4

BASEBAND COMMUNICATION

Baseband communication refers to signal transmission without modulation; the name
stemns from the fact that baseband transmission does not involve frequency translation
of the message spectrum that characterizes modulation. And although the majority
of communication systems are modulation systems, baseband transmission deserves
our study. For one reason, baseband connecting links are part of most modulation
systems; for another, many of the concepts and parameters of baseband communication
carry over directly to modulation. But perhaps most important, the performance
characteristics of baseband transmission serve as useful standards when comparing
the various types of modulation.

This chapter, therefore, is devoted to baseband communication. It begins with
an investigation of the two fundamentai limitations of electrical signaling mentioned
in Chap. 1, namely, noise and bandwidth. The results are then applied to three
distinct classes of baseband transmission: analog, pulse, and digital. The coverage
ranges from elementary but significant design calculations to optional discussion of
sophisticated optimization techniques.
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Parameters of 3 communication system.

4.1 SIGNALS AND NOISE

We observed in Chap. 3 that noise becomes a significant factor in electrical communica-
tion when the received signal is very feeble and therefore of the same order of magnitude
as the ever-present thermal noise. In turn, the very small received signal level is due
primarily to the large amount of power loss that characterizes long-haul tragsmission.
Hence, our discussion of signals and noise starts with a consideration of transmission
loss. Figure 4.1 puts this topic in context and locates the various system parameters
with which we shall deal. These parameters are defined as follows:

St = signal power at the transmitter output -
& = transmission power loss of the channel
Sg = signal power at the recejver input
7w = noise temperature referred to the receiver input
1 = noise density (assumed constant) at the receiver input
§p = signal power at the destination
Ny = noise power at the destination

This set of notation is used throughout the rest of the text and the reader should
carefully study the definitions.

Transmission Loss

When we say that an amplifier has power gain %, we mean that the input and output
powers are related by P, = %P, , so

P
}: u (la)
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Frequently gain is expressed in decibelst as

P
% & 10 Tog,o % = 10 log,,, ;“‘

1n

in

T See Table E for decibel conversions and manipulations.
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Hence, if P,,, = 100P;,, % = 100 and % = 20 dB; if the power gain is unity, then
%4 =0 dB. But almost all transmission channels have Py, < Py, and 4 < 1. Thus
we define the power loss
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also called the arfenuation.
Although we have defined & and % as power ratios, they can be expressed as
ratios of mean-square voltage or current, e.g.,

{g = out (3)

where the bar stands for either time average or ensemble average, as appropriate.
Equation (3) is consistent with our use of normalized power, and we will not get
involved in the distinctions between available power gain, transducer power gain, etc.

Tlustrating Eq. (2), the input-output relations for fransmission lines, coaxial

cables, and waveguides are all of the form i 0‘0' pegolf £
Pout = e_za‘Pin = 10—,6,683[}9“‘ (4)
where o is the attenuation coefficient and / is the path length. Therefore the loss in
decibels is 0.8680f
& g = Br68ect &)

Table 4.1 lists some representative values. Actually, Egs. (4) and (5) strictly hold only
for sinusoidal signals and « depends on the frequency, as the table implies. For the
time being we ignore the frequency dependence since the point here is the potentially

Table 4.1 TYPICAL VALUES OF TRANSMISSION LOSS

Transmission medium Fregquency Loss, dB/km
Open-wire pair (0.3 cm diameter) 1 kHz 0.05
Twisted-wire pair (16 gauge) 10 kHz 2
100 kHz 3
300 kHz 6
Coaxial cable (I cm diameter) 100 kHz i
1 MHz 2
3 MH=z 4
Coaxial cable {15 cm diameter) 100 MHz 1.5
Rectangular waveguide (5 x 2.5 cm) 10 GH=z 5
Helical waveguide (5 cm diameter) 100 GHz 1.5
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Jarge values of loss. Underscoring that point, a 20-km run of 16-gauge twisted pair
at 100 kHz has Zap = 3 x 20 = 60 dB or & = 10°, which means that Py, =P, /& =
1079 P, ! Also observe that the decibel loss is directly proportional to /; so, continu-
ing our example, a 40-km run has Fgp = 2 % 60 = 120 dB and P, = 107¢%p, 1

In view of the above numbers, it is not surprising that transmission by radio
propagation is often preferred for large distances. Although radio systems involve
modulation, to be covered in later chapters, it seems appropriate here to mention the
difference between cable and radio transmission insofar as path loss is concerned.

Specifically, the power ratio on a line-of-sight radio path is

P

cut l 2
P, =%y gRA(Z;t‘Z-) (6)

where %, and Fr, are the power gains of the transmitting and receiving antennas
and A is the wavelength of the carrier. Thus

2
Lup=2+101080 (7) ~ OruwtIna) )
$0 a 20-km path with 1 =1 meter and %y, =%, =16 dB has Lyp =22+ 86
— 32 =76 dB. Butnote that Eq.{7)is nof proportional to /; in fact, doubling /increases
the loss by only 6 dB {an assertion the reader should confirm for himself). Therefore,
a 40-km path with the above parameters has %5 =76 + 6 = 82 dB. Incidentally,
40 km is just about the upper limit for line-of-sight paths over flat terrain unless
rather high antenna towers are used.

Returning to Fig. 4.1, we can now express S in terms of S, and % simply as

St
Sp=— 8
k=5 (8
Then, if the power gain of the receiver is %y,
%
SD='(gRSRm§ST {93)
Equations such as Eq. (9¢) may be written in the form
Spanw™ FRan — Lan + S1unw (9b)

where dBW stands for decibels above 1 watt, e.g, 20 dBW =100 W. Hence,
multiplication and division are replaced by addition and subtraction of decibel values,
which is why they are so much used by communication engineers. But the extra
subscripts in Eq. (95), etc., are a nuisance and will be omitted hereafter; it should be
clear from the context when dB values are implied.
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FIGURE 4.2 Kax) — PO
Model of receiver with additive white () B,

noise.

Additive Noise

Having gotten the signal to the receiver, let us look at the effects of contaminating
noise. Figure 4.2 extracts the pertinent portion of Fig. 4.1. The waveform at the
receiver imput is Kyx(f), where x(z) is the information-bearing sigoal, to which is
added white noise having G.(f) = 3/2 = k7 /2. The noise temperature J  represents
all the noise in the system, referred to the receiver input.t Numerical values may range
from around 60°K in a carefully engineered low-noise system to several thousand
degrees.

For analysis purposes, the receiver has been separated into two parts: an amplifier
with power gain % {and voltage gain \/?x) followed by a filter with noise equivalent
bandwidth By and 4 = 1. The function of the filter is to pass x(z) but reject as much
noise as possible, namely, those noise components oufside the signal’s frequency
range-—the out-gf~band noise, in other words.

Assuming no nonlinearities in the receiver, the total output is

7o) = /Gg K x(2) + np(t) (19)

where m,(z) is the output noise. It is not unreasonable to further assume that x(£)
and ny(f) are statistically independent and that 7, = 0; undex these conditions, x(?)
and ny(f) are incoherent and their crosscorrelation is zero, Le., Ryup(7) = Ry 1) =0,
Therefore, using Eq. (10), Sect. 3.5,

R, (2) = Gy K2R (%) 4 R,,(7) an
and
Yo = Gp Kp®%® + np’ (12)
L —— Nt
Sp Ny

where we have identified the two components of ;? as the output signal and noise
powers, respectively. Specifically, since Sp = Kg?x?,

Sp = Fp K2x2 = % S (13)

t See Apperdix B for the method.
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and, from Eq. (14), Sect. 3.6,
Np =np* =GgnBy (19)

in which one can insert # = k& if desired. If the noise is not white, then

No =% | |H{NPGL) df
where Hy(f) describes the filter,

Signal-to-Noise Ratios

Whenever we have an expression like Eq. (12), it is meaningful to speak of the ratio,
of signal power to noise power—or signal-to-noise ratio, for short. In the case at
hand, we define the signal-to-noise ratio at the destination

(),°%
N/p Ny
Kipxt  Sa
- = 1
7By 78 (13)

Note that the receiver gain %y has canceled out, being common to both terms. Such
cancellation will always occur, and the only function of %5 is to produce the desired
signal level at the oufput.

On the other hand, any gains or losses that enter the picture before the noise
has been added will definitely affect {§/N)p. As an important case in point, recall

that Sp = S¢/.Z, so .
s Sy
(), = 7m0

and we see that the signal-to-noise ratio is inversely proporiional to the transmission
loss.

