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5.56

i i i finite
Show that an impulse response matrix H(.t, 7) is rea:hzable byﬂfxinuous
dimensional dynamical system if and only if there exist two co

matrices P(t) and Q() such that
H(z, 7} =P{)Q(r) foralls
Hint: See Section 2.8.
The impulse response matrix (for a fixed T°) of the system
% = A()x + B{v

y = C{)x
is given b
sEmy H(T, 7) = C(T)(T, OB(r) T >
== r<r
{(a) Show that the impulse response matrix of the adjoint system
& = —aA(?) + vC(#) (o and g are rTow vectors)
q = oB()

is given by
: H*, T) = (NS08 12T
=0 ¢ <T

i i —ti he adjoint systerm,
variable #; = T — ¢t is made for t dic
(?dlfhlhzgjﬁgeg?nliaﬂable Ty 1= T — 7 is made for the original system,
a

that
shov M, 0 = NS, T — )BT ~ 1) 1,20
= [0] ty <90
and B(T — ) 20

H(T, T — ) = CMPT, T — 7)B( 1 1
= 0] #n <0

) From the result of part b, show that observation '{Jf the Fef};lmnsfetgi
Efw modified adjo'int systemn over the #; axis (the running va;rtzg ;Zso ihe
simulator)} is identical with observing the crossmPlptat time T ; : a(; ;; HF onse
of the original system over the = axis. I.n addition, show tha 0 05;‘ e
placed on one of the inputs to the adjoint system produces a

ired i trix.
desired impulse response ma n
{4) Show that the result of the preceding pa;ts pfovish;hgtpﬁz c;;::lxpgut_
i joi is obtained by interchanging
modified adjoint system is 0 L i ‘ s and ou
puts of the grigina,l system and making the change in variable = 7' — 1y
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State Variables and Linear
Discrete Systems |

6.1 INTRODUCTION

The state variable viewpoint is applied to linear discrete time processes
in this chapter. Much of the effort is directed toward sampled-data
systems. It is also shown by example that the state variable approach is
quite useful in dealing with linear sequential systems, which naturally
arise out of the theory of coding. Viewed in this fashion, the state
variable approach is a unifying concept, as both continuous and discrete
systems fall within its general framework.

The theory of linear discrete time systems follows the theory of linear
continuous systems closely. Therefore, much of what is said in this
chapter is based on the preceding chapters. The similarity between the

theory of linear continuous systems and the theory of linear discrete
systems is indicated.

6.2 SIMULATION DIAGRAMS

The basic building blocks required to construct a block diagram of a
system described by linear difference equations are the adder, the amplifier,
and the unit delay. The adder and the ampli- - :

fier are the same blocks. that were used for  yrT+T) U 12k T)
continuous systems, and the unit delay for ——— delay |
difference equations is somewhat analogous to. r

the integrator for differential equations. It is Fig. 6.2-1

shown in Fig. 6.2-1. The input to the unit

delay is y(kT + T), and the corresponding output is y(kT). Thus the
input to the unit delay appears at its output one period later, or delayed
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408 State Vaviables and Linear Discrete Systems

by T. It should be noted that unit delays of the order generally required
in control systems are quite difficult to obtain in practice, and seldom is
a system actually simulated in real time by this method. For sequential
circuits, where the variables are either binary in nature or take on discrete
values, this type of simulation can be performed in real time.

‘The approach used to generate a block diagram of a linear difference
equation is to assume that the variable y(rT -+ kT) is available, and then
successively pass this variable through unit delays until #(kT) is obtained.
The block diagram then is completed by satisfying the requirements of the
difference equation, or “closing the loop.”

Example 6.2-1.  Find the simulation diagram for the system governed by the difference
equation y(kT + 27) -+ ay(kT -+ T) + bylkT) = o{kT).
The first step is to solve for y(kT 1+ 27), as

ykT + 2T) = ok Ty — ay(kT + T) — by(kT)

The terms y(kT + T) and y(,T) are obtained as shown in Fig. 6,2-2a. Assuming ideal
distortioniess delays, a signal which appears at terminal 1 appears at terminal 2 one time
pesiod later, and at terminal 3 two time periods later. Similarly, a signal at terminal 2
appears at terminal 3 one time period later. The completed block diagram (Fig. 6.2-28)
is obtained by satisfying the requirements of the difference equation.

1f the initial conditions are given in terms of »(0) and y{7?), then y(0) is the initial si gnal
at the output of the first delay, and %(T) is the initial output of the second delay. After
one time period, y{T)appears at the output of thefirst delay unit. Aftertwo time periods,
the output of the first delay is ¥(27) = v(0) — ay(Ty — by(0).

If a comparison is made between Figs. 5.2-2b and 6.2-2b, it is evident tbat similar
rules hold for comstructing block diagrams of difference equations and differential
equations. The integrator used in simulating differential equations is analogous to the
unit delay used in simulating difference equations.

Sec. 6.2
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v{kT)

- o

+
Urit N Unit i ¥
U
™ dezl?ay delay e de?elity 3
-1 T ~ y(kT)
— % (BT) %1 (BT) 1 (RT)
Cn-2
B
Fig. 6.2-3

Example 6.2-2. Find the simulation diagram for the ath order difference equation
Yyl + KT + ceynT 4 kT — Ty 4 - - + ag(kT)
. w=8.0(0T + kT) + Bpoolnd + kT — T) + - - - -+ Bk T)
¢ general simulati i i i in Fi
Fig 554, The s and s of the block dmgram e sven by et 233 ot Ehs
For the specific case of the difference equation B 2377 and 235
YT -+ 3T) b 3y(kT + 2T} + 49(kT + T) + y(kT) = 26(kT + 37)
o 3T + 2T + ok T+ T + 20(kT)
by == ﬂn =2
by = ﬁm—l U1y = 3
by = fln_g — tipaby = Oy sbe =2

ba i ﬁn-—:’- - aﬂ—lbz - “nwzbl - mn_aba =6

yitk + 2)T) dUrllit yl(k + )T jirl%it ¥{&T)
£1a + ela!
i il 1 T !
1 2 3
(a)
o(kT) Unit | yi(k+ 1)7) Unit y(R1)
delay delay
+_ - T T
&
b
b)
Fig. 6.2-2

The simulation diagram for this system is showr in Fig. 6.2-4. A comparison of this

v(kT}
6 2 3 2
+
dslay delay |95 delay fprt
=7 T T ’\‘/y(kT)
3
4

Fig. 6.2-4
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Fig, 6.2-5

diagram with Fig. 5.5-5 shows that the only difference between the two diagrams is that
the integrators of Fig. 5.5-5 have been replaced by unit delays.

6.2-3. Find the simulation diagram for the system governed by the difference

Example
equations

g (kT + T) + okT) = 0k + Zuo(kT)

(kT + 27} + 3y kT + T3 + 2k T) = vfkT + TY 4 v fkT) + w (KT

These equations can be rewritten as
(T + T) = 0a(kT) + 204(kT) — ylkT)
kT + 2T) — vokT + T) = vakT) + 0y (kT) = 3y,kT 4 T) — 24:(kT)

— p,(kT + T as the input to one delay chain, the bleck diagram

Using yu(kT 27
5. The approach is similar to that used for continuous

appears as shown in Fig. 6.2-
systems.

63 TRANSFER FUNCTION MATRICES

The transfer function H(z) for a single input-single output discrete time
system is equal to the catio of the Z transforms of the output and input of
the system. For multivariable systéms, the transfer function between
various input-output terminals is similarly defined. Thus

B =22 p@ =0, k] (631
Vil®)

Sec. 6.3
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where Y {2} is the Z transform of the i

g : output at terminal 7, and ¥(z) i
transform of the input at terminal /. and e the
: The transft?r function matrix is simply the ordered array of these
r;r'asfer functions, where i denotes the row and j denotes the column in
which H,{z) appears. If the transfer function matrix H(z) is known, then
the output vector transform Y(z) is given by ’

Y(®) = H(z)V(z)  (assuming zero initial conditions)  (6.3-2)
where V(2) is the col i .
kT, @ olumn matrix of the Z transform of the input vector

Example 6.3-1. Find the transfer fi i i
. . unction matrix for th i -
described by the difference equations 117 fo TpUEIvG uiput system

ylkT + 3T F 6y(kT + 27 + Wy kT + T) + 6y:kT)
= (kT 4+ T} -+ 0(kT) 4 v,(kT)
Yok T b 2T b Sy(ld 4 T A SyofkT) = v kT + T) + v(kT)

Taking the Z transform of i . .
ditions, & of both sides of these equations, assuming zero initial con-
(2 + 628 + 11z + 6 ¥ile) = (2 3+ D) + Va®)

(@ + 3z 4+ 63 Yalz) = 2 + DK
Since 2 + 62+ 1z p G (zb D+ D+ ande® b Sz 4+ 6=+ D+

1
HyF) = —— - 1
B = ety U eane v a6+
Huz) =0 Hal(2) = mmfwj:_l__
or =) (z+2)z+ 3
1 1
Hoy = | ETIETY EHDEF2EEI
0 G+ 1)

+2DE+3)

The transfer function block diagram: appears in Fig. 6.3-1,

Vifz)
Valz) 1 /k“
1
i S (zL12)(z+3) Yi(z)
z+1
(Z+ 20753} Yalz)
Fig. 6.3-1
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V=) Py

2hgez~1 Y}{Z}

Vaofz}

ne

[ Yoz}

+
Fig. 6.3-2

Example 6.3-2, Find the transfer function matrix for the system governed by the
difference equations
gokT + 27 4+ wkT + 1) + 3k T A+ T) = 06T + T) + 0.kT) + va(kT)
YolkT + T 4 yi(kT) = 02(kT)
Transforming both sides of these equations, assuming zero initial conditions,
#+ QT +2Yu8 =G + DY) + V)
Yi(®) + 2 Y = V3@
Solving for ¥,(z) and Yy(2),

(4 1) Vo2 Dy

Yif7) = e he=—— o

Frz—1
The transfer function matrix is
z+1
——— O
2tz 1
H ==
@= _ec+n 1

#22 +2z—1) =
The transfer function bleck diagram is shown in Fig. 6.3-2.

