merson algorithm would be to maximize the step size while the truncation
is kept within a specified bound. A computer program called subroutine
INTFUN utilizing this algorithm in contained in Appendix 9A.

9.2.4 Adams-Moulton Predictor-corrector Method

A third important numerical technique for the integration of differential
equations is the Adams-Moulton method. It employs a predictor-corrector
principle and uses the following recursive algorithm:

*1ance, G. N., Numerical Methods for Highspeed Computers, Iliffe, London, 1960.

386 Computer Methods in Systems Studies Sec. 8.2

ik + 1) = x (k) + 2_2;[55f;«(k) — 59f(k — 1) + 37f(k — 2) — Ik — 3)]
(9.2-23)

5k + 1) = x(k) + HIFHE + 1) + 19706) — 5fk — 1) + ik — 2]
P=1,2,...,n (9.2-24)

The method requires two evaluations of the differential equations for each
step. One involves f,(k) in the predictor equation (9.2-23), while the other is
Frk 4- 1) in the corrector equations (9.2-24). The principle of the Adams-
Moulton method is based on the determination of a first estimate xP(k + 1)
by (9.2-23) using values of the derivatives at four successive time instants,
with a subsequent correction by (9.2-24) using values of the derivatives at
three successive time instants and f#(k 1), the derivative at the first
estimate.

The Adams-Moulton method has a time-saving advantage over the Runge-
Kutta method. However, it is not self-starting. For the first three time inter-
vals, a one-step method like the Runge-Kutta method is used to obtain the
needed starting values. Thus a combination of the Runge-Kutta and Adams-
Moulton methods is employed.

Cortrol of Step Size and Truncation Error

The Adams-Moulton is a fourth-order method, and hence the truncation
error is of the order of T%, An explicit expression for an estimate of the trun-
cation error is available, thus making automatic step size adjustments pos-
sible. It is given by

truncation error = max !
i

xP(k + 1) — x(k + D] -
T (9.2-25)

where

D, = max [xfk -+ D,a} i=1,2,...,n
{

and where ¢ is a positive constant used to prevent unnecessary reductions in
T. It is usually set equal to 1.

As is the case with the various Runge-Kutta methods, the Adams-
Moulton method may be used in the integration of differential equations
with arbitrary expressions for fi(x, #). In fact, the execution of the program
is totally indifferent to the nature of fi{x,, x,, ..., X, £

In choosing between a Runge-Kutta method or the Adams-Moulten
method, obviously time is of prime consideration. An important additionat
criterion affecting a choice is the presence of discontinuities in the right-hand
side fonctions. If the derivatives contain no discontinuities, a predictor-
corrector method using only two function evaluations per step is likely to be
faster than a one-step method. If, however, they do have discontinuities, as is

Sge. 8.2 Nurnerical Methods of Simulating System Dynamics 387

so frequently the case in engineering problems, a one-step method is more
accurate and more efficient.

The remaining three techniques of simulation to be presented in this
section are restricted to linear systems, or at least piecewise linear systems
with constant coefficients.

9.2-5 State Transition Method

A numerical technigue of simulating linear systems that is rapidly gaining
widespread acceptance by systems designers is based upon state variable
techniques. A linear system may be described by the equations

Zx = Fx + Gu (9.2-26)

y=Cx +du (9.2-27)

‘When the input u(f) can be adequately represented by a piecewise constant
equivalent

wf): ukT+1)=ulkT) 0<t<T (9.2-28)

it is possible to determine y(¢) at the discrete times ¢ = 0, T, 27, . . . by means
of the discrete state equations

X[k + DT] = ex(kT) + | : < dTGu(kT) (9.2-29)
YET) = Cx(KT) -+ du(kT) (9.2-30)

These relations were derived in Chapter 2 with the following notation:
T
A(T) =& and B= f o drG (9.2-31)
0

The matrices A and B have to be evaluated only once for any given time
interval T

The most remarkable feature of the state transition method is that it
offers a discrete simulation of a continuous-time systern which is almost
completely exact. There are only two sources of error. One is introduced by
sampling the input. The other one is caused by the iterative procedure for
evaluating the matrices A and B. But no error is infroduced by the actual
discrete model. It is exact.

Evaluation of A and B

We shall present two procedures for approximating A and B by series
technigues. Because of the relatively recent development of these techniques
an extensive development on the truncation error will be given.

358 Cormputer Methods in Systems Studies Sec, 8.2

The first of the techniques is due to Liou.* The transition matrix A is
expressed by the infinite series

A=S 5}” . FO=1 (9.2-32)
fz=g .

This series is uniformly convergent in a finite interval. It is, therefore, pos-
sible to evaluate A within prescribed accuracy. If the series is truncated at
i = L, then we may write

a=3E. S I mir (9.2:33)

i! =L+l

The first term in (9.2-33) represents the series approximation, while the second
term corresponds to the remainder term.

If each element in A is required to be within an accuracy of at least d
significant figures, then

T = 1074 |y | (9.2-34)

where r,; and m;, correspond to the clements of R and M, respectively. Let
the norm of F be

1) = max (35 1a,1)
Then, it can be shown that
WEF| < ||FlF k=12,

Hence cach element of the matrix ¥* is less than or equal to || F|{*. It
follows that

< 3 ILEIT (9.2-35)

i

Let the ratio of the second term to the first term of the series (9.2-35) be
€, that is

e = IFIT (9.2-36)

from which we conclude that

HFEjlr
=€

Substituting the last relation into (9.2-35) we have

*M. L. Liou, “A. novel method of evaluating transient responses,” Proceedings of IEEE,
Vol. 54, No. 1, January 1966, pp. 2023,

Sec. §2 Nurmerical Methods of Simufating System Dynamics 389

E +1
ln—;ié%(i+f+fz+e3+ ve)

:HF”LHTLH 1
(LT T—e¢

(9.2-37)

Thus the matrix A can be evaluated approximately according to the
following iterative procedure:

Choose an initial value of L.

Evaluate m;; by (9.2-33).

Determine ¢ by (9.2-36).

Find the upper bound of |#,| by (9.2-37).

. Compare each element of M obtained from (2) with the upper bound
of {r,;| obtained from (4); if (9.2-34) is not satisfied, increase L and
repeat the iteration; otherwise, the iteration is complete.

S

The matrix B may be evaluated in a similar manner. From the properties
of exponential matrices it can be shown that

B == (& — DF-'G (9.2-38)
Thus, using (9.2-30),
= [T
B=T3 — 2
P GE I ©:2-39)

Since the series expression for B converges faster than (9.2-32), it suffices to
determine L for ¢*7 as outlined above and apply the same value for B.

A second method of evaluating the matrices A and B also uses the
truncated series approximation (9.2-33);* however, it differs in the method of
evaluating the series and in the manner in which the series is ferminated.
The finite power series M is related to the identity

=300

e En e e 2 o)])]
(9.2-40)

Starting with the innermost factor, this nested product expansion lends itself
very well to digital programming. Since the evaluation starts with the last
term first the value of L, the number of terms of the series approximation,
must be determined beforehand. The number of terms to be included is

*S. G. Hoppe et al., “A Feasibility Study of Self-learning Adaptive Flight Controf for
High Performance Aircraft,” Report AFFDL-TR-67-18, Cornell Acronautical Laboratory,
February, 1967,

390 Computer Methods in Systems Studies Sec. 8.2

related empirically to the norm of the matrix FT; that is,
L = min {3 {|FT|| + 6, 100} (9.2-41)

This relation assures that no more than a 100 terms are included. By
experimental verification it can be demonstrated that the series e is ac-
curate to at least six significant figures.

The matrix B may also be computed by a similar expression by combining
(9.2-40) with (9.2-35). This yields

_ Fr FT FT ¥T 5
B— T(}:+ m~3~—{1 + —3—[1 EE M(I +50)..]})G (9.2:42)
Because of the great similarity between (9.2-40) and (9.2-42) the evaluation
of the two series may be easily combined into a single computer routine.

EXAMPLE 9.2.7

Determine the state transition matrix A for the sirmple harmonic oscil-
lator. The state equations are given by Example 9.2-5,

J&I "= _‘wzxz

Xy =X,
By analytical techniques we determine that
coswf —osinwt

e}?r e 1 .
— sin ! Cos at
@

so that the difference equations are

x,(k-E 1) © cosol —asio ol [x,(k)

xk 4+ 1) - wém sin T cos el || x,(k)

The results of this example are discussed next.

8.2-6 Comparison of Techniques

The Euler and Runge-Kutta methods are applicable to nonlinear systems,
while the Tustin and state transition methods are restricted to linear systems.
The Euler and Runge-Kutta methods require the preparation of an identical
subprogram for the evaluation of derivatives; this subprogram is used con-
currently with the execution of the integration programs. The Tustin and
state transition methods require intermediate programs for the preparation

Sec. 8.2 Nurnerical Methods of Simulating System Dynarnics 39171

of the difference equations: the Tustin method a program to implement the
Tustin substitution, and the state transition method one to determine the
exponential matrices e*” and [¢, These programs are run prior to the inte-
gration program. To use the Tustin method the description of the dynamic
system must be available in transfer function form, whereas the state transi-
tion method requires a state model.

It is probably fair to state that with respect to convenience of application
no method is particularly disadvantageous, as long as the digital computer
is effectively utilized to carry out the computations.

Speed of Computation

The relative speed of computation of the four methods depends entirely
upon the total number of instructions that require execution during the course
of the program. Table 9.2-1 shows a listing of computer time elapsed during

Table 9.2-1
State
Euler Runge-Kutta Tustin Transition
Compile time 6:57 1:40 0:39 1:46
Execution time 2:55 12:53 4:26 5:34
Load time 0:19 G231 0:19 0:22
Total time 4:16 15:18 5:49 T:42

compile, load, and execution stages for identical problems* for which the
four methods were used. Time is given in minutes and seconds. It is easily
seen that the Euler method is the fastest and the Runge-Kutta method is the
slowest, while the Tustin and state transition methods rank second and third.
Since the Runge-Kuita method requires four times as many calculations (it
is a four-step method) as the Euler method, it is easily explained that roughly
four times as much time is required. The total time for the Tustin method is
approximately 25 percent longer than the Euler, and the state transition
method requires about 75 percent more time than the Euler method.

To draw any meaningful conclusion from this time summary one must
also take into consideration the accuracy factor, for a method may require
little time for implementation but may be marked by poor accuracy. This
we shall examine now.

Accuracy

It goes without saying that accuracy is the most important factor in
considering the selection of a numerical method for system simulation. In

*The problem referred to here is the linear oscillator and the computer used is an IBM
7044,

392 Computer Method's in Systems Studies Sec. 8.2
Table 9.2-2 Numerical Results of Four Methods
State
Time Runge-Kutta Euler Tustin Transition
0 5417 10.00 6.0 5.403
2 —4.010 0. —-2.8 —4,161
3 —2.695 ~20, 3,36 —9.900
4 — 6,542 —4{}, -8.432 —6.536
3 2.491 —40. -7.584 2.837
6 9.161 0. 7.522 9.602
7 7.463 80, 9.785 7.540
8 —9.638 160, 4.220 w1.455
9 —8.417 160, —4,721 -9.111
10 —8.166 0. —9 885 —8.40
(a)} T == 1 second
1 5.403 5.708 5.410 5.403
2 —4.161 —4.530 —4.146 —4.161
3 —9.,5%00 —1.148 9,896 —9.800
4 —6.536 —3.097 6,562 —6.536
5 2.837 3.434 2.797 2.837
6 9.602 1.286 9.588 9.602
7 7.539 1.089 7.577 7.540
3 —1.455 - 1.775 —1.389 --1.455
9 —9.111 1,406 —9.080 9,111
10 —8.391 —-1.409 —8.436 —8.381
(b} T'=.1 second
i 3.403 543 5.403 5.403
2 --4.161 —4,203 —4.161 —4.161
3 ~—9.900 —10.05 —9.900 9,900
3.14 —10.000 —10.16 —10.00 10,00
4 —8,536 —6.669 8,536 —6.536
5 2.837 2.907 2.836 2.836
6 9.602 9.893 9.602 9,602
6.28 10.000 10.32 10,00 160.00
7 7.539 7.809 7.539 7.539
8 —1.455 —1.512 —1.454 —1.454
g —-9.111 —9,529 —9.111 —9.111
10 —8.391 e — —

{¢) T'=.01 second

the earlier paragraphs of this section we considered the solution of the dif-

ferential equation

X4 wix =0

(9.2-10)

via the four methods under consideration. It is now our intention to compare

the results.

Sec. 9.2 Nurnerical Methods of Simulating System Dynamics 393

State
Time Runge-Kutta Euier Tustin Transition
1 5.403 5.405 5.403 5.403
2 4,161 —4.165 —4,161 —4.161
3 --3.900 —9.913 —9,900 --8.900
3,14 - 10,00 —10.02 —10.60 -~ 10.00
4 —6.536 —6.549 —6.536 —6.536
5 2.837 2.844 2.837 2.837
6 9.601 9.630 9.601 9,601
6.28 10.00 10.03 16.00 10.00
7 7.539 7.565 7.539 7.539
8 —1.455 —1.461 —1455 —1.455
9 --9.111 —2.152 —9.111 -9.111
10 —8.390 — --8.390 —8.390
) T =.001 second
1 5.403 5.403 5.403 5.403
2 —4,161 —4.161 4160 —4,160
3 —9.898 —9.90¢ - 9.897 —9.896
3.14 —9.993 —10.00 - 3,997 —9.996
4 —6.335 —6.536 --6.534 —6,533
5 2.836 2.836 2.835 2.835
6 9.598 9.601 9.596 9.594
6.28 2.996 9.999 9.994 9.991
7 7.536 7.539 7.534 7.532
8 —1454 —1.453 —1.454 —1.454
S —9.106 —9.111 —9.104 —8,100
10 e — — e
(e) T ==.0001 second
1 5400 54060 5.401 5.393
2 ~4.157 —4.157 —4.147 —4,147
3 --9.882 —9.882 —9.864 ~9.848
3.14 —9.982 —5.982 -92.963 9,945
4 —6.521 —6.521 —6.510 —5.490
5 2.828 2.828 2.815 2.812
6 9,568 9.568 9.533 9.501
6.28 9.963 9.963 9.926 9.889
7.00 7.508 7.508 7.481 - 7.446

(f) T'= 00001 second

The solution of (9.2-10) represents a circle (for @ = 1) when x is plotted
versus x, The period of this circle is 2z seconds. Plotting the result therefore
can offer a guick visual check on the quality of the solution.