One final comment here regarding the assumptions behind these results: if the
noise is not additive, or if the receiver has nonkinearities, or if x(¢) and n,{f) are not
incoherent, then R, (¢) will include crosscorrelations R,, (1), etc. Therefore, ;;f will
have crossproduct or signal-times-noise terms so the definition of the signal-to-noise
ratio is ambignous and not particularly meaningful.

Repeater Systems

If the path loss on a given system yields an unsatisfactorily low value for (S/N); and
the parameters Sy, #, and By are fixed, there still remains an alternative, namely,
the introduction of one or more amplifier-filter units between source and destination.
These units are called repearers.
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Repeater system.

A repeater system is block-diagramed in Fig. 4.3, where the filters are combined
with the amplifiers. The last repeater and the receiver are one and the same. Typical
repeater spacings are as small as 2 km for certain cable systems, and run up to 44 km
for microwave radio relay systems. Hence, with the notable exception of communica-
tion satellite links, it takes from 100 to 2,000 repeaters to span the North American
continent.

Inspecting Fig. 4.3 shows that the S/N at the output of the first repeater is

().~ 7m

Ny FymBy

Usually repeater systems are designed with identical units and just encugh gain to
overcome the loss, ie., %/ %, =%,/ ¥, =+ =1. Furthermore, #y =n, ="' =1y

when the units are identical and the amplifier noise dominates other noise sources.
Under these conditionst $p = Sy, Ny = M% 0, By = M% n, By, and

() i)
Nfp MZymBy MA\N/,
Therefore, the destination S/N equals 1/M times the S/N for one link or hop.

It might appear from Eq. (17} that little has been gained by using repeaters.
Bear in mind, however, that 2, is the loss on just one hop; if repeaters are not used,
the total loss is & = &8, Fp = £, Hence, ¥, = LM, which represents
a substantial Ioss reduction, as the following exercise will reveal.

EXERCISE 4.1 A signal is to be transmitted 40 km using a transmission line whose
Ioss is 3 dB/km; the receiver has Jy = 109, and By =5 kHz. Calculate 4By in
decibels above one watt (dBW) and find the value of Sy (in watts) required to get
(S/N)p = 50 dB. Repeat the second calculation when there is a repeater at the halfway
point, 4dns.: —157 dBW, 20 W, 40 pW.

¥ Appéndix B gives the analysis of the general case.

4.2 SIGNAL DISTORTION IN TRANSMISSION 13%

4.2 SIGNAL DISTORTION IN TRANSMISSION

Besides noise, the other fundamental limitation of electrical communication is band-
width, the finite bandwidth of any real systems that leads to signal distortion. Bui
distortionless transmission does not necessarily imply that the output is identical tc
the input. Certain differences can be tolerated and not classified as distortion. Ow
purpose here is to formalize the meaning of distortionless transmission and the require:
ments for it. With this background, the various types of distortion can be defined anc
their effects investigated. The emphasis will be on those aspects pertinent to communi

- cation systems.

Stated crudely, for distortionless transmission the output should “look like”
the input. More precisely, given an input signal x(#), we say that the cutput is undistort
ed if it differs from the input only by a muiltiplying constant and a finite time delay.
Analytically, we bave distortionless transmission if ’

¥(8) = Kx(t — 1) Y
where K and f; are constants.

The properties of a distortionless network are easily found by examining the
output spectram

¥(f) = FI0] = Ke ™ X()
Now by definition of transfer function, ¥{f) = H({f}X(f), so
H(f) = Ke™io% 2

In words, a network giving distortionless transmission must have constant amplitude
response and negative linear phase shift, that is,

[H(f) =K arg[H(N)] = —2nt, f £ mi80° (25,

We have added the +m180° term to account for the constant being positive or nega-
tive, Zero phase is allowable since it implies zero time delay. One more qualificatior
can be added to Eq. (2): these conditions are required only over those frequencies for
which the input signal has nonzero spectrum. Thus, if x(z) is bandlimited in W, Eq. (2,
need be satisfied only for |f| < W.

In practice distortionless transmission is a stringent condition which, at best
can be only approximately satisfied. Thus, an inescapable fact of signal transmissior
is that distortion will occur, though it can be minimized by proper design. We should
therefore be concerned with the degree of distortion, measured in some quantitative
fashion. Unfortunately, quantitative measures prove to be rather unwieldy anc
impractical for engineering purposes. As an alternate approach, distortion has beer
classified as to type, and each type considered separately. But before discussing the
various types, it must be emphasized that distortion is distortion; a severely distortec
output will differ significantly from the input, regardless of the specific cause.
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The three major classifications of distortion are:

1 Amplitade distortion: | H(f)| # K

2 Phase (delay) distortion: arg [H(f)] # — 2=ty f + m180°

3 Nonlinear distortion
The first two cases are categorized as linear distortion. In the third case the system
includes nonlinear elements, and its transfer function is not defined. We now examine
these individually.

Amplitude Distortion

Amplitude distortion is easily described in the frequency domain; it means simpiy
that the output frequency components are not in correct proportion. Since this is
caused by | H(f)| not being constant with frequency, amplitude distortion is sometimes
called frequency distortion.

The most common forms of amplitude distortion are excess atitenuation or
enhancement of extreme high or low frequencies in the signal spectrum. Less common,
but equally bothersome, is disproportionate response to a band of frequencies within
the spectrum. While the frequency-domain description is easy, the effects in the time
domain are far Iess obvious, save for very simple signals. For illustration, a suitably
simple test signal is x(f) = cos wy? — 34 cos 3wyt + 1€ cos 3w, 1, Fig. 4.4, a rough
approximation to a square wave. If the low-frequency or high-frequency component
is attenuated by one-half, the resulting outputs are as shown in Fig. 4.5. As expected,
loss of the high-frequency term reduces the * sharpness™ of the waveform.

T ]/

(a} &)

FIGURE 4.5
Test signal with amplitude distortion. {a) Low frequency attenuated; (b) high
frequency attenuated. )
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Beyond qualitative observations, there is little more that can be said about ampli-
tude distortion without experimental study of specific signal types. Results of such
studies are usually couched in terms of required freguency response, i.e., the range of
frequencies over which [H(f)| must be constant to within a certain tolerance (say
41 dB) so that the amplitude distortion is sufficiently small.

EXERCISE 4.2 Sometimes radio systems suffer from multipath distortion caused
by two (or more} propagation paths between transmitter and receiver. As a simple
example, suppose that the received signal is

y(0) = Koxf — 13} + Ky x(t — 1) (3a)
Show that Fig, 4.6 is the equivalent block diagram and that, if (K/K)* « 1,

| H(Y zKI[I +%cos 2mf{t, — rl)] 3b)

Hence, a *“weak ™ reflection yields ripples in the amplitude ratio.

Phase Shift and Delay Distortion

A linear phase shift yields a constant time delay for all frequency components in the
signal. This, coupled with constant amplitude response, yields an undistorted output.
If the phase shift is not linear, the various frequency components suffer different
amounts of time delay, and the resulting distortion is termed phase or delay distortion.

For an arbitrary phase shift, the time delay is a function of frequency, call it
1/}, and can be found by writing arg [H(f)] = ~2u/1{f), so

_arg [H(f)]
nf

which js independent of frequency only if arg {H(f)] is linear with frequency.

A common area of confusion is constant time delay versus constant phase shift.
The former is desirable and is required for distortionless transmission. The latter,
in general, causes distortion. Suppose a system has the constant phase shift 8. Then

tdf) = @



[42 BASEBAND COMMUNICATION

FIGURE 4.7 IR
Test signal with constant phase shift
of —90°.

sach signal frequency component will be delayed by 6/2z cycles of its own frequency;
this is the meaning of constant phase shift. But the time delays will be different, the
frequency components will be scrarubled in time, and distortion will result. However,
the constant phase shifts § = 0 and £m180° are acceptable.

That constant phase shift does give distortion is simply iltustrated by returning
to the test signal of Fig. 4.4 and shifting each component by one-fourth cycle, § = —50°.
Whereas the input was roughly a square wave, the output will look like a triangular
wave, Fig, 4.7. With an arbitrary nonlinear phase shift, the deterioration of wave-
shape can be even more severe.