The unit delay, represented by the Laplace transform &*7, corresponds
to 1jz in the z domain. Thus the integrator, as repre:'sented l?y 1fs for
contimuous systems, has the unit delay as its analog in the diagram of
discrete systems. Hence the transfer functions i/(z + a) and z/(z -+ a) are
obtained in a manner similar to that used for continuous systems (see
Fig. 6.3-3.).

%’he sanze note of caution that was injected into Section 5.3 should be
added here. Inspection of only the transfer function mairix may lead- to
incorrect conclusions about the order of a system, as the transfer function
relates only the controllable and observable aspects of the system. It may

z
z4a

Fig. 6.3-3
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mask system properties which would be obtained from the physical
system.

6.4 THE CONCEPT OF STATE:

The state of a discrete time system can be intuitively defined as the
minimum amount of information about the system which is necessary to
determine both the output and the future states of the system, if the input
function is known. More precisely, a set of variables x qualifies as a state
vector, if two single-valued functions f and g can be found such that

X(kT' -+ T) = f[x(KT), v(kT)]

Y T) = g[x(&KT), v(kT)]

where y(kT) == the output vector at time k7, and v(kT) = the input vector

at time &T. It is interesting to note that these requirements for the state

of a sequential device were independently determined by Huffman and by
Moore while working on related but different problems,?3

In most of the subsequent material, the outputs of the delay elements of
the simulation diagram of a system are taken as the state of the systerm.

These outputs provide a convenient and sufficient choice for the state
vector.

(6.4-1)

Example 6.4-1. The capacitor step charger of Fig. 6.4-1 is so designed that the voltage
on the capacitor increases in steps each time the input pulse appears. Assume that
initially there is Do charge on capacitor . The first input pulse charges C, through
diode D, to a voltage V. After the input pulse disappears, the charge on C; distributes
itself between C; and C, according to the inverse ratio of the capacitances. The second
pulse again charges C) to a voltage V,, but the subsequent additional charge which is
placed on C; is less than that from the first pulse, owing to the previous charge left on: C,.
The input pulses are continued, and it is expected that the voltage changes appearing on
capacitor C; diminish asymptotically. Evaluate these chaniges and verify that the voltage
on C, is a state variable.

1 =(k) is the voltage on capacitor C, after the kth input pulse, then the difference
equation for =(k) is given by the principle of conservation of charge as €V, + Covl(k) =
(C) + Gl + D or

Cs CiVo
wlk 4+ 1) — | — = e
te 41D (c1 ¥ cz)“{k) &xc
Dy
v = negative & §§—+ ’ Dt
input Gy +
pulses, I Co == x(k)
amplitude -
W S

Fig, 6.4-1
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Fig. 6.4-2
Boolean identities
And Oor
0:G=0 0+0=0
0+1=0 O0+1=1
1-0=0 1+8=1
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Compiement
G I=0
A | el a0 And
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Fig. 6.4-3
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Solving this equation in the standard fashion indicated in Section 2.12 yields

<, ¥
) =Ve [1 - (mﬂ

Therefore the capacitor voltage increases in discrete steps as shown in Fig. 6.4-2. The
step heights are given by

ol ¢ ¥
$(kw%~1)—m(k}=Vo(C +C)(C +C)
1 2 2 2,

The state of this circuit is given by the capacitor voltage 2(k). Note that this state
takes on only discrete values. The next state of the system, z(k + 1), is uniquely deter-
mined by the present state of the system and the present input. The general state
equations for this system are given by Egs. 6.4-1. In this case, both f and g are linear,
single-valued, scalar functions.

Example 6.4-2.5 A modulo 4 counter is designed so that it cycles through the counts
00,01, 10,11,00,.... The circuit for this device is shown in Fig. 6.4-3, and the
reader familiar with sequential circuits can verify that this circuit does indeed cycle
through these counts. The outputs of the delay elements represent the state of the
system, as well as the outputs of the system. Write the state equations,

The logical equations for this counter are normally written in the form

AFEDT = (48 4 ABRT
B+ — (BT

where the superscripts denote time instants and are not exponents. This is an auton-
omous sequential circuit, and the general state equations for such a circuit are

X[k + DTT = tx(k T
yltkT)} = glx(kT))

x = state {output of defay elements)
¥ = output (outputs of delay elements)

6.5 MATRIX REPRESENTATION OF LINEAR STATE EQUATIONS

The general form of the state equations for a multivariable discrete time
system were given by Eq. 6.4-1 as

x[(k + DT] = flx(kT), v(k T)]

y{eT) = g[x(kT), v(kT)]

If the system is linear, then Eq. 6.5-1 can be written as the set of linear

vector-matrix difference equations
xl(k + DT] = AKRT)x(kT) -+ BT v(KT)
YT} = CETIXET) + DTIVKT)

(6.5-1)

(6.5-2)

AkT), B(kT), C(kT), and D(kT) have been indicated as time-varying
matrices. If the system is nontime-varying, these matrices can be written
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D (2T
+ * ¥ (kT
+ Unit x(kT} N -
v (£T) Ly B (£T) » C 1 delay > C(RT) AL .
Py 3 T
A(RT)
Fig. 6.5-1

as the constant matrices A, B, C, and D. The general block diagram,

similar to Fig. 5.5-1, is shown in Fig. 6.5-1. _ _
I For a systgm described by a set of nth order difference equations, the

form shown in Eq. 6.5-2 can be obtained by writing the given equations as
a set of first order difference equations.

Example 6.5-1. Express the sccond order difference equation
yik + DI+ aylik + DTT+ bylkT) = v(kT)
represented in Fig. 6.2-2b as a set of first order difference equations.

Let y(kT) = =,(kT)

ylk + DT = a{(k + DT == (kT

ok T+ T) ﬁ[ 0 I:l [xl(kﬂ:l +[0]v(k’f}
wokT + T) —b —all=mGT)] 11
EA
y(kT) = (1 Q]Lsg(m}

Then

The variables #,{(kT)and =,(kT) are the outputs of the delay elements, and they rzepre;et;;
the state of the system. These equations are of the general form of Eq. 6.5-2, whe:

azl © 1 B=m, C=0 0, D=0
—h g 1

Example 6.5-2. The general form for an ath order difference :equaticm ingi{v:en ig
Example 6.2-2. The simulation diagram appears in Fig. 6.2-3. Find the A, B, C, an

D matrices. ] . ]
Analogous to the continucus case, the A, B, C, D matrices for this system are given

by Eq. 5.5-5.
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Linear Binary Sequential Networkst

An interesting application of the state variable approach is the analysis
of linear binary sequential networks. A linear binary sequential network
consists of pure time delays and modulo 2 summing junctions. A modulo
2 summing junction is an exclusive-OR function having the logical
equation f = (#; + %)2.%; = &2, + 2,7, The -output of such a summer
is zero if the two inputs x; and x, are the same, and one if the inputs are
different. Although this discussion is limited to modulo 2 networks, the
same type of analysis can be used for modulo p networks.*~® These linear
modular sequential networks have found a limited application in error-
correcting codes, computer circuits, and in certain types of radar systems.?

For the purpose of illustrating the use of the state variable approach in
the analysis of linear binary sequential networks, consider the network of
Fig. 6.5-2. This network consists of four unit delays (a four-element
shift register) and a single modulo 2 summing junction (a logical exclusive-
OR circuit). The equations of this network are

ay(k + 1) = z(k)
Tk - 1) = (k)
zylk + 1) = 2,(k)

Zylke + 1) = zy(k) @ Zy(k) @ (k)
in matrix form,

x(k + 1) = x(k) = Ax(k) mod 2

s o B o T o
OO e
_O e O

0
0
1
0 1
The sequence of states through which this network will pass is x(0),
Ax(0), A’x(0), . ... If Ais nonsingular, then each state x(%) has a unique

preceding state x(k — 1). For a mod 2 network, the determinant [A] is
either one or zero. In this particular example [A] = 1, so that A is

@ unit | %4 Unit {3 unit 1.2 1 umit |1
delay delay defay delay

J

Fig. 6.5-2
t Readers completely unfamiliar with sequential networks should omit this section,
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nonsingular. Hence the inverse A~* does exist.
0111
1000
0100
0010
Since there are four state variables, each of which can have the value
zero or one, there are 2¢ = 16 possible states of the system. Therefore the
state sequence of an initial state is either periodic with period P < 15 or
goes to an equilibrium state, where the equilibrium state is defined by
x(k + 1) == x(k). The trivial case where all the state variables are zero is

called the null state. All other equilibrium states are called finite equilib-
rium states.