Of interest here are the effects of truncation error and round-off on the
accuracy of the solution. For this purpose we show the solution x(¢) for six
choices of T in Table 9.2-2. The initial conditions are chosen as x{0) = 10.0

394 Computer Methods in Systemns Studies Sec. 9.2

and %(0) = 0.0 so that a circle of radius 10.0 results. The solution is run for
roughly 10 seconds of time, sufficient to cover one full period. Solution values
are shown at full second intervals and for 7 << .01, alsofor ¢ = 3.14and t =
6.28, which correspond to half and full periods of the circle.

We recall that error due to truncation of series approximation is present
in the Euler, Runge-Kutta, and Tustin methods, but not in the state transition
method. Therefore, for the largest value of the increment of integration (7' ==
1.0) we can expect that truncation will be a prominent factor in the Euler,
Runge-Kutta, and Tustin methods, but not in the state transition method.
Reviewing Table 9.2-2(a), we see that the Euler method produces an unstable
solution; the Runge-Kutta and Tustin methods produce stable solutions but
with considerable truncation error, while the solution under the state
transition method is accurate to within the decimal places shown. We recall
that the accuracy of the last method depends in this case only on the accuracy
to which the series expansion of e*” is computed; each entry in the matrix
¢FT is accurate to within 107%. Thus, the solution generated by the state transi-
tion method may serve as a reference.

When the increment of integration is reduced to T = .1, the Runge-Kutia
solution becomes exact to the places shown and the Tustin metbod jsimproved
considerably. The solution generated by the Euler method appears stable but
still suffers considerable truncation error.* These results are shown in Table
9.2-2(b).

When T is further reduced to T = .01 Runge-Kutta and Tustin methods
are identical to the stafe transition method. The Euler method, however,
still shows truncation error effects. See Table 9.2-2(c). Also shown are values
of the solution at £ == 3.14 and ¢ == 6.28 for which the exact solutions are
—10.00 and +10.00, respectively.

Table 9.2-2(d) shows the solutions for T = .001. The results indicate no
error for the Runge-Kutta, Tustin, and state transition methods. The Euler
method is now accurate to within two places.

A further reduction in the time increment to T == .0001 permits the genera-
tion of an exact solution (four significant figures) by the Euler method. On
the other hand, the other three methods are beginning to show the effects of
round-off. See Table 9.2-2(¢).

When the increment is selected as small as T = 00001, round-off error
becomes a significant influence in determining the quality of the solution.
Table 9.2-2(f) demonstrates this. The results further indicate that the Runge-
Kutta and Fuler methods generate identical solutions. This supports the
fact that the truncation error for T = .00001 is completely negligible in both
these methods, and they provide equally good Taylor series approxima-
tions.

*Actually, the Buler method does not yield a stable difference equation for this case.

Sec. 8.3 Use of the State Transition Method in Simulation Studies 385

9.3 Use of the State Transition Method in
Simulation Studies

The discrete transition method may be employed to handle a variety of
problems. Its use is most suitable in the simulation of discrete-time systems.
We refer here fo two special cases in connection with simulation studies.

8.3-1 Conversion of Nonhomogeneous to
Homogeneous State Transition
Equations

Normally, the discrete state equivalent of a linear continuous plant with
piecewise constant inputs is of the form

x(k + 1) = A(D)x(k) + B(T)r (k) (¢.3-1)

An alternate approach to the solution of (9.3-1) may be followed when this
equation represenis the discrete-time equation of a transfer function, and the
input to the transfer function is derived from a hold element, as shown in
Figure 9.3-1. An example is now used to illustrate the procedure to be fol-
fowed,

r{t) /T r{nl") Hold mity G(s) clt)

Element

Figure 9.3-1. Linear system driven by hold element,

EXAMPLE 9.3-1

Consider the case when

. S+1 . Sm‘ml -
Gls) = G+2Xs+10) 24+ 125+ 20 (9.3-2)

and a zero-order hold circuit is employed.
To derive A we represent this system using the nested programming
method. The state equations are

Xt —12 1if=x, 1
Lﬁj_[——zo o] Lj“*“ L]m(f) (9.3-3)

o)y = x,

396 Computer Methods in Systems Studies Sec. 8.3

Now m(z) is given by
mpT 4ty =r(uT) for0<Lt<<T (9.3-4)

i.e., m(t) is a piecewise constant input. During any sampling period it is
therefore possible to view m(?) as the output of an integrator whose inpuf is
zero and whose initial condition is set to #(uT) at the beginning of the nth
sampling period. This is shown by the state variable diagram in Figure 5.3-2.

Consider now the combination of the state variable diagram for (9.3-3)
and Figure 9.3-2, as shown in Figure 9.3-3. The state equations corresponding
to this figure are

m{0) =r{nd)

e (0T + 7}

Figure 9.3-2. State variable diagram of zero-crder hold.

m{0) = r{nT) x {0
%3 (0)
-1 . _—— -1 *2 -f X1
¥ - b ¥ § c©
12
20
Figare 9.3-3, State variable diagram of G(s) with zero-order hold.
i 0 g Olim
Xi=:1 —12 1||x, 0<tr<<T (9.3-5)
%, 1 =20 Oilx,
€ ==X,
The solution at the end of the first sampling period is
m(T) m(0) 0)
x (T) | = "7} x,(0) | = €™ x,(0) (9.3-6)
x (7). x2(0) x(0)

where F, is the augmented system matrix [e.g. (9.3-5)].

Sec, 9.3 Use of the State Transition Method in Simulation Studies 3587

Repeated application of (9.3-6) leads to the recursion relation

m(k + 1) (k)
x,(k + 1) == e x,(k) (9.3-T)
x,(k + 1) x,(k)

e} = x,(k)

In general, by augmenting the matrix ¥ such that

[]
=
G ¥

the nonhomogeneous recursion equation (9.3-1) is changed into a homoge-
neous equation. The obvious advantage is that in the digital computer evalua-
tion of (9.3-7) only one exponential series needs evaluation. It is pointed out,
however, that (9.3-6) is completely equivalent to using the nonhomogeneous

gquation
x.(k -+ 1) er x, (k) o 1
Lz(k + 1)] = Lz(k)} - {L ¢ {1}{1}“@
of
ok + 1] x,(k)
Lz(k + 1)] - Am[xzckﬁ + B(Irk) (93-8)

9.3-2 Evaluation of System Response
Between Sampling Periods

Suppose that it is necessary to determine the output of a system that
receives piecewise constant inputs at intervals of 1" seconds at times corre-
sponding to subintervals of T, seconds such that

T = gl', «aninteger

It is possible to use either (9.3-1) or (9.3-7) to accomplish this. For instance,
let o = 5; then T, = .27
Approach A

Evaluate A(T,) = ¢ and B(7T",). Then at time 7 = »I" use the recursion
equation (9.3-1) five times; e.g.,

398 Computer Methods in Systerns Studies Sec. 9.4

*(mT -+ T, = AT x(nT) «+ BT Jr{nd)
X(nT + 2T) = A(T)x(@? + T,) -+ BT)r(nT)
x(uT + 3T.) = AT)@ + 2T,) -+ BT)r(nT) (9.3-9)
x(uT 4+ 4T) = AT)x(nT -+ 3T) + BT Jr(zT)

X[(n + DT] = (T + 5T,) = AT)x(nT + 4T,) -+ B(T)r (nT)

These five equations are repeated every main sampling interval with a new
input supplied at times s =nf, n==1,2,....

Approach B
Bvaluate A (T} = €% Then use the recursion (9.3-7) five times; e.g.,

m{pT + T 5)} m T{r(nT)}
[x{nT N R e

[m(n’f' + 21;)} _ em{ r(nT) }
x(nT + 2T x(nT + T,) (9.3-10)

i + 0T [0 £ _ ol 0]
x(

x[(n+ DT]] | x(aT + 5T) aT + 4T)
These equations are repeated every main sampling interval with a new input
applied at times given by #=nT, n==1,2,.... Of course, the variable

m(nl ++ 1), m(nT + 2T}, etc. is not used.

9.4 Digital Computer Simulation of a Digital
Control System

As an illustration of the use of numerical integration techniques, we
consider the digital simulation of a computer control system. Consider the
system shown in Figure 9.4-1. The transfer function of the continuous system
is given as

ks + 1)
G(5) = s 0] (9.4-1)

A zero-order hold element is used. The digital recursion equation is
given by

e, (kT) = e,(kT") + .2¢,[(k — DT] — 2e,{(k — 2T
— Ge,lk — DT + .15e,[(k — 2)T] (9.4-2)

Sec. 9.4 Digital Computer Simulation of a Digital Controf System 399

K
r(t) T pigita e (kT) | Hold | mlt)

T ™™ Equation Element

c(:L

Gi{s) -

Eigure 9.4-1. Computer control system.

It is desired to set up a digital computer simulation to analyze the response
of the system for a variety of sampling periods, system gains, and step inputs.
It is, therefore, necessary to provide built-in flexibility in the program to
accommodate an analysis with respect to these three factors.

Using direct programming, we form the state equations of (9.4-1), which
are

*, —~4 —10 01[x, 1
X, | = 1 0 Of|x,1+10 |ml) (9.4-3)
%, 0 I 0OJix, 0

o(f) == ko(x, -+ x3)

Thus
wed 1000 1

F o= 1 0 0} and G=10

0 1 0 0

To compute the transition matrices A(T)and B(T) we may use a computer
routine such as

SUBROUTINE MATEXP (F,GABNMT)

described in Appendix 2A.

The linear recursion equation of the digital computer can be simulated in
the very form it is given.

A general flow chart for the simulation is shown in Figure 9.4-2.

After the flow chart, the program of the simulation is presented.

Definition of symbols:

T = sampling period

GAIN == gain &, of system

NRUN = number of runs made

TIME == time of response

XIN = magnitude of step input

NDATA == total number of runs to be made
TIMEFN == total length of each run

400

21

10

11

20

12

Computer Methods in Systems Studies Sec. 9.4

DIMENSION F(3,2),G(3}, A(3,3), B(3)LE1{3).E2(3).X(3)
READ (5,1) F.G,NDATATIMEFN

PARAMETERS FOR THIS RUN
READ (5,2) T.GAINXIN

COMPUTE A(T} AND B(T)
DO 10 | = 1,3

By = G

DO 10 4 = 1,3

A (L) = FOJ)
call. TRANS (A , B ,3.T18)

INITIALIZE NEW RUN
NRUN = NRUN + 1

c = 00

TIME = 0.0
XM = 0.0

00 11 1 = 1,3
EI(H = 0.0
E2() = 0.0
X() = 00

COMPUTE COMPUTER INPUT

EH(3) = E1(2)

E1(2) = E1(1)

E1(1) = XIN-C

COMPUTE COMPUTER QUTPUT
E2(3) = E2(2)

E2(2) = E2(1)

E2(1) = E1(1)+.24E1(2)~.2%E1(3)~.6xE2(2)+.15%E2(3)
COMPUTE NEW PLANT INPUT
XM = E2(1)

COMPUTE NEW PLANT OQUTPUT
Do 121 = 1,3

X() = X()+B)*XM
DO 2 4 = 13

X(I) = X(O+A(IRX)
C = GAINK{(2)+X{3))

PRINT OQUTPUT
TIME = TIME+T
WRITE(6,3) TIMEE1{1),XM,C

TEST IF THIS RUN IS COMPLETED
SF(TIMELT.TIMEFN) GO TO 20

TEST IF A NEW RUN 1S TO BE INITIATED
IF{NRUN. LT. NDATA) GO TO 21

STOP

The program is written in FORTRAN. Not shown are FORMAT state-
ments.
The digital simulation illustrated above can also be carried out by using

Start
@. Rea?ﬁ?ata Compute Print
This Run e, (kT) Results
[
Should a
Compute Compute new parameter
Matrices m(kT) be sefected?
1
Initiate Compute :
new Run »(kT) Terminate
1 1
Compute Compute
r{&T) ckT)

1

Compute
e (kT) Yes

No

Figure 9.4-2. Flow chart for digital simulation.

the augmented system matrix F,, since the input to the plant G(s) is a piece-
wise constant input. The augmented matrix is

0 0 00
1 —4 —10

F, = 0
0 1 00
0o 6 10

497

402 Computer Methods in Systems Studies Sec. 9.4

9.4-1 Other Ways of Implementing a
Digital Computer Simulation of a
Discrete-time System

The last section demonstrated a simulation procedure of computer con-
trol systems by representing the continuous-time parts of the system by
discrete-time state transition matrices for the purpose of calculating their re-
sponse at discrete-time intervals. An alternate approach to the computation
of the response of the continuous-time part of a mixed system is the utiliza-
tion of numerical integration techniques such as the Euler or Runge-Kutta
procedures. To follow this approach it is convenient to construct a subroutine
that will generate a solution of the differential equations representing the
plant over a single sampling interval or some subinterval. SUBROUTINE
INTFUN is such a program. (See Appendix 9A.)

The use of the subroutine is illustrated by repeating the simulation of the
problem of the previous section. The flow chart is given as shown in Figure
9.4-3. The program follows on page 403.

Start

1
Read Data Compute No o

{ : | — for e, (k1)
This Run

i

! Yes
Compute
Initiate New m{kT)
Run Print Results
i
Compute

@ Compute x(kT)
r{kT)

i

New
Parameters

C
Compute gzr]:;;}:)te —

ey (KT)

Terminate

Figare 9.4-3. Flow chart for digital simulation.