One should also note from Fig. 4.7 that the peak excursions of the phase-shifted
signal are substantially greater (by about 50 percent) than those of the input test
signal. This is not due to amplitude response, since the output amplitudes of the three
frequency components are, in fact, unchanged; rather, it is because the components
of the distorted signal all attaip maximum or minimum values at the same time,
which was not true of the input. Conversely, had we started with Fig. 4.7 as the test
signal, a constant phase shift of +90° would yield Fig. 4.4 for the output waveform.
Thus we see that delay distortion alone can result in an increase or decrease of peak
values as well as other waveshape alterations.

Clearly, delay distortion can be critical in pulse transmission, and much labor
is spent equalizing transmission. delay for digital data systems and the like. On the
other hand, the human ear is curiously insensitive to delay distortion; the waveforms
of Figs. 4.4 and 4.7 would sound just about the same when driving a loudspeaker.
Thus, delay distortion is seldom of concern in voice and music transmission.

Equalization

Linear distortion—i.¢., amplitude and delay distortion-—is theoretically curable
through the use of equalization networks. Figure 4.8 shows an equalizer H..(f) in
cascade with a distorting channel H{(f). Since the overall transfer function is H(f) =
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Channel Equalizer
FIGURE 4.8 x(1) 140}
Channel with equalizer for lnear —] H L
distortion.

H(f)H,(f) the final output will be distortionless if Ho(f)H. (f) = Ke™ /', where
K and #; are more or less arbitrary constants. Therefore, we require that
Ke_j‘”‘d
Hol) = 75 ®)
wherever X(/) 5 0.
Rare is the case when an equalizer can be designed to satisfy Eq. (5} exactly
— which is why we say that equalization is a theoretical cure. But excellent approxima-
tions often are possible so that linear distortion can be reduced to a tolerable level.
Probably the oldest equalization technique is the use of loading coils on twisted-pair
telephone lines.T These coils are lumped inductors placed in shunt across the line
every kilometer or so, giving the improved amplitude ratio typically illustrated in
Fig. 4.9. Other lumped-element circuits have been designed for specific equalization
tasks,
More recently, the tapped-delay-line equalizer or tramsversal filter has emerged
as 4 convenient and flexible device. To illustrate the principle, Fig. 4.10 shows a
delay line with total time delay 2A having taps at cach end and the middle. The tap
cutputs are passed through adjustable gains, ¢..q, ¢4, and ¢, and summed to form the
final output. Thus

78 = e xX(2) + coxlt — A) + e x(t ~ 24) (6a)
and
Hof) = ¢y + coe ™04 4 e 7Iom
= (et 4 ¢y + cp IO iwA (65)
\H(H

FIGURE 4.9
Amplitude ratic of 2 typical felephone
line with and without loading coils 1 ; f kHz

for equalization. 0 2

1 Everitt and Anner (1956, chap, 8) gives the theory of loading.
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Tapped-delay-line equalizer (transversal Quiput

flter) with three taps.

Clearly, this is a convenient arrangement since the tap gains are more readily changed
than Iumped elements. To demonstrate the flexibility, suppose ¢_; = ¢; < ¢o/2; then

| Hogl FH = co + 2¢; cos wA arg [H (] = —oA

On the other hand, if c_; = —¢, and |¢;] < ¢p, then
2C1 .
[He(N meo  arg [He()] % —0h ~ -~ sin 0A
G

Therefore, depending on the tap gains, we can equalize amplitude ripples or phase
ripples or both.
Generalizing Eq. (6b) to the case of a 2MA delay line with 244 + | taps,

Hoih = 5 cucm)eioms @

which has the form of an exponential Fourier series with frequency periodicity 1/A.
Therefore, given a channel H{f) to be equalized over |f| < W, one can approximate
the right-hand side of Eq. (5) by a Fourier series with frequency periodicity 1/A > W
(thereby determining A), estimate the number of significant terms (which determines
M), and match the tap gains to the series coefficients. However, this high-powered
theoretical method may not be needed in simple cases such as the following example.

Example 4.1

Suppose we wish to equalize the multipath distortion described in Exercise 4.2, where
Ky _on s
H(f) = Ky |1 + m e /0010 [pmiot
K,

with (K/K)? « 1 and £, > ;. Applying Eq. (5), the equalizer should have
K o~ Jelta—ty}

Heq(f) == ij_ 1 + (Klei)e—jm(rz—tl)
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FIGURE 4.11
Transfer characteristic of a nonlinear
device.

Taking K = K, and t; =, and expanding the denominator as a three-term binomial
series vields

K, _. K\ _, .
H(irml->% g dolta =) b (w_. pJaltz—ti),— je(tz—ty)
" Ky Ky

2
P [e+jw(tz-=z) — ,IS’; 4 (&) e“iw{lz"-rz) e—fw(tz—tx)
K, K,

Comparing this with Eq. (65) reveals that a three-tap transversal filter will do the job
ey =1, ¢ = —(KfKp) ¢ = (KofKi)?, and A =1, — 1. i

Nonlinear Distortion

A system having nonlinear elements cannot be described by a transfer function.
Instead, the instantaneous values of input and output are related by a curve or function
7() = glx(n)], commonly called the transfer characteristic. Figure4.11is arepresentative
transfer characteristic; the flattening out of the output for large input excursions is
the familiar saturation-and-cutofl effect of transistor amplifiers. We shall consider
only memoryless devices, for which the transfer characteristic is 4 complete description.
Under small-signal input conditions, it may be possible fo linearize the {ransfer
characteristic in a piecewise fashion, as shown by the thin lines in the figure. The
more general approach is a polynomial approximation to the curve, of the form

W) = ax(0) + a5 x40 + as X3 4 (8a)

Tt is the higher powers of x(¥) in this equation that give rise to the nonlinear distortion.

Even though we have no transfer function, the output spectrum can be found,
at least in a formal way, by transforming Eq. (8a). Specifically, invoking the convolution
theorermn,

YO) = a, X(F) + @, X ¢ X(F) 4 as X% X X(f) 4+ (85)
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Now if x(£) is bandlimited in 7, the output of a linear network will contain no frequen-
cies beyond |f] < ¥. But in the nomlinear case, we see that the output includes
X * X(f), which is bandlimited in 2W, X = X'+ X(f), which is bandlimited in 3W,
etc. The nonlinearitics have therefore created output frequency components that
were not present in the input. Furthermore, since X * X(f) may contain components
for |f| < W, this portion of the spectrum overlaps that of X(f). Using filtering tech-
niques, the added components at |f| > W can be removed, but there is no convenient
way to get rid of the added components at if| < W. These, in fact, constitute the
nonlinear distortion.

A quantitative measure of nonlinear distortion is provided by taking a simple
cosine wave, x(1) = cos wgf, as the input. Inserting in Eq. (8a) and expanding yields

as 3(14_ ) ( 3(13 ) dy ay )
fHe=|= 4 v fo o b b @y b b o jCOS W F |+ — ] COS 20058+ 00
¥(® (2 g 1 i 0 5 4 of +
Therefore, the nonlinear distortion appears as harmonics of the input wave. The
amount of second-harmonic distortion is the ratio of the amplitude of this term to
that of the fundamental, or in percent:

02/2 +£Z4]l4 4+

Second-harmonic distortion =
a, + 3az/4 3 -

x 100%

Higher-order harmonics are treated similarly. However, their effect is usually much
less, and many can be removed entirely by filtering.

If the input is a sum of two cosine waves, say cos ;! 4 COS W, f, the output
will include all the harmonics of f; and f,, plus crossproduct terms which yield
fa—fis o + foo f2 - 21, ete. These sum and difference frequencies are designated as
intermodulation distortion. Generalizing the intermodulation effect, if x{#) = x,{#)
+ x,(2), then y(¢) contains the cross product x{f)x,(f) (and higher-order products,
which we ignore here). In the frequency domain x((f)x,(f) becomes X, = X.(f);
and even though X,(f) and X,(f) may be separated in frequency, X, = X,(f) can
overlap both of them, producing one form of cross talk. This aspect of nonlinear
distortion is of particular concern in telephone transmission systems. On the other
hand the crossproduct term is the desired result when nonlinear devices are used for
modulation purposes.