Al =

Consider the case in which the system reaches an equilibrium state. Itis
assumed that A is nonsingular, such that A® is not equal to the null matrix.
This removes the possibility of a nonzero initial state going to the null
state. For the finite equilibrium case x(k -+ 1) = Ax(k) == x(k). Since
(A - Dx(k) = 0, the existence of an equilibrium requires that the char-
acteristic equation |Al — A| = 0 have at least one unity root. For the
network of Fig. 6.5-2, the characteristic equation is A* + A° 4+ A* 4 1 = 0
mod 2. This can be factored into (A + D(A% 4+ A + 1) = O mod 2. There-
fore the characteristic equation has one unity root, and there exist initial
states for which this network goes to an equilibrium state. One of these
initial states is x(0) = (1, 1, 1, 1}.

When the network has a periodic state sequence of period P, then

x(k 4+ P) = APx(k) = x(k) mod 2
For this condition, |AI — AT} = 0 mod 2, must have at least one unity
root. The integer P can be found by determining the smallest integer such
that AP = L mod 2. If the characteristic polynomial p(%) divides A¥ — 1
without remainder, then A — 1 = p(A)g(A), where ¢(4) is the quotient
polynomial. Therefore A7 — I = P(A)Q(A) = [0] mod 2, and AL ==
1 mod 2. Hence the technique to determine the length of the minimum
periodic sequence of a network is to determine the smallest integer P such
that p(4) divides A¥ — 1 without remainder. For this particular problem,
the length of the minimum periodic sequence is seven. A typical sequence

is given by 0 0 0 1 1 07 T1
0 0 1 1 0 1 0
— - - >
0 1 1 0 1 0 0
1 1 0 1 0 0 0

Sec. 6. i /
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delay delay defay delay

@ Unit x4 Unit x3 Unit *2 Unit | %1

Fig. 6.5-3

The class of networks of order #, whose minimum periodic sequence is
equal to 2?‘ — 1, are known as maximal-period networks. The necessar
and suﬁic;.ent condition for a network to have only maximai—perioz
sequences is that the characteristic polynomial be irreducible and not a
d;stor for % — 1, k < 2" — 1. (An irreducible polynomial {4} is one
whmh‘ cannot be factored into the form A(A)g(4), except for the trivial
factqnzatxon when g(2) is a constant.) The network of Fig. 6.5-3 has onl
maximal-period sequences. The equations of this network are g

01 0 ¢

0010
x(k + 1) = 00 o0 1|*®

1100
PR = 12T — A] mod 2
=14+ B+ 1=0mod2

Since A* @ A* @ 1 is an irreducible polynomial, and since it is a prime

factor of 15 ~ 1, the minimum len iodi i
: , the gth of the periodic sequ
The prime factors of A5 — | are perlodit sequence s Biteen.

A —1=F+P+ DA+ A4+ DA+ B4 241+ 1)
X @4+ DA-1
Since the ?y?lc structure of such a network is completely determined by the
c}mractenshc polynomial (assuming that the network matrix A is non-
singular 'and that the characteristic polynomial is also the minimum
polynomial of the network), it is possible to synthesize these linear

sequent‘ial networks analogously to ordinary lumped element network
synthesis. A set of synthesis procedures is given in Reference 6.

State Equations-Partial Fractions Technique

' The partial f_ractions technique for deriving the state equations for a
linear, fixed, d'xtscrete time process follows the same procedure as that
used for continuous systems. For a single input-output system with
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transfer function H(z), the transform of the output ¥(z) is given b5f ¥Y(z) =
H(z)V(?). If the denominator polynomial of the transfer function H(z)
has distinct roots Ay, Ag, . . ., 4y, and if the order of the numeratpr poly-
pomial of H(z) is less than the order of its denom}nator polynomial, then
H(z) can be written as the partial fraction expansion

ki3

¢

fumy B o Ay
The output ¥{z) is given by
Y() =3 —— V@)
fu] & /11;

Therefore y(kT) can be written as a sum of terms of the form
y(kT) = 3, i (kT)
i=1
where the #,(kT) must satisfy the first order difference equation

2]k + DT] = Az k) + o(kT)

The state equations for the system can then be written in the form

el + DTT | wy(kT) ]
sik+011| [ 0 O e 1
. _l0 4 -0 . +1 gD
. 0 0 ln . .
[k + DT] EX R ES
e (kT (6.5-3)
z(kT)
EDI=1[c; ¢+ &l
| #,(kT)_|

> x[(k + DT = Ax(kT) + By(kT)

y(kT) = Cx(kT)

where the matrices A, B, and C are defined by the equivalence of Egs.
6.5-3 and 6.5-4. Note that the symbol A is used in place of A, to denote
that A is diagonal. Also note B == b =1, a vector.

This form of the state equations is of particular importance when
dealing with concepts and proofs, since the diagonal form enables one to

(6.5-4)
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make concise statements about the properties of the system. This form is
particularly convenient when dealing with forcing functions, as the corre-
sponding state transition matrix is also of diagonal form. Flowever, there
does arise a computational difficulty, because the transfer function H(z)
gives no information about the initial conditions of the system. In fact,
to compute the initial conditions on the z.’s in this form, one must find
y(0), y(1), ..., y(n — 1) and then solve a set of simultaneous equations to
find the relationships between the boundary conditions on the s and those
on the state variables of Eq. 6.5-4.

Example 6.5-3, Find the A, B, and C matrices for the sampled-data system of Fig.
6.5-4a.
With respect to the sampled input and output, the transfer function H(z) of this
system is given by
¥Y(z) 1 gl

The output transform ¥{(z} is then

—aT
Y@ = HOVE) = 2 YOT )+ x@eoT

zw1 z— ¢l
where the difference equations for %, and =, are given by

ok + DTT — akT) = v(kT)
wf{k + DT~ ¢~ ¢Tm(kT) = o{kT)

Vis) V=) ey (1-e Neta
T s(s+a) T Y(z)

(a)

Xl DI Unit | gk

delay e ol

+

Wk L) — et (Or—sst6)
4

s~ DT Uit | o

delay
T} :

(b)
Fig. 6.5-4
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The matrix equations for this system are
%k + DT = Ax(kT) 4 Bv(kT)
ykT) = Cx(kT)

i 0 1
A=[ ] B=[:}, C=[1 =]
1] T I

The simulation diagram for this system is shown in Fig. 6.5-46.

where

For the frequently arising sampled-data case in which the numerator
polynomial of H{z) is of the same order as the denominator polynomial of
H(z), the D matrix is not zero. Since D represents a feedthrough term, it
can be found by dividing the numerator polynomial by the denominator
polynomial, stopping after the first term. The first term represents the
feedthrough, or D matrix, term. A simple example of this is H{(z) =
1/(1 — z %), which represents the z transform corresponding to 1fs.
Using the above criterion for handling this problem,

z 1
HE) z—1 1+z--—1
This operation is equivalent to
D = D = lim H{z)

Z-+0

The remaining transfer function H,(z) = H(z) — D can be handled in the
same manner as previously described. Actually, once D is found, there is
no need to find H,(z), since H,(z) has the same poles and the same residues
at these poles as does H(z). Therefore, when the order of the numerator
polynomial of H(2) is of the same order as the denominator polynomial
of H{z) and the poles of H(z) are of first order (distinct roots of the
denominator polynomial), the general state equations are

x[(k + )T = Ax(kT) -+ Bv(kT)
Y(kT) = Cx(kT) + Dv(kT)

where A is the diagonal matrix whose elements are the characteristic roots
A1y Ags « + « 5 Ay of the denominator polynomial of H(z), and

(6.5-5)

B = column matrix whose elements are equal to one
C = row matrix all of whose elements are equaltoc; = {z — 3;)H(Z)L,a 1
D = d, = single-element matrix = lim H(z)
z a0
A general block diagram is shown in Fig. 6.5-5.
For the case where the roots of the denominator polynomial of H(z} are
not distinct, the procedure to be followed is the same as that given for the

continuous case in Section 5.5. Rather than repeat the procedure here,
an illustrative example is given.
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dy
u(ET) Unit

2

+
() delay ¢
\]\ﬁ T
M
+ Unit xg
1 delay oy
+ T A s
+
Ag >——> y(ET)

+ Unit
delay Cn
+ T
An

Fig. 6.5-5

il;,‘xample 6.5-4. Findthe A, B, C, and D matrices for the system whose transfer function

428 — 1227 o 132 — 7
(z — 1%z -2
This transfer function can be expressed in the partial fraction form

H(z) =

H) = —2 i %
=) (z—1)3+(z—1)+(z—2)+d"

where
dy = Hm H(z) = 4

Zur 00

& =2 (2 — 1PH(@E),.., =2
d
Co = — e — IPHE],..., =1
¢ = — DHE),.., =3
Therefore the output ¥(z) can be written

_ V@ Yy 3¥)
Y(z) = PN T + o 5+ 4V (@) = 2X0(2) + Xufz) + 3X00) + 4V ()

Since X1(5) = X))z — 1),
@l + DT] — 2k T) = z,(kT)
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Unit X2 Unit %1
v (kD) + delay M delay
+ i T T

Unit \«l; +
Y delay % 3 }———)-

4 T ARy

Fig. 6.5-6

The state equations are
[k + DT} = Ix(kT) + bulkT)

y(kT) = Cx(kT) + dpp{kT)

where
110 0
F=10 1 0|, bu=il|, C=[2 1 3, dy=4
0 0 2 1

The simulation diagram for this system is shown in Fig. 6.3-6.

For the multivariable case where there are multiple inputs or outputs,
the transfer function matrix H(z) can be used in a similar manner to find
the state equations. However, the approach is not so clear-cut as in the
single input-single output case, as there is generally a greater freedom of
choice in assigning elements to the B and C matrices.