Sec. 9.4 Digital Computer Simulation of a Digitel Control System 403

DIMENSION E1{(3),E2(3), X(4)
READ (5,1) NDATATIMEFN

c PARAMETERS FOR THIS RUN
21 READ (52) T,GAIN,XIN
C INITIALIZE NEW RUN
NMRUN = NRUN-+1
c = 00
FIVET = BT
TIME = 0.0
BO 1 | = 1.3
B} = 0.0
E2(} = 00
11 XH = 0.0
c NEW COMPUTER INPUT
20 E1(3) = Ef(2)
E1(2) = E1(1)
E1(1) = XIN-C
¢ NEW CGMPUTER OUTPUT
£2(3) = E2(2)
E2(2) = E2(1)
E2(1) = E1(1)+.24E1(2)—2%E1(3)~.6%E2(2)+.15%E2(3)
¢ NEW PLANT INPUT
X{4) = E2(%)
G INTEGRATE PLANT FOR NEXT INTERVAL WITH 5 POINTS
CALL INTEUN(X TIMEEIVET,N)
c NEW PLANT OQUTPUT
C = GAIN®(X(Z)+X(3))
c PRINT QUTPUT

TTOTAL = TEQTALST
WRITE (6,3) TTOTALEI(1).E2(1).€

C TEST {F THIS RUN [§ COMPLETE
IF (TFOTALLT.TIMEFN} GO TO 20
c TEST IF A NEW RUN 18 TO BE INITIATED
IF {NRUN.IT.NDATA) GG 7O 21
END
STOP

In addition to the above program we need the statements for subroutine
DERIV; these are

SUBROUTINE DERIV{X,TIMEDX}
DIMENSION X{4},DX(3)

DX{1) = —4%X{1)—10.%X{2)+X{4)
DX(2) = X(1)

DX{3) = X(2)

RETURN

END

404 Computer Methods in Systems Studies See. 9.5

The use of the Runge-Kutta method to provide a solution for the state
equations of the plant is particularly appropriate when these equations are
nonlinear. In that case, a state transition matrix cannot be obtained.

9.5 Analog Computer Simulation of Systems

The analog computer has been widely employed in the simulation of
complex dynamic systems. Simulation is closely related to the solution of
state equations by analog computer. However, simulation implies the solu-
tion of dynamic systems in a broader sense: It involves the solution of the
state equations representing appropriately chosen subsystems of the system
with interconnections that are in a one-to-ome correspondence with the
topology of the system. Let us consider the simulation of the feedback control
system shown in Figure 9.5-1.

X + Ey E, 1+0.2s E, 5 X,

K P+ s(1+55)

Figure 9.5-1. Block diagram of a control syster.

We can dissect the system into four subassemblies.

1 X N\ _E

Xy

E, = X — X,
In terms of a computer diagram,

X
MI

Sec. 9.5 Analog Computer Simulation of Systems 405

and
—e, ° s
0 <K< 10
3 £ 1402 Ey
' i+s

The state equations are

xy = s — ex(0)]

ex(t) = —[—.8x; — 2ey(#)]
Therefore, the corresponding analog diagram is

Ea 5 Xo

4. s(1 + 55)

The state equations are

R (A N 2

Xy == Xy

and the diagram is

Xy

406 Computer Methods in Systems Studies Sec, 8.5

Figure 9.5-2. Analog computer diagram for feedback system,

These four subassemblies may now be integrated into a single diagram
representing the entire system. The result is shown in Figure 9.5-2. The
analog computer program thus obtained is a simulation of the feedback
system. The structural correspondence between the computer diagram and the
block diagram of the system is easily recognized. The diagram may be sim-
plified by removing the second and fifth summer-amplifier and combining
their functions with those adjacent to them. Figure 9.5-3 shows the simplified

—x;

_.%_el f\

Figure 9.5-3. Simplified computer diagram,

diagram. Although this simplification requires the elimination of the variables
e, and e, it is consistent with good analog computer practice of constructing
a diagram of minimum complexity. However, «the main structure is still
preserved.

In contrast to the simulation approach outlined above, we shall consider

Sec., 9.5 Analog Computer Simulation of Systems 407

a straight state equation solution of the same problem. The combined “closed-
loop” transfer function is given by

K(25 + 1)

X)) =127 + AR F 5T K

X{s)

The corresponding state equations by direct programming are

Xy w12 - 2AK+1D —K[x 1
gf; X, l=1 1 0 Ollx, |+ 0 bxu®
X3 0 1 0 [lxs 0
xy
%) = K[0 .2 11} x,
X3

The analog computer diagram corresponding to these equations is shown in
Figure 9.5-4.

X3

Xz

Figure 9.5-4. Direct approach of feedback system solution.

Figures 9.5-3 and 9.5-4 show computer diagrams that represent two
approaches to the solution of a dynamic system. Although both will yield
identical results in terms of the solution, the simulation approach is usually
preferred. Not only is the structure of the system preserved in the computer
diagram, but also it is much more readily adaptable for design considerations.
For instance, if the parameter K, which represents the gain of the system, isto
be selected according to some response specifications, only one potentiom-
eter has to be adjusted on the simulation diagram, against four on the
state equation approach.

408 Computer Methods in Systems Studies Sec. 6.6

The example developed above is but a single illustration of analog com-
puter simulation techniques. However, it points out one important charac-
teristic: the breakdown of the overall system into subassemblies, each one of
which is modeled individually.

The simulation of systems by analog computer is particularly useful
when the system contains isolated nonlinearities. Some subassemblies will
be characterized by linear state equations, while others may contain typical
nonlinearities that are much more easily dealt with on a subassembly basis
than on a complete system approach.

The simulation of discrete systems or sampled-data systems may be
most effectively carried out by the use of a hybrid computer if the system
operates in continuous time while other parts function in a discrete manner.
We shall turn our attention to hybrid computer simulation in the next
section.

9.6 Digital Analog-system Simulators

The application of digital computation methods in the solution of techni-
cal problems has become widespread. The increased use of digital computa-
tion methods is largely due to the availability of larger, faster, and more
powerful digital computers and the development of application languages
such as FORTRAN and ALGOL. These languages enable the user to express
his problem in a computer language closely allied to the language of his own
field, thus considerably simplifying the programming process.

During the last ten years an additional class of application languages has
been developed which are proving to be very useful, These are the digital
analog simulators. Nearly two dozen of these languages have been created,
their level of capability roughly corresponding to that of digital computer
technology. In an evolutionary manner, two simulation systems that bave
gained widespread acceptance because of their simplicity and overall effec-
tiveness are MIDAS (Modified Integrator Digital Analog Simulator) and
MIMIC. Of these the MIMIC language provides a simple substitute for the
hybrid computer, as far as the simulation of discrete and sampled-data
systems is concerned. What makes it potentially even more attractive than
hybrid computer programming is the ease of programming, the elimination
of the need for scaling, and the absence of sign reversals through operational
amplifiers, _ o

By education and job experience, the systers designer tends to visualize
a system as a complex of subsystems. In this context, a computer control
system may well be described by a block diagram consisting of interconnecte.:d
blocks, each one of which designates a subsystem. These blocks may contain
s-transfer functions, z-transfer functions, nonlinear functions, logic functions,

Sec. 9.6 Digital Analog-system Simulators 409

time-varying constants, and other characteristics typically found in a large-
scale system.

By its very organization, the hybrid computer provides this building block
capability. Digital analog simulation languages provide the means of pro-
gramming a digital computer like a hybrid or analog computer. The problem
is programmed on the digital computer in a manner closely approaching an
analog computer solution. The user has at his disposal a set of predefined
blocks from which he can assemble the system to be simulated. The blocks
perform the same functional operations as standard analog computers, such
as integration, multiplication, function generation, switching relays, and the
like. In addition, hold circuits and z-transfer functions may be simulated.
The assembly of these blocks, corresponding to the patching of the analog
computer, is performed by a sequence of connection statements,

Before we proceed with the detailed deseription of MIMIC, we consider
a brief history of the development of digital simulator languages.

9.6-1 Brief History and Recent Developments

The first published account of work on digital analog simulation was
presented by R. G. Selfridge.* His work was motivated by the need to simu-
late larger problems than his analog computer could handle and to achieve
better accuracy. His program was developed for one of the early computers
without the advantage of antomatic compilfers such as FORTRAN. Adapting
the digital computer to block diagram organization was his major coniribu-
tion and is the basis for all of the subsequent analog simulator programs.
Selfridge’s program was an interpretive routine, which means that it accepted
and executed cerfain pseudo-instructions without producing a machine
language translation. Also, all computation was done in fixed-point arith-
metic, and the problem variables had to be scaled fo a definite maximum
value.

Digital simulator development has paralleled the general development of
digital computers. Programming aids such as floating-point arithmetic and
automatic compilation are used to great advantage by the newer simula-
tion programs such as MIMIC, MIDAS,T DAS,t PACTOLUS,$ and DSL
90.1 Although these programs differ in format and language, they all retain

*R. G. Selfridge, “Coding a General-Purpose Digital Computer to Operate as a Dif
ferential Analyzer,” Proceedings 1955 Western Joint Computer Conference (IRE).

tR. T. Harnett et al.,, “MIDAS. .. An Analog Approach to Digital Computation,”
Simulation, Vol. 3, No. 3, September 1964,

TR. A. Gaskill et al., “DAS—A Digital Analog Simulator,” AFIPS Conference Proc.,
Vol. 23, p. 83.

§R. D. Brennan and S. Harlan, “PACTOLUS—A Digital Analog Simulator Program
for the IBM 1620,” AFIPS Conference Proc., Vol. 26, October 1964,

[f'W. M. Syn and D, G. Wyman, DSL-90, User's Guide, SHARE Library 3358.

410 Computer Methods in Systerns Studies Sec. 9.6

the block organization feature. The PACTOLUS program exhibits one of
the latest innovations; man-machine interplay. This is a very desirable fea-
ture, but it is not practical, since most large computer installations do not
allow this procedure.

The DAS (Digital Analog Simulator) is structurally classified as a com-
piler. In addition to providing a workable and easy-to-use simulation lan-
guage, it represents the forerunner of the MIDAS program.

9.6-2 MIMIC—A Simulator Language*

The development of simulator languages is an evolutionary process. At
the time of this writing it is fair to say that MIMIC is the most versatile and
effective simulation language. It represents a direct descendant of MIDAS,
with some basic modifications and improvements. In this section a brief
description of MIMIC and its use will be given. The description will be only
sufficiently complete to permit the reader to obtain a basic appreciation of
the operation of the program. For a total understanding only a manual of
operation will suffice.

Hlustrative Example

The coding of a simulation problem in the MIMIC language is carried
out in terms of FORTRAN-like statements. As an introductory example,
consider the control system shown in Figure 9.6-1. To code this problem in

ey 4T N\ er) P 10 e{t)
./

s(3+ 2D (s +5)

Figure 9.6-1. Simple control system.

MIMIC, we proceed in a manner similar to an analog computer simulation.
For each block in the block diagram, a state model is developed. Using direct
programming, for the block relating ¢(z) to m(s), we have

%1 [=7 —10 07[x, 1
% = 1 0 ollx|+]|0 |mo (9.6-1)
x, 0 1 0]ix, 0
oty == 10x,

*H, (G, Peterson and F. J. Sanson, “MIMIC,” 4 Digital Sinudator Program, SESCA
Internal Memo 635-12.

Sec, 8.6 Digital Analog-system Simulators g11

The problem would be programmed by keypunching the following statements

Resuit Expression

10 19

E B-C

XM AKKE

X1 INT(=7.%X1~10.%X2+T1.xXM,0.)
X2 INT(X1,0.)

X3 INT(X2.0.)

c 10.%X3

The relationship between the coding and the equations is so similar to
FORTRAN programming that it should not require explanation.
The six equations may be reduced to three, as follows:

Result Expression

10 19

X1 INT(~7%X1—10.%£X2+AKx{R—10.%4X3,0.})}
X2 INT(X1.0.)

X3 INT(X2,6.)

The block diagram of Figure 9.6-1 may be restructured to contain only
first-order transfer functions, such as those shown in Figure 9.6-2. Then it is
possible to utilize a MIMIC function that computes the input/output rela-
tions for a first-order transfer function (FTR). The operation of this function
is illustrated by still another coding version of the same problem. The FTR
solves a first-order differential equation.

rie) e(r) L2 L V2 1 s 1 ety
+ 1+0.5s 1 +0.2s s

Figure 9.6-2. Alternate bleck diagram.

Result Expression
10 19

E R~-C

Y1 KkE

Y2 ETR(Y1,.5)
Y3 FYR{Y2,.2)

C INT(Y3,0.)

412 Computer Methods in Systems Studies Sec. 9.6

As is illustrated by the above example, it is possible to code a MIMIC
simulation program in various ways: directly from a set of differential equa-
tions, or directly from a block diagram, or a combination of both. Obviously,
a great degree of flexibility is available to the programmer. Whatever ap-
proach is used, the computer will automatically sort the instructions into
proper order for sequential solution and then proceed to solve the equations.

8.6-3 Selected Features of MIMIC

Variables

As in FORTRAN, a group of from 1 to 6 alphameric characters con-
stitutes the name of a variable in 2 MIMIC program. There are six reserved
names; they are

T the independent variable

oT the amount T changes between printouts
DTMAX the maximum integration step size allowed
DTMIN the minimum integration step size allowed
TRUE a logic constant that always has a “true” value
FALSE a logic constant that always has a “false” value

Integrator with Mode Control ‘

The mode of each integrator in MIMIC can be individually controlled.
These are the RESET, OPERATE, and HOLD modes. A completely specified
integrator function is given as

Result Expression
10 19
R INT{A,B.C,0)

Here the variable A is integrated with initial condition B. The mode is
controlied by the variables C and D, according to Table 9.6-1.

