ENTRODUCTION

sh expresses in quantitative form the bandwidth and noise limitations on infor-
jon transmission. In the light of this theory it is possible to dzaw some conclusion
ut the relative merits of conventional sysiems and also get some hints as to how
ar systerns can be designed.

The text concludes, in Chap. 10, with digital data transmission, the most
dly expanding area in communication engineering. This topic not only involves
he previous material but also gives added meaning to the mathematical theory of
munication.

Fach chapter contains several exercises designed to clarify and reinforce the
%pts and analytic techniques as they are introduced. Students are strongly
uraged to test their grasp of the material by working these oxercises. Answers
: been provided where appropriate.

Certain optional or more advanced topics are interspersed through the text.
itified by the symbol ¥, these sections can be omitted without serious loss of
tinuity. Other optional material of a supplementary nature has been collected in
three appendices at the back of the book.

Also at the back the reader will find several tables and a list of selected supple-
tary reading. The former contain most of the mathematical relations and numer-
data needed to work the problems at the end of the chapters. The latter serves
n annotated biblography of books and papers for the benefit of those who wish
ursue 3 topic in greater depth.
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SIGNALS, SPECTRA, AND FILTERS

Blectrical communication signals are time-varying quantities, such as voltage or
current. The usual description of a signal v(t) is in the fime domain, where the inde-
pendent variable is £. But for communications work, it is often more convenient to
describe signals in the frequency domain, where the independentvariable is /. Roughly
speaking, we think of the time function as being composed of a number of frequency
components, each with appropriate amplitude and phase. Thus, while the signal
physically exists in the time domain, we can say that it consists of those components
in its frequency-domain description, called the spectrum.

Spectral analysis, based on the Fourier series and transform, is a powerful tool
in communication engineering. Accordingly, we will concentrate primarily on Fourier
theory rather than on other techniques such as Laplace transforms and time-domain
analysis. There are several reasons for this emphasis.

First, the frequency domain is essentially a steady-state viewpoint; and for many
purposes it is reasonable to restrict attention to the steady-state behavior of 2 communi-
cation systemn. Indeed, considering the multitude of possible signals that a system may
handle, detailed transient solutions for each would be an impossible task. Second, the
spectral approach allows us to treat entire classes of signals that have similar properties
in the frequency domain. This not only gives insight to analysis but is invaluable for
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design. It is quite unlikely, for exaraple, that such a significant techmique as single-
sideband modulation could have been developed without the aid of spectral concepts.
Third, many components of a communication system can be classified as linear and
time-invariant devices; when this is so, we can describe them by their frequency-
response characteristics which, in turn, further expedites analysis and design work.

This chaptier therefore is devoted to a reviewf and elaboration of Fourier
analysis of signals and frequency-respomnse characieristics of system components,
particularly those frequency-selective components koown as filiers. However, the
spectral approach should not be thought of as the only method used by communication
engineers. There are some problems where it cannot be applied directly, and some
problems where other techniques are more convenient. Thus, each new problem
must be approached with an open mind and a good set of analytic tools.

As the first step in much of our work we will write equations representing signals
or components. But one must bear in mind that such equations are only mathematical
models of physical entities, usually imperfect models. In fact, a completely faithful

description of the simplest signal or component would be prohibitively complex in .
mathematical form and consequently useless for engineering purposes. Hence the .

models we seek are ones that represent, with minimum complexity, those properties
that are pertinent to the problem at hand. This sometimes leads to constructing
several different models for the same thing, according to need. Then, given a particular
problem, the choice of which model to use is based on understanding the physical
phenomena involved and the limitations of the mathematics; in short, it Is engineering.

2.1 AC SIGNALS AND NETWORKS

Figure 2.1 represents a two-port electrical network or system being driven by an input
signal x(¢f} which produces the output signal p(¢). We say that x{t) is a sinusoidal or
AC signal if

Xty = A, cos{wyt +8,) -0 << W (1)

where A, is the amplitude (in volts or amperes), w, is the angular frequency (in radians
per second), and 0, is the phase (in radians or degrees). It is also convenient to intro-
duce the cyclical frequency f, = wof2m (in cycles per second or hertz) so the perivd
(in seconds) is Ty = 1jfy = 2nfw,. The significance of T, is that x{¢) repeats itself
every T seconds for all time, Obviously, no real signal lasts forever, but Eq. (1) is a
convenient and useful representation or model for a sinusoidal signal of finite duration
if the duration is much longer than the period.

T It is assumed that the reader has some background in transform theory and linear
systems analysis. Accordingly, certain proofs and derivations have been omitted.
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FIGURE 2.1
System in AC steady-state condition.

Now assume that the network is finear, time-invariant, and asymptotically stable.
In essence, this means that superposition applies, there are no time-varying parameters,
and the natoral behavior decays with time. Under these conditions, the output
signal will also be sinusoidal at the same frequency as the input, differing only in
amplitude and phase, ie.,

Yty = A, cos (wyt + ) —0 << (2}

Therefore, given the parameters of the input signal and the network’s characteristics,
we need only solve for 4, and 8, to completely describe the resulting output signal.
This is, of course, the familiar AC steady-state problem.

1t is well known that such problems are most easily solved using exponential
time functions of the form ¢/ rather than sinusoidal functions. Take the case, for
instance, of a circuit having complex impedance Z(jw); if the current through the
circuit is ¢ then, by the definition of impedance, the resuiting voltage is simply
Z(jeye’*. Similarly, for the two-port network case of Fig, 2.1, we define the network’s
transfer function H{jw) such that p{(r) = H{jw)e™ when x{1) = /**; that s,

LA Y® ;
H(jw) & —= by £) = I 3
Gy 2T when () @
a definitiont we will generalize subsequently. Combining Eq. (3) with the superposition
principle, it follows that if x(¢) is a linear combination of exponentials, say
x(2) = o,/ by @O 4 e (4a)
then
¥(t) = H(joJase™" + H(jorJug e 4 (45)
where o, and a, are constants, H{jw,) represents H{jw) evaluated at w = w,, etc.
However, we have not vet solved the AC problem stated at the outset, which now
entails converting sinusoids to exponentials. At this point most circuit theory students
would probably write x(¢) = Re [d,e™¢/0*] but, preparing the way for future
developments, we want an expression more like Eq, (4g). For that purpose we invoke
a corollary of Euler’s theorem,} to wit:

cos b = 14(ef 4 77 (5

1 The symboi £ stands for “eguals by definition.”
I Euler’s theorem is the most versatile of the trigonometric identities. A short table
of these useful relations is given in Table B at the end of the book.
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Thus, the sinusoidal input x(¢) in Eq. (1) can be rewritten as
x{t) = Ax%[ej(mot'i-ex) 4 e—j(wor+9x)]
— 535 ejﬂxejwor + é_x e-jﬂxewjmgr (6{2)
2 2
and since this has the same form as Eq. (4a), appropriate substitution in Eq. (48)
gives

A e
§0) = Hjoo) 2 el o B(—joe) re e ()

While this is a correct zesult, it can be tidied up and made more understandable via

the following two steps. _ N
First, since the transfer function s in general a complex quantity, we wili express

it in the polar form
H{jw) = | H(jo)| e’ s M

where | H(jw)| is the magritude and arg [H(jw)] is the angle.t Sec.:ond, des;‘)ite the fact
that H(jo) is complex, y(z) ought to be a real function of time since x(¢) is real; and

this will be true if and only if
H{—jo) = H*(jo)
= |H(jo) |20 ®

where H*(jo) is the complex conjugate of H(jw). The complex-conjugate relationship

does, in fact, hold for any real network. N .
Applying Egs. (7) and (8) to Eq. (6b) and simplifying yields

(wat+ 0x-targ [H{joood]) + e—j(eaot+9x+arg [H(J'mb)])]

Ae
3®) = [ H(jwo)] 57

== | H(jeo) Ay cos (wot + x + afge [H(jwe)]) ®
4 ¥

¥y
in which we have identified
A, = |HGog 4. 8, =0 + arg [H{jwo)l (10)
$ That is, if H, and H; are the real and imaginary parts of H(jw), respectively, then

gy H;

|BUo)| = VEZTHP  arg [H(w)}= arctan 7

The reader who has difficulties with such manipulations is advised to brush up on
the subject of complex numbers.
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Representations of 4 cos {wyt - 8). {a) Phasor diagram; (§) line spectrum.

Thus, we have these very simple equations for the output amplitude and phase of
the AC steady-state response, providing we know the network’s transfer function.
More will be said about the latter after we have looked at the frequency-domain
interpretation.

EXERCISE 2.1 Write H(jw,) and H(~ jw,) in polar form and show that the iznag-
inary part of Eq. {6&) is not zero when H{—jw,) % H*(jw,).

Phasors and Line Spectra

Besides facilitating network analysis, converting sinusoids to exponentials also under-
fies the potion of the frequency domain by way of phasor diagrams. To introduce
this idea, consider the arbitrary sinusoid

wt) = Adcos(wot +8)  wo=12mfp
which can be written as

A cos (wgt + §) = Re [4e/@0t9]
= Re [de%0'] (11
This is called a phasor representation because the term inside the brackets may be
viewed as a rotating vector in a complex plane whose axes are the real and imaginary
parts, as Fig. 2.2a illustrates. The phasor has length 4, rotates counterclockwise at a
rate f revolutions per second, and at time 7 = 0 makes an angle # with respect to the

positive real axis. At any time ¢ the projection of the phasor on the real axis—1i.e., its
real part—equals the sinusoid o{z).
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Note carefully that only three parameters are needed to specify a phasor:
amplitude, relative phase, and rotational frequency. To describe the same phasor in
the frequency domain, We 5¢8 that it is defined only for the particular frequency Jfo-
With this frequency we must associate the corresponding amplitude and phase.
Hence, a suitable frequency-domain description would be the line spectrum of Fig. 2.25,
which consists of two plots, ampiitude versus frequency and phase versus frequency.
While Fig. 2.2b appears simple to the point of being teivial, it does have great concep-
tual value, especially when applied to more complicated signals, But before taking
that step, four standard conventions used in constructing line spectra should be
stated.

7 Tnall our spectral drawings the independent variable will be ecyclical frequency

fin hertz, rather than radian frequency w, and any specific frequency such as Jfo»

being a constant, will be identified by a subscript. We will, however, use @ with
or without subscripts as a shorthand notation for 2af in various equations

since that combination occuxs sO often.
7 Phase angles will be measured with respect to cosine waves Or, equivalently,

with respect to the positive real axis of the phasor diagram. Hence, sine waves
need o be converted to cosines via the identity
sin ot = cos (@t - 90°) 12)
3 We regard amplitude as always being a positive quantity; when negative
signs appear, they must be absorbed in the phase, ¢.8.,
_ A cos ot = A cos (ot + 130°) (13

and it does not matter whether one takes + 180° or —180° since the phasor ends

up in the same place either way.

4 Phase angles usually are expressed in degrees even though other angles are
snherently in radians — for instance, ot in Bgs. (1) and (13)isa radian measure
while —90° and +180° clearly are in degrees. No confusion should result from
this mixed notation since angles expressed in degrees will always carry the

appropriate symbol.

llustrating these conventions and carrying the idea of line spectrum further,
suppose a signal consists of a sum of sinusoids, such as

w(f) = 2 + 6 cos 210z + 307} + 3 sin 2130¢ — 4 cos 2=35t
Converting the constant (DC) term to 2 zero-frequency sinusoid and applying Egs. (12)
and (13) gives
w(f) = 2 cos 2a0¢ + 6 cos (210 + 30°) ++ 3 cos (2r30¢ — 90°) 4+ 4 cos (2n35¢ — 180°%)

so the spectrum, Fig. 2.3, has amplitude and phase lines at 0, 10, 30, and 33 Hz.
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generatzgglrfe;l% alr_ld 2.3, called one-sided or positive-frequency line spectra, can be
any linear combination of sinusocids. Bu i ’
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e 2"?1‘1&3 is one significant difference in inierpr.eting 'Ehe jtwo—side,d line spec::;rz
compared to the positive-frequency s;}ectrum‘. A single line '111 the I'attei; rep;:::ms :
cosine wave, via Re [e/*l. But in the two—sn-aded case, one line by.xtse frt?é)l resente
single phasor, and the conjugate term is reqmr.ed to get ?. real function © i as} y ,
whenever we speak of some frequency intervalina two—‘sxéed spectrum, suc H lsim 2} ;
we must include the corresponding negatiw;;-freq;ency interval, —fi to —f3. 5
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mtatilo: s;iﬁéy‘:flzgclphasiud that these line .spectra are just picto.riai vs:xys of z:f;;;
senting certain signals in terms of the form &', The eﬁ"ef:t ona s;gnai‘ v a n: e

then reduces to a steady-state AC problem. We also point out that, ;1 ts;)marts ::é
the amplitude spectrum is more important than tl}e phgse syect_rum.d ;ainpbm e
required, of course, 0 upambiguously define a signal in the time do ,
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amplitude spectrum by itself shows what frequencies are present and in what pro-

portions —that is, it tells us the signal’s frequency content. The specific advantage of
the two-sided version will become apparent as we go along.

EXERCISE 2.2 Explain why the zero-frequency term results in just one amplitude
live in Fig. 2.5, and state how the figure would be changed if that term were negative.