Example 6.5-5. Findthe A, B, C, and D matrices for the system whose transfer function
diagram is given in Fig. 6.5-7.
The outputs Yi{z) and ¥y(z) are given by

Yi(z) =

z i
ETDETD Wiz + e} Valz)

22
@+ D+ 3)
Expanding into partial fractions yields

Yalz) = IAGE RIS

1 2 i .
Yz = — | Vi(z) + Py} Viz) + s Vi)

a2
- 3 Vo) + 15E) + 4720

3
1 Vi@ — - T

Yoz) = oy
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V(=)

Vis) 77 +F 3

z4+1 z+2Z - ¥1(2)
) +
3 Yafz)
+
Valz) 2
Fig, 6.5-7

Using these equations, Fig. 6.5-8 was drawn. It i i
' 3 . 6, . s readily apparent t -
sponding state equations are YR st tho corre

2k + 1T —1 0 0w 10
e+ 071 =] 0 —2 ollan|+| 2 1 [U‘(’m]
a@[(k + 1)77] 0 0 —3|zGD) —3 o LBl
v (kT) ~1 1 oD 0 07 o kT)
v ] | 3 0 1] =WT) |+ [1 4} L (kT)]
L2k T) :
+ Unit | 2 (k7) -
vi(kT) { ds,;}ay () »yi{kT}
+
\l’n(kT)
i
D(RT) —reim| 2 it de?a:; (k1) %
) T
+
vo(BT) VLR T) i ok T)
+
2 +
oa(hT)—=] 4
uT)—>] & -5 detny |80
- T
3 =
Fig. 6.5-8
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Notice that, although the A matrix in the preceding example is easily
found, the B and C matrices are by no means unique. Certainly, some of
the elements in B could be interchanged with some of the elements in C
and the conditions of the transfer function matrix would still be satisfied.
Without any knowledge of the physical properties of the system, either
choice is equally valid. As long as all the transfer products bc,; remain
the same, B and C can be arranged in any number of ways. The use of the
transfer function, or the transfer function matrix, to obtain the state
equations of the system is at best a compromise, and it should be used only
if the original difference equations are not available.

If the original difference equations are available and A can be
diagonalized, a diagonal form for A can be obtained by use of the modal
matrix M. Assume then, that the state equations are available in the form
of Eq. 6.5-6 below, and that it is desired that a new set of state variables
be obtained such that the A matrix is a diagonal matrix A.

x[(k + 1)T] = Ax(kT) + Bv(kT)

y(kT) = Cx(kT) + Dv(kT) (6:3-6)
Define a new set of state variables q, such that
x(kTy = Mg(kT) (6.3-7)

Equation 6.5-6 can be rewritten in terms of these normal coordinates as

Mgi(k + 1)T] = AMgq(kT) + Bv(kT)
y(kT) = CMq(kT) + Dv(kT)

Premultiplying both sides of the first equation by M yrelds
ql(k + DT = M*AMq(kT) + MBv(kT)

- However, since MAM = A, vector-matrix state equations in rormal
Sform are

qi(k + 1)T] = Aq(kT) + B, wkT)

y(kT) = C,a(kT) + Dv(kT)

where B, = M~1B, the normal form input matrix, and C, = CM, the
normal form output matrix. This is a general procedure, and, since it
originates from the difference equations of the system, it is to be preferred
over the transfer function matrix approach.

(6.5-8)

Example 6.5-6. The simulation diagram of Fig. 6.5-9 represents the original system
whose transfer function matrix was given in Example 6.5-5. Determine the state
equations in. normal form.
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vy(T) va(RT)

Unit E)
delay yi(kT)
T

W Ay Unit

vk T} ?-—» defiray 3 e y2(RT)
- +

vo(kT)
Fig. 6.5-9
The vector-matrix equations for this system are
wlk + DTT ~1 0 0 wmED 10
aftk + D71} = | ~1 —2  o||lamtn) | + 1 1 [v‘(km:l
ok + DT] -1 0 —3]|zun 1 o L2dD)

[yl(kT)} [ 01 0] i‘gg_ [0 o] [vl(kT]
2
YlkT) || ~1 0 =3 (KT i 43| kT

For the A matrix above, the modal matrix M, and its inverse M~* are given by

2 0 ¢ I ¢ 0
M= -2 -t 0L M-t=]w] ~f 0
-1 0 1 L ¥ 0 1
Substituting into Eq. 6.5-8, the resulting normal form matrices are
-1 0 0 3 0
A=1 0 -2 0f, B,=|—2 -1},
0 0 -3 3 0

-2 -1 @
C, = I: ,» D= 0 0
10 -3 14
A check of all the transfer products by, shows that this set of matrices represents the

same system as that of Example 6.5-5.

The new state variables q are related to the old i i i
Mt e old state varjables x by the relationship

g1 = %xi g = “(’—’31 - 5172) gz == %a;l =+ EN
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The use of the relationship q = M~ix removes the previous difficulty of finding the
initial conditions on the state variables ¢ in terms of the known system initial conditions,

Finding the modal matrix may involve no more labor than any of the
other methods for finding the state transition matrix. In view of the
advantages of having a diagonal A matrix, the normal form is quite
desirable. It is also interesting to note that the mode expansion technique,
to be considered next, and the normal form produce the same effect of
uncoupling the state equations. In this respect, they are identical
approaches but are written in different forms. The form in which the
system equations are expressed is frequently one of personal preference
and familiarity.

6.6 MODE INTERPRETATION

The concept of expanding the response of a linear fixed system into the
sum of responses along the characteristic vectors of the A matrix can also
be applied to discrete systems with distinct characteristic values. The
development follows directly from the equations in normal form.

From Eq. 6.5-8,

q(T) = Ag(0) + B,¥(0) (6.6-1)
and
q(27) = Ag(T) + B,¥(T) (6.6-2)
Substitution of Eq. 6.6-1 into Eq. 6.6-2 yields
q(27) = A*q(0) + AB,¥(0) + B.¥(T) (6.6-3)
Similarly,

q(37) = AqQ2T) + B,v(2T)
and Eq. 6.6-3 give

q(3T) = £%(0) + A®B,v(0) + AB,¥(T) + B,¥(27)

Continuation of this procedure leads to
q(kT) = Nrq(0) +kij]Ak“j“1Bﬂv( iT) (6.6-4)
=
Then, since q = M~'x and B, = M™B,
x(kT) = MA*M7x(0) —z—EZMA’”"f‘lM“ti( iT) (6.6-5)

Now, recalling from Section 4.7 that the columns of

Me=fg uw - ul
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form a basis and that the rows of M—, where

-3
M7P=| (r, = column vectors)

form a reciprocal basis, Eq. 6.6-5 becomes

r,*
X(‘kT)::;Eul w, - uﬂ}Ak X(O)
m..rnT___ _ _
T
Iy
=1 t:?
F2l w A BT
r,”

This can be rewriiten as -

2

# kel
X(kT) = E} [re X(ODAF + 3 {r, BYG T, (6.6-6)
o= i=0

Equation 6.6-6 is the discrete system analog of Eq. 5.6-10.

. The “modes” of the system are given by the terms of Eq. 6.6-6 for
te= 1, 2, ..., n. The mode expansion technique separates or uncouples
these modes, so that the response x(k7") is expressed as a linear weighted
sum of the modes. Each mode is directed along the characteristic vector
u,;, defined in terms of the state space %y, %, ..., x,. For an unforced
system, the amount of excitation of each mode is %iven by the scalar
prod!ttct {r;, x(0)). For a forced system, the scalar product {r;, By) is the
amplitude of the forcing function that is coupled to the ith mgde

In effect, the characteristic vectors represent a new coordinate.system

such that each mode of the system is directed along one of the coordinaté
axes. The_ normal form for the state equations performs the same task but
expresses it in slightly different form. Thus if the original state equation is

x[(k + 1)T] = Ax(kT) + Bv(kT)
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the transformation q = M'x, where M is the normalized modal matrix,
results in the new state equation

al(k + D)T1 = Aq(kT) + MBv(kT)

In this form the state variables ¢y, g3, - - . , §, are uncoupled, since A is a
diagonal matrix. The state variable ¢, is directed along the characteristic
vector w;. The scalar product (r,, x{0)} in the mode expansion is simply
the ith component of the normal form column vector q(0) = M~x(0), and
the scalar product {r;, Bv} is the ith component of the column vector
M-1Bv.

Example 6.6-1. Analyze the system of Fig. 6.6-1 using both the mode expansion
technique and the normal form of the state equations.