Table 9.6-1 Integrator Mode Controf

5 ¢ TRUE FALSE
TRUE OPERATE HOLD
FALSE RESET OPERATE

Sec. 5.6 Digital Analog-system Simulators 413

Logic Contral Variables

MIMIC permits the use of logical variables. Logical variables may
assume the value TRUE (1} or FALSE (0). They may be generated by use of
the function switch FSW or logical switch LSW. One of the uses of the logical
variables is to provide a control over the execution of expressions. If a logical
variable is entered in the LCV column (column 2-7), the expression on that
line will be evaluated when the control variable is TRUE and bypassed when
the control variable is FALSE.

Subprograms

Subprograms in the style of a FORTRAN subroutine may be included
in a MIMIC program. A subprogram must first be defined by putting the
expressions comprising the subprogram between a BSP (begin subprogram)
and an ESP (end subprogram). The subprogram name is entered in the result
column of the BSP and ESP cards. The inputs to the subprogram are speci-
fied as argumenits of BSP, while the cutputs of the subprogram are obtained
as arguments of ESP. To use a subprogram, two other control statements,
e.g., CSP and RSP, ace used. The name of the subprogram is entered in the
result column of the CSP card; the output of the subprogram will be demon-
strated in a subsequent example.

Funetion Switch

The function switch is designed to generate logical variables. It is used as
follows:

Resujt Expression
10 19
XX FSW(AB.C.D)

The result XX is a logical variable that is equal to B, C, or D, depending on
whether A << 0, 4 = 0, or A > 0, respectively.

Many other functions are defined for use by MIMIC, including, for
instance, ZOH (zero-order hold), TDL (time delay), TAS (track and store).
In addition to the many operational functions, there are input/output func-
tions to generate outputs in printed or plotted form.

EXAMPLE 9.6-1

Develop a MIMIC program to simulate the computer control system
shown in Figure 9.6-3.

414 Computer Methods in Systems Studies Sec. 9.6
R+ El 1.58(1 +0.3682"") {E2 7 M 10 c
T ™ 1—0418z7" T =™ ZOH s+ +2)

Figure 9.6-3. Computer confrol systern.

It is clear that the operations contained in blocks defining the digital
computer program and the zero-order hold are executed only once every
sampling period. It would, therefore, be appropriate to introduce a subpro-
gram for these operations and restrict its execution by a logical variable.

A suggested MIMIC program for the entire system which is complete
except for initializing and input/output statements is given by

Logical Variable Result Expression
2 10 19
DIG BSP{R1)
X X+TSAM
c2 C1
R2 R1
Cc1 1.58%R1~.58%R2Z—.4184C2
piG ESP{C1.X)
SAMPLE FSW{T-X,EALSE,TRUE,TRUE)
SAMPLE DIG CSP{E1}
RSP(M1)
M2 S.kM1
M3 FTR{M2,1.)
c FTR(M3,5.)
E1l R-C
FIN{T.5.)
END

The logical control variable will be TRUE once every TSAM seconds,
the length of the sampling period. The program is terminated by the FIN
function, when T = 5 seconds.

This introduction to the digital simulation language MIMIC is very
brief. It goes without saying that the study of a complete reference manual
is required to use MIMIC intelligently. But the brief examples serve to point
out the ease with which facility in the use of MIMIC can be reached. MIMIC
and other languages like it represent a powerful means of digitally simulating
systems.

Sec, 8.7 Hybrid Computer Technigues and Applications in Simulation 415

9.7 Hybrid Computer Techniques and Applications
in Simulation

Hybrid computers—computers integrally composed of analog and digital
computers—have been developed since the late 1950%s. The motivation for
this type of computer is founded in the need for high-speed computation and
extensive memory and logic capability in large-scale simulations. Utilized
to best advantage in this combination are the high-speed simulation capa-
bility of the analog computer and the arithmetic, logic capability, and mem-
ory of the digital computer.

Cursory references were made to the use of a hybrid computer in previous
chapters concerning the analysis of a sampled-data system. This section will
give more complete coverage of the characteristics and applications of hybrid
computers.

5.7-1 The Organization of a Hybrid

Caomputer
Addressing and Mode Control
DVM Digital Qutput
Data Lines
Analog AfD
Trunks Convession Sample
Bquipment Conatrol
Analo; . .
Compl.fer Digital Data Lines Digital
Com Frunks DiA Computer
ponents . Transfe
Conversion ransfer
And : Control
Equipment
Control
S Patch Digitel Trunk
Sense Parsel B Tunks
Sense Lines
Mode
Controi Interrupt Lines
Control Lines
bt A nalog Trunks
Monitor
Scope Plotter Recorder
Display

Figare 9.7-1. A typical hybrid computing system.

As is shown in Figure 9.7-1, the hybrid computer is composed of three
major paris:

416 Computer Methods in Systems Studiss Sec. 9.7

1. A general-purpose digital computer,

2. A general-purpose analog computer.

3. A linkage system to provide for exchange of data and control infor-
mation between the computers.

We now describe these parts in more detail.

The Analog Computer

The basic computing elements of the analog computer consist of the
components shown in Table 9.7-1. The computer is provided with electronic
mode control of all time-dependent components, particularly the integra-
tors. All three modes, RESET, HOLD, and COMPUTE, are controllable
either by patchable digital logic timing circuits, by commands from the digital
computer, or by manual pushbutton control. By means of special forced-

Table 9.7-1 A Selection of Hybrid Components
and Their Symbols

No. Symbol Description

€; Integrator: Separately controlled through its
OPERATE (0) and RESET (R) inputs.

y-a—" (O, R} = (0, 1), RESET ¢ = —e:
1 e;o—o s (0B =(1,0), OPERATE eo wﬁ% j S exdt
€3 Ot (0, R) = (0,0), HOLD ¢g == constant
]
0]
e " Comparator.
, T ool e, > es, E=1(E=0)
€3 Correrte _;74’___‘05 Ife; ey, E=0(E=1)
Ee E9 Switch:
I i

VE=1(E=10), e ==¢

i
FE=0(E=1), e =e
LR ——
3 €o
€ Gt
& Track-store:
4 If E=1, ep= constant (QPERATE)
fof- . IfE=0, e =¢e; {RESET)
€9

Sec. 9.7 - Mybrid Computer Technigues and Applications in Simulation 417

No. Symbol Description
A Qe AND Gate:
B E EmiifA=B=(C=1
3 B r E =0if cither 4, B,or C=0
Co
OR Gate:
6 E=1ifeither 4, B,or C ==}
E=QifA=8B=C=0
Flip-flop
A=1, C==0:E=1-—set flip-Jop
" A =0, C=1;FE=(0—<lear flip-flop
1 A C=0: E=1,0—store 1 or 0
A= C=0, B=0— 1:complement E
7 Monostable:
E A== Q—s 11 E =1 for T seconds;
8 ‘g___ otherwise £ =0
E

charging circuits the integrators may be operated at high speed, cycling up
to 10,000 times a second between the three modes. The mode selection of the
integrators is carried out by logic signals when under the control of digital
logic.

In addition to the electronic control of integrators, electronic switches
are provided. The operation of such a switch is defined by the description of
Table 9.7-1.

A special kind of hybrid computer component is the track-store circuit.
Since it is foreign to a conventional analog computer, we shall describe its
operation here. The track-store circuit is essentially an integrator under
electronic mode control with input solely through the initial condition input
terminal. When the integrator is in RESET mode it “tracks” the input,
whereas in OPERATE it “stores.” To illustrate the operation of a track-store
unit, consider the waveforms of Figure 9.7-2. It shows a waveform r() con-
nected to the input of a track-store unit that is controlled by a timing signal
E. The output c(z) is seen in Figure 9.7-2(c).

Thus when E = 1 the unit is in STORE mode and when £ = 0 the unit
is in TRACK. mode.

The voltage levels of the logic signals are usually such that logic 0 cor-

418 Computer Methods in Systers Studies Sac, 8.7
rt)k
i
L | |
Y |
' 1 |
0 ; { -
| | / { (a) i t
Ef | |
] |
1 Logic 1
Logic G
| |) '
| i l
1 {
c(e) i i |
! i
! l
’ |
3 |
0 I t © 1 -
! N l

Figure 9.7-2. Track and store operation.

responds to ground level and logic | is given by a small positive potential
such as § volts.

A very useful hybrid computing element is obtained by combining two
track-hold units in cascade, as shown in Figure 9.7-3(a). The first unit is
driven by logic signal E, while the second is driven by its complement E.
This element functions as an analog memory. Its usefulness can be further
enhanced by feeding the output of the second track-hold into the input of the
first, as shown by the diagram of Figure 9.7-3(b). In this connection it is an
analog accumulator and is usually switched periodically. Thus it functions

clt)

c(f)
c{ry=rite), to St

c{k+1)

elk) + 8
(2) b)

Figure 9.7-3. Cascaded track-store circuits: (a) analog memory;
{b) analog accumulafor.

“Sec. 9.7 Hybrid Computer Techniques and Applications in Simulation 419

according to the difference equation
el D ==ck)+6 (9.7-1)

This is recognized as a discrete integrator.

One other feature worth noting is the use of servo-set potentiometers.
All potentiometers are set to four-place accuracy by a remotely controlled
servomotor. This arrangement makes it possible to use the digital computer
to adjust the potentiometers, greatly enhancing the automatic capabilities of
the hybrid computer.

The Digital Computer

The digital computer that is used in a hybrid computer installation may
range from a small, 4096-word computer to as large a computer as one may
require. Typically, however, the computer used is characterized by the fol-
lowing specifications:

1. Memory size of 8192 with 16- to 18-bit words.

2. Ability to interface with a large number of external devices.

3. Multilevel priority interrupt system, internal and external.

4, Extensive hardware capabilities to permit extended arithmetic opera-
tions in foating point.

5. Secondary memory such as discs to permit resident storage of library
routines and compilers.

6. Medium volume input/output, such as high-speed paper tape reader
and punch.

One of the most important factors determining the usefulness of the digital
computer in a hybrid installation is the availability of sophisticated software.
Of absolute necessity is 2 FORTRAN compiler. Next in importance are
subroutines that consist of (1) arithmetic and mathematical functions, (2}
format routines for numeric conversion, and (3) input/output routines to
provide communication and control for all peripherals. There should be
software packages specifically created for hybrid operation to permit real-
time capability, time and delay statements, and complete control of and
communication with the interface between analog and digital computer.
Further, there are program setup and checkout routines.

Computers that fall into this category are the IBM 1800, CDC 1700,
PDP-9, EAI-640, SDS 920, and many others,

The digital computer in a hybrid installation may be used solely in con-
junction with the analog computer. On the other hand, recent developments
in digital computer technology permit the time-sharing of the digital computer
for a variety of uses. Thus, it may be possible to time-share a larger digital
computer with a hybrid installation, provided that hybrid computer uses
are granted a “foreground” priority, while all other uses during hybrid com-

420 Computer Methods in Systems Studies See. 8.7

putation can be handled on a “background” priority. What this means is that
the digital computer makes availabie all the time needed at the right moment
to the hybrid installation; all other users must be satisfied with whatever
time is left over from hybrid computation.

The main advantage of a time-shared hybrid computer installation would
appear to be the availability of a larger digital computer at Iess cost. But it is
questionable whether the priority requirements can be always satisfied.

A hybrid computer may be controlled by digital instructions or by analog
patching. Briefly, these two modes of program execution control are described
as follows.

Digital Control

The timing of all analog operations, such as HOLD, OPERATE, and
RESET is under digital program control. Data transfer from the digital
to the analog computer via digital-to-analog converters and from the analog
to the digital computer via analog-to-digital converters is triggered through
appropriate commands in the digital computer. The entire simulation is
initiated and terminated by digital computer instructions. Under digital
control the analog computer is completely slaved to the digital computer.

Aralog Control

The timing for RESET, OPERATE, and HOLD modes is controlled
through patchable logic circuits such as AND and OR gates, flip-flops, coun-
ters, delay elements, etc. Data transfer is triggered by counters or differential
switches. The program simulating the discrete-time part of the system is
executed periodically upon a receipt of a new data set from the analog-to-
digital converter. Under analog control the digital computer is slaved to the
analog computer.

Program Instructions for Digital Control

For the sake of general flexibility & hybrid computer is usually under
digital control. For this purpose we define, then, the following program
instructions. They represent only a partial list of all instructions needed to
support sophisticated hybrid computations.

CALL HOLD
This call puts all integrators into HOLD mode; at the same time, all
A/D converter channels sample the output voltage of the amplifiers
to which they have been patched.

CALL RESET
This call puts all integrators into RESET mode.

CALL OPERATE
This call puts all integrators into OPERATE mode for a preselected

Sec. 8.7 Hybrid Computer Techniques and Applications in Simulation 427

interval; at the end of this interval the integrators automatically
assume 2 HOLD mode,

CALL POTSET (KPOT, VALUE)
This instruction sets the potentiometer identified as KPOT to the
value VALUE,

HWRITE()X
This instruction transfers the confents of location X to the output of
D/A converter channel I and holds it there.

HREAD ()X
This instruction transfers the output of A/D converter channel I into
location X.

These instructions are sufficient to develop a simple but complete pro-
gram. The preparation of this program consists of two parts, the analog
computer diagram and the digital computer instructions. An example to be
introduced shortly will demonstrate this. '

The Interface

The interface provides the link between the two computers. As was men-
tioned eariier, this linkage must provide for communication and control. As
the computers work with physically different signals, digital and analog
signals, the primary function of the interface is to provide a number of high-
speed analog-to-digital and digital-to-analog channels through which data
flow between the computers takes place. The intercomputer information flow
is accomplished through A/D converters and DfA converters that operate with
an accuracy variable from 6 to 14 bits including the sign bit. Table 9.7-2
shows the refative conversion accuracy that is possible in terms of percentile
figures.

Table 8.7-2 Conversion Accuracy

Bits Powers of 2 Percentage Accuracy
1 2 k11578
2 4 25
3 8 12.5
4 16 6.2
s 32 3.1
6 64 1.6
7 128 8
8 256 4
9 512 2
Normal §10 1024 a1
range 11 2048 .08
12 4096 02
13 8192 01

422 Computer Methods in Systems Studies Sec, 9.7

The analog computer is capable of an accuracy of approximately .01
percent. Thus to carry a conversion to 13 bits achieves maximum reasonable
accuracy.