Transfer Functions and Frequency Response

Just as a signal can be described in the frequency domain by way of its spectrum, a
network or systemn can be described in terms of its frequency-response characteristics
as determined from the transfer function H{jw). Emphasizing the frequency-domain
viewpoint, it is now convenient to introduce a new notation H(f), defined by

H(f) & B(jw)  withw = Inf (15

which, henceforth, will be called either the frequency-response function or the
transfer function. Although Eq. (15) modestly violates formal mathematical notation,

it simply means that H{f) is identical to H(jw) with w replaced by 2nf. It then follows
from Eq. (8) that, for a real network,

H(~f) = H¥(f) (16a)
or in polar form,
[H(=) = |H(]  arg [H(=f)] = —arg [H(/)] (16b)
a property known as hermitiar symmetry.
For the interpretation of H{f), suppose the input signal is a single phasor

D) = A, eP=e’ @y = 2mf,
so, from Bq. (48), the output is
Ht) = H(fo)d, e’ e/
= | H(fo)]| 4, exp j(0, + arg [H(f)]) &
A}’ 8}’

Hence, just as in the AC case, the input and output signal parameters are related by

A
Zx = IH(fo)l 8:9 - ex =5 arg [H(fo)] (17)

so [H{f,}| is the ratio of amplitudes and arg [H{f,)] is the phase difference, both at
the specific frequency f;. Generalizing, we conclude that | #(f)| gives the system’s
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amplitude ratio (sometimes called amplitude response Ot gain) and arg [H(f)] gives the
phase shift, both as continuous functions of frequency. Plots of these two versus f give
a frequency-domain representation of the system, analogous to the amplitude and
phase spectrum of a signal. Moreover, the hermitian symmetry of Eq. (16) means that
the amplitude ratio will be an even function of frequency while the phase shift will be
an odd function. An illustrative example is presented below after brief consideration
of the question of determining H(f) for a particular system.

Given the circuit diagram of a network, finding H(f) is nothing more than a
phasor analysis problem, i.e., we assume the input is /270t and calculate the output,
which will be H()e!*™*. All the standard electrical engineering tools —Ohm’s law
for complex impedance, Kirchhofl’s laws, etc. —can be brought to bear. Alternatively,
if 2 system is described by a linear differential equation with constant coefficients, of
the general form

d"y d d"x

g B i .
O+ +ay dz+aoy(t)—bm St + by d’+box(r) {18a)

then
H = b (fnf Y+ -+ b (j2nf) + bs
ali2nfY+- + a,{j2nf) + o

whose derivation is left as an exercise. A third method, involving the system’s impulse
response, is presented in Sect, 2.5.

(185)

EXERCISE 2.3 Derive Eq. (185} by substituting x(f) = ¢/*** and y{t) = H(f \akanhd
in Eq. {184) and solving for H(f)

Example 2.1 RC Lowpass Filter

The network of Fig. 2.6a, virtually a classic in communications, is called an RC
lowpass filter; x{t) is the input voltage and ¥(#) is the output voltage under open-
cireuit {(unloaded) conditions. Finding the transfer function is a simple matter since,
with x(z) = />, application of the voltage-divider relation yields

Z .
2 =55

R+Zc
where the capacitor’s impedance is Z¢ = 1/j2=fC. Thus,
H(P) = (1/_;'2:1:_fC) _ ‘1
R+ (ji2nfC) 1+ j2nRCSf
- a9
1 +.j(f1B)
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RC lowpass filter. (a) Cizcuit; (b) transfer function

in which we have defined the system parameter

a i
. . - 2nRC
onversion to polar form gives the amplitude ratio and phase shift as
1

Jirom e
| arg [H{f)] = —arctan / (208,
which are plotted in Fig. 2.6b. ? Hf
i !

EXERCISE 2.4 Suppose the resistor and capacitor are interchanged in Fig. 2.6a

Find the new H{f) and, b i tatt . . .
) (f) and, by sketching | H(f)!, justify calling this circuit an RC highpass

2.2 PERIODIC SIGNALS AND FOURIER SERIES
A signal o(7) is said to be pericdic with repetition period Ty, if, for any integer m

o(t - mls) = olt) —w<f<© (1)
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Since this implies a signal that lasts forever, our earlier remarks about. the difference
between a signal and its mathematical model are pertinent here.' Assuming that Eq. (1)
is a reasonable model, then Fourier series expansion can bg_a mv:oked to decompose
o(f) into a linear combination of sinusoids or phasors ‘——whlch, 1_n tu-m, leads tohthe
signal’s line spectrum. The essential proviso for Fourier expz.msmn is that‘ o(¢) have
well-defined average power, and because average power and tm?e avelrages in genel.:al
are commonly used terms in communications, we take a brief digression to formalize

the concepts. .
The average of an arbitrary time function »(¢) will be denoted by {o{))y and de-

fined in general as
&1 - " (2
<t-(t)> £ lim T J‘ izD(f) dt 2

Tf #{) happens to be periodic, Eq. (2) reduces to the average over any interval exactly
T, seconds long, i.e.,

o)) = Ti [RCE 3)

where {r, stands for integration from #; to #; »{— T, with £, an arbitrary c-onftan.t.
Average power is, of course, the time average of instantaneous power; eég., if o(t) is
the voltage across a 1-ohm (€2} resistance, the instantanf:ous power is v°(2) a_md the
average power is {o?(yy. For our purposes itis convement. to assume afl resxstanc.es
are normalized to unity so that, whether o) is a periodic voltage or current, 1ts
average power P wiil be defined as

PAQI = [ WOPd @

The signal () is then said to have well-defined average powef if the integr‘al. {'4)
exists and vields a finite quantity. Note also that we have allowed for the possibility
of complex signals by writing [v{f)] 2 — (f)o*(z) instead of 2*(t).

EXERCISE 2.5 Use Egs. (3) and (4) to show that if
2n
o(f) = A cos {we t + &) Wg = 7 (5a)
0
then ,
A
@y =0  (ud)]* = 5 (56

Thus the average power of a sinusoid depends only on its amplitude.
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Fourier Series and Line Spectra

The exponential Fourier series expansion of a periodic signal o(¢) is

U{I) = . i C(Hfo)ejzznfut fD = Tio (6)

where c{nfy) is the nth Fourier coefficient

C(nfo) & .-%:«; ‘[reﬁ(t)e"jhmfor ds (7)

Equation (6) states that o(¢) can be expressed as a linear combination or weighted sum
of phasors at the frequencies = nfy = 0, +f5, £2f5, ..., the weighting factors being
given by Eq. (7). If #{f) has well-defined average power, then the summation on the
right of Eq. (6) converges to o{t) everywhere it is finite and continuous, which would
be true of any physical signal. Insofar as engineering purposes are concerned, we
may view the series as being identical to o(¢).

Actually, one seldom carries out the summation of Eq. {6) to find o(#); instead,
given a periodic signal, we use Eq. (7) to find its Fourier coefficients and, from that,
the line spectrum. Before addressing that aspect, a few points regarding c{nf,) are in
order. In general, the coefficients are complex guantities, even when the signal is real;
therefore, we can write

c(nfol = |e(nfy) e/ areletion
If 4(2) is a real function, then replaciog n by —# in Eq. (7) shows that

e —nfy) = c*(nfy) (8

s0 again we have conjugate phasors and hermitian symmetry. Fipally, note that
c{nfy) does not depend on time since Eq. (7) is a definite integral with  being the
variable of integration. It is helpful, however, to regard c{nf,) as a function of fre-
quency f defined only for the discrete frequencies f = nf}.

Turning to the spectral interpretation, we s¢e from Eq. (6) that a periodic
signal contains only those frequency components that are integer multiples of the
Jundamental frequency fo = 1T, or, in other words, all the frequencies are harmonics
of the fundamental. Since the coefficient of the rth harmonic is cfufy), its amplitude
and phase are |e(nfy)| and arg [e{n/,)], respectively. Therefore, we have a two-sided
line spectrurn with |¢(nfy)}| giving the amplitude and arg {e(nf,)] the phase. Some of
the important properties of such spectra are listed below.

1 All spectral lines are equally spaced by f, since all the frequencies are
harmonically related to the fundamental.
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2 The DC component equals the average sahge of the signal since setting
n =0 in Bq. (7) yields

«(0) = %; J, o)t = ot ©

Therefore, calculated values of ¢(0) may be checked by mspection of v(f) — which
is a wise practice since the integration frequently yields an indeterminate form

for ¢(0).
3 If oft) is real, the amplitude spectrum has even symmetry while the pbase
spectrum has odd symmetry, i.e.,

le(=nfo)] = le@fe)]  arg fe(~nfo)] = —arg [e(o)] (10}

which follows from Eq. (8).
4 If a real signal has even spmmerry in time, such that

o —t) = o(t) {11a)
then c(nfy) is entirely real and
arg [e(nf)] =0 or £180° {118}
where -+ 180° corresponds to c(nf} being negative. Conversely, if a real signal
has odd time symmetry, i.6.,

o —1) = —uvlt) (12a)
then c(nf,) is entirely imaginary and
arg [e(nfo)] = £90° (125)

which stems from the fact that & j = e*/™? = ¢*/*%, Proving these symmetry
relations is left for the reader. :

One final point before taking up an example: When #(t) is real, we can draw
upon Eq. (10) and regroup the exponential series in conjugate-phasor pairs of the form

(eI 4 H(nfp)e 2 = 2] elnfo) | cos (2mnfyt + arg [c(nfo)D

so that Eq. (6) becomes
o) = cO) + 3 |2c(ufo)] cos (2mnfy ¢ + arg [e(f)D a3)
. =1

By this process we have arrived at a trigonometric Fourier series, and in a sense have
come full circle, for #(f) is now described as a sum of sinusoids rather than conjugate
phasors. Indeed, Eg. (13)is less versatile than Eq. (6) and certainly lacks the attractive
symmetry of the exponential series. We shall, however, have some occasions for its
use and for the corresponding positive-frequency line spectrum.

i

Pt f e L S

T - o ﬁ: 2.2 PERIODIC SIGNALS AND FOURIER SERIES 29
3 & L%y
-d I
/_!: R S v(e}
r.{" i N
. A
1 } "
-Tg WE 0 E 710
} 2 2
1 ' N ’
Lo pey \ FIGURE 2.7
N A 4 _j_?' ) Rectangular pulse train.
ol s T . A
- (5 9

Example 2.2 Rectangular Pulse Train

As an imp_o‘rtant example of the ideas we have discussed, let us find the line spectrum
of the periodic waveform in Fig. 2.7, called a rectangular pulse train. To calculate

clnfy), we take the range of integration in Eq. (7) ast {~To/2,To/2] and observe that
in this interval

4 m<§
U(f)w

T

0 t] > =

el >

where v is the pulse duration and A4 is the amplitude. Note, incidentaily, that this
signal model has stepwise discontinuities at ¢ = +1/2, etc., and values of o{f} are
wndefined wherever it is discontinuous. This iliustrates one of the possible differences
petween a physical signal and its mathematical model, since a physical signal never
h-a.s an abrupt stepwise transition. However, this model is useful if the actual tran-
sition time is very small compared to the pulse duration, and the undefined values at
the discontinuity points have no effect on the calculation of c(mfy).
Proceeding with that calculation, we have

1 pTei2 i
elnfo) = E"— J- v(:)eMJZ:mfor di
0 4

TeiZ
1 1{2
o [ Aemirese gy
To wpf2
= me g Imnfor _ e-i-jasn_for)

“‘jznnfg Tg
A
= ~-sin hfyT
where we used the fact that 7, Tp = 1 and ¢ — ¢77% = 2/ sin ¢.

t The notation [ 7o/2,T0/2] stands for —To/2 <1 < Tof2.
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The function sinc A = (sin mAYmA.

To somewhat simplify notation in the above result, we introduce a new function
called the sine functiont and defined by

sin A

(14

sinc A &

where 1 is the independent variable. This function will be quite important owing to
its refation to averages of exponentials and sinusoids; in particular, as is easily proved,
1 (Ti% . 1 T2 ) )
- J‘ gxi%ft g = -j cos 2xft dt = sinc fT 13
T -2 T -1z
in which T is an arbitrary constant not necessarily refated to £ Figure 2.8 shows
that sine A is an even function having its peak at A = 0 and zero crossings at all other
integer values of A, i.e.,
A=
1=

sinc A = {1

0
0 +1, 42,

Numerical values of sinc A and sinc? A are given in Table C.
Using the sinc function, the series coefficients for the rectangular pulse train

become

clnfo) = Afet sinnfoT Afy T sinenfyt (16)
"G T

which is independent of time and strictly real—the latter because (¢} happens to be
real and even. Therefore, the amplitude spectrum is e(ufo)| = Afov|sine o], a8
shown in Fig. 2.9a for the case where fot = b4. Such plots are facilitated by regarding
the continuous function Afy t|sinc fr| as the envelope of the lines, indicated by the

t Some authors use the so-calied sampling fumction, Sa (4 & {sin A)/A; note that
sinc A = Sa {mA).
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FIGURE 2.9
Spectrum of rectangular pulse train with fy7 = }. (2) Amplitude; (5) phase.

dashed curve. The spectral lines at +4f,, £8/,, etc,, are “missing” since they fall
preci§e]y at muitiples of 1/ where the envelope equals zero. The DC componsnt has
amplitude ¢(0) = Afy 7 = A7/T; which should be recognized as the average value of
(¢) by inspection of Fig. 2.7. Note, incidentally, that /T is the ratio of “on” time
to period, frequently designated as the duty ¢yele in pulse electronics work,

Figure 2.9b, the phase spectrum, is constructed by observing that c{nfo) is
always real but sometimes negative. Hence, arg [c{n/f5)] takes on the values 0 and
+180°, according to the polarity of sinc nfy 7. Both +180° and — 180° have been used
to preserve the odd symmetry, althongh this is more or less arbitrary in such cases.

i

EXERCISE 2..6 Sketch the amplitude spectrum of a rectangular pulse train for each
of the foliov.vmg' cases: © = Tpf5, 7= To/2, v="T,. In the last case the pulse train
degenerates imo a constant for ail time; how dces this show up in the spectrum?