Unit Unit
v(AD) 3y dele;y w deiay b
iy ¢ r T
3
2
Tig, 6.6-1
The A matrix for this system is
R 17
A =
The characteristic roots are 4, = —2, and 4, = —1, The normalized characteristic
vectors are
1jv2 1yv3
U, = ~ Uy = -
—1/v2] | —2/v5

The reciprocal basis is then

V3 —4'5
r; = - Ey = -
V32 —v's

“The normalized modal matrix M and its inverse M~ are given by

1jvV2 1/«/5] { 2v'2 xfé]
M= _ _ M-t s _ B
~1j¥2 —2/v5 —vV5 5
Note that the rows of M1 are the reciprocal basis vectors r,.
The scalar products {r;, x(0)) are
ey, X(0)) = 2V22,(0) + V22,(0)
(o X)) = —V52,(0) ~ V520
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The initial conditions on the q vector are

22 V32
o0 — M-tx(0) — [ 22,00) + 2%(0)]

—V52,00) — V3 2,(0)
The forcing function Bv(kT) is the vector b times the scalar o(kT7), where

0
i

b ==
Thus the scalar products <r;, By(kT)) are
oL BYET) = V2 ok
(s, BUET)) = —V'5 o(kT)
The forcing function B,v(kT) is

V2
Boy(icTy = M~ bo(kT) = _ kT
-5
The general expression for the time response x(&T) is

— — [ S
X(kT) = 2V22,0) + V22—~ e, + 3 V2 (= 1)Uy T,

jus(}
- - J k-1 -
+ [=V52:(0) ~ V5 ON =2V, + 3 (—VEH~2) V(T
=0

The general expression for the time response (%7 is, from the above and Eq. 6.6-4,

=1 _
(=Dk0) + 3 V2 (=1)*Ny(iT)
F=0

qkT) = .
E— -
(202,000 + 2 (—V5)(—2)*~Vy(jT)

§=0

where ¢,(0) = 2V 22,0) + V2 2,(0) and g0) = — V5 2,(0) — V5 z,(0).
Obvnoasi_y both methods are equivaient, the g coordinates of the normal Sform being
the normalized characteristic vectors of the mode expansion.

6.7 CONTROLLABILITY AND OBSERVABILITY

The controllability and observability concepts presented in Section 5.7
carry over directly to the linear discrete system, so there is little need for
further discussion on these points. To restate the principal ideas:

Controllability is a function of the coupling between the inputs to the
system and the various modes of the system. If the system equations can
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be written with distinct A’s in the normal form

gk + 1)T] = Aq(kT) + Bv(kT)
y(kT) = C,qkT) + Dv(kT)

then all the modes are controllable if there are no zero rows of B,,. Stated
in terms of the mode expansion method, this means that none of the scalar
products (r;, Bv) vanishes.

Observability is a function of the coupling between the modes of the
system and the output of the system. All the modes of the system are
abservable if there are no zero columns of C,. Alternatively, this require-
ment could be stated as: The kth mode is not observable if all the scalar
products (¢, wy) = 0 for all i’s, where the vector ¢, constitutes the #th
row of the original C matrix.

For a sampled-data system there is an additional requirement. If the
continuous system has a partial fraction expansion which contains the
term 8/[(s + @)* -+ B*), and if the sampling interval T = w/f, then the
Z transform of this term,

32"[: . } - e dnpr =0
s+ af+ 1 1—2%Tcos BT + 2 %7

The system may even be unstable, with ¢ < 0, but this fact could not be
inferred from observations of the output. These are called “hidden oscilla-
tions,” and they occur when the zeros of the oscillation coincide exactly
with the time that the system is sampled.’®2 In this situation the system
is neither completely controllable nor completely observable. Therefore
the additional requirement for complete controllability and observability
of sampled-data systems is that, if a characteristic root of the continuous
systemn is —a = j§, then T 5% w/f.

6.8 THE STATE TRANSITION MATRIX

The state transition matrix for the linear discrete time system is inves-
tigated in this section. Similarly to the continuous case, the state transition
matrix is the fundamental matrix of Eq. 6.8-1 below, subject to the condi-
tion that [k, ko)T]1 = I, the unit matrix. Consider, then, the time-vary-
ing state difference equation

x[(k + DT = AkT)x(kT) (6.8-1)
If the initial conditions x(k, T} are known, then
x[(ky -+ 1)TT = Al TIx(koT)
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Similarly,
X[(ky + 2)T] = Alky + DTIAGk,T)x(k,T)

By a process of iteration, the continued product?®

F-1

*(eT) = TT A TIx(keT) (k> ko) (6.8-2)

is obtained.
Since the state transition matrix$[(k, k)T is defined by the relationship

x(kT) = [k, ko) TTx(k,T) {6.8-3)
then
bk, k)T] = Z’}: AnT) (k> ko) (6.8-4)
=1 (k= ko)

This process of obtaining the state transition matrix by iteration is similar
to the iterative procedure for computing the matrizant of the analogous
continuous system.

Fo;: the case where A(kT) is a constant matrix A,, the state transition
matrix §yflk, k,)T] is

byl(k, k)T] = AF™  A(KT) = A, aconstant matrix ~ (6.8-5)

This is analogous to the continuous case, where the solution for a fixed
system depends only upon time differences; whereas for a time-variable
case the solution depends upon both the time of application of cause and
the time of observation of effect.

For the time-varying case where A(kT) can be written as the sum of two
matrices Ay and Ay(kT), a perturbation technique can be used to obtain
the state transition matrix. This procedure is useful if the time-varying
matrix Ay(kT) represents a small perturbation upon the constant matrix
A, For this case

x{(k + DT] = {Ag -+ AkT)Ix(KT) (6.8-6)

This equat%on can be viewed as a constant system A, with a forcing function
¥(kT) applied, where v(kT) = A {kT)x(kT). Thus

x[(k + DT = Ax(kT) + v(kT), v(kT)= AKDx(T) (6.8-7)
The solution x(k7) for the system of Eq. 6.8-7 can be determined by the

same process of iteration used to give Eqs. 6.6-4 and 6.8-2. Thus

E—1
x(kT) = AY "%k, T) + 3 AF-"Vy(nT) (6.8-8)

Ry
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Substituting v(n7) = A (rT)x(nT) into Eq. 6.8-8 yields
Fo L
(kT == AF ™%k, T) + ¥ AP UA (nTx(nT) (6.8-9)

n=ko
This is a summation equation, and it can be solved by the usual methods of

iteration.
The first iteration is

k-1
X(kT) = AFx(k,T) + 3 A VA(nT)

ne==fo

n—1
X [Agﬂ—kﬂ’x(ko'r) + ¥ A((,“"“""“”Al(mT)x(mT):]
m=kg

Further iterations yield
x(kT) = [I + S(oAy) + S(PoAsS(PoAy)
+ S(pA1S(oA:S(oA))) + - - 1oxtie D) (6.8-10)

where the S indicates a summation of all terms to the right and <, i_s given
by Eq. 6.8-5. The state transition matrix (k7 k,T) can then be written as

$lk, ko)T] =
I+ S(boAy) + S(DeAS(PoAs)) + S(PoAsS(PiAS(PeAL)) + ;8'141);
(6.8-1

which properly reduces to ¢, for the case when the system is fixed, ie.,
Ay(kT) = [0]. .

quuation 6.8-11 for discrete systerns is analogous to Eq. 5.9-21 for con-
tinuous systems. If A, represents a small perturbation upon ti}e Ay, then
this series is rapidly convergent, and only a few terms are required to'i%nci
$l(k, k,)T]. The advantage of using this form for the state transxtif)n
matrix is that the general time-varying ¢ is expressed in terms of successive
corrections upon a constant ¢.

Properties of the State Transition Matrix

The state transition matrix for discrete systems has a set of properties
which are directly analogous to the properties listed for a continuous
system in Section 5.9. Namely,

Dllky, ko) T] =1 (6.8-12)

Sy, k) TTeb Ik, ko) T] = bl K) T (6.8-13)

Sl(ks, ko) T] = b~[(Kes KOT] (6.8-14)

FOTTEL SIS e )] = (090 (6.8-15)
dk) = b-(—Fk) (6.5-16)
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Computation of ¢

In general, the computation of the state transition matrix for the time-
varying case is a formidable task. Clearly, for any large value of n,
Eq. 6.8-4 becomes most unwieldy. In certain cases, where the difference
equations of the system can be handled, an analytical solution can be
obtained (see Section 2.13). However, this occurs rarely. Use of a com-
puter is generally the best method to obtain a solution.

For the fixed system, an analytical solution can generally be obtained.

Equation 4.10-20 provides one method of computing the state transition
matrix. Some others follow.

1. Cayley-Hamilton Method. For the discrete time case, the Cayley-
Hamilton procedure can be used for computing A*. Here the f(1,) to be
used is A," rather than the * used for the continuous case.

Example 6.8-1. Compute $(k) for the difference equation

Ytk + 2T + Syik + DT] + 63k = 0
The A matrix for this system is
0 1
A =
- )

assuming #,(kT) = w{kT), 2,(kT) = y[{k 4 DT} The characteristic equation ]fLI - A}
= 0 has two characteristic roots 1, = —2, Az = —3. Therefore

Fl) = A% = (=20 = a, + a4, = &g — 2o,
Fl) = A% = (—3) = ¢ty + aydy = ap = 3oy
From these two equations, a, = 3(—2P — 2(—3) and o; = (—2)* — {~3),
FlA) = A% = a0 + o,A

Hence

or
I —2F — =3 — 2P - (—3)
w}:[() (=3 (-2 ()]
=62 — (=3P —2(—2) + 3(—3)

Example 6.8-2. Compute k) for the system whose A matrix is given by

G 1
A=
N
The characteristic equation |AI — A| = 0 has two characteristic roots located at —1.
For this case of repeated roots, the conditions which must be used to obtain the a’s are

dFER)
ar

P Kt s
T e l" I — ;.___ =0’1: ey P
A=, dﬂ*l:,g(}“’ ]xmai ] S o PR W 2 pi=1

where p; is the order of the root. Hence (—1F = ay + 0 d; = @y — a; and wf(—1) =
o1y OF &y = —h{(—1)* and a4 = (—13%(I — k). Therefore

o @y IF—k —k
kY = )l + o)A = ( :] =(m1)k[: i ]