In addition to conversion accuracy, time required to perform the conver-
sion is often of great importance. Typically, an A/D converter can handle
20,000 to 50,000 conversions per second of words ranging in length from 8
to 13 bits. Digital-to-analog converters operate at a speed of a few micro-
seconds. Normally, A/D conversion of several analog signals is carried out by
time-sharing a single A/I> converter through the use of a multiplexer. This is
shown schematically in Figure 9.7-4. The multiplexer selects the channel

€y
gy
————— b b4t ereerereee el
A/D CQuiput
. . Converter
- -
L) .
€y
L |
™ Muliiplexer

Figure 9.7-4, Time-sharing in A/D conversion.

whose input is to be converted. One problem that is encountered by the use of
a muitiplexer is that in the case of the conversion of a large number of analog
signals, the consecutively generated digital numbers correspond to different
momenis of time because of the sequential operation. This time difference,
called time-skewing, could be of significance in a given problem. One effective
method of dealing with this problem is to provide sample and hold circuits
for a selected number of analog signals and synchronize them. They may be
still converted sequentially but may correspond to the sarme moment in time.
The sample and hold amplifier precedes the multiplexer.

The computer linkage provides for intercomputer control for the pur-
poses of timing, interrupt, input and output, and logic decisions during the
course of a computer program.

The operation of the linkage can be under control of the analog computer
or digital computer. Digital control is usually preferred because of greater
flexibility and ease of programming.

Sec. §.7 Hybrid Computer Techniques and Applications in Sirnulation 423

Examples of Hybrid Computer
Applications

Four examples will be presented here to iflustrate the use of a hybrid
computer in systems studies.

EXAMPLE 9.7-1

Design for Critical Damping. In the simple control system showsn in
Figure 9.7-5 the gain is to be automatically adjusted so that the system re-
sponds in a critically damped fashion to a step input. To accomplish this,

sz + 1)

Figure 9.7-5, Gain-adjustable control system.

we shall use a hybrid compuier, utilizing only the analog computer as
controlled by patchable digital logic. The problem solution is actually fairly
simple. The automatic gain adjustment is carried out by use of an electronic
multiplexer, whose one input is € and whose other input is K, which is gener-
ated from analog accumulator as shown in Figure 9.7-6. It is automatically
adjusted according to the iterative equation

Koow = Kaa + AK - (97“2)

at a frequency synchronized with the OPERATE-RESET cycle of the system
simulated.

The parameter g is taken as a variable. A system that adjusts X each time
a is changed could operate on the principle that if there is no overshoot during
a particular COMPUTE cycle, one should increase the gain, and if there i3
overshoot, one should decrease the gain. Thus, the gain would tend to oscil-
late about a critically damped value. When a changes, the system will auto-
matically adjust the gain to reach the new value, giving critical damping. A
control circuit operating on this principle is shown in Figure 9.7-7.

At the beginning of each COMPUTE cycle, the storage device is cleared
to indicate that no overshoot has been detected in this cycle. If the latching
comparator detects overshoot at any time during the COMPUTE cycle, the
storage device is set. The condition of the storage device at the end of the
compute cycle determines whether the AK to be added during the RESET

424 Computer Methods in Systems Studies Sec. 9.7

o

Input
—
X
AK
Figure 9.7-6. Circuit diagram.
Negative
Increment
+ 5 + Ref.]
x ‘ 0
R Rem II;}'?H LTH l
. Elec. Comp. / 1 AK
Overshoot —Ref,
Positive
Increment

Figure 9,7-7. Control circuit using latching comparator and digital
switches.,

phase is positive or negative. Thus, the presence or absence of overshoot
determines whether K is decreased or increased, respectively.

The OPERATE-RESET signals are timed by decade thumb wheel coun-
ters that may be dialed to give the timing for the integrators.

EXAMPLE 9.7-2

Simulation of a Sampled-data Control System. We consider the hybrid
simulation of the computer control system shown in Figure 9.7-8. The system

Sec. 9.7 Hybrid Computer Techiniques and Applications in Simulation 425

@) a7 €2 (°7) Hold |m() | Ana)
Pigital ~ o il natog c(r
T =™ System T Circuit System

Figure 9.7-8, Digital control system.

is characterized as

Digital system:

e, (nT) = 1.582e,(nT) — .582¢,[(n — DT — .418¢,(n — DTT (9.7-3)

Hold circuit:

mnT 1) =e,(nT) for0 <Lt <T (9.7-4)
Analog system:

1
Cis) = mM(s) (9.7-5)
or

d .xl —1 0lx, 1

a = -6

=11 ol Lo 7

o) = x,

The analog parts of the system are simulated on the analog computer,
requiring two integrators, two potentiometers, one D/A converter, and one
A/D converter. Since the DjA converter incorporates a zero-order hold out-
put, no special provision is made for this systeth element. The diagram for the
analog part is shown in Figure 9.7-9,

The digital computer program is given next. The simulation is set up so
as to allow digital control.

DIMENSION
READ {5,1) ABNDATATIMEFN
c PARAMETERS FOR THIS RUN
21 READ (8,2) GAINXIN
C SET COEFFICIENTS

CALL POTSET(1,GAIN)
CALL POTSET{2XIN}

c INITIALIZE NEW RUN
NRUN = NRUN®+I

7]
R
—m{t
e, (nT} D/A m() I
1
¢}

Figure 9.7-9. Analog computer diagram of hybrid simuiation.

TIME = 0.0
DO 11 I = 1,3
E1(d} = 0.0
E2(1) = 00
1M1 X = 00
CALL RESET
c COMPUTE COMPUTER INPUT

20 E1(2) = ENN)
HREAD{1,E1{1))

c COMPUTE COMPUTER OUTPUT
E2(2) = E2(1)
E2(1) = 1.582%E1(1)—582%E1(2)~.418E2(2)
HWRITE(1,E2(1))

c COMPUTE PLANT OUTPUT FOR NEW INTERVAL

c NOTE: INTERVAL HAS BEEN SET TO VALUE OCF SAMPLING
PERIOD
CALL OPERATE

c PRINT OUTPUT

TIME = TIME+T
WRITE(6,3) TIMEERI{1).82(1)

c ALL PERTINENT ANALOG VARIABLES ARE RECORDED BY PEN
RECORDERS
c TEST IF THIS RUN IS COMPLETED
IF(TIMELLT.TIMEFN) GO TO 20
C TEST IF A NEW RUN S TO BE INITIATED
{F(NRUN, LT. NDATA) GO TO 21
8TOP

EXAMPLE 9.7-3

Design of Digital Compensator. As in our last iflustration of the use of
hybrid computers in systems studies, we consider the design of a digital

426

Sec, 8.7 Hybrid Computer Techniques and Applications in Simulation 427

” Cutput
1nput A3 -1 D{z) T {t] b
rit) 52 +0.1 +0.01) e{r)

Figure 9,7-10, Digital control system,

compensator. It is required that the digital transfer D{z) shown in Figure
9.7-10 be designed according to a weighted positive combination of the
following:

1. Minimum overshoot.
2. Minimum rise time.

3. Zero steady-state error.
4. Minimum settling time.

All conditions are to be satisfied in response to a step input.

There exists no analytical design procedure that may be followed to
realize these objectives. Nor is it at alf established that the proposed system
structure corresponds to the best configuration. Furthermore, the form of
D(z) is unknown. A design procedure that performs well under these adverse
conditions is based upon & comrputer experimental approach as outlined
below,

The form of D(z) is arbitrarily taken as a second-order digital transfer
function

by bzl ok bz :
D(z) = P (9.7-7)

The system is simulated with a set of numerical values assumed for the
coefficients of D(z). A performance function is determined which measures
the quality of the response relative to the design objectives. A good choice
for this performance function might be

J = 5,(Cuan — R) + Iy(To) + ksl Co — RY + kyTs) 9.78)

where Cg,, = output at time of maximum overshoot
R = magnitude of step input
T, = time at which output equals input for the first time
C., == steady state output
T2s = time at which output has settled to within 2% of input
k, = weighting constants,

The four successive terms of the performance function (9.7-8) correspond
to the four design objectives 1 through 4, respectively.

428 Computer fMethods in Systems Studies Sec. 9.7

The general objective of the design procedure consists of adjusting the
coefficients of the digital transfer function until the performance function
reaches a minimum. The class of techniques that may be used for this purpose
is generally referred to as parametric optimization techniques. During the
past decade considerable research effort has been expended in the develop-
ment of a great number of optimization technigues.®* The use of these
techniques has become feasible only recently because of the availability of
high-speed digital computers.

The minimization technique used in this example is called pattern search.t
This method begins by changing the parameters of D{z) one at a time, starting
at some arbitrary initial choice. The magnitude of the change is arbitrary,
but is usually kept small. Associated with each parameter change is a com-
plete simulation of the system and an evaluation of the performance function.
Changing a parameter may result in an increase or decrease of J or, possibly,
no change in J may occur. Should an increase be the result, the perturba-
tion is repeated with a parameter change of opposite sign. When zll param-
eters have been perturbed once or twice so that the performance function
is reduced in each case, then all parameters are changed at the same time
in the manner indicated by the individual changes. The process is then re-
peated. Thus it can be seen that the pattern search method alternates between
perturbing the parameters individually to determine a “direction” or pattern
and moving in that direction with all parameters. Depending on how well a
new direction compares with a previous one, the successive pattern moves
may increase or decrease the magnitude of the parameter adjustments. This
procedure, therefore, tends to learn as it goes along and is generally quite
effective in adapting to problem peculiarities.

In employing an optimization technique such as the one described above,
the overall problem solution is under the control of the optimization pro-
gram, which, of course, is programmed on the digital computer. The organi-
zation of the entire program is shown by the flow chart in Figure 9.7-11. It
shows the simulation and the evaluation of the performance function as being
separate subroutines of the overall program.

The simulation of the system is carried out by employing the digital com-
puter for the evaluation of the recursion equation and the analog computer
for the simulation of G(s). The system simulation as indicated by the flow
chart of Figure 9.7-12 requires the preparation of a FORTRAN program
for the execution of D{z) and control of simulation. The detailed instructions
of the program are very similar to Example 9.7-2 and therefore are not shown
here,

*P, E. Fleischer, “Optimization Technigues,” pp. 175-216, System Analysis by Digital
Computer, edited by F. ¥, Kuo and 1. E. Kaiser, Wiley, 1966, New York.

tR. Hooke and T. A. Jeeves, “Direct Search Solutions of Numerical and Statistical
Problems,” Journal Assoc. Comp, Mach., Vol. 8, April 1962, pp. 212-229.

be
Repeated?

Terminate
and
Finalize

Figure 9.7-11. Flow chart of optimization program.

429

Initialize
Program
Perform
Simulation
Determine
Initial
J
Perturb
Parameter
a;
Select
New
Parameter
Change Sign Perform
of . .
Perturbation Slmu}-ﬂmﬁ No
D] Have All
etermine Parameters Adjust All
JDue toa, Been Parameters
Perturbed?
/
1
No Yes Perform
J Decreased? Simulation
Determine
J
/_S;}uld
Yes Process

Enter
Subroutine

Initialize
This
Run

Update
for Next
Sampiing
interval

A

4

Compute
e,(k)

Compute
e, (k)

4

Compute
Plant
Cutput

Is
Transient
Complete?

Yes

|

Display
Response on
Screen

1

Store
Respanse
Data

Exit

Figure 9.7-12. Flow chart of simulation.

430

Sec. 8.7 Hybrid Computer Technigues and Applications in Simulation 431

It is reasonable to assume that all digital caleulations during the simufa-
tion will not require more than 200 microseconds per sampling time. If the
sampling time is .1 second and the analog computer operates at a speed of
100 times real time, then it requires 1 millisecond. Thus for each sampling
interval 1.2 milliseconds are required. Suppose also that the transient requires
10 seconds or 100 sampling intervals; then the entire simulation requires 120
milliseconds. Thus each parameter perturbation uses up 120 milliseconds. If
now eight simulations are required for each major cycle--seven parameter
perturbations, one for each parameter plus two extra ones for wrong direc-
tions, and one all-parameter adjustment--one full second is used up. During
a typical design of the digital compensator possibly from 50 to 100 complete
iterations are required. We allow, furthermore, a negligible time of 1 milli~
second for other digital computations for the performance functions and
general bookkeeping. All factors comsidered, it is reasonable to expect a
complete design every one to two minutes. This amazing speed, of course,
is ome of the attributes of hybrid computation.

EXAMPLE 9.7-4

A Sampled-data System with Minimum Setsling Time., Design and test
a digital controller that will permit the system shown in Figure 9.7-13 to
respond to step inputs with zero steady-state error in a minimum number of
sampling periods. The test will consist of a simulation on a hybrid computing
system.

rit) er (k) ey (k)

f
< e D() _/T"‘“" G, mity i elt)

s(s 4+ 1)

+

Figure 9.7-13. Computer control system.

The method of design for D(z) is presented in Chapter 7. It is shown that
the form of D(z) is a ratio of polynomials of equal degree N. The degree &

. 1is equal to the order # of the transfer function of the plant if the plant does

not contain a free integrator; N = n — 1 if the plant contains a free inte-
grator.

The minimum settling system is simulated on a PDP-8/TR-20 hybrid
computing system. The timing for the sampling intervals is under the control
of an external timing clock. To carry out the multiplications required in the
program in floating point, a number of system subroutines are utilized.