EXERCISE 2.7 Show that the square wave in Fig. 2.10 has

Asinel  n=x1, %3
5 [ PN

0 n="0, £2, +4,...
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(Hint: The manipulation below is useful for simplifying the answer in this and similar
problems, particularly when ¢y or ¢y is zero.)
gi¥1 4 gt — {31(4"1"'152).’2 oo il —¢z)!2]ej(¢1+¢zh’2
2 cos ¢~ P2 o/ (Bt P22
= g (9)

. = P2 ;
21 sin Qs; 3 2 e.i(¢1+¢z)i7—

Parseval’s Power Theorem

This famous theorem relates the average power F of a periedic signal to its Fourier
series cosfficients. To derive the relationship, we start with the definition of P, Eq. (4},
write |o(z}]? = o(£)o*(£), replace v*(z) by its Fourier series, and interchange the order
of summation and integration, as follows:

o)
e s St T,
L[ | 5 ctaemmio] a

P
To To
& 1 —i2arfot #
=¥ |z fT w2)e dt| c;(nfo)
Mol 2

nE =0 Q
cnfo)
Thus . .
P= Y cnfo)e*(nfo) = Z_Zm fe(nfo)i® (1%)

The spectral interpretation of this result is extraordinarily simple; i.e., average power
can be found by squaring and adding the heights of the amplitude lines. Observe
that Eq. (19) does not involve the phase spectrum arg [e(nfo)l, underscoring our prior
comment about the dominant role of the amplitude spectrum relative to a signal’s
frequency content. ‘

For further interpretation of Eq. (19), recall that the exponential Fourier series
expands »(¢) as a sum of phasors each of the form clnfp)e’™ /0. Now it is easily
shown that the average power of each of these is

{elnfo)e™|*y = |elfo)l*
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Therefore, Parseval’s theorem implies superposition of average power in that the total
average power of s(t) is the sum of the average powers of ifs phasor components.

Periodic Steady-State Response

In Sect. 2.1 we found the AC steady-state response of a network by expressing the
sinusoidal input as a sum of phasors. Those results are readily extended to the case
of an arbitrary periodic input signal by the method presented here.

First, expand the input x(¢) as

<X

()= 3 clnfoe (20a}

B =0

where ¢,(71fo) is found from Eq. (7). Then, since each of the above phasors produces
an output of the form H(nfy)e(nfy) exp (F2maf, t), and since superposition is assumed,
the total output is

= 3 cfnfo)el ™ (208,

where

e(wfo) = Hinfodex(nfo) (21

Therefore, the periodic steady-state response is a periodic signal having the same
fundamental frequency as the input, whose Fourier series coefficients ¢,(nfy) equa
the respective coefficients of the input signal multiplied by the network’s transfer
function H(f) evaluated at f=nf,. Moreover, the average power in the outpu
signal is

o0 o
By= 3 loW)l® = 3 HO a0 @2
by application of Parseval’s theorem.

The frequency-domain interpretation of these results is best seen by converting
Eq. (21) to polar form, thus:

le,(ufo)] = |HOWO) |ea(wf)]
arg [c,(nfo)] = arg [e,(nfo)] -+ arg 1H(nfy)]

Putting this into words, the output amplitude spectrum ecuals the input amplitud
spectrum fimes the metwork’s amplitude ratio, whereas the output phase spectrum
equals the input phase spectrum plus the network’s phase shift at the frequencies it
question. The phase relationship is additive instead of multiplicative simply becaus:
arguments add when exponentials are multiplied.

@3
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FIGURE 2.11
Frequency multiplier. (g) Circuit; {8) waveforms; (¢) block diagram.

Fquations (20) to (22) provide a theoretical solution to the periodic steady-state
analysis problem. Practically speaking, however, determining the actual shape of the
output waveform y(¢) from Eq. (200) is a tedious process-— unless there are only a few
significant terms in the sum. The following example falls in this category and demon-
strates how the spectral interpretation helps estimate the number of significant terms.

Fxample 2.3 Frequency Multiplier

Figure 2.11a is the circuit diagram of a frequency multiplier, a device often used in
comuunication systerns, The input voltage o(t) is 2 sinusoid at a specified frequency
£, and the output y(z) is supposed 1o be a sinusoid at a multiple of the input frequency,
say Nf,. Usually, N =2 or 3, ie., a frequency doubler or tripler, and greater multi-
plication factors are obtained by connecting doublers and triplers in tandem.

The waveforms shown in Fig. 2.115 llustrate the essential operations, as follows.
The transistor is a silicon npn type without base-emitter bias so the current x(¢) is
negligible unless () exceeds the base-emitter voltage drop V. Thus, if the amplitude
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of u(f) is just slightly greater than Vg, as indicated, x(z) consists of short pulses
having period T = 1/f, . From our previous work we know that such a waveform in
general will contain all harmonics of f,, and the role of the parallel RLC ciroujt]
is to pick out the Nth harmonic and reject the rest. This implies that the circuit is
tuned ot resonant at Nf,. For analysis purposes these functions can be represented in
block-diagram form, per Fig. 2.11¢, which we will take as our model of the device.

While conceivably one could exactly calculate the Fourier series coefficients of
*(1), there is really no need for such precision. Rather, we will approximate x{) as
a rectangular pulse train of amplitude 4 and duration t « T, ; hence, for small values
of n,

cnfo) e AfpT |n} « % 24)

where we have used the resuits of Example 2.2 together with sinc A= 1 for A < 1.
It is likewise assumed that ¥ « T/t

Next we need the transfer function H(f) of the tuned circuit. Noting that its
input x(z) is 2 current and the output y(¢) is a voltage, H(f) is identical to the circuit’s
impedance Z{jw) with @ = j2rf. Routine analysis givest

R
H() = A @5
t+se (F )
where
a_ b s R _p €
iy AR

which are the resonant frequency and quality factor, respectively. It has been assumed
in Eq. (25) that Q > 14 so the circuit actually is resonant; as a matter of fact, the
present application requires Q> 1. The corresponding amplitude ratio |H(f)] is
plotted in Fig. 2.12a directly above the input amplitude spectrum | ¢, (nfg)i, Fig. 2.120.
Negative frequencies have been omitted for convenience, since we know that both
funetions have even symmetry.

I we recall that |e(nfo)| = Hmf)] |ex(nfo)|, Fig. 2.12 suggests that all the
harmonics in y() except N/, can be made to have negligible amplitude if

o= Nfy and g > Nf2

1 As a rule the resistance R represents josses in £ and any coupled load rather than
being a distinct circuit element.
1 See, for instance, Close (3966, chap. 6).
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(@} Amplitude ratic of tuned circuit, ¢ == 10; (§) amplitude spectrum of input
signal.
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the condition on Q ensuring that [1 + (1/20)1f, < + 1)f, and {1 — (1/20)] >
(N — 1)f, so the tuned circuit “ passes” only Nfy. Therefore, the output amplitude
spectrum consists essentially of two terms, e{ENfp), and

() & HONfeNfp)e ™Mot 4 H(~Nfg)e — Nfg)e™ 2ot
= 2RAfy 7 cos 2nNfy ¢ -

where we have used Egs. (24) and (25) and converted the result to sinusoidal form.

i

2.3 NONPERIODIC SIGNALS AND FOURIER TRANSFORMS

We have described a periodic signal as one with a repeating characteristic applied for
a long time interval, theoretically infinite. Now we consider nonperiodic signals whose
effects are concentrated over a brief period of time. Such signals may be sirictly
timelimited, so v(t) is identically zero outside of a specified interval, or asymptotically
timelimited, 50 o(t) — 0 as t — + oo, In eitber case it is assumed that the signal's total
energy is well-defined, energy being measured in the same normalized sense as was
power in the previous section, namely,

E%j” Lo(O)]? de I
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Implied by this definition is the fact that if ¥ is finite, then both the average value an¢
average power equal zero, an observation pursued more fully in Sect. 2.6. Here we
are concerned with the frequency-domain description of nonperiodic energy signal
via the Fourier transform.

Fourier Transforms and Continnous Spectra

A periodic signal can be represented by its exponential Fourier series

c,,(nf 0)
U(I) = nim [..% J‘T U(I)e‘flnnfot dt:l eji’.nnfot (2

where the integral expression for ¢, {nfy) has been written out in full. According to the
Fourier integral theorem there is a similar representation for a nomperiodic signal
namely,

o) = ff Uw o(t)e It dz}efz"f‘ df @
I
1463

The bracketed term is the Fourfer transform of u(f), symbolized by V(f) or Fe(t)

and defined as
V()= L1 2 | o(em2 dt @

which is an integration over all time. The theorem (3) states that £{¢) can be found by
the fnverse Fourier transform of V{f),

W= e[ et (s

which is an integration over all frequency.

Equations (4) and (5) are often referred to as the Fourier integrals or the Fourie
transform pairf and, at first glance, they seem to be a closed circle of operations
In a given problem, however, one usually knows either P{f) or o(f) but not both
I V(f) is known, o(t) can be found by carrying out the inverse transform (5), anc
vice versa when finding V() from o(f).

Turning to the frequency-domain picture, a comparison of Egs. (2) and (3
indicates that V{f) plays the same role for nonperiodic signals that ¢ {nf,) plays for

¥ Somewhat different definitions apply when w ==2#f is used as the independen
variable of the frequency domain.
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‘e condition on ¢ ensuring that [1 + (12, <V + 1)fp and [1 - 72001 >
‘N — 1)f; so the tuned circuit “ passes” only Nf;. Therefore, the output amplitude
spectrum consists essentially of two terms, ¢,(+ 4 fo), and

Pty & H(Nfo)e(Nfo)e ™o + H(—Nfo)ed -~ Nfo)e ™ Anitdot
= 2RAfo T cos 2nNfo t

where we have used Egs. (24) and (25) and converted the result to sinusoidal form.

i

3.3 NONPERIODIC SIGNALS AND FOURIER TRANSFORMS

We have described a periodic signal as one with a repeating characteristic applied for
1long time interval, theoretically infinite. Now we consider nonperiodic signals whose
sffects are concentrated over a brief period of time. Such signals may be strictly
timelimited, so v(2) is identically zero outside of a specified interval, or asymptotically
timelimited, 5o o{f)~» 0 as t —» +oo. In either case it is assumed that the signal’s total
mergy is well-defined, energy being measured in the same normalized sense as was
power in the previous section, namely,

g fm o()]? dt M

£
i
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Impiied by this definition is the fact that if & is finite, then both the average value and
average power equal zero, an observation pursued more fully in Sect. 2.6, Here we
are concerned with the frequency-domain description of nonperiodic energy signals
via the Fourier transform.

Fourier Transforms and Continuous Spectra

A periodic signal can be represented by its exponential Fourier series

cu(”fo)
o(t) = i iJ. U(z)e_.flﬂﬂfoi dt | efzsor 3
R vy

where the integral expression for ¢,(nf) has been written out in full. According to the
Fourler integral theorem there is a similar representation for a nonperiodic signal,

pamely,
-1 [f

-

o(t)eF2nf dt] el 3=t gf (3)

)

The bracketed term is the Fourier transform of u(t), symbolized by ¥{f) or Fv(t)]
and defined as

V(f) = F@®] 2 fj) o(f)e= I3 dt @

which is an integration over all time. The theorem (3) states that o(f} can be found by
the inverse Fourier transform of V(f),

W)= gL [ vinerra ()

which is an integration over all frequency.

Equations (4) and (5) are often referred to as the Fourier integrals or the Foutier
transform pairf and, at first glance, they seem to be a closed circle of operations.
In a given problem, however, one usually knows either ¥(f) or o(z} but not both.
If V{f) is known, o(r) can be found by carrying out the inverse transform (5}, and
vice versa when finding V() from o(z).

Turning to the frequency-domain picture, a comparison of Egs. (2) and (3)
indicates that V{f) plays the same role for nonperiodic signals that ¢ (nfy) plays for

t Somewhat different definitions apply when w==2af is nsed as the independent
variabie of the frequency domain.
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periodic signals. Thus, ¥{f) is the spectrum of the nonperiodic signal o(¢). But F(f) is
a centinuous function defined for all values of f whereas ¢,(nfy) is defined only for
discrete frequencies. Therefore, a nonperiodic signal will have a continuous spectrum
rather than a Iine spectrum. Again, comparing Eqs. (2) and (3) belps explain this
difference: in the periodic case we return to the time domain by summing discrete-
frequency phasors while in the nonperjodic case we infegrate a continuous frequency
function. .

Like ¢,(nfo), ¥(f) generally is a complex function so that | ¥{(f)] is the amplitude
spectrum and arg [F(f)] is the phase spectrum. Other important properties of F(f),
paralleling properties of ¢ (nf,), are listed below.