-yt — 2u, 1+
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Example 6.8-3. 1t is informative to take up the case in which the A matrix may have
complex roots. For this reason, determine $(k) corresponding to

g 1
A ==
w2 2
The characteristic values of this matrix are 1 & j. For purposes of evaluating A%, the
polar form V'3 ekialt js most useful. The computation of A* is then
F(R‘I) ae (2)k/25m’”'4 w0y + 00y + joy
F(dy) = (D2 Fld = gy o 0y — jo,
Adding and subtracting these equations yields (2)¥2 cos (knf4) = o -+ &; and & =

)2 sin (kn[4), or @, = (2)%[cos (knf4) — sin (k=/4)}. Since

D) = a0l + A = [ oM ]

Dy g + 204
then
kw <2 sin kw
oS T sm? 7
_ kiz
k) = (2} tem e \n ke
28I 7 cos 7; 7

2. Frequency-Domain Method. The Z transform, gz}alogous{y to the
Laplace transform, can be used to find the state transition matrix of the

aation x[(k + 1)T] = Ax(kT) (6.8-17)

Transforming both sides of Eq. 6.8-17, 2X(z) — zx{0) = AX(z), where use
has been made of Eq. 3.12-3. Thus

X(z) = (21 — Ay *ex(0) (6.8-18)
or X(z) = ®{z)x(0), where
B(2) = (zI — Ay 2 (6.8-19)

This form is stightly different from the analogous form <‘Il(s) = (s - Ay
for continuous systems. The state transition matrix is given by the inverse

% transform of ®(z), or

Gk = FH(L — Ay 2]
= ¥ residues of (X — A)~12" (6.8-20)

Example 6.8-4. Using the A matrix of Example 6.8-1, determine (k) by the fre-
quency-domaia method.
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—a= > 1
- _[SHS]

[z +5 1}
(o1 — Ayt = -6 z

T+ 2E+3)

For this case,

so that

Determining the sum of the residues of (I ~ A)-3 gives

H—2)% — 2—3) o) — (=33
¢(k)=[ A ]

—6[(—2) — (—3)] —A—2) + 3(~3)

Exemple 6.8-5. Using the A matrix of Example 6.8-2, determine (k) by the frequency-

domain method.
A=A =1 !
"
i1 z+42

For this case,
[z +2 1]
-1 =z
{ZI —_ A)‘“l TR AT e————

G

so that

Determination of the sum of the residues of (2I — A)~1e* yields

wo=co 0 T
k 14k

3. Transfer Function Method. As for the continuous case, the simula-
tion diagram can be used to obtain the terms @,(z). The basis for this
method is that the solution to Eq. 6.8-17 is

¥(ET) = k)x(0) (6.8-21)
Therefore x(kT) is given by
2(kT) = 3, 4y (K)2,(0) (6.8-22)
J=1

If all the state variables except the jth are set equal to zero, and a unit
initial condition is placed on %, then the response at the ith state variable
z,(kT) represents the term ¢,,(k). Therefore the transfer function from the
output of the jth delay to the output of the ith delay represents the term
®.(z). This is slightly different from the continuous case, where the
transfer function was calculated between the input to the jth integrator and
the output of the ith integrator. The difference is due to the fact that the
transfer function in the continuous case is expressed as the transform of the
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impulse response (in the continuous case, a unit impulse input establishes a
unit initial condition immediately), while in the discrete case it is the trans-
form of the unit initial condition response. If an analogy is desired, then
the transfer function from the inpuz of the jth delay to the ouspur of the ith
delay must be multiplied by 2z to obtain ®,(z). Since what is generally
desired is (zI — A)"* = z~P(z), the transfer function from the input of
the jth delay to the output of the ith delay is perfectly suitable.

Exampie 6.8-6. The simulation diagram of Fig. 6.8-14 represents the system of Example
6.8-1. Determine $k).

Figure 6.8-16 is the same diagram redrawn for the convenience of computing transfer
functions. Since 1/(1—Iloop transfer function) is equal to 2(z + 5}(z* + 52 + 6), the

No. 2 No. 1
Unit | 4, | ONE | 4 % -
delay defay o -
T T
Jorrrrrreed
6 -6
() (b)

Fig. 6.8-1

various transfer functions z~14;(z) can be obtained by muitiplying the forward transfer
function from j to i by 2(z + 3)/(z* + 3z < 6). By performing this operation, the matrix
(zI — Ay = z~®(z) is obtained. Thus

z-45 }j|

[ —6 =z
—_ 1l — g = i
L — Al =27 = S5 —%

The inverse transform of B(z) gives (k) as in Example 6.8-4.

Adjoint System-—The State Transition Matrix

Similar to the adjoint of an unforced linear continuous system, there
exists an adjoint corresponding to an unforced discrete linear system. The
adjoint operator L* is defined in terms of the system operator L by

{o, Ix) == {(L¥a, X) {6.8-23)

where o is the adjoint vector and the inner product denotest

k-1

{a,b) = > aT[(i + D)T(T)

i==Icq

¥ In the case of complex elements, the transpose is replaced by the conjugate transpose.
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Considering {a, Lx},

k=1
(o, Lx) = gkaT[(i + DTHXI( + 1T — AGT)x(T)}
= a(kT)x(kT) + kﬁa locz'{{i + DTIx(i + DT
s .
— aT(k,T)x(k, T) w_%%la'f[(i + DTIAGT)X(T)
fe—1 ’
.w_«.gk {a™(iT) — «7[(i + DIAGT)=(T)
+ & (kTI(kT) — a®(kyT)x(kyT) (6.8-24)
Then by identifying .
L*a = «”(iT) — «%[(i + DTIAGT) (6.8-25)
so that the adjoint equation is
a”(iT) = o”{(i + VTIAGT) (6.8-26)

the unforced system equation
X[(f + DT] = AGT)x(T)
can be multiptied by a”[(i + 1)7] and combined with Eq. 6.8-26 to yield
«” [ + DT + DT] = «TGTIXET)

Then by iteration

aT(kT)X(KT) = a¥ (ko T)x(k,T) (6.8-27)
Substitution of Eqs. 6.8-25 and 6.8-27 into Eq. 6.8-24 yields Eq. 6.8-23.
Thus Eq. 6.8-26 rewritten as

af(i + DT] = [AGT)) a(iT) (6.8-28)
is the equation for the adjoint system.

Since the system state trapsition matrix bk, k)T must satisfy Eq.
6.8-1,

Plk + L k) TT = ART)I$IKk, ko) T]
Taking the inverse and transposing,}
{7k + 1, k)T = [ARTT{S7(k, k)T (6.8-29)

Comparison of Egs. 6.8-28 and 6.8-29 indicates that the state transition
matrix of the adjoint system is

{1k, k)T = % [(ky, )T (6.8-30)

T X AKT) contains complex elements, the conjugate franspose must be takern.
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Note that the presentation here is the reverse of that of Chapter 5. There
the continuous analogs of Eqs. 6.8-28 and 6.8-30 were defined, and the
continuous analog of Eq. 6.8-23 resulted. Here Egs. 6.8-28 and 6.8-30 are
obtained from the definition of the adjoint operator, Eq. 6.8-23.

For the discrete time adjoint system, the state transition matrix

{7k, k)TI”
can be found by iteration of Eq. 6.8-28. The result is

{7k, kT =:§0{A-i(nr)]i" k> ke (6.8-31)

The state transition matrix for the original system, for ko <k, can be
found by reverse iteration of Eq. 6.8-1, i.e., Eq. 6.8-1 can be written as
x(nT) = AW (nT)x[(n + 1)T], and this expression can then be iterated
from n = k down to n = k;. The result is

E—1

x(k,T) = [EA“(nT)} x(kT)
so that -
B3

bllke, OT] =LA BT) k> k (6.8-32)

n==ky
These two equations show the validity of Eq. 6.8-14, namely,
¢k, k)T = Sl )TT k> ko

However, Eq. 6.8-31 was obtained by a forward iteration or running the
adjoint system forward in time from koI' to kT, while Eq. 6.8-32 was
obtained by a reverse iteration, or running the original system backward
in time from k7T to k,T. This is shown in Fig. 6.8-2.

k~1 1
Gl(ke, 2)T] =ﬂ§%A_ (rI)

k-1
&[(k, ko)T| = HkA( nT)
n=fy

k=1
&7 (ko T] = [T A(nT)

Lt I
&7 (BT} = LA™ (nT)

Fig. 6.8-2
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Note that the form of the state transition matrix for increasing time
(Eq. 6.8-4) is different from the form for the state transition matrix for
decreasing time (Eq. 6.8-32). The reason for this difference is that reversing
the time direction for a discrete system entails an inverse A matrix
{x(kT) = A~ (kT)x[(k + 1)T]}. Reversing the time direction for a con-
tinuous system simply entails reversing the sign of the A matrix [d/d{—t) =
—djdt]. A set of alternative forms of the state transition matrix is shown
in Table 6.8-1.