Companding

Although nonlinear distortion has no perfect cure, it too can be minimized by careful
design. The basic idea is to make sure that the signal does not exceed the linear operat-
ing range of the channel’s transfer characteristic. Ironically, one strategy along this
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FIGURE 4.12 ~wtCompressory-=| Channel b= Expander p~»
Companding system.

line involves two nonlinear devices, a compressor and an expander, arranged per Fig.
4.12,

A compressor is a device having greater amplification at low signal levels than
at high signal levels. ‘Since amplification is the derivative of the transfer characteristic
with respect to the input, a typical compressor characteristic g .,,[x({#)] would be as
shown in Fig. 4.13. Note that a compressor compresses the range of the output signal.
Therefore, if the compressed range falls within the linear range of the channel, the
signal at the channel output is proportional to g, [*(z)] which is distorted by the
compressor but niot the channel. Ideally, then, the expander should have a character-
istic that perfectly complements the compressor —i.e., less amplification at low signal
levels, etc. Thus, the final output is proportional 10 gexp{ Feompl#(}]} = x(7), as desired.

The joint use of compressing and expanding is called companding (surprise?)
and is of particular value in telephone systems. Besides combating nonlinear distortion,
companding tends to compensate for the signal-level difference between loud and soft
talkers. Indeed, the latter js the key advantage of companding compared to the simpler
technique of linearly attenuating the signal at the input (to keep it in the linear range
of the channel) and linearly amplifying it at the ocutput.

4.3 ANALOG TRANSMISSION

Getting it all together, as it were, this section applies the results of the previous two
sections to the case of analog transmission. By analog transmission we mean those
systems in which information-bearing waveforms are to be reproduced at the destina-
tion without employing digital coding techniques.

Zeomp 1¥]
U X
FIGURE 4.13
Typical transfer characteristic of a com-
PLEssOr,
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FIGURE 4.14

Analog traosroission system.

Our analyses will be in terms of an arbitrary waveform or message designated
by x(£). Better yet, x(r) represents the ensemble of probable messages from a given
source. Though such messages are not strictly bandlimited, it is safe to assume that
there exists some upper frequency~call it ¥ —above which the spectral content is
negligible and unnecessary for conveying the information in question. Thus, we define

W = analog message bandwidth

in the sense that
G(=0 forlfi>W 1)

We further assume ergodicity so that {x*(f}) and ** are interchangeable.

Signal-to-INoise Ratio

Figure 4.14 amplifies Fig. 4.1 for-the situation in question. Specifically, the transmitter
becomes simply an amplifier with power gain ¥, so Sy = ?TF, and the receiver
filter is a nearly ideal LPF with bandwidth ¥, so By == W. The other parameters are
the same as defined in Sect. 4.1.

If the total transmission delay is ¢, and there is no distortion over [f] < W, the
output signal is : ’

Fr G\
w0 = (F5) xe-w ) @
so the destination signal and noise powers are
G ¥ G Y —
Sp = ‘“"“%:5’5 E[x* —t)] = fﬁ’ 2 x2

Np =;3;2—=§R'IW

Therefore

(i)p - e - = @
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or, since 83/F =Sz,

CRE
p 1

Table 4.2 lists representative values of (S/NV), for selected analog signals, along
with the frequency range. The upper limit of the frequency range is the nominal
value of W. The lower limit also has design significance since, because of transformers
and coupling capacitors, most analog transmission systems do not respond all the way
down to DC,

Equation (4) expresses (S/N); in terms of some very basic system parameters,
namely, the signal power and noise density at the receiver input and the message
bandwidth. This combination of terms will occur over and over again, particularly
when we compare various system types, so we give it a symbol of its own by defining

yolx )

In the present context y equals (S/N); for analog baseband transmission. We can also
interpret the denominator 1 W as the noise power in the message bandwidth, even though
Ny differs from nW by ¥y. (Recall that this gain factor cancels out in signal-to-noise
ratios.)

Because Eq. (4) presupposes distortionless transmission conditions, additive
white noise, and a nearly ideal filter, it is more accurate to say that

B o

In other words, y generally is an upper bound for analog baseband performance that
may or may not be achieved in an actual system. For instance, the noise bandwidth
of a practical LPF will be somewhat greater than the message bandwidth, giving
(S/N)p == Sg/nBy < 7. Similarly, nonlinearities that cause the output to include signal-

Table 4.2 TYPICAL TRANSMISSION REQUIREMENIS FOR
SELECTED ANALOG SIGNALS

Signal type Frequency range Signal-to-noise
ratio, dB
Barely intelligible voice 500 Hz-2 kHz 5-10
Telephone-quality voice 200 Hz-3.2 k#Hz 25-35
AM broadcast-quality audio 100 Hz-5 kHz 40-50
High-fidelity audio 20 Hz-20 kHz 55-65
Television video 60 Hz-4.2 MHz 45-55%
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FIGURE 4.15

times-noise terms also reduce the effective S/N. Companding, on the other hand, may
yield a net improvement.t The effects of linear distortion and nonwhite noise are
examined jointly below.

Optimum Terminal Filters %

When the noise is nonwhite and/or the channel requires comsiderable equalization,
the rather simple-minded approach taken above should be replaced by a more sophisti-
cated technique in whick specially designed filters are incorporated at both terminals,
the transmitter and receiver. Figure 4.15 is the system diagram, with the power gains
%y, 1/&, and ¥, this time absorbed in the frequency-response functions Hy(f),

He(f), and Hg(f).
As far as distortionless transmission is concerned, any pair of terminal filters

will do, providing
Ko fota

H(f)

Hence, if Hg(f) is chosen to minimize the output noise and H(f)Hx(f) satisfies
Eq. (7), we have optimized the terminal filters in the sense that (5/N), is maximum
and the output signal is undistorted. But the optimization has a subtle constraint;
namely, the transmitted power S, must be kept within reasonable bounds.  Accordingly,
we seek to minimize Sy Np/Sp rather than Np alone.

Assuming Eq. (7) holds, the total output signal is

HA(HH() = ifl<Ww )

yplt) = Kx(r — t;) + np(f)
and

SD =K2? (8)

No= [ lHDPGDNS O

T See Bennett (1970, chap. 3).
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At the transmitting end we take G.(f) as the message spectral density so

se= [ 1Enren o
f KGN
{HNHLNP

where Eq. (7) has been used to eliminate | H{(f)|%. Therefore, the quantity to mini-
mize is

zdf (10)

e Tt A A I

Sp %2 Lew HCHRP

it being understood that all terms are functions of fexcept x7%, which is a constant. Note
that the only function in Eg. (11} under the designer’s control is the receiving filter
Hx{(f).

Normally, optimization problems require fthe methods of variational calculus.
But this particular problem (and a few others that follow) can be solved by adroit
application of Schwarz’s inequality, Eq. (6), Sect. 2.6, one form of which is

f yw*af| <

[ wvrar[ ywear (12a)
where ¥ and W are arbitrary functions of f and the equality holds when
¥{f) = constant x W(f} (125)

Now, except for the constant 2, Eq. (11) has the same form as the right-hand side
of Eq. (12a) with
leli’,

. -
| He He|

W= | Hel G2

both of which are real and nonnegative. Thus Sy Np/S); is minimized when
)

(HAN|GH(S)

as follows by taking ¥(f) = W{f), the proportionality constant being immaterial

(why?). Equation (134) is the optimum receiving filter, and the corresponding
optimum transmitting filter is, from Eq. (7),

| Ha(f Hops” = (132)

KZGHIIZU')
- HAN G

with K2 being determined from the desired value for Sy.

VHA ) ope” (138)
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Interpreting these equations, we see that Hp(f) deemphasizes those frequencies
where the noise density is large and the signal density is small—a very sensible thing
to do —while | H(f)| does just the reverse. The phase shift of Hy(f) and Hy(f) does
not appear here since we are dealing with spectral densities, but the overall phase
must satisfy Eq. (7) for distortionless transmission.

Finally, with optimum filtering the destination S/N is

S 3 Sy 3 Spx*
(“N‘”)pm,: Sz NpISpin | [ GG o
—o HL)]

as follows from Eqgs. (11) and (124a).

Aside from the question of synthesizing the filters, the major obstacle preventing
complete optimization in practice is the assumption implied by Eq. (13) that G,(f)
is known in detail. Usnalily, the communication engineer does know the general
characteristics of the message — or, rather, the class or ensemble of possibie messages
—but not the complete details. For instance, if the messages are known to be band-
lirnited in ¥, one might then assume that the spectral density is flat over |f| < W, Le.,

xZ f
G = 2 H(«iﬁ;) (15)
there being no reason to believe that G.(f) is larger or smaller at any particular fre-
quency. Proceeding on this assumption would yield 2 good design but not necessarily
optimum.