1 Y o(f) is real, then P(—f) = V*(f) and
[V(-N1 =1V arg A=f)] = —arg [I{/)] (®)
Hence, the spectrum has hermitian symmetry.

2 I o(f) has either even or odd time symmetry, then Eq. (4) simplifies to

2 fwt}(t) cos et dt {t) even
=4 7 . G
~j2 [ ot)sinwidt  o(t) odd
4]

where we have written w in place of 2=/ for notational convenience, a practice
frequently used hereafter. It follows from Eq. (7) that if o(f) is also real, then
V{f) is purely real or imaginary, respectively.

3 The value of F{f) at f = 0 equals the net area of v{t), ..,

V(0) = j:v(z) dt ®)

which compares with the periodic case where ¢,{0} equals the average value of

o(z).

EXBRCISE 2.8 Integrals of the general form {7 w(r) d¢ simplify when the integrand
is symmetrical; specifically, for any constant T,

j‘T w(f) dt = 2 J:W(I) dt if w(—1) = w(t) (961)
N 0 (=)= —w(®) ()

Use Eq. {9) to derive Eq. (7) from Eq. (4.
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FIGURE 2.13 T

The rectangular pulse v(r) = ATI(t/7). 7

DR

Example 2.4 Rectangular Pulse

In Example 2.2, Sect. 2.2, we found the line spectrum of a rectangular pulse train.
Now we will consider the continuous spectrum of the single rectangular pulse shown
in Fig. 2.13. This is so common a signal model that it deserves a symbol of its own.
Let us therefore adopt the notation

T
’ 1 [t <<
-4
H(T) . (10
0 l!l >5

which stands for a recrangular fumction with unit height or amplitude baving width
or duration t centered at t = 0. Thas, v{t) = ATI(/7) in Fig. 2.13.
Since v{t) has even symmetry, its Fourier transform is

i) =2 " 9(e) cos wt dt

/2
=2 Acascoa‘dtmziisinuam)I
0 @ 2
= AT sinc fr (11}

and ¥(0) = 41 which clearly equals the pulse’s area. The corresponding spectrum is
plotted in Fig. 2.14. This figure should be compared with Fig. 2.7 to illustrate our
previous discussion of line spectra and continuous spectra.

1t is apparent from | F{f)| that the significant portion of the spectrum Is i the
range |f} < ljz since | F(f)}| « V{0) for {f| > 1/r. We therefore may take 1/t as a
measure of the spectral “ width.,” Now if the pulse duration is reduced (small ), the
frequency width is increased, whereas increasing the duration reduces the spectral
width. Thus, short pulses have broad spectra, long pulses have narrow spectra. This
phenomenon is called reciprocal spreading and is a general property of all signals,
pulses or not, because high-frequency components are demanded by rapid time
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FIGURE 2.14
Spectrum of a rectangular pulse, ¥(f) = A+ sinc fr.

variations whereas smoother, slower time variations require relatively little high-
frequency content. 1

Example 2.5 Exponential Pulse

Cousider a decaying exponential function of the form o) = Ae™HT 1> 0. To ensure
that the energy is finite, we further specify that o(f) = 0 for £ < 0. Introducing the
unit step function notation

1 t>0

u(r) & {o £<0 (12)

we can write
w1) = Ae”Tul?)
which will be called an exponential pulse.
The integration for (/) is a simple problem, resulting in

o : AT
V(N = [ e e At =

so the amplitude and phase spectra are

AT

7 =‘/1 + (2nfT)?

arg [Vl = —arctan 2nfT’

e sy
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Thus, unlike the previous example, the pbase is a smooth curve between +90° (f=
— o) and —90°(f = + ). Sharp-eyed readers will probably spot similarities betweer
V() and the transfer function of an RC lowpass filter, Example 2.1. The similarity
is not accidental, and we will explain why in Sect. 2.5. H

Rayleigh’s Energy Theorem

Analogous to Parseval’s power theorem, Rayleigh's energy theorem relates the tota,

_energy E of a signal to its amplitude spectrum. Actually, the theorem is a specia

case of an interesting integral relationship

L2} 0
[ wow@ar=[ viow e @3
where V() = #[v()] and ¥{(f) = F [w(z}]. Proof of Eq. (13) foilows the same methoc
used to prove Parseval’s theorem, Eq. (19), Sect. 2.2. We obtain Rayleigh’s theorem
by taking w{f) = (2} so the lefe-hand side of Bq. (13) is the energy of »()—by the

- definition (1)—and hence

e= " viprna=[" vory a4

Therefore, integrating the square of the amplitude spectrum | V()i* over all fre
quency yields the total energy.

The vatue of Eq. (14) lies not so much in computing E, since the time~-domaix
integration of |o(r)|% often is easicr. Rather, it implies that P2 gives the distri
bution of energy in the frequency domain, and therefore may be termed the energ)
spectral density. By this we mean that the energy in any differential frequency banc
f dfi2 equals | F(f)|® df. That interpretation, in turn, lends quantitative suppor
to the notion of spectral width in the sense that most of the energy of a given signa
should be contained in the range of frequencies taken to be the spectral width.

By way of illustration, Fig. 2.15 is the energy spectral density of a rectangulal
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sulse whose spectral width was previously claimed to be [f] < 1/z. The energy in that
yand is the shaded area in the figure, ie.,

iic ifz
[ mnrar= 7 (40 sine® fr df = 0.924%
~1je - 177 .

whose evaluation entails numerical methods. But the total signal energy is E=
i® [8(f)|? df = 4% (found by inspection!) so the asserted spectral width encompasses
more than 90 percent of the total energy.

Transform Theorems

Given below are some of the many other theorems associated with Fourier transforms.
They are included not just as manipulation exercises but for two very practical reasons.
First, the theorems are invaluable when interpreting spectra, for they express relation-
ships between time-domain and frequency-domain operations. Second, one can build
up an extensive catalog of transform pairs by applying the theorems to known pairs —
and such a catalog will be useful as we seck new signal models.

In stating the theorems, we indicate a signal and its transform (or spectrum)
by lowercase and uppercase letters, e.g., V(f}=F()] and o(f) = F VAL
This is also denoted more compactly by o{f) « F(f). Table A at the back of the book
lists the theorems and transform pairs covered here, plus a few others.

Linearity (Superposition}

For the constants ¢ and §
ao(t) + fw(s) > aV(f) + F(S) as

This theorem simply states that linear combinations in the time domain become
linear combinations in the frequency domain. Although proof of the theorem is
trivial, its importance cannot be overemphasized. From a practical viewpoint Eq. (15)
greatly facilitates spectral analysis when the signal in question is a linear combiration
of functions whose individual spectra are known. From a theoretical viewpoint it
underscores the applicability of the Fourier transform for the study of linear systems.

Time Delay

If a signal o(t) is delayed in time by 1, seconds, producing the new signal o(tr — 1,)
the spectrum is modified by a linear phase shift of slope —2=z,, that is,

ot ~ t5) > V(f)e ™ok (16)

T
5
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Translation of a signal in time thus changes the spectral phase but not the amplitude.
Note that if 2, is a negative number, the signal is advanced in time and the phase shift
has positive slope. Since time advancement is a physical impossibility, we conclude
that in actual signal processing the spectral phase will have negative slope, though not
necessarily linear.

Proof of this theorem is accomplished by change of variable 2 = ¢ — #, in the
transform integral. (Observe that time is indeed a dummy variable in the direct
transform, just as frequency is a dummy variable in the inverse transform.) The
change-of-variable technique is basic to the proof of most transform theorems, and is
demonstrated here:

Flult — 1] = f ot — t)e™ 7 di
% N
= [ s(pemrae ap

= [ | " s(yeier dl]e“jw'd

The integral in brackets is just ¥{f), so #o(z — t)] = V(f)e™ ™"

EXERCISE 2.9 The signal in Fig. 2.16 can be written as
t1 t—t ' '
z(t)mAl’I( ha d) —mAII( ") :,,=§ (17a)
T

T

Apply the linearity and time-delay theorems to the results of Example 2.4 to obtain
Z(f} = j2dz sinc fr sin wft (178)
Then sketch the amplitude spectrum and compare with Fig. 2.14.

Scale Change

Time delay is equivalent to translation of the time origin. Another geometric oper-
ation is scale change, in which the time axis is expanded, compressed, or reversed.
Thus, v(at) is a compressed version of »(f) when ¢ is positive and greater than L
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Similarly, if 4 is negative and less than 1, s(at) is the expanded image of v(f) reversed
in time. Such operations may occur in playback of recorded signals, for example.
The scale-change theorem says that

£

oat) > V(a—) (18) |

e

which formally expresses the property of reciprocal spreading encountered in Example
2.4; for if the signal is compressed in time by the factor g, its spectrum is expanded
in frequency by 1/a, and conversely. The theorem is proved by change of variables,
considering positive and negative values of a separately.

Duality

The powerful concept of duality is well known in cireuit analysis. In spectral analysis

thers is also duality, a duality between the time and frequency domains that stems from

the similarity of the Fourier transform integrals. The duality theorem says that if
ot} V()

then the transform of the time function ¥{(¢) is
FVO] = v(—f} (19)

as proved by interchanging ¢ and fin the Fourjer transform integrals.

In the form of Eq. (19) this theorem is rather abstract, and it is difficuit o
visualize its use in geperating new transform pairs. The following example should
help to clarify the procedure.

Example 2.6 Sinc Pulse

Consider the signal z(z) = 4 sinc 27, a sinc function in time. (Although the idea of a
sinc pulse may seem strange at first, it plays a major role in the study of digital data
transmission.) Recalling the transform pair of Example 2.4, ATI{(t/7)+> A7 sinc fx, we
apply duality by writing z(z} in the form

-4
2Ly = V{(t) == WZWsinc 92w

50

20) =N = 7 11(32)
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FIGURE 2.17
A sinc pulse and its bandiimited spectrum.

Because the rectangular function has even symmetry, H(—fJ2) = LI(fj2W),
and we have derived the new transform pair

. A f
Asine 2Wtes W II (‘é‘ﬁ}) (20)

which is shown in Fig. 2.17. As can be seen, the spectrum of a sinc pulse has clearly
defined spectral width W, In fact, the spectrum is zero for |f| > /¥, and the signal is
said to be bandlimited in W, This is our first encounter with a signal that is strictly
bandlimited in frequency. Note that the signal itself is only asymptotically limited in
time. Hi

Frequency Translation (Modulation)

Duality can be used to generate transform theorems as well as transform pairs.
For example, a dual of the time-delay theorem (16) is
e’ V(f—f) @, =27f, 2D
We designate this as frequency translation or complex modulation, since multiplying
a time fupction by /! causes its spectrum to be translated in frequency by -+ e
To see the effects of frequency traaslation, let o(¢) have the bandlimited spectrum
of Fig. 2.18a, where the amplitude and phase are plotted on the same axes using solid

Wr—7.)

) & . £
0 £ —W fc".\fc+w

.

@)

FIGURE 2.18
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and broken lines, respectively. Inspection of the translated spectrum P{(f~fJ) in
Fig. 2.18b reveals the following:

1 The significant components are copcentrated around the frequency f..

2 Though V{f) was bandlimited in W, V{f ~ f.) has a spectral width of 2.
Trapslation has therefore doubled spectral width. Stated another way, the
negative-frequency portion of ¥(f) now appears at positive frequencies.

3 V(f-f)is not hermitian but does have symmetry with respect to translated
otigin at f==f,.

These considerations may appear somewhat academic in view of the fact that
o()e’<" is not a real time function and cannot occur as a communication signal.
However, signals of the form »(¢) cos (w, ¢ + ) are common-~in fact, they are the
basis of carrier modulation — and by direct extension of Eq. (21} we have the following
modulation theorem:

o e if
o{t) cos (@, t + B)H—Zm Wf—f)+ =" Wr+£) (22)

In words, multiplying a signal by a sinusoid translates its spectrum up and down in
frequency by f,. All the comments about complex modulation also apply here. In
addition, the resulting spectrum is hermitian, which it must be if v(f) cos (w . + 8 is a
real function of time. The theorem is easily proved with the aid of Euler’s theorem
and Eq. (2I).

Example 2.7 RF Pulse

Consider the finite-duration sinusoid of Fig. 2.19a, sometimes referred to as an RF
pulse when £, falls in the radio-frequency band. Since

z(t) = AII(%) Cos , t (23a)
we have immediately
AT, Ar.
ZF) = Egmc (F-for+Seine 4 fe (239)

by setting o(t) = AII(#/7) and V(f) = Az sinc /¢ in Eq. (22). The resulting amplitude
spectrum is sketched in Fig. 2.195 for the case of £, 1t so the two trapslated sinc
functions have negligible overlap.

Because this is a sinusoid of finite duration, its spectrum is continuous and
contains more than just the frequencies = & .. Those other frequencies stem from
the fact that z(f) = 0 for {¢] > 7/2, and the smaller 7 is, the larger the spectral spread
around +f,—reciprocal spreading, again. On the other hand, had we been dealing

na
R0

{a}

EZ(
At
A,«/\/\/\/\/\"\f\'\A 2 MJ\/\/"WA
3 | ’i

_ ] G T H L i
fe L. _l? fe Jo*t

(b}

FIGURE 2.19

An RF pulse and its amplitude specteum, f2>> 1/

with a sinusoid of infinite duration, the frequency-domain representation would be a
two-sided fine spectrum containing only the discrete frequencies £/, Hir

Differentiation and Integration

Certain processing techniques involve differentiating or integrating a signal. The
frequency-domain effects of these operations are indicated in the theorems below.
A word of caution, however: The theorems should not be applied before checking
to make sure that the differentiated or integrated signal is Fourier-transformable,
i.e., has well-defined energy. And the fact that o(f) has finite energy is not a guarantee
that the same is true for its derivative or integral.