432 Computer Methods in Systerns Studies Sec. 3.7

Solution. For the case at hand, the digital transfer function is derived
fo be

_F + Fyz7! _
D{z) = T Tt T (9.7-9)
where
1 e T
Fy = (1 — ey By = TT(0 e
- (1— e Ty — Te T
B =Sy = Fi A4 D
For T = .1 sec For = 2 sec For T=1 sec
Fyo== 1052 Fy = 519 Fp == 1.58
Fp == —95.3 F = —.0699 By = ~.577
Fy = .37 Fy = 3093 Fp = 418

For T == 1, the linear recursion equation to be programmed is
e,(k) = 1.58¢,(k) — .58¢,(k — 1) — .418e,(k — 1) (9.7-10)

In order to program the above recursion equation, it is advisable to scale
the variables so that overflows and underflows do not occur.

To scale, first find the smallest power of 2 larger than or equal to the
maximum value of the variables.

e,(k) = Fie (k) + Fpe,(k — 1) — Faey(k — 1)
&,(k)2% = F2@e,(k) + Fi2%e (k — 1) — F32%e,(k — 1)29-
ey(k) = [Fre ()22 — [Fiey(k — D22 + [Fe,(k — D272
Each of the terms in square brackets is now scaled. Multiplication by a
power of 2 in a binary computer is handled by a shift to the left by as many

times as the power (negative power). We select the scaled factors such that
the scaled quantities fall within the range (.5, 1.0). Thus

le,(ky{<1

e, (k)| < 22
| Fy} <29
[By << 22
[Fy| <29

See. 8.7 Hybrid Computer Techniques and Applications in Simulation 433
50 that

F, = F22

F, = F}29

F 3 — F ‘;2"’S

ey(k) = ey (k)29

U§ing the above definition, we replace the unscaled variables in the
equation.

For T == 1,
|F,| =158 < 2!
[Fpl==|—.577] < 20 == |
[Pyl =|.418] < 21
EAGIEL
g, =1~ Fl, =9
g, =0 Fy = —.577
;= —1 F = 836
0, =1 ey(k) = ewzék)

The program is now ready to be implemented on a digital computer. A
flow chart of the program is shown in Figure 9.7-14. Note that for k = I,

FIXET(K) = F3%E2(K~1)

Therefore, this subtraction occurs first.

Select Sec. &7 Hybrid Computer Technigues and Applications in Simulation 435
A-D D(z) = Fi+ F2z°¢
MPX 1+ F377° The program is coded for execution on the PDP-8.* The language shown
Chaznnel is the computer’s symbolic assembler. The listing of this program is shown
in Table 9.7-3. A block diagram of the complete simulation is shown in
P—— Figure 9.7-15, where the plant is simulated by utilizing analog computer
ample
(Start A-D elements.
Converter)
Freq.
Gen. Sample
Rate
Compute
FI*E2(K-1) Caontrol
+10¥
——l\ =
olr
Read AD| Dz} |D/A 2 Ll 1 o
E1(K) [/ .
from
A-D Digital Computer Needed
for
Sign
Correction
Compute and Bias
FIP*E1(K}
Figure 9.7-15, Block diagram of simulation.
Compute .
E2K) = FI*EHK) Table 9.7-3 PDP-8 Listing of Program
~F3*E2K-1) w4
FEIEK-1) TIME, =1 /STORE TIME
%1230
STRT, CLA JAC—0
Qutput ADCC JCHANNEL @
E2(K) GO, ADCY fCONVERT E1{K)
Via D-A TAD E2K1 fE2(K-1)
JMS MULT [F3P%E2(K~-1)
F3P, 3260 [418%2 = F3%21(~Q3)
ShIFtE] DCA SAV3 /MOST SIG. PART
and B2 TAD MP1
in Time Note: External clock increments DCA SAV3+1 /LEAST SIG. PART
ote- ﬂ:‘ iime stored in momory TAD M3 /-M3 = NO. OF LEFT SHIETS
lofaﬁoﬂ 1 SMA /I$ T A LEFT SHIFT?
' JMP +4 /NO, M3>O0R = @, SHIFT IN WRONG DIRECTION,
Compute SKIP
F2*E1(K-1} JMS DPSL /SHIFT PROD LEFT FOR SCALING
for Next SAV3
Sample DCA SAV3
CLA
ADRB /READ E1(K) EROM A~D CONVERTER
DCA FIK JSAVE T
Reset
Time *See Section 9.8.
mlanrt € smrAorrare

Friosmn £ 77 14 LA

436

F1P,

F2P,

E1K,

E1K1,
E2PK,
E2KT,
SAVE,

Computer Methods in Systems Studies Sew 8.7

TAD EtK
JMS MULT
3121

DCA SAV1
TAD MPi
BCA SAVI+T
TAD M1
SMA

JMP . +4
JMS DPSL
SAV1

DCA SAV1
CLA

TAD SAV3
ClA

TAD SAVi
TAD SAV2

6551

TAD E2PK
DCA EZK1
TAD E1K
DCA EIKI1
TAD E1K1
JMS MULT
-2235

DCA SAVZ
TAD MP1
DCA SAVZ+1
TAD M2
SMA

JMP .54
JMS DPSHR
SAV2

DCA SAV2
CLA

TAD TIME
SPA

JMP -3
Ci.A CMA
DCA TIME .
JMP GO

BEeSeRR

Table 8.7-3 (cont.)

SF1PRET(K)
/1.58%x1/2 = Flx27(-C1)

JGET LEAST SIGNIFICANT PART

IS IT A LEFT SHIFT?
/NO, SKIP
JSHIFT LEFT M1 PLACES

/SAVE RESULT

JCLEAR AC IN CASE ABOVE COMMAND SKIPPED
/SAV3

[~SAVZ = -—F3PxE2(K-1)

JSAVI~SAV3 = F1P«E1(K)-F3PxE2(K~-1)
JSAVI—SAV3+SAV2 = FIP&E1(K)—F3P%E2(K-1)
+F2P%E1(K-1)

JOUTPUT E2P(K) VIA D-A CONVERTER

/OUTPUT SHOULD BE MULTIPLIED BY 2104 TO
JCORRECT FOR SCALING IN DIGITAL COMPUTER
JSHIFT E2

/IN TIME

{SHIFT E1

AN TIME

JET(K=1)

JE2P%E1(K-1)

[(—=577)%1 = F2%(2T-02)

/MOST 8iG. PART

JLEAST SIG. PART

/~M2Z = NUMBER OF RIGHT SHIFTS
/IS IT A RIGHT SHIFT?

/NO, SKIP

JSHIFT PROD. RIGHT FOR SCALING

/STORE RESULIS

JAC—@ IN CASE ABOVE COMMAND SKIFPED
JAC—D+TIME

/is 1T TIME FOR NEW SAMPLE?

/NO. WAIT

/YES, AC+~-1

/RESET TIME

[E1(K}
JET(K+1}
JE2(X}
{E2{(K+T)

Sec, 9.8 Computer Controf 437

Table 8.7-3 {cont.}

SAVZ,]
@
SAV3, @
@
M3, 2 /-(Q3+1), Q3 i8S LEFT SHIFTS
M2, @ /—{04-G2-1), 0Q2~Q4 1S LEFT SHIFTS
M1, -1 /~(Q1-04+1), Q1-04 B LEFT SHIFTS

JCONSTANT 1 ABOVE IS DUE TO MULTIPLY
SUBROUTINE

/SUBROUTINES MULT AND DPSL AND DPSR MUST BE ADDED
/

PAUSE

Hybrid computers, their development and application are just beginning
to assume a significant role in the field of systems analysis and design.

Examples 9.7-1 through 9.7-4 cited above show but a limited sample of the
potential of hybrid computers.

9.8 Computer Control

Throughout the chapters of this text we have presented techniques for the
analysis and design of systems containing a digital computer or digital
processor as an integral element. It is reasonable to expect that the reader at
this point has a fair appreciation of the underlying principles and engineering
considerations of utilizing a digital computer in a system. But if some of this
textbook knowledge were to be put to a real test, one which involves hard-
ware and software design, chances are only slight that we would be fully
equipped to master such a task. This section, then, is designed to help us
improve our understanding of the design of a computer control system. We
aim to accomplish this by examining three examples of computer control
applications where reference is made to a specific computer and its features.
This computer is a DEC PDP-8 computer. A brief description of the specific
facility used in the examples is given here to present its salient characteristics.

The computer has 4096 12-bit words. Its memory operates on a cycle
time of 1.5 microseconds. It has an external program interrupt and a bussed
input-output system. Attached to it are an 11-bit plus sign A/D converter
and a multiplexer. The A/D converter is capable of performing a 12-bit
conversion in 35 microseconds. The analog voltage must be within the volt-
age range O to —10 volts; it must be scaled and shifted to accept a wider
range. Also provided is a D/A converter of comparable accuracy with a
conversion speed of 3.75 microseconds. All converters are equipped with

438 Computer Methods in Systems Studies Sec. 9.8

individual 12-bit registers for use as buffers. This enables the A/D converter
to sample and hold an analog signal during conversion, while the D{A con-
verter uses its buffers as zero-order-hold outputs.

The computer has been modified with the addition of a special input-
output channel whereby, on a programmable basis, a binary word may be
transferred between the accumulator and an external binary register in both
directions. This I/O channel is useful in exchanging binary information direct-
Iy with external devices for such purposes as reading a shaft encoder, sending
a binary word to a logic circuit, supplying binary coded control instructions,
etc.

The PDP-8 is programmable using an assembler language. Examples of
programs will be illustrated by detailed flow charts. It can also be programmed
in FORTRAN, although this is very limited because of the small memory.

The PDP-8 is a typical representative of a rapidly growing class of small-
scale, almost desk-top size, digital computers, which may be used in a variety
of on-line systems and data-processing applications.

The examples to be presented involve the PDP-8 as a control computer.
The first case treates the computer as a passive discrete systems element
which is to evaluate a linear recursion equation periodically. In this case it
is used to provide digital compensation through integration. The second
problem places a higher demand on the digital computer by using its com-
putational and logic capabilities in the control of an attitude stabilization
system. The third example consists of a digital control system using a digital
PID (Position-Integral-Derivative) controller. The PID controller is designed
by means of a simulation.

EXAMPLE 9.8-1

Digital Compensation through Integration. The system to be considered
is shown in Figure 9.8-1. It consists of a single-loop feedback system. The

e (£} e (k) ey (k) cft)

r{t)
- Te—= D(z) -/§«-- ZOH

[y

L%
-+

Figure 9,8-1. Digital control system.

digital computer is to control the plant through a zero-order hold such that
the error is driven to zero for step input commands. This desired operating
characteristic imposes the requirement that the system should be of type 1;
i.e., one frec integrator should be present in the loop. It is planned to let the

Sec, 3.8 Computer Controf 4339

digital computer perform this operation. It could, therefore, be programmed
according to the recursive relation

ey(k) = e,k — 1) + e,(k) (9.8-1)

We next check whether this recursive refationship will drive the steady-
state error to zero. To this effect we apply the final value theorem of the z-

transform.
The plant and the zero-order hold are characterized by the transfer
functions
L l—es]
GyG(s) = o (9.8-2)

while its z-transform is given by

Z(GoG(s)} = (1 — zﬂ)fz{

M\.._,._..'

_.(1—2'1)3’{ ST }
x(l_z_;)[1 1]

PRI P

i1 — e
=y ey 9.8-3)
The error is igven by
Ey(2) = — 2

T 1+ D(2)G,G(z)

Since D(z) is given by

1
Dz) = 1—z"!
€,(c0) = lim (z — 1E,(z)
= lim (z — 1) 1 L
221 (z "1 + Y1 —e™T) i—z1!
=70 = 77

Evaluating the limit vields
€,{v0) = 0

Indeed, we can conclude that the system will behave like a type I system with

440 Computer Methods in Systems Studies Sec. 9.8

the digital integration. The characteristic equation is given by
1 4+ D{z)G,G(z) = 0 (9.8-4)
or, upon substitution and simplification,
22— 2Tz b e T = (9.8-5)
Tt has the characteristic roots
Zia= e L jae T — e (9.8-6)

Tt is interesting to show the derivation of the state transition equation for the
closed-loop system for the benefit of comparisor.
The transition equation for G(s) is

x(k + 1) = e Tx(k) + (1 + e e, (k) (9.8

The digital computer equation is given by (9.8-1). To dgzeiop the. transition
equations we must convert the digital recursion equation from its present
form into a state equation form. By the methods of Section 2.6 we have

Ak -+ 1) = d(k) + e,(k)

(9.8-8)
ey(k) = e,(k) + d(k)
Combining (9.8-8) and (9.8-7) and using the relation
e,(k) = r(k) — x(k) (9.8-9)

we obtain the closed-loop transition equations

x(k + 1] f2eF—1 1-— 6'1 [x(k}] F . ewil (k) (9.8-10)
l:d(k+1)]_[~1 IO R

The characteristic roots of these equations are given by

i)u-wile'f-%-i e’ —1

-
1 A—1

OF
42— 2eTh 4 eT =0

which is identical to (9.8-5). .
The investigation of the stability of the system as a function of the sam-
pling time T reveals an interesting fact. Figure 9.8-2 shows a root-locus plot

Sec. 9.8 Computer Control 441

Im:z

Unit-Circle

Figure 9.8-2, Root-locus with T as parameter.

of the system with T" as a parameter. This is determined by caloulating the
roots of (9.8-5). This plot shows the location of the two roots to be starting
at the origin for 7' = co and migrating to the point (1, 0} for 7 = 0 on two
semicircles. This is an interesting result, for it indicates that the response of
the system becomes more and more oscillatory as 7" decreases. This result .
may be surprising. However, a closer look at the digital integrator quickly
reveals.that the gain of the system increases in direct proportion to a decrease
in the sampling rate. To maintain the same gain, the digital transfer function
should be modified to

D(z) = - :ffi | (9.3-11)

The analytical aspects of this problem have now been investigated. We
next carry out the design of the digital computer program that will imple-
ment the recursion equation (9.8-1). A flow chart for this program is present-
ed in Figure 9.8-3. It is sufficiently detailed to show the necessary machine
language instructions.