Table 6.8-1

Original System Adjoint System (Transposed)

Forward Direction Forward Direction

k=1 k%
Sk, kT = [T A(rT) E>ky UK ET]=T[ANaT) Lk >k

w2k Ti==ltg
Fg—1 kg1
bk, K)T] =1__[A(nT) ky > k &Mk, £)T] =HA"“1(nT) ks > k
Premf ez
Reverse Direction Reverse Direction

k=1 k—1
Sk, T = [TAMaT) k >k Uk OTI=TI AGT) &k >k

=k A==k
fp—1 kp—1

Sk, kT = T[A YD) kg >k &k, k)T =[] A(nT) ko > Kk
=k Rk

6.9 THE CCMPLETE SOLUTION

The complete solution to the set of state equations

xX[(k + 1)T] = AGT)x(kT) + BETWET)
Y(kT) = CET)xKT) + DETIVET)

can be found by a process of iteration and induction, similar to the method
used to obtain the state transition matrix. However, to illustrate the anai-
ogy between discrete and continuous systems, the adjoint system is used in
a method similar to the integrating factor method.

The state transition matrix of the adjoint system {~1[(k, ko) T]}¥ must
satisfy Eq. 6.8-29. Taking the transpose and postmultiplying by AkT)
yields

(6.9-1)

b7k, k) T] =7k + 1, kg TIA(KT) (6.9-2)



442  State Variables and Linear Discrete Systems

If Eq. 6.9-1 for x is premultiplied by $—*[(k + 1, k)7] and Eq. 6.9-2
is postmultiplied by x(kT) and the difference between the two equations
taken, the result is

&% + 1, k) TIx[(k + 1)T] — 7k, k) TIx(KT)
= &1k + 1, k)TIBGETVET) (6.9-3)

If k is replaced by m in Eq. 6.9-3 and both sides are then summed from &, to
k — 1, the result is

&Mk, ko) TIx(KT) — ™ (Ko, ko) TIx (ke T)
=3 & Y(m + 1, k) TIB(mTIVmT) (6.9-4)

ek
Since ik, &y} T] = I, premultiplication by ${(k, k)T gives

e 8

X(kT) = Sk, k)TIx(koT) + 3 ik, m + DTIBmITW(mT) (6.9-5)

me=fy
The first term on the right side of Eq. 6.9-5 represents the initial condition
response of the system, while the second term represents a superposition
summation of the effects of the forcing function. This equation is analo-
gous to Eq. 5.10-6 for the continuous case.
When the system under investigation is fixed, Eq. 6.9-5 can be written as
the sum of an initial condition response and a conwvolution summation:
1
X(kT) = Pk — kgx(koT) + 2 Pk — m — DBv(mT) (6.9-6)
m==kg
The corresponding output y(kT) is obtained by substitution of Eq. 6.9-5
or 6.9-6 into Eq. 6.9-1. Thus

Y(kT) = C(kT)l[(k, ko) TIx(koT)

Rl

+ 3 CkT)$l(k, m + DTIB(mTIV(mT) + DETWET) (69-7)

m=eko

for a time-varying system, or
B—1 -
Y(kT) == C(k ~ ko)x(k,T) + X Chp(k — m — L)Bv(mT) + Dv(kT)

mezfog
(6.9-8)
for a fixed system.
For the case in which the system is fixed, it is frequently convenient to
use the frequency-domain approach. For this case, Y(z) can be found by
transforming Eq. 6.9-1 directly. The result of this operation is

X(z) = (zf — A)2ax(0) + (I — AYBV(z) (6.9-9)
Y(z) = CzI — Ay %2x(0) + [C(zl — AY "B + DIV(z) (6.9-10)
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gn e};ample is now given which illustrates the various approaches that can
¢ taken.

Example 6.9-1. Determine the solution to the difference equation
Yk +2) + Sytk + 1) 4 6y = 1 (T == 1)
by each of the methods indicated below.

1. Classical Solution—Time Domain. Assurne Yulk) = B% Then (B + 5§ + 6)fF =
0,0r fi = ~2and B, = —3. The homogeneous solution is then y, (k) = Ci(—=2)

Co(3) Assume that y,(k) = C;. Then C, + 5C, + 6C, = 1 — 1
total solution is ) 2 G+ 6C =1, or G = 3. The

yik) = Ci(=2F + C(—3F + 4
Using the initial conditions y(0) and #{(1),
y(o) = CJ, + G4 & and y(}-) = """2C1 - 3Cz + &
The constants C; and , are
Ci=30 +yl) -3 C=1—290) —y(1)
Substituting these constants into the total solution gives the complete solution
k) = B(=2) — 2(=3FW(0) + [(—2F — (=3M(1) + BH(—3)* — (—2)* + 2]

2 ‘.S'.tate Variables Technique—Time Domain. From Exanple 6.8-1, the state
transition matrix for this system is given by

(20 — 2(~3) (=2)F — (3
e O[( =2~ (=] =220 4 3(-—3)":1
The B, C, and D matrices are

o
B=[I:I’ C=01 0], D=0

The output y(k) is given by Eq. 6.9-8 as

Dk) = [

=1

(k) = Ch()x(0) + 3, Chltk — m — DIBYGRT) -+ Dv(kT)
which, for this case, reduces to =

k%
Yk = 1 (K)(0) + droy(ly + E Puullk — m - 1)

me=l
The computation of the summation for a forced input may involve some skill in
finding a closed-form expression for the resulting series. The summation formula

%1 1— gt

—~1 _ —&a . .
> akml = (sum of a geometric series)
=) 1—a

is of particular use in expressions of this type.® Since ¢k — m = 1) = { e 2Yon—1
{=3)-m-1 the summation in this case is equal to
1 — (=2 _ 1 — (-3 1
I—(=2 1-(-3) 12

1 & 1 +d
+ Z(—3) -3 (—2)
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The complete solution is then
yik) = B2 = 230 + (=2 = (=3() + B3 — (-2 + &

The expression above for the sum of a geometric series is particularly helpful if the
mafrix summation
e~ Ak-—m-—;

=g

is to be found. The Cayley-Hamilton method can be applied where F(4;) = (1 — 4%/
(1 -~ i),

A useful relation in finding the closed-form expression, if one exists, for 2 summation
is the formula for summation by parts, analogous to the formula for integration by parts.
This formula is given by (see Problem 2.12)

N N
> ulk) Aoy = [ — Y ok + 1) Au(k)
M

M
As an example, the summation

N

3 ke ry ]

[}
can be found by setting

ul(ky = k, dv(k) = r*, Then Au(f) = 1,
E—1 P o e
v(k)mﬂz:gr“+ C1=m+c1=;::?+ Cs

For convenience, let C, = 0. Then

Z Ert m [ " } _ z s
D r 1 )

— 1ig F—1

[NFTHE (N 1rEHE -] rotl

1
r— 13
3. Standgrd Z Transform Technique. Taking the Z transform of both sides of the
given difference equation, there results

SYE) = W0) — #(D] + SL¥E) — yO) + 6YE) =

or
#f(z — 1) + 2[zy(0) + y{1) + 5y(0)]
E+2E+3

The poles of this function are at z = I, —2, —3. Since

(k) = residues of Y(2)2** at poles of ¥(z)

Y(@) =

there are three residues to compute.
Ry = (z — DY (@& Y,y
Ry = (2 + DY@ ey = [~ + 39(0) + y(DI(—2)*
Ry = {2+ HF (@Y ey = [ — 20(0) — y{1)(—3)*

i
Py
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The complete solution is then
(k) = (=20 — 2(=3W0) + [(—2* — (—3w(1)
+ B3P — H-DF+ A

4. State Space Technique—Frequency Domain. From, Eg. 6.9-10, the Z transform
of the output y(&) is

Y(z) = Clzl — Ay "ex(0) + [C( — AY B -+ DIV()
From Example 6.8-4, the matrix (2 — A)~1is given by

[z-i—.‘i 1]
(o — Ayt = & 8 *

&+ 2=+ 3)

The B, C, and D matrices were given in part 2 of this example as
0
B = [1], C=0 0, D=[0]
The transform of the output, Y{z), is then

z{z + 5) z z
¥ =
O = T+ PR P K el g g sy o

This z njarfsform corresponds to the ¥{z) found in part 3 of this example. Therefore the
answer Is identical with that given in the three preceding parts of this example.

() +

5. Sr_ate Variables Technigue—Normal Form. The modal matrix M is found by
successive substitution of the characteristic values of A into the matrix Adi [ — Al
The characteristic values of A are 4; = =2, 1, = —3, and Adj [AL — A] is given by

AdS 1:'

Adj [T — A] =
i [ | [__6 3

Therefore M is given by

1 1
M= l: ] and M= l: 3 1}
-2 -3 —2 1

—2
MIAM = A w [ 0:|
(L

the transformation ¢ = M-'x leads into the form
ok + 1) = Aglk) + B.wk) (T=1)
¥k} = Cuglk) -+ Dv(k)
where B, = M~B and C, = CM. Therefore gy =2 30 + 23, g, = —2w; — 3, and

Since

1
B, = [ 1] and C,=[1 1]
The output y(k) is then

k=1
¥(k) = Cold4q(0) + 3 C.A*"~1B,v(m)

me
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from Eq. 6.6-4 and the above. Since A is a diagonal matrix, finding A means'simplvy
raising the elements of A to the kth power. This is one of the advantages of using this

method, It follows that -
gk} == (20} + (—3)q:(0) + z_o{(-Z pomiel — (o Yot

” y(k) = (—27:0) + (—3)g0) + B(=3)* — 3{(=2)* + 4]

If it is desired that y(k) be expressed in terms of the original initial conditions, then
(@) = 32,(0) + 2,(0) = 3y(0) + y(1) and gu(0) = —2%;(0) — 2y(0) = —~2(0) — (1)

ield .
7 (k) = [39(0) + y(I(—2F — [24(0) + y(DU—3)* + [F(—3Y — (=2 + ]