To derive the differentiation theorem, we replace o) by the inverse transform
integral and interchange the order of operations, as follows:

4= 2 [[ venemr af]
- fqu f)(% efzuf') af
= [ Lmvaet

o[22)
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Referring back to the Fourier integral theorem (3) reveals that the bracketed term
must be F[do(t)/dt], so

;% o(£) o j 27 V)
and by iteration
drl
SeeGm V) @9

which is the differentiation theorem.

Now suppose we generate another time function from o(¢) by carrying out the
operation %, (1) dA, where the dummy variable A is required since the independent
variable ¢ is the upper limit of integration. The integration theorem says that

t 13
jﬂ D dhe (/) (25)
whose proof involves the same method used above. One can also generalize Eq. (25)
to multiple integration but the rotation is cumbersome.

Inspecting these theorems, we can say that differentiation enhances the high-
frequency components of a signal while integration suppresses high-frequency com-
ponents. Spectral interpretation thus agrees with the time-domain viewpoint that
differentiation accentuates time variations while integration smoothes them out.

Example 2.3 Triangular Pulse

To illustrate the integration theorem — and obtain yet another useful transform pair —
let us integrate the signal z(f) in Fig. 2.16 and divide it by the constant . This
produces
]
1 & Apl — = ft] <=
wiy=={ 2di= T
T Vo

0 HEE

a triangular pulse shape shown in Fig. 2.20a. (The reader is strongly encouraged to
check this result using the graphical interpretation of integration.) Then, taking Z(/)
from Eq. (175}, we have

1 i i2A4T sinc /1 sin wft
Wm_:_“_.z(f)z,f,___fmw_f.

T j2af 2nfr
as sketched in Fig. 2.205. Comparing this spectrum with Fig. 2.14 shows that the
triangular pulse has Jess high-frequency content than a rectangular pulse with ampli-
tude 4 and duration v, even though they both have the same area. The difference is

= Az sinc® fx
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FIGURE 2,20

A triangular pulse and its spectrum.

traced to the fact that the triangular puise is spread over 27 seconds and does not have
the sharp, stepwise time variations of the rectangular shape.

This transform pair can be written more compactly by defining the friangular
Sunction

(7|

A it <
A(;) 2 T (26)
0 HEEEA
Then w(e) = AA{t/7) and
AA(%) s At sine? ft 27

It so happens that triangular functions can be generated from rectangular functions
by another mathematical operation, namely, convolution. And convolution happens
to be the next major subject on the agenda, so we will take another look at this example

soot. i

2.4 CONVOLUTION AND IMPULSES

The mathematical operation known as convolution ranks high among the analytic
tools used by communication engineers. For one reasoa, it is a good model of the
physical processes that go on in a linear system; for another, it helps to further our
understanding of the relationships between the time domain and the frequency
domain. In both cases, convolution goes hand in band with that curious engineering
fiction called the impulse or delta function. This section deals with these concepts as
they relate to signals; they are applied to linear systems in the next section.
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Convolution Integral

The convolution of two functions of the same variable, say ¢(r) and w(t), is defined as
vxw(t) & j oWt — 1) dh 0

where »* w(z} merely stands for the operation on the right-hand side of Eg- (1) and the
asterisk (#) has nothing to do with comuplex conjugation. Equation (1) is the con-
volution integral, often demoted by vxw when the independent variable is unam-
biguous. At other times the notation [v(D]=[w(?}] is necessary for clarity. Note
carefully that the independent variable here is #, the same as the independent variable
of the functions being convolved; the integration is always performed with respect
to a dummy variable (such as A) and ¢ is a constant insofar as the integration is
concerned.

Calculating v = w(f) is no more difficult than ordinary integration when the two
functions are continuous for all 2. Often, however, one or both of the functions is
defined in a piecewise fashion, and the graphical interpretation of convolution illus-
trated in Fig. 2.21 becomes especiaily belpful. Figures 2.21c and & are the functions
involved here, but the integrand in BEq. (1) is o(Ow(z — 4). Of course, v{4) is nothing
more than o(7) with ¢ reptaced by 1, Fig. 2.21c. But w(f — 2} as a function of A must be
obtained by two steps: first, w(—2) is w(f) reversed in time with ¢ replaced by A;
then, for a given value of ¢, sliding w{—21) to the right ¢ units yields w{t — 1). Figure
2.21d shows wit — 4) for the case of ¢ =+, > 0, illustrating that the value of 1 always
equals the distance from the origin of v(4) to the shifted origin of w(--1). Finally,
#(%) and w(z — 2) are multiplied and the area of the product equals v*w(t) for that
particular value of ¢, Fig. 2.21e.

Asv=w{t)is evaluated for — 0 < ¢ < o, the plot of w(z — 1) moves from the left
to right with Tespect to #{(2), and the actual form of the convolution integration may
change depending on the value of ¢. In Fig. 2.21, for instance, it foliows that

vxw(t) =0 t<0

since w{z — 1) does not overlap o(1) and the area of the product is zero. Similarly,

[oamwe-nar  0<t<r
vaw(t) = ( |

f WOt — D dh  t>T

since v(A) = O for A < O and w(z - £) = 0 for 4 < ¢ — T'and 4 > 7. Note in these cases
that ¢ appears as a limit of integration. Simple sketches of the functions involved
help one discover these different cases.
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FIGURE 2.21 :
The graphical interpretation of convolution.

Further study of Fig. 2.21 should reveal that v+ w(f) = ws v(t), ie., we get the
same res?.lit by reversing v and sliding it past w. This property and several other
convolution properties are listed below for reference.

URW = Wk 2a)
vi(wsz) = (pew)*z (25)
{aw + pw)wz = alv*2) + f{wsz) (2¢)
f-{(ti*w)=v*@=£)*w 3y
dt dr  dt

Example 2.9 Convolution of Rectangular Pulses

The CfDIIV?EﬂtiGB. of two rectangular pulses, Fig. 2.22¢, is relatively simple using the
graphical interpretation, and the problem breaks up into three cases: It} > (7 + )2,
(7~ )2 < {t] < (zy + 02)2, and {#]< (z, — T,)/2, assuming t, > 7,. The result is
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FIGURE 2.22
Convolation of rectangular pulses.

generates into a triangular function in the

a trapezoidal function, Fig. 2.22b, which de i

special case of 7; = 72.

EXERCISE 2.10 By carrying out all the details, confirm the resuit asserted in

Example 2.9,

Convolution Theorems

Having defined convolution, we now give the theorems pertaining to convolution and

transforms, which are two in pumber, namely,

v w(t) = V(W {4
we)wlt) & Ve W(f) )
These theorems state that convolution in the time domain bef:omes muitiplicatiio:{ in
the frequency domain, while multiplication in the time domain becomes convolution

in the frequency domain. Both of these relationships are important for future work.
The proof of Eq. {(4) uses the time-delay theorem, as follows:

Flo « w()] = f Ulv(&)w(:— 2 d.l]e'f“" dt
- fj o) U:w(z— Dye~ior dz] da
— {7 amtm(pe

_ [ [ oo au] W) = VOW()
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Equation (5) can be proved by writing out the transform of o(£)w(z) and replacing
w(r) by the inversion integral & “1[W( )]

EXERCISE 2.11  Use Eq. (4) together with the results of Example 2.9 to obtain the
transform of a triangular puise, Eq. (27), Sect. 2.3.

Example 2.10 The Spectrum of v°(¢)

Suppose v(?} is bandlimited in W, with a spectrum as shown in Fig. 2.232. What then
is the spectrum of v*(r)? From Eq. (5) we must convolve ¥(f} with itself, the result
being something like Fig. 2.235. Without any further specific knowledge of #(t) we
reach this important conclusion: when v(r) is bandlimited in W, v*(¢) is bandhmited
in 2W. (Note the difference between this operation and the modulation theorem, both
of which double speciral width.) The process may be iterated for »>(f), etc., with
predictable conclusions. Hit

Unit Impulse

Previous examples have demonstrated that convolution is a smoeothing operation;

" ie., the result is “smoother” and *“longer” or “wider” than sither of the functions

involved. But there is one notable exception to this rule, namely, when one of the
functions is a unit impulse or Dirac delta function 5(); in that case, providing »(¢) is
continuous,

@] [6()] = o(2) ®

$0 convolving with an impulse merely reproduces the other function in its entirety.
Actually, (¢} is not a function in the strict mathematical sense; rather, it is a
member of that special class known as generalized functions or distributions. And



54 SIGNALS, SPRCTRA, AN FILTERS

4
FIGURE 2.24 ]
The graphical representation of AB(E - £, 9! I t

because it is not a function, the unit impulse is defined by an assigoment rule or
process instead of a conventional equation. Specifically, given any ordinary function
v{f) that is continuous at £ = 0, 8(¢) is defined by

) "u(t) (1) dt = [8(0) <0<t %)

a rule that assigns a number — either o(0) or 0—to the process on the left-hand side.
Taking v(¢) == 1 for all ¢, it follows from Eq. (7) that

f 50 dit = jw 5(6) dt = 1 (8a)

which may be interpreted by saying that &(¢) has unit area voncentrated at the discrete
point £ =0 and no net area elsewhere. Carrying this argument further suggests that

3t)=10 t#0 (8h)

Equationé (8¢) and (8b) are the more familiar * definitions ” of the impulse, and lead
to the commeon graphical representation. For instance, the picture of A8t — 1) is
shown in Fig. 2.24, where the letter 4 next to the arrowhead means that A5(t — £3)
has area or weight 4 located at ¢ =¢,. It shouid be noted that Eq. (8b) is not an
assignment rule, and distribution theory, strietly interpreted, does not specify values
for the impulse other than in the integral sense. It is, however, consistent with Bq. (7)
and helps us visualize impulse properties under the operation of integration.
Two of the most important integration properties are

[ wse-wd=od O

-3

[o(f)] = 18¢ — 1)) = ot — £3) 10y

both of which can be derived from Eq. (7). Equation (9) is called the sampling
property since the indicated operation picks out or samples the values of o(f) at
t = 1, where 8(z — ¢,;) is “located.” On the other hand, convolving () with 3(¢ - 1)
is a replication property since, according to Eq. (10), it reproduces the entire function
() displaced by #; units. The difference between Eqs. (9) and (10) should be clearly
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understood: sampling picks out a particular value, ie., a number, while convolvin
repeats the function completely. ’ ¢
By definition, the impulse has no mathematical or physical meaning unless it
appears under integration. Even so, it is convenient to state three nonintegral relations
as simplifications that can be made before integration since they are consistent with
what would happen afier integration. Specifically, in view of the sampling propert
{9), we can just as well replace ¢(£) by v(¢,), so that Y

o) 8t — t5) = v(tg) 8(t — 1) (1n

whose justification sters from integrating both sides over — oo < f < co. Similarly
one can justify the scale-change relationship
1

o{ar)y == E—a~—§5(z) a0 azn
wh:ich says that, relative to the independent variable-#, #(af) is an impulse having
weight 1/]a|. The special case of a = ~1 indicates the even-symmetry property
3(t) = 6(—1). Finally, relating the unit impulse to the unit step u(¢) defined in Eq, (13)
Sect. 2.3, we see from Eq. (7) that ’

2
1 t>0
8(A) dA ==
J' o ) {0 1<
= u(t)
- Differentiating both sides then vields
dult)
o) =——
== (3

which is not a definition of 8(f) but a consequence of the assignment rule (7).

Although an impulse does not exist physically, there are numerous conventional
functions that have all the properties of 3(¢f) in the limit as some parameter € goes to
zero. In particular, if the function J,(¢) is such that

e+ v~

lim f (D)o dt =00  (14a)
then we say that N
lim 34t) = 51 (148)
Two functions satisfying Eq. (14a) are ‘

i) = é H(i-) {15

1 H
§{t) = ~ sinc ~
3] - sine~ 16)
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FIGURE 2.25 )
Two functions that become impulses as e — 0.

which are plotted in Fig. 2.25. One can easily show that Eq. (15) satisfies Eq. (14a)
by expanding ¢(¢) in a Maclaurin series prior to integrating. An argument for Eq- (16)
will be given shortly when we consider impulses and transforms.