Actually, Eq. (15} is the underlying assumption of our previous approach where
we took the noise to be white and said that the receiving filter serves only to eliminate
the out-of-band noise. Clarifying this point, let G{f) = /2 and let the channel be
distortionless so | Ho(f)]? == 1/%. Then, inserting in Eq. (13) shows that the terminal
filters become ideal LPFs while the denominator of Eq. (14) is

W —_ 2 J—
l [ (exmmawyszdr| = extqw
-

80 (S/N)p,,, =S7/LqW = Sp/nW =y.

EXERCISE 4.3 Consider a system having |H()? =& and G(f) = (/2)
(L + &%) Taking G,(f) per Eq. (15), find (S/N)p___in terms of Sy and compare
with (S/N)p when the receiving filter is an ideal LPF with B = W. dns.: (S/N)p_ =
SgfaWll + @ W3, (S[N)p = Sp/nWIl + Qa>W?[3) + (a*W*5)].
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FIGURE 4.16
The sine integral, 81 (r) = [}, {sin A)/A dA.
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4.4 PULSE TRANSMISSION

Pulse transmission differs from analog transmission in that one is not concerned with
the faithful reproduction of a message waveform but rather with detecting the presence
of a pulse, resolving two or more closely spaced pulses, and measuring the amplitude
or time position. Telegraph and radar systems are examples. This section examines
the effects of limited bandwidth and additive noise on pulse transmission at baseband.

Bandwidth Requirements

Short pulses have large spectral widths, as we have seen time and again. Reversing
this observation, it can be said that given a system of fixed bandwidth, there is a lower
limit on the duration of pulses at the output, i.e., a minimum output pulse duration.
Consequently, the maximum number of distinct output pulses that can be resolved
per unit time is limited by the system bandwidth.

To put the matter on a quantitative footing, let a rectangular pulse x(7) = ATI{z/7)
be the input to an ideal or nearly ideal LPF with bandwidth B, unit gain, and zero time
delay, so H(f)=H{//2B). Since the input spectrum X(f)} =4t sinc /& has even
symmetry, the inverse Fourier transform for the output y(O) = # [H()X(/)]
simplifies to

¥ty =2 f:Az Siz f:f * cos 2aft df
_A[Psinnf2+7) B gin wf (2t — 1)
e e ]

which is still a nonelementary integral requiring series evaluation. Fortunately, the
result can be expressed in terms of the tabulated sine integral

si@ & | snt o %)
o .
plotted in Fig. 4.16. Changing integration variables finally leads to
A
¥ = - {Si [zB(2t + ©)] — Si (aB(2t — )]} {2)
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FIGURE 4.17
Pulse response of an ideal LPF,

=y

which is shown in Fig, 4.17 for three values of the product Br. Notice the precursors
caused by the ideal filter.

Despite the rather involved mathematics, the conclusions drawn. from Fig. 4.17
are quite simple. We have said that the spectral width of a rectangular pulse is about
1/r. For B» 1/r, the output signal is essentially undistorted; whereas for B« l/z,
the output pulse is stretched and has a duration that depends more on the filter band-
width than on the input signal. As a rough but highly useful rule of thumb one can
say that the minimum output pulse duration and bandwidth are related by

i
T

providing the input pulse has T < 7,;,. Going somewhat further, we can also say that
the maximum number of resolved output pulses per unit time is about I/r,;, =28,
This is achieved using input pulses of duration less than 1/2B and spaced in time by
1/2B. Figure 4.18, showing the input and output signals for two pulses spaced by 7,
supports this assertion.

Beside pulse detection and resolution, one may be concerned with the question

of pulse location or position measured with respect to some reference time. Usually,
position measurements are based on the leading edge of the pulse and for that purpose
rectangular pulses would be desired since the edge has a unique position. But realizable
pulse shapes rise more gradually toward their peak value, causing the position of the
leading edge to be ambiguous and its measurement less certain. The conventional

/—input

/\ /\ Output

FIGURE 4.18

i’;lf resolution of an ideal LPF, B= i‘—f ’ , l ‘f““*i
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FIGURE 4.19
Pulse measurements in additive noise. (@) Block diagram; {5) filtered pulse with
noise.

rule about uncertainty is stated in terms of the rise time, defined as the interval required
for the pulse to go from zero to full amplitude or from 10 to 90 percent of full ampli-
tude. We then say that the uncertainty of the pulse position measurement approxi-
mately equals the rise time 7,. Referring back to Fig. 4.17 it is seen that the rise time
of a filtered pulse is proportional to the bandwidth. Therefore, as another rule of
thumb we have

1

= — 4
nZys @

When the input pulses have t, =<, _, the output pulses will have rise times no less
than 1/28 and the minimum location uncertainty is about 1/2B8. Alternately, if the
input tise time is greater than 1/2B, the output rise time will be approximately the
same as the input.

Granted that Egs. (3) and (4) are rough guidelines based on the case of a rectan-
gular input to an ideal LPF, they are nonetheless useful in general. Studies of other
pulse shapes and other lowpass filters show that these inequalities are appropriate,
taking B as the 3-dB bandwidth.

Puise Measurements in Additive Noise

Let a pulse (not necessarily rectangular) be contaminated by additive white noise
and passed through an LPF whose noise equivalent bandwidth and 3-dB bandwidth
are approximately equal, Fig. 4.19¢. If the rise time of the input pulse is small com-
pared to 1/2B, the output pulse shape can be approximated as a frapezoid plus noise
ay(t), Fig. 4.19b. Thus, measurements of both the pulse amplitude and position will
be in error owing to the noise,

At the peak of the output pulse, y(t) = 4 + np(f), 50 we can define the normal-
ized mean-square amplitude error as

€47 = =g (5a)
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FIGURE 4.20
Expanded view of noise perturbation.

But the energy of the output pulse is £ &~ 4%t and t = 1/2B; hence

ez (D)
which gives a lower bound on the error. This lower bound holds when © = 1/25.
Position measurements usually are accomplished by noting the time at which
the output pulse exceeds some fixed level, say 4/2. Then, as seen in the expanded
view of Fig. 4.20, the time position error is At = (t,/A)np(z)— from the similar triangles
«and the mean-square error normalized by 2 is

AR — 1P 7,2
Finally, inserting 7, > 1/2B and E = 4%z yields the lower bound
2z (65)

PR ey
4BFEx

In contrast to Eq. {58), this lower bound is achieved when ¢, = 1/2B and t>» 1.
Thus, unlike amplitude measurement, the Jargest possible bandwidth should be used
to minimize position measurement eITors.

By now, the reader may have recognized that our analysis of pulse transmission
is largely intuitive and heuristic. More refined investigations of specific cases are
possible, notably the case of optimum pulse detection discussed below. However,
the admittedly crude results above still are valuable guidelines for the design of pulse
transmission systems, and the reciprocals of Egs. (5) and (6) parallel the concept of
signal-to-noise ratio in analog transmission.

Optimum Pulse Detection— Matched Filters X

Similar to the optimum terminal filters for analog transmission, there exists an opti-
mum receiving filter for detecting a pulse of known shape x(f) contaminated by additive
noise with known spectral density G,(f). Such filters are termed matched filters,
used extensively in radar and data transmission systeras.
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G,

x(t)«é—- Hp(fy 1~ p{r}+ noise

Consider the situation in Fig. 4.21, where the output pulse shape is unimportant
but one desires to maximize its amplitude at some arbitrary time, say ¢, and migimize
the output noise. In absence of noise the peak cutput signal at £ =1, s

Y(to) = F EHUO X <o
= j f H(OX( et df 0

FIGURE 4.21

where X(f) = F[x()l. (We use the Fourier transforms rather than the spectral
density since the pulse is a known energy signal.) The output noise power is

N=[" |HOPG ®

and the quantity to be maximized is
[¥(t)® _ 1]=, HXeR df
N 12 |HI*G, df

&

where H(f)} is the only function at our disposal.
To determine H,,(f), we again draw upon Schwarz’s ipequality, Eq. (12},
Sect. 4.3, this time in the form
(|2 VW*dfi* = 2
e S Wit d
21V df f_mi ra

whose left-hand side is the same as Eq. (9) with
HXel#  Xeiom

V=HGM  w*
" Vv G,/

Since the inequality becomes an equality when F{f) = KW(f), the ratio in Eq. {9}
will be maximized if

X*(f)e it
Ho ()= K—————-~———Gn ) (10
where K is an arbitrary constant, as is 7. Therefore,
]y(to)l"‘] = [ X(HI?
REA AN = d 11
YL LS w

if the filter is optimized.
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Observe from Eq. (10) that H,,,(/) emphasizes those frequencies where XN
G,(f) is large, and vice versa, similar to the optimum receiving filter for analog trans-
missios, Eq. {13@), Sect. 4.3. Unfortunately, H,_,(f) often turns out to be physicaily
unrealizablet because the corresponding impulse response is nomzerc for £ < Q.
The following exercise relates Eq. (11} to our previous studies and shows why H,(f)
is called a matched filter.