The program begins with an instruction to clear the accumulator and load
the multiplex channel number into the accumulator. This may be any one of
channels 1 through 24. The next instruction starts the conversion of the analog
signal connected to the selected channel to a digital number. The analog
number is sampled and held. The conversion requires 35 microseconds when
carried to 12-bit accuracy, during which time the computer may carry out

i

Clear
Aceumulator

Select
Multiplex
Channel
-

Convert
Analog to
Digital Number

Perform other
Computations

No Is Conversion
Complete?

Transfer A/D Buffer|
to Accumulator

Add Last Output
from Memory

Load Acc. info
D/A Buffer

Load Acc. into

Memory
Location

Perform Other
Computations
Until
Interrupt
for New

Sample

Sec. 8.8 Computer Cantrol 443

other computations independent of the conversion. When the conversion is
complete, the contents of the A/D buffer are transferred to the accumulator,
representing ¢, (k), the new input. To this is added the old output e,(k — 1),
resulting in the new output e,(k), which is stored in memory and also loaded
into the D/A converter. Loading the DJA buffer requires 3.75 microseconds,
while the D/A output network settles within 3 microseconds. Thus the digital-
to-analog conversion is complete as soon as the load instruction is executed.
The computer may now perform other functions until an inferrupt occurs
from an external clock to indicate the need for a new sample and a repetition
of the entire cycle. The external clock gives this interrupt command at time
intervals that must be larger than the total execution time of the cycle, which
is 67 microseconds.

A diagram for the entire system simulation is shown in Figure 9.8-4, An
analog computer was used to carry out the simulation of the continuous parts

Input +5V +5V

& } oA e } o

/|
N

Figure 9.8-4. Compiete system simulation.

of the system. Two operational amplifiers are used to perform scaling and
shifting of the analog signals before and after the converters. This is needed
to change the converter input and output levels (0 to — 10 volts) to the analog
computer voltage (£+10 volts).

EXAMPLE 9.8-2

Computer Control of Spacecraft Attitude. The second illustration of a
computer control system deals with the utilization of the PDP-8 computer
{or a computer like it) in the control of the attitude of a spacecraft. For the
sake of simplicity we restrict the control requirements to one dimension only;
thus the proposed problem can be described schematically as shown in Figure

Figure 9.8-3. Flow chart for D(z) program. 9.8-5. The principal function of the computer is the determination of the prop-

442

444 Computer Methods in Systems Studies Sec, 9.8
Control: Spacecraft
Input: Desired Attitude oW
Limit Cycle Width Computer | 5 CCw L —lzm M
Limit Cycle Height l Coast f

Attitude }

Rate ;

Feedback
Figure 9.8-5. Attitude control by computer.

er cycling and timing of the control commands, which consist of (1) clock-
wise (F = --1), for which the thrusters are turned on to produce a clockwise
moment; (2) counterclockwise (F = —1), for which the thrusters are turned
on to produce a counterclockwise moment, (3} coast (F = 0), for which no
thrusters are engaged and the vehicle is rotating at constant angular velocity.

The CW thrusters and the CCW thrusters are controlled by two separate
signals which are called FP1 and FMI, respectively, in the computer program.
Thus, the control commands are issued by the computer according to the
following schedule:

F FP1 Ml

41 i 0

-1 0 1
0 3 0

where FP1 and ¥M1 are names of program variables.

For the determination of its control outputs the computer is provided
with input information and feedback information. Since the space vehicle’s
attitude is controlled by maintaining a limif cycle, the input information
consists of the desired attitude angle and rate, the width of the limit cycle,
and the height of the limit cycle. These quantities are further defined by the
schematic of Figure 9.8-6. 4, and A4, define desired attitude angle and atti-
tude rate, respectively. The dimensions of the limit cycle are given by B, and
B,. The required feedback information is provided by two sensors measuriog
angular position and angular rate. '

9.8-1 Design of Computer Program

The design of a computer control system requires the development of a
computer program capable of satisfactorily managing all demands placed

Sec. 9.8 Computer Controf 445

2.
4 Desired Attitude |
Ve l
Ay i
|
!
! Limit-cycle Height
}
! By
e 2 o e e e e e .{‘m____ [S ———
|
Desired A L
Attitude = | !
Rate
Limit-cycle Widih
l o

Figure 9.8-6, Limit-cycle operation specifications.

before it. The development of a “bug-free” program is absolutely critical.
It is helpful, therefore, if this task can be approached in a methodical manner,
although no single programming problem has a unique solution.

In the design of the computer program for the aftitude control system
two approaches will be demonstrated. The first approach is based upon the
technique of flow-charting while the second approach utilizes logic circuit
theory. Both programs, of course, yield the same result.

We first consider some relations that are common to both approaches.
In considering the requirements of the control problem, it can be established
that the choice of the control commands is entirely dependent on: (1) the
state of the plant relative to the desired state, and (2) the dimensions of the
limit cycle. The two-dimensional state space can be divided into nine regions,
as shown in Figure 9.8-7. The dividing lines have the equations

X 2z, — A, — B, =0 (9.8-12)
%, 2z — A, +B, =0 (9.8-13)
X3 2z, = A, + B, =0 (9.8-14)
% 2z —4,—B =0 (9.8-15)

For each of the nine regions a unique choice of control exists, as indicated
in Figure 9.8-7. Thus the computer programs must be capable of determining
the state of the space vehicle relative to these regions, and the choice of the
control command is automatically decided. The structure of the overall pro-
gram is indicated by the flow chart shown in Figure 9.8-8 It consists of the

x3] xq
| Yai |
|
F=—1 | F= 1% F=—1
) N
*1 ﬂ i\ =1
; z -~
F=+1 \% F=0 %/ g
x I i T
22 A, ! !
Fu+1 ; F=+1 Fe+1
- i |
|
{ o ! i
Z
Figure 9.8-7. Regions of control.
Convert 4 to D
Zg, 22
Compute x,, x3,%3, X4
Timing Control Control Decision

Convert 2 to 4
F

Figure 9.8-8. Gross detail of overall program.

446

Sec. 9.8 Computer Control 447
analog-to-digital conversion of angular position and rate, the computation of
equations (9.8-12) through (9.8-15), the decision of the proper control com-
mands, and their subsequent digital-to-analog conversion. This sequence of
operations is repeated cyclically subject to a timing control. The two versions
of determining the control decision will now be presented,

9.8-2 Version I of Control Decision

This version is based upon testing equations (9.8-12) through (9.8-15)
as algebraic inequalities. This is carried out by the decision indicated by the
flow chart of Figure 9.8-9. A simple program based upon this flow chart is
shown toward the end of this example.

Yes No
@_. F=+1 Yes X, <0 No
Yes % <0 No F=—1 -@
Yes /__- No

Figure 9.8-9, Flow chart for control command decision.

448 Computer Methods in Systems Studies Sec. 9.8

9.8-3 Version Il of Control Decision

An alternate way of implementing the control decision process is by way
of combinational logic. If we assign the logic values to the mine regions
according to the scheme indicated by Figure 9.8-10, we can set up the table
of combinations as given by Table 9.8-1. From this table of combinations,

-t
o

] X4
Y2

P
s
o] &
e

Xz 0

j |
N
N

Figure 9.8-10. Logic regions for control decision.

Fable 9.8-1 Eogic Combinations for Regions of Figure 9.8-10

X1 X2 X3 Xa F= 41 F= -1
0*] 4 0 0 1
0 0 0 1 xt X
0 g 1 0 0 i
0 0 1 1 0 i
i 0 0 ¢ i 0
1 0 0 1 x x
1 0 1 0 0 0
1 8] i 1 4] 1
0 i 0 Q x x
i 1 0 1 x x
4] i 1 g X x
0 1 1 i x X
1 1 4] ¢ 1 0
1 1 0 1 x X
i i 1 0 i 0
1 i 1 1 i 0

*For assignment of truth values see Figure 9.8-10.
$The x-entry denotes “Don’t Cares.”

Sec. 9.8 Computer Control 449

or truth table, itis possible to extract logic equations by the use of a Karnaugh
map given by Table 9.8-2. Each entry in this map consists of two parts, cor-
responding to F= -1 and F== —1. This table yields the iwo logic equations

FPl = x, + x,+%, (9.8-16)
FMI = X, + X%, (9.8-17)

Table 9.8-2 Karnaugh Table
XaXg
Q00 01 il 10

06 01 XX 01 01

01 xx xx xx xx

X1X7
11 10 xx 10 10

10 10 xx 01 00

where the prime denotes complement, the plus sign denotes logic OR, and
the dot sign denotes logic AND.

These logic equations may be programmed by utilizing the logic instruc-
tions of the computer. A flow chart showing this program is shown in Figure
9.8-11. It shows the same entry points as Version I and may be used inter-
changeably with Version 1.

The entire program may now be assembiled in detail. It is shown in terms
of symbolic machine language statements in Table 9.8-3.

The digital computer communicates with the outside via data inputs and
converters in the following way:

Data Ioput: Al, A2, B, B2 may be entered into the computer either
through keyboard switches, A/D converters, or direct meniory access transfers.

A/D Converter: Z1 and Z2, corresponding to attitude and attitude
rate, respectively, are entered through channels 0 and 1.

D/A Converter: FP1 and FMI, corresponding to F= -1 and F=
—1 commands, respectively, are exited through channels 1 and 2. Logic
signals FP1 and FMI1 activate CW thrusters and CCW thrusters, respec-
tively.

Figure 9.8-12 shows a series of phase-space plots for a variety of condi-
tions. Figure 9.8-12(a) shows the Limit cycle as approached from different
initial conditions. Part (b) shows a response to a change in attitude reference,
from 4, = 0 to 4, = 30°. Part () shows various limit cycles with B, (coast-
ing velocity) as parameter, while part (d) shows the same with B, (dead band)
as parameter.

450

FP1 =60
FMi=90

Computer Methods in Systems Studies Sec. 8.8

FP1

Yes FM1 = 1

Figure 9.8-11. Flow chart for Version II program.

Fable 9.8-3

Symbolic Machine
Instruction Commands

Al,
A2,
BT,
B2,
1,
22,
X1,
X2,
X3,
X4,

OOV OO OoO

Assign storage locations to variable and set initiaily to zero.

BEGN, 6541 Select Multiplexer Channel 0, assign transfer location

BEGN

Sec, 8.8 Computer Controf 457
Table 9.8-3 fcont.)
Symbolic Machine
Instruction Commands
6532 Convert attifude (Z1)
TAD A2 Add A2 to accumulator
TAD B2 Add B2 to ace.
CIA Change sign of acc.
TAD Z2 Add Z2
DCA X1 Store in X1 and clear acc.
TAD AZ Add A2 to acc,
ClA Change sign of acc.
TAD B2 Add B2
TAD Z2 Add 72
DCA X2 Store in X2 and clear acc.
6531 Is conversion done?
Jme -1 Yes: skip to next instruction
No: return fo previous instruction
8534 Réead A/D buffer into ace. (Z1)
DCA Zt Store in Z1 and clear accumulator
6544 Select MX Channel 1
6532 " Convert attitude rate (Z2)
TAD At Add Al to ace.
CtA Change sign of acc.
TAD Bt Add B1 to acc.
TAD 21 Add Z1 1o ace.
DCA X3 Store in X3 and clear acc.
TAD B1 Add BI to ace,
TAD A2 Add A2 to acc.
ClA Change sign of acc.
TAD 21 Add Z1 to ace.
DCA X4 Store in X4 and clear acc.
DCA FP1 Set FPl =0
DCA FM1 Set FM1 == 0
VERSION I
TAD X2 Add X2 to acc.
SPA If acc. is posttive, skip next instruction
JMP FP2 If ace, is negative, fransfer to FP2
CLA Clear ace.
TAD X1 Add X1 to acc.
SMA If acc. is negative, skip next instruction
JME FM2 If acc. is positive, transfer to FM2
CLA Clear ace.
TAD X3 Add X3 to acc. ‘
SPA If ace. is positive, skip next instruction _
JMP FP2 If acc. is negative, transfer to FP2
CLA Clear acc.
TAD X4 Add X4 to acc.
SMA If acc. is negative, skip next instruction
JMP DTOA If ace, is positive, transfer to DTOA
JMP FM2 Transfer to FM2

452

Symbolic Machine

Computer Methods in Systems Studies Sec. 8.8

Table 9.8-3 {cont.}

Instruction Commands

VERSION I

TAD X2 Add X2 to acc.

SPA Check iruth value of X2: X2 == 1 if negative; X2 =10 if
positive; skip if X2 == 0

JMP FP2 If X7 = 1, transfer to FP2

CLA Clear acc.

TAD X3 Add X3 acc.

CMA Complement acc. t0 generate x3

AND Xt Logic AND with X1 to generate Kixy

SMA Check truth value of X1X3: X1X3" = 0 if negative; skip
FXI1X3 =0

JMP FP2 if X1X3 = 1 transfer {o FP2

CLA Clear ace.

TAD X1 Add X1 fo acc.

CMA Complement acc. to generate X1/

SPA Check truth value of X1': X1’ = 1 if positive; skip if X1
=1

JMP FM2 IF X1 = 0 transfer to FM2

CLA Clear acc.,

TAD X2 Add X2 to ace.

CMA Complement acc. to generate X2

AND X4 Logic AND with X4 to generate X2'X4

SPA Check truth value of X2'¥4: X2'X4 = 1 if positive; skip if
Kr¥K4 =1

JMP DTOA If X2'%4 = 0 transfer to DTOA

FM2, CLA This is instruction FM2; clear acc,

TAD REF Add RFE to acc.

DCA FM1 Store REF in FM1: set F== —1

JMP DTOA Transfer to DTOA

Fp2, CLA This is instruction FP2, clear acc.

TAD REF Add REF to acc.

DCA FP1 Store REF in FP1: set F == -1

DTOA, CLA This is instruction DTOA; clear acc.

TAD FP1 Load FP1 into acc.

65651 Convert DTOA-channel 1

CLA Clear acc.

TAD EM1 Load FMI into acc.

5552 Convert DTOA-channel 2

CLA Clear acc.

6534 Read A/D buffer into acc. (Z2}

DCA 22 Store in Z2 and clear acc.