EXERCISE 2.12  Use Eq. (16) to prove that

F
lim [ e2df=8() (D)
F

F-ros ¥~

Impulses in Frequency

Sections 2.2 and 2.3 drew the distinction between pe-riodic power signals band nfix;:
periodic energy signals, one class being dﬂSCEibE(fl by line spectra, th.e otl'fer aly co;;sts
wous spectra. This means that we have something of a quandary I.f a sign zto;ions
of periodic and nonperiodic parts since different freqt‘lenc.%domam. zezrc\;‘e sdlon
would be required. This quandary is solved by aliowing impulses in t 'e relq HZ
domain as the representation of discrete frequency <f0mp0nents. Sue.:h 1=n;§1 se5 v
derived by limiting operations on conventional Fourler transform Pa:rsl, anf ma;jifons
dubbed transforins in the limit. Note, however, that the corresponding time ?nc o
are power signals having infinite or undefined epergy, and the comcept of energy
i er applies.

spectrjsd:ﬂsstiyt;; I;cl)liit of%) fhis discussion, consider the signal zf(t) =4, a .constant
for all time. Referring to Fig. 2.17a, we Jet v(2) be a sinc pulse with W' — 0, e,

W)= Hm A sinc 2Wt = 4
w-=0
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But we already have the transform pair 4 sinc 2t {A2PII 207, s0

! 7 -5 i .i -
FI0] = lim n(zw) = A5(f)

where we have invoked Eq. (15) with ¢ replaced by fand € replaced by 27, Therefore,

A 48(F) (18)
and the spectrum of a constant in the time domain is an impulse in the frequency
domain at /= 0. This result agrees with intuition in that a constant signal has no
time variation and its spectral content ought to be confined to f= 0. The impuisive
form results simply because we use integration to return to the time domain, via the
inverse transform, and an impulse is required to concentrate nonzero area at a discrete
point in frequency. Checking this argument mathematically gives

e
FTHASN = [ AP ar = et oy
- =0
which justifies Eq. (18) for our purposes. Note that the impuise has been integrated
to obtain a physical quantity, namely, the signal ©(2) = A.

As ap alternate to the above procedure for deriving Eq. (18), we could have
begun with a rectangular pulse, 4¥1(+/7), and let © — co to get a constant for all time.
Then, since F[AI(t/1)] = 4z sinc fz, agreement with Eq. (18) requires that

lim At sine fr = 45(f)

0
And this supports the earlier assertion Eq. (16) that a sinc function becomes an
impulse under appropriate limiting conditions.

To generalize Eq. (18), direct gppiicatioa of the frequency-translation and
modulation theorems vields

A s 45(f — £) {9)
i ~j8
deos @+ o s+ X 5y G

Thus, the spectrum of z single phasor is an impulse at f=f, while the spectrum of a
sinusoid has two impulses, Fig, 2.26. Going even further in this direction, if v(t) is an
arbitrary pericdic signal whose exponential Fourier series is

W= 3 ofe® (g

then its Fourier transform is
"= _Z cnfo) 8(f — nfy) (218)

where superposition allows one to transform the sum term by term.



58 SIGNALS, SPECIRA, AND FILTERS

A it 4 48
3¢ 1°

FIGURE 2.26 P
The spectrum of 4 cos (wet -+ 0.  —f, 0 e

By now it should be obvious from Egs. {18) to (21) that any two-sided line
spectrum ¢an be converted to a “ continuous” spectrum using this rule: convert the
spectral lines to jmpulses whose weights equal the line heights. The phase portion of
the line spectrum is absorbed by letting the impulse weights be complex numbers,
e.g., the weights in Eq. (21) are ¢,{nfo) = Le (nf)le! ¥eleviol, Hence, with the aid
of transforms n the limit, we can represent both periodic and nonperiodic signals by
contipuous spectra. In addition, the transform theorems developed in Sect. 2.3 can
now be applied to periodic signals. That strange beast the impulse function thereby
emerges as a key to unifying spectral analysis.

But one may well ask: What is the difference between the line spectrum and the
“ continuous ” spectrum of a periodic signal? Obviously there can be no physical
difference; the difference Ties in the mathematical conventions. To return to the time
domain from the line spectrum, we sum the phasors which the lines represent. To
return to the time domain from the continuous spectrum, we integrate the impulses
to get phasors. - '

-

EXERCISE 2.13 Prove Eq. (20) by carrying out the inverse transform of the right-
hand side.

Impulses in Time
The time-domain impulse may seem a trifle farfetched as a signal model, but the

next section will show conditions where it is both reasonable and highly useful.

Here we are concerned with the transform
Ad(f) =+ A (22)

which is derived by Fourier transformation using Eq. (17) to evaluate the integral.
Since the transform of the time impulse has constant amplitude, its spectrum contains
all frequencies in equal proportion. .

The reader may have observed that Eq. (22) is the dual of 4 «» 46(f). This duaal
relationship has its roots in reciprocal spreading, Egs. {18) and (22) being the two
extremes: L.e., a constant signal of infinite duration has ** zero* spectral width, whereas
an impulse in time has *“zero™ duration and infinite spectral width.
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Applying the time-delay theorem to Eq. (22} vields the more general pair
AB(t — ) er Ao (23)

Problem 2.34 outlines how this pair, together with the differentiation theorem, provides
a shortcut method for finding certain other transforms.

25 SYSTEM RESPONSE AND FILTERS

Let us return to the input-output or system response problem as posed at the beginning
of the chapter, save that now we allow the input x(f) to be more or less arbitrary.
We will still assume that the system is linear, time-invariant, and asymptotically
stable, and we will add the constraint that there is no stored energy in the system when
the input is applied. The system’s response p(¢) will be formulated using both time-
domain and frequency-domain analysis.

Impulse Response and Time-Domain Analysis

In linear system theory, the impulse response A(t) of a system is defined as the output
that results when the input is a unit impulse, i.e.,

My & p(t)  when x(z) = 6(t) 43

The response to an arbitrary input x(¢) is then found by convolving A(f) with x(), so

W) = B#x(f) = f Bt — X) di @

Qften called the superposition integral, Eq. (2), is the basis of time-domain system
analysis. This method therefore requires knowing the impulse response as well as
the ability to carry out the convolution.

Several techniques are available for finding the impulse response of a system,
given its mathematical model. If the model is a simple block diagrawm without feedback
loops, A(t) usually can be found from inspection by imvoking the definition (I).
Other times it is easier to calculate the step response y,(f), defined by

in which case ydt) Sy when x(1) = u(t) (3a)
d
h(t) = J;(r) (35)

This follows since y,(¢) = [#(£)] * [u(t)] so dy,(0)/dt = [A(2)] = [du(t)/dt] = [h(£)]* [5(0)] =
(1), the pertinent relations being Eqs. (3}, (6), and (13), Sect. 2.4. When these rasthods
do not work, the probiem is probably a candidate for frequency-domain analysis.
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x(f) c
FIGURE 2.27 -
RC fowpass filter, .

Example 2.11 Step, Impulse, and Pulse Response of an RC Lowpass Filter

Again consider the RC lowpass filter, Fig. 2.21. If x(t) is a unit step, Fig. 2.28g, the

step response is weil known to be
70 = (1 — ™D (4a)

as plotted in Fig. 2.285. Differentiation then yields Fig. 2.28¢, namely,

1 meon
wey =2 a’:f’) = =z e U (4b)

Now consider the respomse to a rectangular pulse of dura.tion r.starting at
t =0, ie., x() = AII{(t — 1/2)/z]. Putting x(z} and A(¢) in Eq. (2) gives, with the help
of the graphical interpretation of convolution,

0 t <0
Pty = (A1 — e~ "RE) O<t<t &)
A(] — e"VRO)gm TRy
which is sketched in Fig. 2.29 for two values of /RC. Hil
1
x(ey = ult)
I3
0
fa)
a0 L S S
z” H
i
!
i RC
@)
i
0] 7e
FIGURE 2.28 \\
Waveforms for RC- lowpass filter. (@) N

Ugit step input; (5} siep response y.{); [
impulse response ¢ = dy.{t)/dt ©
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FIGURE 2.29
Rectangular pulse response of an RC lowpass filter. (2) T/RC» 1; (5} {RC«& 1.

Transfer Function and Frequency-Domain Analysis

Linking time-domain analysis to the frequency domain, let the input in the super-
position integral (2) be x(f) = ¢ for —w0 < < 0. Then,

Gl -
yy = [ m@err=e» gy

= [ [ bnyemsz=r d;i]efz"f‘ (6)
and the expression in brackets is recognized as a Fourier transform integral. To
identify that integral, recall that the transfer function H, (f) of a system was previously
defined such that, when x(r) = &/2/*, y(r) = H(f)e/*/'— but Eq. (6) has precisely
this form if we take

H() = #T0)] = | iofz(:)e"jz"f‘ dr 7

Therefore, the impulse response and transfer function of a given system constitute a
Fourier transform pair, and all the properties of H(f)} stated earfier can be derived
from Eq. (7).

Equation (7) also explains why the Fourier transform of the exponential pulse,
Example 2.5, Sect. 2.3, turned out to have the same frequency dependence as the
transfer function of an RC lowpass filter, Example 2.1, Sect. 2.1. In hindsight, this
demonstrates the A(t)es H(f) pair, since Example 2.11 showed that the impulse
response of an RC lowpass filter is an exponential pulse.

As for frequency-domain analysis per se, we tzke the Fourier transform of the
superposition integral and apply the convolution theorem, Eq. (4), Sect. 2.4. Thus

FO] = Flh=x0] = FIOIF[x(0)]
or
Y(f) = H(NHA(S) @
as illustrated schematically in Fig. 2.30 along with the time-domajn relation. This
elegantly simple equation, the basis of frequency-domuain analysis, says that the
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Input System Qutput
FIGURE 2.30 x{t) 16 ¥Hey=h*x()
Input-output relations for a linear time- = e
invariant system. X Hf) ¥ = HOX(H)

output spectrum Y(f) equals the input spectrum X(f) wmaltiplied by the transfer
function H(f). The corresponding amplitude and phase spectra are

| (O = |H(OE XN
arg [¥(f)] = arg [X()] + arg [H(/)]

which should be compared to the periodic steady-state result, Eq. (23), Sect. 2.2.
Additionally, if the output y(¢) is an energy signal, its energy spectral density and
total energy are given by

&)

|71 = HDI? 1K) (10)
5= lHOP IXOFF  aD

from Rayleigh’s energy theorem.
Further interpretation of Eq. (8) is afforded if we take x(f} as a unit impulse;

then, since X(f) = ZL6(0)] = 1,
Y(f) = H(f)  when x(t) = 5(t) (i2)

in agreement with the fact that the transfer function is the transform of the impulse
response. Viewed from the frequency domain, the spectrum of the input signal has
all frequency components in equal proportion in this case, so the output spectrum
is shaped entirely by the transfer function H(/).
Finally, one can return to the time domain by taking the inverse transform of
Eqg. (8), i.e., :
WO =F HHNXO = [ BOXH™ 4 (13)

Contrasting Eqgs. (13) and (8), it appears that the output spectrum is more easily
obtained than the output time function, which indeed is the case if H(f) and X (f) are
known. The power of frequency-domain analysis rests on the simple relationship
of input and output spectra. Furthermore, an experienced communication engineer
can often infer all he needs to know from the spectrum. (Much of this chapter has
pointed toward making such inferences.) On the other hand, if specific details of the
time function are to be investigated, the superposition integral may be easier than

Eq. {13) for finding »(2).
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FIGURE 2.31
Frequency-domain analysis of the rectangular pulse response of an RC lowpass
filter. (@) B> 1/m; () B 1fr; (&) Bk 17,

Example 2.12

To illustrate how far one can go just in terms of the frequency domain, suppose a
rectangular pulse of duration 7 is applied to an RC lowpass filter with B = 1/2zRC.
Oulr prior studies have shown that most of the pulse’s spectral content is in if} < ijz,
while the filter responds primarily to frequencies in the range |f] < B. Cleazly, the
shape of the output spectrum-—and, hence, the output signal—depends on the
relative values of 1/t and B. Figure 2.31 gives plots of | X{ )1, | H(/Y], and | ¥{f)] 4
[H() | X)) for the three cases B» 17, B= 1)z, and B« 1/

In the first case, Fig. 2.31a, the filter passes all the significant frequency com-
ponents ‘sincc H(f)= 1 for |f| < 1/r. Therefore, ¥{f) = X(f) and p(f) & x(f), so the
output time function should ook very much like the input. As a direct check on that
conclusion, Fig. 2.29a¢ shows the actual waveforms under this condition. In the
second case, Fig. 2.315, the shape of the output spectrum depends on both X(f) and
H{f) so y(t) will differ substantially from x(f}. We then say that the output is distorted
in the sense that it does not resemble the input, but a more precise statement entails
actually going through the time-domain calculations. In the third case, Fig. 2.31¢,
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the input spectrum js constant or ““flat” over |f] < B so ¥(f) = AtH{f). Since the
ontput spectrum now depends primarily on H(f), the output signal will look like the
filter’s impulse response, 1.e., y(f) = Azh(r). Again, this is confirmed by the time-domain
result plotted in Fig. 2.295.

Extrapolating this last case to other filtérs and other pulse shapes, we state the
following rule of thumb: If the input spectrum is essentially constant over the fre-
guency band where the filter has significant response, then the output signal is essen-
tially the impulse response of the filter. Under such conditions, it is quite reasonable
to model the input signal as being an impulse. i

Parallel, Cascade, and Feedback Connections

More often than not, a communication system comprises many interconnected units
or subsystems. When the subsystems in question are described by individual transfer
functions, it is possible and desirable to lump them together and speak of the overall
system transfer function. The corresponding relations are given below for two
subsystems connected in parallel, cascade, and feedback. More complicated con-
figurations can be analyzed by successive application of these basic rules. One essential
assumption must be made, however, namely, that any interaction or loading effects
have been accounted for in the individual transfer functions so that they represent
the actual response of the subsystems in the context of the overall system.