EXERCISE 4.4 For the case of white noise G,(f) = #/2, show that

where E, is the energy in x{z). Also show that
kupt(:) i ‘gg_l[Hop((.f)] = Kx(‘tﬂ - t) (125)

s0 the impulse response has the same shape as the input pulse reversed in time and
shifted by £,. (Hint: Use the fact that v(— )« V*(f) when 2(2) is real)

4,5 DIGITAL TRANSMISSION

We conclude this chapter with a brief examination of digital transmission at baseband.
Fundamentally, a digital message is nothing more than an ordered sequence of symbols
drawn from an alphaber of finite size p. (For instance, a binary source has =2
and the alphabet symbols are the digits 0 and 1.) The objective of a digital communi-
catjon System is to transmit the message in a prescribed amount of time with a minimum
number of errors. Thus, signaling rate and error probability play the same role in
digital transmission that bandwidth and signal-to-noise ratio play in analog transmis-
sion. Moverover, there is a close relationship between signaling rate and bandwidth,
and between error probability and signal-to-noise ratio.

Waveforms and Signaling Rate

One normally thinks of a digital signal as being a string of discrete-amplitude rectan-
gular pulses. And, in fact, that is often the way it comes from the data source. By
way of illustration, Fig. 4.22¢ shows the binary message 10110100 as it might
appear at the output of a digital computer. This waveform, a simple on-off sequence,
is said to be unipoiar, because it has only one polarity, and synchronous, because all

t Themas (1969, chap. 5) investigates the optimization problem with a realizability
constraint,
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FIGURE 4.22 0 ;
Digital waveforms. (g} Unipoler syn- T |
chronous; (&) polar return-to-zero; {c} +

polar synchronous; {d) polar synchro- to i o1 e
nous guaternary. ()

pulses have equal duration and there is no separation between them. Unipolar signals
contain a nonzero DC component that is difficult to transmit, carties no information,
and is a waste of power. Similarly, synchronous signals require timing coordination
at transmitter and receiver, which means design complications. The polar (two-
polarity) return-to-zero signal of Fig. 4.22b gets around both of these problems,
but the “spaces” making the signal self-clocking are a waste of transmission time.
If efficiency is a dominant consideration, the polar synchronous signal of Fig. 4.22¢
would be preferable. Hlustrating a multilevel case, Fig. 4.22d is a quaternary (n=4)
signal derived by grouping the binary digits in blocks of two.

Regardless of the specific details, the channel input signal is an analog representa-
tion of the digital message that can generally be described as a pulse train of the formT

0=Tas(-3)

where g, is the amplitude level representing the kth message digit, p(¢) is the basic
pulse shape with peak value p(0) =1, the pulse-to-pulse spacing is 1 fr,and r is the

+ The index k indicates time sequence, and its limits, omitted in Bq. (1), depend on
when the message starts and stops.
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signaling rate. For example, the polar synchronous signal of Fig. 4.22c has &, = ta
and p(f) = II(z/z), where the pulse duration is © = 1/r. A return-to-zero signal would
aave © < l/r.

If the channel is linear and distortionless over all frequencies——i.e., has infinite
bandwidth—then p(?) suffers no degradation in transmission, and an arbitrarily
large signaling rate can be achieved by using very short pulses. But a real channel has
finite bandwidth and less than ideal frequency response, causing the pulses to spread
asut and overlap. The engineer must therefore shape the output signal so as to minimize
intersymbol interference due to overlapping and, at the same time, maximize signaling
~ate, objectives that are mutually contradictory.

This problem has been studied since the earliest days of telegraphy, but it was
Harry Nyquist (1924, 1928) who first stated the bandwidth-signaling rate relationship:

Given an ideal jowpass channel of bandwidth B, it is possible to send independent

symbols at a rate r << 28 symbols per second without intersymbol interference. Itis

not possible to send independent symbols at r > 2B.
tNote that r < 2B agrees with the pulse-resolution rule 7, = 1/28 of Sect. 4.4 since
< ir.

It is an easy matter to prove the second part of the relationship, for suppose
we 1ty to signal at 2(B + ¢} symbols per second, ¢ being positive but arbitrarily small.
One possible message sequence consists of two symbols alternating indefinitely,
02010101 ..., for example. The resulting channel waveform is periodic with period
1/(B + ¢) and contains only the fundamental frequency f, = B + ¢ plus its harmonics.
Since no frequency greater than B is passed by the channel, the channel output will
be zero—aside from a possible but useless DC component.

Signaling at the maximum rate r = 2B requires a very special pulse shape, namely,
the sinc pulse

p(E) =sincre (2}
which is bandlimited in B = r/2 and therefore suffers no distortion when transmitted
over the channel. Of course p(¢) is not timelimited, but it does have periodic zero
crossings, 1.,

(wm»)—sincm— 1 m=0
ny) T T om0
Thus, if we form the signal

k
x(t) = Z a, sine r(t - —;) = Z a, sinc (7t — k) (3a)
k k
then at any time ¢ = m/r,

x(%) = ; a, sinc (m — k) = a,, (3h)
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a3 sinc (rr — 3)

My

FIGURE 4.23
The digital waveform x(f) = 3 ax sinc {rt — k).
k

as illustrated in Fig. 4.23. In other words, because of the zero crossings, the overlapping
pulses do not result in intersymbol interference if we periodically sample x(f) at the
rate r = 28.

As the reader may have inferred, timing information between transmitter and
receiver is required here—i.e., the signaling must be synchronized at exactly r = 2B.
Furthermore, this approach only works with an ideal lowpass channel, The general
question of pulse shaping is deferred to Chap. 10; for the time being we will take x(¢)
as in Eq. (3), which happens to be the most efficient choice if the bandwidth is limited.
On the other hand, if the available bandwidth is large compared to r, then rectangular
pulses would be the most expedient choice.

EXERCISE 4.5 Show that synchronous signaling at r == B is possible if p{f) =
sine? rt.

Noise and Errors
Figure 4.24 shows the basic elements of a digital baseband receiver. The received
signal K x(#) is contaminated by additive noise, and a nearly ideal LPF removes the

out-of-band noise to yield 7
(@) = Kp x(0) + n(7)

Noise
LPF | »(® out
- put
KRX(!)—Aé)—- 5 AID - digits
’I‘in'ling—-J
FIGURE 4.24

Baseband digital receiver.
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FIGURE 4.2% - A_L :
Polar binary waveform plus noise.

where the D subscripts have been dropped for convenience. The analog signal ¥(7)
is then operated on by an analog-to-digital (A/D) converter whose function is to
recover or regenerate the digital message. Synchronization is supplied to the A/D
converter so it can sample (¢} at the optimum times ¢ = m/r when there is no inter-
symbol interference, Le., y(m/r) = Kgd, + nlm/r).

To begin with a simple case, consider a received polar binary signal having
Kga, = + A tepresenting the binary digits 1 and 0. A typical signal-plus-noise wave-
form y(f) as it might appear at the input to the A/D converter is illustrated in Fig. 4.25,
assuming & = 0. A direct conversion technique is to decide, at the appropriate times,
whether y(m/r) is closer to +4 (a 1 presumably intended) or closer to —4 (a 0 pre-
sumably intended). Intuitively, the logical decision rule becomes: choose 1if y(m/r) > 0,
choose 0 if y(m/r) <0, and flip a coin if y(m/r) = 0. (This Iast event, being rare, will
receive no further attention.) The converter can therefore take the form of a synchro-
nized decision circnit whose crossover or threshold level is set at zero, and conversion
errors occur whenever the noise causes y{m/r) to be on the wrong side of the threshold
at the decision time.