TAD TIME Load time into acc.

SPA

JMP BEGN If TIME < 0 begin new cycle

JMP -3 If TIME = 0 wait until TIME < 0

FPL, © Reserve storage for F = 1

FM1, 0 Reserve storage for F= ~1

REF,

4000

Reference set at decimal +0

Sec. 5.8 Computer Control

zy4

453

v ng
!

(=)

Z3 |

Ar = 30°

)

[l

W

=

W

(c}

EXAMPLE 9.8-3

by

e,(k) = Kye,,(k) + Ke,, (k) + Ke,s(k)

*See also Section 3.7.

{d)

Figure 9.8-12. Phase-space plofs of attitude control system.

4 Digital PID Controller* Perform a simulation and determine a suit-
aI:.>1a design for a PID controller that is being used in the system shown in
Figure .9.8-}.3. The PID controller is to be replaced by a digital version, as
sh_own in Figure 9.8-14. The simulation should be sufficiently flexible to ;;er—
mit the adjustment of the following parameters: 7, the sampling interval;
K, the proportional gain; K, the integral gain; and K, the derivative gain,
The systE{n to be controlled is defined by its transfer function in Figure 9.8~14-

The digital computer is programmed so that the output sequence is givez;

(9.8-18)

454 Computer Methods in Systemns Studies Sec. 8.8
PID controlier
- T
[+
}'{1J !
Control Controlled
Reference Variable Variable
+
+m Kys 2 ’/ \ : Process
S ¢ EANE L ¢
= +
[
o K &
s
L _—— R
Figure 9.8-13, PID controlled system.
r{k) elﬁl_ D;%i;al & (k/) " o Zero-order m{t) 1 e(t)
T Hold {1+ 29 (1 + 105}
— Controller
™~
T
Figure 9.8-14. System with digital PID controller.
The three components of the sum are generated as follows:
Proportional control;
e, (k) = ¢, (k) (9.8-19)
Integral control:
e32() = €50k — 1) - Tey(k) (9.8-20)
Derivative control:
ex3(k) = =le(k) — e,(k —] ©.8-21)

In the application of a digital computer as a PID controller, the quanti-

Sec., 9.8 Computer Controf 455
ties K, K, K;, and T must be determined. It has been the practice in the
process control indusiry to adjust the gain constants on the job until a desir-
able response is obtained. Alternatively, a simulation of the entire system
may be performed which permits parameter adjustment. This approach is
followed in this study.

A PDP-8/TR-20 simulation is chosen as the method of simulation. The
process to be controlled is programmed on an analog computer according to
the diagram of Figure 9.8-15. A flow chart of the program is shown in Figure

From Digitai

input
eu Controller

e; (k)

c{t)
@ !
1

To Digital
Controller

Figure 9.8-15. Simulation of process.

9.8-16. The program is listed in Table 9.8-4. When the program is started,
the teletype will ask for the typewriter input of T, KP, K1, and KD in floating
point format, In addition to setting these constants, one must set the digital
clock to agree with T.

Enter

Start

Sample Output

Type in
Constants

Sample Input

Form e,

Iitialize Variabie

and
Clocks

€y w 1 €21 + €12

€13 =“lf:‘ fe2; — i)

€y = €&y,

e, = Kp (21}
+ Ki €39
+ Kd a3

Time
for
Sample

Yes

Control
Subroutine

Quiput e,

; Return ;

(a)

Figure 9,8-16. Flow chart for simulation program: {z) control rou-
tine; (b) timing routine.

No

(b

Sec. 9.8

Computer Controf 457

Table 8.8-4 Listing of Program?

I CONTROLLER PROGRAM
JSTARTING ADDRESS 200

INPUT = 0003
QUTPUT = 0004
PRNT = 0005

*5

IN, 7400
OurT, 7200
FLOAT, 5600

*200

BEGIN, KCC
TLS
JMS | FLOAT
FGET ZERO
FPUT E2t
FPUT E22
FPUT E23
FPUT EK1
FPUT E2
FPUT TEMP
EGET TOUT
PRNT
INPUT
FPUT T
FGET KPOUT
PRNT
INPUT
FPUT KP
FGET KICGUT
PRNT
INPUT
FPUT Ki
FGET KPOUT
PRNT
INPUT
FPUT KD
FEXT
CLA CMA
DCA TIME

WAIT, TAD TIME
SPA CLA
JMP WAIT
CLA CMA
DCA TiIME
JMS | PID
CLA

/ADDRESS OF INPUT ROUTINE
[ADDRESS OF OQUTPUT ROUTINE
/ADDRESS OF FLOATING-POINT SYSTEM

/CLEAR READER FLAG AND AC
/TRANSMIT O TO PRINTER
FENTER INTERPRETER

/FAC = O

ANITIALIZE VARIABLES

/PRINT LF T =
/READ VALUE OF T
/STORE IT

/PRINT KP =

/READ VALUE OF KP
JSTORE IT

JPRINT K1 =

fREAD VALUE QF Kl
/STORE T

/PRINT KD =
/READ VALUE OF KD
[STORE IT

/AC = -1

/INITIALIZE CLOCK -

/GET TIME

/TIME FOR NEXT SAMPLE?
/NO, GO WAIT

/YES, AC = -1
[INITIALIZE TIME

/GO TO PID CONTROLLER

TThe floating-point package (DIGITAL 8-5A-5) must be loaded before this program is

_ loaded.

458

PID,

*400
PIDPRQ,

Comptiter Methods in Systems Studies

6311

JMP WAIT
JMP BEGIN
PIDPRO

Q

ADCC

ADCY

CLA

ADSE

JMP -t
ADRB

ClA

DCA MC+1
CLA IAC
ADSC

ADCV

CLA

ADSF

JMP -1
ADRB

DCA 45
DCA 46
TAD C13
DCA 44
JMS [FLOAT
FNOR

FPUT TEMP
FGET MC
FNOR

FADD TEMP
FPUT E21
FMPY T
FADD E22
FPUT E22
FMPY Ki
FPUT TEMP
FGET E21
FSUB EK1
FRIV T
FPUT E23
FMPY KD
FADD TEMP
FPUT TEMP
FGET EZ1
FPUT EK1
FMPY KP
FADD TEMP
FPUT EZ

Sec, 8.8

Yable 9.8-4 {cont.}
/SKIP F SW 2 OFF

/SW 2 OFF, GET NEW DATA

JCLEAR MPX 7O O
/START CONVERSION OF C

/IS CONVERSION DONE?
/NQ, WAIT

/YES, READ OUTPUT C
/-c

/STORE -C

JAC = 1

/GO TO CHANNEL 1
/START CONVERSION OF R

/1S CONVERSION OF R DONE?
/NG, WAIT

/YES, READ R

/STORE IN FAC .
JZERQ LOW ORDER PART
/11 IN DECIMAL
/STORE AS EXP.
JENTER [INTERPRETER
/NQRMALIZE

J/SAVE IT

/GET -C

FNORMALIZE

/R ~C

fE21 = E1(K)

fTxE21

[T%E21+E22

JUPDATE E22

fKIxE22

/SAVE T

JE21

/E£21-EK1
[<ET{K}-E1{K-1)>/T
JUPDATE E23

/KD%E23
[KI%E22+KD%E23

JSAVE IT

JET(K}

FET{K=1) = E(K)
JKPxE21
JKPAE2T+KIXE22+KD%E2Z3
/E2

Sec. 9.8

GO,

DONE,
LEAVE,

ERROR,

MAX,

*100
TIME,
C13,
M13,
MC,

E21,

FEXT
CLA

TAD 44

SZA SMA
JMP .43
CLA

JMP DONE+]
TAD M13
SNA

JMP DONE
SMA

JMP ERROR
DCA 44

CLL

TAD 45

SPA

CML

RAR

DCA 45

1SZ 44

JMP GO
TAD 46

6551

CLA

JMP 1 PIDPRO
CLA CLL
TAD 45

SPA CLA
cML

TAD MAX
SNL

CMA

6651

CLA

6301

JMS | OUuT
CLA

JMP | PIDPRO
4000

-1
13
-13
13

Q0O Do

Computer Control 459

Table 8.8-4 {cont.}
JLEAVE INTERPRETER

fFETCH EXPONENT

/18 THE NUMBER <17
/NO

/YES, FIX IT 70 ©

/NO, SET BINARY POINT AT

/11 PLACES TO RIGHT OF CURRENT POINT
/T 18 ALREADY THERE; ALL DONE
/TEST TO SEE IF IT IS TOO LARGE
/YES NUMBER >2Z&%11

/NO, SET SCALE COUNT

/0 TO C(L}

J/FETCH MANTISSA

fis IT =07

/YES, PUT A 1T [N LEFT BIT
/SCALE RIGHT

/RESTORE 1T

/TEST IF SHIFTED ENOUGH

/NO, CONTINUE

/OUTPUT M

/LEAVE

{GET VALUE

/I8 IT POSITIVE?

/NG, L&t

/AC = -2048

JWAS ILLEGAL NUMBER NEGATIVE?
/NG, CHANGE AC 7O 2047
JOUTPUT MAX VALUE

/SKP PRINTOUT IF SW 1 OFF
/PRINT THE NUMBER IN ERROR

/—2048

/ANCREMENTED BY EXTERNAL CLOCK
/DECIMAL 11

JSTORE -C

/PROPORTIONAL VALUE

460

E22,

E23,

EK1,

KP,

Ki,

Kb,

EZ2,

TEMP,

ZERQ,

TOUT,

KPOUT,

KIOUT,

KDOUT,

%6547

*3000
PRNTO,

OOOOOQOOOOOOOOOOOOC’DOOOOOOOOOOO

212
324
275
313
320
275
313
311
275
313
304
275

7400
7200
3000

Q

Cornputer Meatheds in Systems Studies Sec, 9.8

Table 9.8-4 (cont.}
/SAMPLE TIME

JINTEGRAL OF INPUT

JOERIVATIVE OF INPUT

/ANPUT DELAYED ONE SAMPLE PERIOD

/PROPORTIONAL CONSTANT

JINTEGRAL CONSTANT

JDERIVATIVE CONSTANT

JOUTPUT

JLINE FEED
/T
/:
JK
/P
/=
/X
il
/=
K
/D.
=

JALPHANUMERIC PRINTOUT

Sec. 2.9 Summary 461

Table 9.8-4 (cont.}

DCA SAVE /SAVE ACCUMULATOR
TAD 44 /GET FIRST CHARACTER FROM FAC
TSF /1S PRINTER READY?
JMP -1 /NO, WAIT
LS /YES, PRINT
CLA
TAD 45 /GET SECOND CHARACTER
TSF
JMP -1
TLS
CLA
TAD 46 JGET THIRD CHARACTER
TSF
JMP -1
TLS
CLA
TAD SAVE /RESTORE AC
JMP | PRNTO /LEAVE
SAVE, 0

The above examples of computer conirol systems are perhaps not overly
significant from an engineering point of view, but they do serve to illustrate
the role that a computer assumes as an active component in a system. Inall
cases the computer is programmed to periodically execute statements that
implement control relationships based upon analytical derivations. The exam-
ples are sufficiently simpleto permit alternate implementation approaches
that do not require a digital computer. However, the use of a computer is
completely justified if one realizes that there may be many such control tasks
carried by the computer on a time-shared basis. Then there exists almost
unlimited flexibility for modification of the computer programs.

9.9 Summary

This chapter discusses a variety of ways in which digital and analog
computers, either singly or in combination, may be utilized for work in system
analysis and design. Given here are some of the major applications.

Analysis:

1. Computer routines ~Digital

2. Computer simulation-Analog, digital, hybrid
3. Simulation languages-Digital

Design:
1. Generation of control laws ~Digital

462 Computer Methods in Systems Studies Sec. 2.9

2. Implementation of control laws --Analog, digital
3. Time-shared computer control systems—Digital

In each of these categories the capabilities of a computer are employed
in distinct ways.

PROBLEMS

9,1 For the following transfer functions, generate digital simulation models using
the Eunler method, Tustin method, and State Transition method. Put all resulis
into a linear recursion form, and compare the structure of the model and the
coefficients. Investigate the stability and steady-state performance. Finally,
perform a digital computation with a step input and an integration interval
T =1 second.

1
(@) G = GFD
® GE) = s+l
ss +4)

9.2 Investigate the stability of the discrete model as generated by the Runge-Kutta
method for the transfer function of Problem 9.1(a) and the {ollowing three
choices of integration interval T = .1, T'= 1, and T = 4. For this purpose it is
necessary to obiain a linear recursion equation.

9.3 Devise a scheme by which the Runge-Kuita-Merson method is used to control
the integration interval for a numerical integration. Give consideration to the
following: The step size should be decreased when the local fruncation error
estimate exceeds a preselected maximum level, the step size should be left
unchanged when the error falls within a range of acceptable error, and it should
be increased when the error is smaller than a preselected minimum level. The
range of acceptable error should be in some relation to the step size change,
keeping in mind that the local truncation error is proportional to the integration
interval raised to the fifth power.

9.4 Perform a digital simulation using the State Transition method of the system
defined by Figure 3.5-2. Use the computer program to compute 4(7) and

B(T).
9,5 Construct an analog computer simulation model for the transfer function

o0 =155

by giving consideration to the fact that e > b or a < b.

9.6 Prepare a MIMIC program for the digital simulation of the systems shown in
Figure P9.6(a) and (b).

Problerns 463

X 4
BT 420 1+0.1s 1 ; Xo

5(1+0.0%) s T+01s
(a)
X; 4+ 14zt
it @ e 1 Xo
. T TFaz? T~ ZOH S+ 015
{t)
Figure P9.6

9.7 Perform an aqaiog—hybrid computer simulation of the system shown in Figure
P3.6(b). Consider & a parameter to be adjusted.

9.8 Repeat Problem 9.7, but use a hybrid computer for the simulation,

	Cadzow&Martens_9-1
	Cadzow&Martens_9-2
	Cadzow&Martens_9-3