Figure 2.32¢ diagrams two subsystems in parallel; both units have the same input
and their outputs are summed to get the system’s output. From superposition it
follows that Y(f) = [H(f) + H.(/]IX(S) so the overall transfer function is

HU) = B(f) + Hy(f)  Parallel connection (14

In the cascade conuection, Fig. 2.32b, the output of the first unit is the input to the
second, so Y(F) = H(AH(X(F)] and

H(fy = H{(HH) Cascade connection (15

The feedback connection, Fig. 2.32¢, differs from the other two in that the output is
sent back through H,(f) and subtracted from the input. Thus, Y = H (X))
— H,{()¥(F)] and rearranging yiclds ) = {H (0 + B NE(BE(f) so

1)
A= 1+ H ()

This case is more properly termed the negative feedback conpection as distinguished
from positive feedback. where the returned signal is added to the input instead of

subtracted.

Feedback connection (16}
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FIGURE 2.32

(@) Parailel connection; (b) cascade connection; (¢) feedback connection.

Example 2.13  Zero-Order Hold

The zero-order hold system, Fig. 2.334, has several applications in electrical communi-
cation. Here we take it as an instructive exercise of the parallel and cascade relations.
But first we need the individual transfer functions, determined as follows: the upper
branch of the paraliel section is a straight-through path so, trivially, H,( f1=1;
the lower branch produces pure time delay of T seconds and sign inversion, and
lumping them together gives H,(f) = —e™#*T by application of the time-delay
theorem; using the integration theorem, the integrator in the final block has Hy{f}=
1{j2nf. Figure 2.33b is the equivalent block diagram in terms of these transfer functions.

Having gotten this far, the rest of the work is easy. We cgmbiﬁe the parallel
branches in H,;,{f) = H (F) + H,{/) and use the cascade rule to obtain

H(f) = Hyp(NHL(F) = [H () + H(DIE(H

R
P2f
_ e T ST
= i @ = il g = IR
Jj2nf nf
= T'sinc fTe~ /T an
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x{1} N f 20}
Delay - '

(a}

H=1
X0 H3(f) = Yin
P
iinf
Hy(f)=
FIGURE 2.33 —g~f2T
Block diagrams of zerc-order hold.
{a) Time domain; () frequency domain. ®)

Hence we have the unusual result that the amplitude ratio of this system is a sinc
function in frequency!

To confirm this result by another route, let us calculate the impulse response
h(f) drawing upon the definition that y(f) = A(f) when x(f} = d(r). Inspection of
Fig. 2.33¢ shows that the input to the integrator then is x(f) — x(z — =81 —

(t—T), so

g 13 O0<t<T
he) = f ,,,w[a(}“) =8 —T)dA = {0 otherwise
t - T72
e 11 18
(=) (18)
and the impulse response is a rectangular pulse, Fig, 2.34. The reader should have
little trouble identifying Bq. (17) as the transform of Eg. (18). Hi

EXERCISE 2.14 Derive Eq. (17) by letting x(7) = /2% in Fig. 2.33¢ and finding y{¢).

Real and Ideal Filters
Systems or networks that exhibit frequency-selective characteristics are called filters.
A lowpass filter (LPF), for instance, passes only “low” frequencies —in the sense that

(5}

FIGURE 2.34 .
Tmpulse response of zero-order hold. 0 T
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Stopband

Transition

FIGURE 2.35
Passband and stopbands of a typical bandpass fiter,

Stopband

its amplitude ratio | H(f}| is much greater at low frequencies than at high frequencies.
The RC lowpass filter and the zero-order hold just discussed iflustrate this type of
frequency response. Similarly, there are highpass filters (HPF), bandpass filters (BPE),
and band-rejection filters. The tuned circuit in the frequency multiplier acts as a BPF.
1deally, a filter should have a sharp boundary between its passband and stopband
or rejection band. Then the bandwidth of the filter could be unambiguously measured
as the width of the passband. However, actual amplitude ratio curves do not have
pronounced demarcation poinis, so the ends of the passband and stopband are
ambiguous and there is a transition band between them. Figure 2.35 illustrates this
characteristic for a typical bandpass filter; note that the negative-frequency portion
has been omitted and the various bands are indicated only in terms of positive fre-
quencies, in recognition of the even symmetry of | H(f)| plus the fact that negative
frequencies are something of a fiction introduced for analytic convenience.

When dealing with real filters, the bandwidth usually is taken to be the range of
positive frequencies over which | H(f)| falls no lower than i/ﬁ times the maximum
value of | H(f)| in the passband. This particular bandwidth convention —and there
are others — is called the half-power ot 3-decibel (dB) bandwidth. The name stemos from
the fact that a sinusoidal input at the band-edge frequency would come out with its
average power reduced by (i/ﬁ}z = 14 compared to a sinusoid at the center of the
passband. Converting this ratio to decibelst gives 10 log, o 34 = —3 dB 50 the power
ratio at the edge of the passband is 3 dB below the center. 2 '

As an example of this convention, the half-power bandwidth of the RC LPF
(Fig. 2.6) is B= 1{2nRC sivce |H(f)|pax = |HO)| =1 and |H(B)| = liﬁ; the
passband is 0 < f< B. By the same token, the bandwidth of the tuned-circuit BPF
in Fig. 2.12is B = £/Q sice | H()| e = | H(f)| = R and |H(f, + £/20] = RI/2.
(At this point the reader should take another look at Figs, 2.6 and 2.12 in the light of
these comments, especially noting that B is measured in terms of the positive-frequency
range.)

+ Ses Tablc E.
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FIGURE 2.36
Ideal Jowpass Siter. (@) Transfer function; (5) impulse response.

More sophisticated filter designs have much more selective characteristics than
our simple examples, to the point approaching stepwise frequency transitions. In the
limit, we define an ideal LPF as having the rectangular characteristic

— - jartg f
H{fy=Ke™’ H("jf;) 19
where X is the amplification, 1, is the time delay, and B is the bandwidth. Figure 2.36a
plots this transfer function. Note that the bandwidth is unambiguous and the re-
sponse outside the passband is identically zero. Ideal BPFs and HPFs are similarly
defined, and BPFs will come up for further discussion in Chap. 5.

In advanced network theory it is shown that ideal filters cannot be physically
realized. We skip the geperal proof here and give instead an argument based on
impulse response. Consider, for example, the impuifse response of an ideal LPF,
By definition and using Bq. {19),

() = F ~HH()) = F [Ke‘f“’"ﬂ(é)]

= 2BK sinc 2B(t — ¢,) 20)

which is plotted in Fig. 2.36b. Since A(#} is the respoase to &(t) and A(¢) has nonzero
values for £ < 0, the output appears before the input is applied. Such a filter is said to
be anticipatory, sad the portion of the output appearing before the input is called a
precursor. Without doubt, such behavior is physically impossible, and hence the
flter must be nonrealizable. Similar results are found for the bandpass and highpass
case.

Fictitious though they may be, ideal filters are still conceptually useful in the
study of communication systems, and practical filters can be desigoed that come
quite close to being ideal, at least for engineering purposes. In fact, as the number
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FIGURE 2.37
Third-order Butterworth filter. {a) Circuit (R == 100, {, = 1400w B, C, = 3C;,
L = 200/3=8); (5) impulse response; (¢} amplitude ratio.

of reactive elements increases without limit, the transfer function can be made ar-
bitrarily close to that of an ideal filter. But at the sarve tiroe, the filter time delay
increases without imit. As a side point we observe that the infinite time delay roeans
the precursors will always appear after the input is applied, which must be true of a
real filter.

Example 2.14 Butterworth Lowpass Filter

Figure 2.37a is the circuit diagram of a third-order Butterworth filter with 3-dB
bandwidth B. Iis transfer function and impulse response are

= {1-2(g) i [2g) - (5) ]}
(f) = 2B [e'm' - \% e cos (n./3 Bt + 30°)] u(®

as plotted in Fig. 2.37b and ¢. The similarity to an ideal LPF is apparent. Figure 2.37¢
also shows that this filter has a narrower transition region than the simple RC LPF,
For the case of M reactive elements, the amplitude ratio of an Mth-order

Butterworth is
mn=[+ (5] e

which is said to be maximally flat since the first M derivatives of | H(f)| are zero at
F==0. (Incidentally, the RC LPF is a first-order Buiterworth.) Other types of filter
designs are given in the literature. Hi
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Bandlimiting and Timelimiting
Earlier we said that a signal o(f) is bandlimited if there is a constant W such that
Fhonl=0 ifi>W 22)

L., the spectrum has no content outside |f| < W. Similarly, a timelimited signal
has the property that, for the constants t; <#,,

() =0 t<pandt>1, 23

so the signal *starts” at time ¢, and *“ ends  at time ¢, . Here we consider the meaning
of these two definitions.

Ideal filters and bandlimited signals are concepts that go hand in hand. Indeed,
passing an arbitrary signal through an ideal LPF produces a bandlimited signal at
the output. But it has been seen that the impulse response of an ideal LPF is a sinc
pulse existing for all time. We now assert that any signal emerging from an ideal
LPF will exist for all time; stated another way, a bandlimited signal cannot be strictly
timelimited. Conversely, a strictly timelimited signal cannmot be bandlimited. In
short, bandlimiting and timelimiting are mutually incomparible. A general proof of
the assertion is difficult and will not be attempted here.t However, every transform
pair encouniered in this chapter is copsistent therewith; e.g., see Figs. 2.13, 2.14, 2.17,
2.20.

This observation has implications for the signal and system models used in the
study of communication systems. Since a signal cannot be simultaneously bandlimited
and timelimited, we should either abandon bandlimited signals (and ideal filters) or
accept signal models which exist for all time. But a physically real signal is strictly
timelimited ; it starts and it stops, or is turned on and off. On the other hand, the
concept of bandlimited spectra is too powerful and appealing for engineering purposes
to be dismissed entirely.

Fortunately, resolution of the dilemma is really not so difficult, requiring but a
small compromise. Although a strictly timelimited signal js not strictly bandiimited,
its spectrum can be essentially zerc outside a certain frequency range, in the sense that
the neglected frequency components contain an inconsequential portion of the total
energy; e.g., consider |f| > I/r in the spectrum of a rectangular pulse. Similarly, a
strictly bandlimited signal can be virtually zero outside a certain time interval;
e.g., sinc2Wt= 0 for [t} » 1j2W. Therefore, it is not inappropriate to speak of
signals that are both bandlimited and timelimited for most practical purposes.

f See ‘Wozencraft and Jacobs (1965, app. SB).
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2.6 CORRELATION AND SPECTRAL DENSITY

In Sects. 2.3 and 2.4, two particular cases were observed. Nomperiodic energy
signals were represented in the frequency domain by Fourier transforms that are
continuous functions of frequency, free of impulises; the signal energy is

E= f ()| 2 dt = ff o(1)0*(E) dt 1)

and the energy spectral density | V(f)|* gives its disteibution in frequency; the power
averaged over all time is zero since F is finite. On the other hand, periodic power
signals were represented in the frequency domain by impulsive spectra resulting from
transforms in the limit; the average power is

P = lim ijm

T o —Tiz

Tu(t)1? dit = 1imlfm (W™(5) dt 2
T faw T —'r,rzv v @

and the concept of energy spectral density does not apply since the total energy must
be infinite when P # 0. However, it may be meaningful to speak of the distribution
of power in the frequency domain, as described by a power spectral density.

The purpose of this section is to develop more fully the spectral density concept
in a form that applies to both of the above cases as well as to the case of random signals
- the latter anticipating the needs of Chap. 3. This generality is obtained at the price
of using the somewhat abstract viewpoint of signal space, but the price is a worthwhile
long-range investment that pays off now and in our future work. In the interest of
getting to useful results as quickly as possible, many of the signal space derivations
have been relegated to Appendix A, which the reader can consult for details omitted
here.

Scalar Product, Norm, and Orthogonality

Let ot) and w(r) be two signals of the same class, i.e., either energy type or power
type. Their scalar product is a quantity — possibly complex - denoted? as {v(£),w(t)?
and defined by

j_ AW () dt Energy signals (3a)
A o
() & R . ‘
Hm — f W(Ow*(Hde  Power signals (3b)
T L Y—1p2

+ This notation is distinguished from <o(1)), the fime average of #{f); the scalar product
symbol always has twe functions separated by a comma.
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If #(¢) and w{z) happen to be periodic with period 7o, Eq. (3b) simplifies to

O, m%— j o(tywH(f)dt  Periodic signals ()
¢~ To

Another scalar product definition will be given in Chap. 3 covering the case of random
signals. The value of the scalar product concept is that (o(t),w(z)) has certain invariant
properties regardless of the specific definition.

Before stating some of those properties, note that the scalar product of v(t) with
itseif equals either the enexgy E or power P. Generalizing, the norm of v(z} is defined by

ol & <)o 4)
a real nonnegative quantity, not to be confused with the fanction |#{#)|. Therefore

E  Energy signals

Jo)? = (o), v(0)) = [ P Power signals )

as follows from Egs. (1) to (4).
Schwarz’s inequality links Egs. (3) and (4) in the form

[e(e), (7] < lzll vl (6a)

which establishes an upper bound on the magnitude of the scafar product. The upper
bound is achieved only when the two signals are directly proportional, ie.,

o@wEep] = ok lwl i w() = () (65)

where « is an arbitrary constant. On the other hand, suppose that o(f) and w(?) are
orthogonal, meaning

{o(D),w(t)y =0 U
Under this condition
o+ w|? = o] + §wi? 63

proof of which is given in Appendix A along with the proof of Eg. (6).