Thus, insofar as error probabilities are concerned, we have two random variablest

yi=dA+n yo=—A+tn @)

corresponding to the intended digits ¥ and 0. Then, if a 1 was intended, the conditional
probability of conversion error is

P,. £ P(error|1 sent) = P(y, < 0) = P(d +n < 0) (54)
and similarly
P, & P(error|0 sent) =Py, > 0} = P(—4 +n>0) (5b)
Hence, the net error probability becomes
P, =P, + PP, (6

where P, and P, are the digit probabilities at the source, not necessarily equal but
usually so. In any case Py +Pp =1, since one or the other must be transmitted.

+ Here, for simplicity, we use lowercase letters to symbolize random variables.
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FIGURE 4.26
Signal-plus-noise PDFs for polar binary signaling.

At this point we assume that a(f} is a zero-mean gaussian process with variance
o*, 30 iis probability density function is

i
Po8) = —mm— T ™
2ne
This assumption is not unreasonable for lincar baseband systems since most electrical
noise is gaussian and gaussian functions are invariate under linear operations. It
follows from Eq. (4} that y; and y, are also gaussian with the same variance ¢ but
with mean values
hi=+4d Fo=—-A

Figure 4.26 conveniently summarizes the situation by showing the two PDFs; p,, () =
Pl — 4) and p, (o) = p(yy + A), from which we will calculate P, and Z,,.

Recalling the area interpretation of probability density functions,

o
Py =P(y,>0) = jo PyolVo) d¥o
1
J2ro

- [ e ag
\/ 2no Ydlo

where the change of variable 1 = (3, + A4)/o has been made. This puts P, in the same

form as the function O(x), Eq. (8), Sect. 3.4, with x = 4/s. Furthermore, noting the

symmetry of Fig. 4.26, P{y, <) = P(y, >0} so

o0
f ¢~ ot dpizat gy
o)

A
Py =Py Q(;) 8a)
Therefore, from Eq. (6), the net error probability is

7=+ P0(%) - off) @
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FIGURE 4.27
Signal-plus-noise PDFs for polar trinary signaling.

which is independent of the digit probabilities because P, =P, . Several points
in this analysis deserve further comment:

I Taking the threshold level at zero yields equal error probabilities for each
digit, P, = P,,.

2 This is the optimum threshold level if the digits are equiprobable (P, = Py)
since any other choice would increase P,, more than it decreases P,,, or vice
versa. AN

3 Binary signals in gaussian noise have a unique property apparent in Fig. 4.26.
If the intended amplitude is -+ 4, superimposed positive noise excursions have
no detrimental effect; and similarly for —A4 with negative noise excursions.
Hence, because n(7) is equally likely to be positive or negative, the converter
will be correct at least half the time, regardless of the noise. However, one should
bear in mind that a binary message with 50 percent errors is 100 percent worth-
less.

4 In view of Eq. (85), Fig. 3.5 or Table D may be used directly as a plot
of P, versus Ajc and it is evident that P, decreases dramatically with in-
creasing dfjo. If Adjo = 2.0, for instance, P, x 2 x 1072 while iff 4fo =4.0,
P, =3 x 1073, Incidentally, most applications require error probabilities of
order 107% or less.

Because we have taken due care in our examination of errors for binary signals,
the extension to multilevel or p-ary signals is quite straightforward, providing the
noise is gaussian, Consider, for instance, a polar trinary signal (4 = 3} with output
pulse amplitudes Kz a; = +24, 0, or 24, representing the trinary digits 2, 1, and 0,
respectively. The equivalent to Fig. 4.26 has three gaussian density functions (Fig.
4,27, and we sce that two threshold levels are required. Under the usual condition
of equiprobable digits, the optimum threshold levels are easily shown to be +4, for

which
Pel b Peﬂ = Q (:'1;)
a
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whereas
o=l
g
because both positive and negative noise exéursions cause errors when Kpap =0,
(By another choice of thresholds it is possible to equalize the per-digit error prob-
abilities, but the cost is increased net probability P,.) Hence

4 /A
P, =P, P, + PP, +P,P,, = 3 Q(;)
where we have inserted P, = Py = P, = 14,
Generalizing to arbitrary y with equal digit probabilities, similar reasoning gives

e held) o

where the spacing between adjacent output puise amplitudes is 24 —so 2(u — )4
is the peak-to-peak range—and the u — 1 threshold levels are centered between the
pulse amplitudes. Equation (9} clearly reduces to Eq. (85) when u = 2. Nonetheless
it fails to tell the full story, for three reasons: first, a g-ary digit in general represents
more information than a binary digit; second, there are differing severities of error in
p-ary systems, depending on whether the noise shifts the apparent amplitude by one
or more steps; third, the relationship between error probability and signal-to-noise
ratio is not explicit. An analytic assessment of the first two is quite difficult, but the
third can be {reated as follows,

Signal-to-Noise Ratios

If the contaminating noise is white, then the filtered noise power is
N =nh (10a)
and

o=/N=y/nB  (108)

since we have assumed i = 0. If the noise is not white, the best receiving filter is not
an ideal LPF. The question of optinmm filtering for digital transmission with arbitrary
noise spectrum is covered in Chap. 10.

To calculate the signal power, a short digression on the properties of p(¥) =
sine rz is needed. It is readily shown (Prob. 4.32) that

4,2

o K B omek
| Akp(zw—)Amp(zw-’?_) a={7r " (11)
—w r r
0 m#k
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which means that the pulses that make up K, x(f) are mutually orthogonal with energy
A2 /r per pulse. But orthogonality is a sufficient condition for superposition of energy,
and a message M digits long, say

K 5(0) mkiAk p(t - if)

has energy

which would also be true for rectangular pulses with t = 1/r. Then, since average power
equals energy per unit time and an M-digit message is M/r seconds long, the received
signal power is

E 1 X 42

Sk =ain ~ 2

or simply the average of A,%. Generalizing, we have that if

Epx(fy= Y. Aysincrt—k) (12a)
ke — e
™~
and if the 4, are statistically independent, then

Sg = Kgix* = 4 (128)

where 42 is the statistical or ensemble average of 4,>. As it happens, this result will
also be of use several times in future chapters.
In the case of a polar bhinary wave with 4; = + 4, equally likely,

z 3

T = (+ AP ) + (~APP(= ) =5+ o = 47

In the polar p-ary case with p even,
A=A, £34, ..., Fu— DA

and assuming equiprobable symbols so P(d,) = 1/p, applying Eq. (1), Sect. 3.3, gives
J— 3 2 n2
A2= Y 47P(4p == ) (2k—1)°4°
k=1 Ux=y
Thus, with _the help of the summations in Table B, we have

A=""4 (13)
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Equation (13) also holds for any polar wave, ux even or odd, with uniform amplitude
spacing 24. )

Finally, combining Egs. (10), (12), and (13), the signal-to-noise ratio at the
input to the A/D converter is

5 Sy p-1 A)2
amt G
and Bq. (9) can be written as
i 3 8
P,=2|1—- —
¢ ( .u)Q( ﬂz—lN). 13
Alternatively, it is useful to define the system parameter
5
A MR
& — 16
PE (16)

where r is the signaling rate and, hence, Si/r equals the average received energy per
digit. The parameter p plays essentially the same role in digital transmission that
v plays in analog transmission. For the pulse shape in question, r = 2B so Sp/nB =
28p/nr = 2p and Eq. (13) becomes

sl o
=o(W2%) n=2 (176

Again, like analog transmission, Eq. (15) or (17} is an upper bound on system
performance -—that is, a lower bound on P,—and various imperfections will cause
the error probability to be higher than predicted. In particular, the wasted DC power
in a unipolar waveform changes the picture appreciably.

EXERCISE 4.6 Consider a unipolar binary system with A4, =24, or 0, and the
decision threshold at 4. Show that S, =24%if P, = P, and

r=o(®)-o /) -own  w®

Then calculate P, for a polar and unipolar system, both having g = 8.0, Ans..3 % 10™ 5,
2% 1073, :
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Example 4.2

1t is desired to transmit quarternary (u = 4) digits at a rate of 5,000 per second on a
system having S/t = 80,000. Assuming sinc pulses are used, the bandwidth required
is B = rf2 =2,500, and applying Eqs. (16) and (17) gives

5,

Pt LW
p_m' 16.0
3 20 -
P”_EQ( 5) 10-2

so the system is not very reliable.
Suppose, however, that each quaternary digit is replaced by fwo binary chgits
The required rate is then #’ = 2 x 5,000 = 10,000 and
Sk

'm—WSO
ur'

= O(/2p7) 73 x 1073
which is a substantial performance improvement. The price of that improvement
is a larger bandwidth, B' == 2B, plus encoding and decoding units.
Later chapters will generalize these observations under the headings of wideband
noise reduction and information theory. Hif
P
Regenerative Repeaters

Long-haul transmission requires repeaters, be it for analog or digital communication.
But unlike analog-message repeaters, digital repeaters can be regemerative in the
sense that each repeater has an A/D converter as well as an amplifier. If the error
probability per repeater is reasonably low and the number of hops M is large, the
regeneration advantage turns out to be rather spectacular. This will be demonstrated
for the case of polar binary fransmission.