In signal space theory, orthogonal signals are viewed as perpendicular vectors
and Eq. (8) becomes equivalent to the pythagorean theorem. Here we interpret
Lo(f),w(£)) = O as the condition for superposition of energy or power. For instance,
suppose (t) and w(f) are orthogonal energy signals with E, = iol? and E, = |w{®;
then the signal z() = o(¢) + w{?) has energy E.=[v+ wi® which, from Eq. (8),
equals E, + E,,- '

1t is also useful to enumerate some specific relationships between the functions

2.6 CORRELATION AND SPECTRAL DEMSITY 73

or waveforms vf) and w{f) that result in their being orthogonal. Three different
conditions under which {o{£),w{t) == 0 are:

1 ‘When () and w(z) have opposite symmetry, i.e., one is an even function and
the other is odd.

2 When v{t) and w(t) are nonoverlapping or disjoint in time, i.e., one equals
zero when the other is nonzero, and vice versa.

3 When o(z) and wi{t) are disjoint in frequency, ie., their spectra do not overlap.

The first two conditions are derived directly from Eq. {3}; Eq. (13), Sect. 2.3, leads to
the third. Bear in mind, however, that these are not the only relationships giving rise to
orthogonality.

As a final point, note that the scalar product measures the degree of similarity
between two signals. If they are proportional (ie., similar), then [ (o) w(z)y| is
maximum; if they are orthogonal (i.e., dissimilar), then {e(),w(#)> = 0.

Correlation Functions

For any two signals of the same type, the crosscorrelation of oft) with w(z) is definedf as
Rp{®) & {u(@), w(t — ) &)

a scalar product in which the second signal is displaced or shifted in time 7 seconds.

The displacement = is arbitrary and, in fact, the crosscorrelation has t as its independent

variable, the time variable ¢ having been washed out by the scalar product operation.

By extension of the arguments just given, R,,(r) measures the simifarity between

o(f) and w(t — 7} as a fonction of the displacement © of w{f) with respect to v(z).

Therefore, the crosscorrefation is a more comprehensive measure than the regular

scalar product, for it detects any time-shifted similarities that would be ignored by,
{olt),wlt)y.

Now suppose we form the correlation of #(r) with itself, i.e.,
R,(1) & R,(7) = (o), v — 1)) (10

which is called the autocorrelation function. Physically, autocorrelation has the same
interpretation as crosscorrelation save that it compares a signal with itself displaced
sn time. But this means that R{7) will tell us something about the fime variation of
#(t), at least in an integrated or averaged sense. For instance, if | R,(1)} is large, then
we tnfer that s{f — ) is very similar (proportional) to 4-0(?) for that particujar value
of ¢; conversely, if R{z) =0 for some value of =, then we know that u{¢) and v(t — )
are orthogonal. This interpretation presently is invoked in conjunction with the

¥ The definition {o(f), wir + 7)p is also used.
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spectral density function. First, however, we need to Iist two mathematical properties

of autocorrelation.
Applying Eqgs. (5) and (6) to Eq. (10) yields
R(0) = o(t)(0)) = llolf® (iig)
[RD)| = RA0) (118
so that R (z) has a maximum at © = ( where it equals the signal energy or power
0%, It can also be shown from Eqs. (3) and (10) that :
R,(—1) = RI{T) a2
Thus, if o(f) is real, R(7) is real and has even symunetry.

Consider now the sum of two signals, say z(¢) = v(f) + w(r), whose correlation
is R (1) = Rf7) 4 Rt} + Ryy(?) + R,(3). If the component signals are orthogonal
for all 7, Le., if

Ryt = R,(7) =0 (134
then
Rz(":) = RE}{T} + Rw('r) (1 3{7)
and, setting = = 0,
fzl> = joli* + Jw)? {13¢)
In this case, the signals are said to be incokerent and we have superposition of
correlation functions as well as superposition of energy or power.

Example 2.15 Autocorrelation of a Sinusoid

Let us calculate the autocorrelation of the periodic power signal
28y = Acos{wgt 4+ 8 @y =2nfT,

While this may be done directly using Egs. (3¢) and (10), it is easier and more in-
structive to write

oft) = eion 4 L eI
) w(t)
"This happens to be a better method for the case at hand because ot} and w(t — 1)
are orthogopal for all t—since they are disjoint in frequency--and, moreover,
w(t) = v*(f). Thus, R,,(7) = R,(7) =0 and R(1) = R*(2), so Eq. (13b) becomes
R(7) = Rf1) + R*(1) = 2 Re [R,(x)]. Incidentally, although not all problems can
be simplified this much, the student should be alert to such possibilities.
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Proceeding with the calculation, we have
1 P S A _. A% .
R = 2 pl8piwott [ o= 8, = jwolt—1) - joos
L2 To dn [2 e } [26 e } dt="re (14

and hence

2
Rty =2Re [R(1)] = 142—- COS (T {15)

so that R (0} = 4%/2 = ||z]? as predicted. Note that the autocorrelation of a sinusoid
is another sinusoid at the same frequency but in the *“t domain ™ rather than the time
domain. The phase parameter § has dropped out owing to the averaging effect of
correfation. Because of this fact we conclude that the autocorrelation does not
uniquely define a signal, e.g., all 2(t) = 4 cos {wq ¢ + 0) have the same R (7) regardless

of 6. i

EXERCISE 2.15 The autocorrelation of an energy signal is a type of convolution
since replacing ¢ with 1 in Eq. (3a) gives

-+l
RG={ ow (- dl = p@*p*(~ )] 16)
-
Use this to show that a rectangular pulse
f
() = AII(M) (17a)
T -y
has a triangular autocorrelation
Ry(0) = AZTA(%,) (176)
‘Underscoring the previously observed nomuniqueness, Eq. (175) also holds when.

o(f) = AX{(z — t)/T] for any value of 4.

Spectral Density Functions

In view of our observation that R,(t) gives information about the tirme-domain
behavior of #(z), it seems plausible to investigate the Fourier transform of R,(7) as a
possible basis for frequency-domain analysis. Consider, therefore,

GNLFRMI=[ R a (180
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whichis called the spectral density function for reasons s00D explained. Having made
this definition, it follows that & ~*[G,(f)] equals Rf(7), ie.,

RO = Gner a8k

so we have the Fourier transform pair
R(D) > G(f) (19
where ¢ takes the place of £. Equation {19) bears the name of the Wiener-Kinchine

theorem. In the special but important case where o(2) is real, G,(f) is real and even

since R,(7) is real and even.
“The fundamental property of G(f) is that integrating it over all frequency
vields JoiZ, as is easily proved by setting = =0 in Eq. (185), i.e.,

[ Gundr=RO=Ml* QO

To interpret this, and thereby justify the name of G,{f), we recall that fiu]® is the
energy or power associated with w(f). Therefore, one can argue that G L) tells how
the energy or power is distributed in the frequency domain and deserves being called

the spectral density.
Supporting that view, let »(z) be an energy signal and F(f)} its spectrum. From
Fq. (16), Rf1) = [p(0)]* [*(—1)]; s0, invoking the convolution theorem,

G(f) = FIRM] = F(@IF ™ (-]

Clearly, #[v()] = Fo()] = V(f), anditisa routine exercise to show that F[v¥(—1)]
= {F]* = V=(f). Therefore,
GLf) = V(W) = VO (21a)

which was identified in Sect. 2.3 as the energy spectral density. Inversion of Eq. (2la)
gives

R =F VNI = [ (VIR Q1b)

an alternate expression for the autocorrelation function of an energy signal. Further-
more, with 7 =0,
W= WHPPd @19
—0

which, in retrospect, is just Rayleigh’s energy theoren. The reades may wish o check
the consistency of Eq. (215) with Eq. (17).
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Now consider a periodic power signal expressed in Fourier series form

@ ) i
W)= 3 clnf)e>™  fo= A
n= - 00 0

Using Eq. (14) and the fact that all terms in the series are mutually incoberent,

R(= Y lafmfo)le™ e (220)

n=-
and Fourier transformation gives

o

Golf) = > lednfo)|? 8(f — nfo) (22b)

= —w

But is this the power spectral density of a periodic signal? The answer is cleatly
affirmative since & periodic signal can be decomposed into terms of the form
e {nf)e?2 9t cach of which represents an amount of power equal to |¢, (/)| * located
exactly at the frequency f = nf,. The specizal deasity is impulsive in this case simply
because impulses are required to indicate that nonzero units of power are concentrated
at diserete frequencies. Finally, integrating Eq. (225) over all f—or simply setting
7 =0 in Eq. (224) — gives Parseval’s power thecrem.

To summarize, while we have not explicitly proved that G,(f} represents the
spectral density for other types of signals, we have presented strong evidence in favor
of that conclusion based on two cases where there is a firm intuitive notion of what
the spectral density should be. Concluding this chapter, spectral density fahctions
are used in conjunction with transfer functions to determine input-output relations.
But before doing so, it must be pointed out that G,(f7, like R,(z), does not uniquely
represent o(2). True, a given signal has only one spectral density function; however,
that spectral density function may apply to other signals. Phase-shifted sinusoids
and time-delayed rectangular pulses are simple examples. And in the case of random
signals, two or more drastically different waveforms can have the same spectral
density — meaning that their averages are the same even though the waveformos are
different.

Input-Output Relations

As diagramed in Fig. 2.38, let x(r) be the input to a Hnear time-invariant system
having inpulse response 4(7) and transfer function H(f). If it happens that x(¢) is an
energy signal with spectrum X(/), the output energy spectral density is

[ YOI? = [HOP 1 XN)?

Gy(f) = |H(NHI? G 23
since G(f) = | X(F}|? is the energy spectral density of the input, etc.

or
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Input System Qutput

x() k(1) ¥

G () bidts) G, = HOP G

FIGURE 2.38

Although we derived Eq. (23) for energy signals, its form suggests that | H(f)| 2
always relates the input and output spectral density functions, irrespective of signal
type. This, indeed, is true; Bq. (23) applies for any type of input whose spectral
density function exists. The general proof is relatively straightforward but tedious, and
will only be outlined here.

First, the autocorrelation R(7) of the output is found by inserting

W) = f jmh(x)x(r — ) dA

into Ry(e) = {y(t), y(t — 7)>. Upon manipulation, this yields the awesome expression

Ry7) = f j BORF(E)R AT+ — A) du di 24
where p is another dummy variable. Then, taking the Fourier transform, one finally
gets to

6,0 =[ [ a0t aa) [ w2 du 6.0

50 G,(f) = H(YH*(f)G.Lf), as asserted.

To reiterate the significance of this result, given an input signal of almost any
type, the corresponding spectral density function at the output of a linear system is
found by multiplying the input spectral density by jH{( F)*. Having thus obtained
Gy(f), application of Eq. (20} gives the output signal’s energy or power as

X x
P =[ and=[ IHDIFGNG @)
Often, especially in those problems involving random signals, | || is precisely the

information being sought—and Eq. (25) offers the most direct route to that infor-
mation. Other information about y(f) may be gleaned from

R®=F UGN = [ IHDIPGNe ™ df  @8)

Note, by the way, that this inverse transform is probably easier to deal with than
Eq. (24).

2.7 PROBLEMS 79

Equation (23) also expedites spectral density calculations, whether or not
filtering actually is involved. Suppose, for instance, that w(f) = dv(t)/dt, Gf) is
known, and one desires to find G, (/). Conceptually, w(#} could be gemerated by
passing #(f) through an ideal differentiator, for which H(f) = j2nf-—see Eq. (24),
Sect. 2.3. Therefore, using Eq. (23), if

w(ty = ..d%(}i), (27a)

then .
G (f) = Qufy*G(f) (275)

Likewise, if

woy=[ ud (@89
then

G(f) = 2nf)"*Gf) (288)

Further illustrations of the use of Egs. (23), (25), and (26) arc presented in the next
chapter, as applied to rendom signals. ‘

2.7 PROBLEMS

2.1 (Sect. 2.1) Use Eq. (9) to find ¥{r) when x(¢) =4 cos 210t and H{jew) == 15 + f{w/xr).
Ans.: 100 cos (2w10z + 53°),

2.2 (Sect. 2.1} Find and sketch | H(f)] and arg [H(/)] for each of the following transfer
functions:
(@ Q0+ iHIQ +if)
&) A+ e+ in
(e} (0 =i -+if)

2.3 (Sect. 2.1) If the capacitor in Fig. 2.6a is replaced by an inductor, show that H(f} =
FUIBL + j{f]B)] where B == R{2nL. Sketch the amplitude ratio and phase shift.

24 (Sect. 2.1) Referring to Fig. 2.6a, suppose x(f) =10cos2nfot and the filter has
B==3kHz If 4, =2, what is the value of £, 7

2.3 {(Sect. 2.2) Find <{p(r)) and P for o(f) == Ae’®o**%, Ans,: 0, 4%

"2.6  (Sect. 2.2) Find <o(t)> and P for the full-rectified sinusoid o(#) = A |sin 2u#/Ts|.

2.7 {Sect. 2.2) When (-~} == u{t), show that

2 ré,ﬂz
clnfo) = T J; w{tycos 2enfot dt

and use this to prove Eq. (11). Carry out a similar analysis for o(-) == —o(t).
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