‘When analog repeaters are used and Eq. (17), Sect. 4.1, applies, the final signal-
to-noise ratio is SfN = (1/M){(S/N); and

I/S :
P, = —1= 19
=) o
where (S/V), is the signal-to-noise ratio after one hop. Therefore, the transmitted power
per repeater must be increased linearly with M just to stay even, a factor not to be
sneezed at since, for example, it takes 100 or more repeaters to ¢ross the continent.

The 1/M term in Eq, (19) stems from the fact that the contammatmg noise progressively
builds up from repeater to repeater.
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Power saving, dB
S
}

FIGURE 4.28 S
Power saving gained by regeneration as
a function of the number of repeaters, 0 f : : : : t
P, = 10~ ? L 2 5 i0 20 50 100G
=
M

In comtrast, a regenerative repeater station consists of a complete receiver and
transmitter back fo back in one package. The receiving portion converts incoming
signals to message digits, raking a few errors in the process; the digits are then
delivered to the transmitting portion, which in turn generates a new signal for trans-
mission to the next station. The regenerated signal is thereby completely stripped of
random noise but does contain some errors.

To anpalyze the performance, let € be the error probability at each repeater,

namely,
o))

assuming identical units. As a given digit passes from station to station, it may suffer
cumulative conversion errors. If the number of erroneous conversions is even, they
cancel out, and a correct digit is delivered to the destination. (INote that this is true
only for binary data.) The probability of n errors in M successive conversions is given
by the binomial distribution of Eq. (1), Sect, 3.4:

Pue) = (U )erta - gpee
The net error probability is then the probability that n is odd; specifically,
w Y Phln) = (ﬁf)e(l -t (B:f)e?’(l -3 4y Me

nodd

where the approximation applies for ¢ « 1 and M not too large. Hence, inserting

Eq. (20), L
A

so P, increases linearly with M, which generally requires a much smaller power increase
to counteract than Eq. (19).

Figure 4.28 illustrates the power saving provided by regeneration as a function
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of M, the error probability being fixed at P, = 1073, Thus, for example, a 10-station
nonregenerative baseband system requires about 8.5 dB more transmitted power
{(per repeater) than a regenerative system.

4.6 PROBLEMS

4.1  (Sect. 4.1) A 20-km cable system has Sr=10 dBW, «=0.64, and By = 500 kHz.
The noise is additive and white with &y = 25 . Find {(§/N)p and %z in decibels such
that Sp == 0 dBW., Ans,: 33, 100,

4.2 {(Sect. 4.1) Repeat Prob. 4.1 with « ==0.32 and By =3 MHz.

43  (Sect. 4.1) A 400-km repeater system employs a cable with 8.68 & == 0.5, If S/, By
=70 dB, what is the minimum number of repeaters such that (§/N)p =20 dB?
Assume equal repeater spacing so0 &y = F M,

4.49 (Sect. 4.1} All other parameters being fixed, show that the number of equally spaced
repeaters that maximizes (S/N)p is M =10 % = 0.23.% 4.

4.5% (Sect. 4.1) Owing to nonfinearities, the output of a baseband system is yolt) =x{)
4 alty + Wlx(e) + n(0)]*. Find )_::"‘ assuming that x{#) and #(¢) are independent and
all of their odd moments are zero. Is it possible to define (§/¥)p in this case?

4.6% (Sect, 4.1) The open-circuit signal output of an oscillator is 4 cos Znfet. The source
resistance is Rs and there is intermally generated thermal noise with temperature
F'x. A capacitor Cis placed across the output terminals to improve S/N.

{a) Obtain an expression for STN.
(£) What value of C maximizes S/N?

He0
104
1
! |
L ;
5 i ! T
| 1 i I
t ! I !
0 —— } t } ;
Q 15 20 25 40 50 65 75 fkHz
0 } ; } ; ! :
1
| %
~50° 4 '
1
\——
—180° 4+
arg [He (N
FIGURE P4.1.

4.7 (Sect. 42) Figare P4.1 shows the amplitade ratio and phase shift of a certain trans-
mission channel. What frequency range or ranges has: amplitude distortion, phase
distortion, distortionless transmission?
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4.8 (Sect. 4.2) Show that an RC LPF gives essentially distortionless transmission If x{z)
is bandlimited in W« B=1{2»RC.

4.9 (Sect. 42) The input to an RC LPF is the test signal in Fig. 4.4. Plot the oufput
waveform when fo = B/3,

4.J0 (Sect. 42) Find (/) for an RC LPF and evaluate it at f=B/4, B, and 4B when
B=1 kHz.

4.1] {Sect. 4.2) Consider a transfer function with ripples in the amplitude ratio, H(H) =
(1 -+ 20 cOS wioye ™o, Jo] < 34,

(@) Show that J(f) = x{z — ts) +ax(t — s+ to) + o x(2 = fs — #a), 50 there is a pair
of “echoes™.
(b) Taking « = 14 and x(f) = IL(#f1), sketch y(z) for 7 =27, /2, and T4,
4.12%(Sect. 4.2) Find p() in terms of x(¢) when there are small ripples in the phase shift,
i.e., H(F) =exp [—jlwt: — asin wto)], || <. Compare with Prob. 4,11, (Hint:
Use a series expansion for exp (jx sin wtq).)

413 (Sect. 4.2) Sketch |He{f} and arg [H.{f)] needed to equalize He(f) in Fig. P4.1
over 5< |f] < 25 kHz.

4.14 (Sect. 4.2) Suppose x(t}==uv(t) + cos 2ufir is applied to a nonloear system with
#(t) = x(2) -+ 0.4x2) 4 0.1x*(2).

(@) Find y() and sketch a typical ¥{/) when o{t) is bandlimited in ¥ < f1.
() If o(t) = cos 2mfat, f> > fi, list all the frequency components in (2.

4.5 ({Sect. 4.3) A system designed for telephone-quality voice transmission has (S/N)p =30
dB when Sy = —3 dBW. If the bandwidth is appropriately increased, what value of
Sr is required to upgrade the system for high-fidelity audio transmission, all other

factors being unchanged? Ans.: 30 to 40 dBW.

4.16 (Sect. 4.3) A system designed for an analog signal with # =10 kHz uses an RC
LPF with 3-dB bandwidth B == 135 kHz at the receiver.

(@) Find (§/N)p in terms of y.
{5) Repeat for a second-order Butterworth filter (Exercise 3.10, Sect, 3.6) with B ==
12 kHz.

417 (Sect. 4.3) A distorting channel with Ho(f) = [1 -+ #2f//¥)]~ and white noise is used
for a signal with G.(f) = (/2 W)IIf/2W)}. To compensate for the distortion, the receiv-
ing flter is Hz(f) = [1 + jfW)I(ff2¥). The transmitting filter is simply an amplifier
with unit gain. Show that (S/N)p = 0.78y.

4,18%(Sect. 4.3) Referring to Fig. 4.15, obtain expressions for ¥r, #, and ¥ in terms of
H(F), HlF), Ha(f), and Go{f). (Hint: By definition, % = Szfx?, etc.)

£.199c(Sect. 4.3) Given H{f) and GLf) in Prob. 4.17, find the optimum terminal filters
and evaluate (S/N)p,,, in terms of y.

4.20 (Sect. 4.4) Redraw Fig. 4.18 for the case of an RC LPF with B = 1/27 and B = 1[4+,

4.21 (Sect. 4.4) A sinc pulse x{r} == 4 sinc ZW is applied to an ideal LPF having bandwidth
B, Takiog the duration of sinc af to be 74 2/a, plot the ratio of output duration to
input duration as a function of B/W.

4.22 (Sect. 44) A rectangular pulse with = > 1/B is applied to an RC LPF. Find the

10 to 90 percent rise time in terms of the 3-dB bandwidth B.
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