6. Mode Expansion Method. Since

o1 PRI I
M=[—z Y ez <1

from part 3, it follows that

o[ o]

o] e e ]

form a reciprocal basis, Thus, from Eq. 6.6-6,
y(k) = @,(k) = 321(0) + 2,00 (—2)* + (=22, (0) — 2(0)I(—3)"

form a basis, and

+ S 2y — ap
me=G

This is the same expressions as for y(k} in terms of the ¢’s in part 2. Thus ;)erform?.nce
of the indicated summations and substitution of ¥(0) = #,(0) and y(1) = =,(0) yields

the desired resuft.
1. State Variables Technique—Partial Fraction Expansion. Since
1 1 1

HO = 5 d6 252 743
then Ve Ve
Z 2z

A5 A A PR

¥{z) parn R fle] (%)

or y(k} = w (k) + x,(k), where @, and =, satisfy the first order difference equations
zlk 4 1) + 25:0k) = o(k) and =k + 1) + 3wy(k) = —ov(k)

Therefore the A, B, C, and D matrices are

Am[“’"z 9} Bw[ }], C=[ 1, D=10]
0 -3 -1

Since these are exactly the same matrices which were derived in part 5, y(k) is then

ylk) = (—2V2,(0) + (—3Vml0) + (H—3F — (-2 + 4%
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However, since the fransfer function gives no clue to the refationship between y and
%, this relationship must be obtained from examination of y(k). This is necessary
because the known initial conditions are in terms of ¥(8) and y{1). The desired relation-
ships can be found by substituting & = 0 and & = 1 into w(k) = (k) + 2(k). This
gives ¥(0) = 24(0) -+ «x(0) and (1) == 2,(1) + z,(1). Now, using the equations for
zy(k 4 1) and z,(k + 1) at &k = 0, these expressions become

$(0) == 24(0) + 23(0) and  y(1) = —2,(0) — 3=,(0)
Solving these two simuitaneous equations yields
@(0) = 39(0) + (1) and =0) = —2(0) — ¥(1)

which are the same relationships found in part 5 for the g's. Although this procedure is
not too difficult for a second order systern, it may prove to be laborious for higher order
systems with many inputs and outputs.

In looking through these various approaches, there are advantages and
disadvantages to each. For single input-output fixed systems, the standard
Z transform approach is certainly the easiest to use. For multiple input-
output systems, a matrix technique is advisable. Which one of the matrix
techniques to use is a different question. Since time-varying systems are

almost impossible to solve analytically, the time-domain formulation of a

time-varying system is best for computer purposes. For the fixed case,
the Z transform of the state equations is quite useful, since numerous
Ztransform tables are avajlable. The use of the Z transform bypasses some
of the difficulties in evaluating the summation forms that are obtained in
a time-domain computation. It appears that the normal form is perhaps the
best form. conceptually, for mathematical proofs, and for time-domain
analysis of the unforced system. When the system is subject to a forcing
function, the Z transform of the normal form is most convenient,

Stability of Fixed Discrete Systems

For a discrete fixed system, the state transition matrix approaches zero
as k approaches infinity, if the characteristic values of A are located inside
the unit circle. If a characteristic value lies on the unit circle and is of
order one, then (k) is bounded as k approaches infinity. For any charac-
teristic values which lie outside the unit circle or for multiple characteristic
values which lie on the unit circle, §(k) becomes infinite as k approaches
infinity. These statements can be proved from the Cayley-Hamilton
method of obtaining A, which depends upon obtaining certain clements
%, such that

L
A= ¥ AT
=0
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where » is the order of the A matrix. The «,, are obtained from the equa-
tions

n—1
F@) = 3 anhs™ = A
o1 -
el
& r

dr (n-—l ! )
dA®? J.=l;— ;ﬁ; m:Omm

where p=0,1,2,,..,r — 1 for the case where the characteristic value
is of order . When the characteristic values are distinct, the elements
of A* contain linear combinations of elements such as (4;)*. These ele-
ments vanish as k approaches infinity if |4,] < 1, become bounded if
|A;] = 1, and become unbounded if |4] > 1. When there are multiple
characteristic values, the elements of A* contain linear combinations of
elements such as kA:1, Clearly, these elements are unbounded for
|4;] > 1 and approach zero as k approaches infinity for Al < L.

dp
= — (4
Py dl"( )

A=z g

610 THE UNIT FUNCIION RESPONSE MATRIX

The output y(kT) of a linear time-varying discrete system can be written
in terms of the A, B, C, and D matrices as

(kT) = kf CkT)SIk, m + DTBETIW(mT) + DETIVET) (6.10-1)

FRm—

by setting k, equal to —oo in Bq. 6.9-7. In terms of the unit function
response matrix H[(k, m)T7], the output y(kT) is given by the superposition
summation

y&T) = 3 HIk, m)TH(mT) (6.10-2)

M=
A comparison of Egs. 6.10-1 and 6.10-2 shows that the unit function re-
sponse matrix is

= [0] k <k (6.10-3)
For a fixed system the unit function response matrix is

Colk—ky— 1B kZ2k+1
D k =k,

= [0] k < kq (6.10-4)

Hmmwﬁ={
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In tife frequency domain, from Eq. 6.9-10, the unit function response
matrix H(z) for a fixed system is given by

H(z) = C@l — A)B -+ D (6.10-5)

Example 6.10-1. The system of Fig. 6.10-1 represents a simple sampled-data system.
The block (I — «+%)/s is commeonly called a zero order hold, since it takes the input
sample at time AT and provides this value as its output uatil time (f + 1)T. Determine
the unit function response matrix H{AT) assuming 7= 1.

) &~ T - : 7 e (kT)

}ﬁ T 1 s proway ¥t}

Fig. 6.10-1

The transfer function G{z) of the forward transmission is

1 et -] 1

Using this transfer function, the sampled-data system of Fig. 6.10-1 can be redrawn as
the discrete time system of Fig. 6.10-2. In this figure, the forward path has been broken

+ Unit
eml-1 delay :
+ T=1
+ +
v(kT) —a{ i &1 — 3 (kT)
- +

Fig. 6.10-2

up int_o its partial fraction expansion. The closed-loop system state equations can then
be written down by inspection. They are

[xl(k e I):| _ [ 1 1 — & Paylky el — 1
sk + ] -1 0 ][%(k)} M [ i ]v(k)

z5(k)
k) =
¥y =11 1] [:xz(k)]
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From Eq. 6.10-4, the unit function matrix H(k) is

$yilic = 1) Pl — 1}:} [9"”1 - E:}
Hk =1 1
w=t ]Lﬁaz(k —1) dulk—1) 1

Since
Oy b ooy Oy e OgeTF
bk — 1) = AR =] + A =
-y oy
then H(EK) = oge~! 4 ay{l — 1), where o and «; are to be determined. The roots of
the characteristic equation
]ﬁ.I—-A[a:P—E-}—(i — g = O
are 1; ; = Nek/® where N = 0795, & = 0.680 radian. Applying the Cayley-Hamilton
method, where F(4,) = A*%, the equations
NE=Dl—10 = oy 4 o, Nei?
Nl 18 e g + o1 N5
are obtained. Solving for ¢, and oy,
e = N-Yfcos (& — 1)8 — cot 0 sin(k — 1)6]
N2 sin [(k — 1]
L
sin &
The unit function response is then
Hk) = ¢ *N®1) feos (k — 1) — cot 8 sin (& — 1)0]
(1 — Eml)N{k—i)

in (k — 1)
sin 8 sin { )

01' Hk) w= (0.795)("‘1){(}.368 cos [0.680(k — 1)] + 0.724 sin [0.680(k — 1)]}

This result can be checked by using conventional feedback methods.

Gz 0368 +0.72) {N = (.795
T+6@E (7 — Nz — Nei) | 6 = 0.680 radian

Taking the inverse Z transform,

HE) =

0 4 07210 — (N 4 0.72)e“f(k“1)9]

{Ne
H{) = (}.3683\’("’_1}[ N =)

After some manipulation, this can be written as

0.72
= - — in(k — 18
H{E) = 0368 N1 {cos k— D8+ (cot 9+ o 3) sin { ) }

= (0.795)%-2{0.368 cos {0.680(k — 1)} + 0.724 5in [0.680(k — DI

For a time-varying system, the elements of the unit function response can
be obtained by simulation in a manner analogous to that used for con-
tinuous systems. For an m input-p output system, the ith output y,(kT) is

S

e
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given by
YAKT) == z Ehu [(k, 1} TJo,(nT) (6.10-6)

g Jaml

The jth column of H[(k, n)T] can be obtained by setting all the inputs except
the jth equal to zero, and placing a unit function on the jth input at time
nT. The outputs of the system are A,{(k, n)T_] fori=1,2,..., pand for
fixed j. In order to obtain the complete response &,,[(k, #)T] as a function
of both k and n, a set of runs must be performed, each run starting at a
different time n, T, 1,7, . ... The results of these runs must then be cross-
plotted to obtain the variation with respect to »T, the point in time of
application. Proceeding to different values of j, these tests must be repeated
until all m columns of the unit function response matrix are obtained. This
1s the same problem that was presented in the last chapter where the impulse
response matrix H(z, ) was obtained by a similar cross-plotting procedure.
In this discrete case, however, the difference equations can be solved on a
digital computer and the necessary cross-plotting also done by the com-
puter. Thus the discrete modified adjoint system is not discussed,

Example 6.10-2, 1n Section 5.11, the differential equation % + ¥ + ¥ == 0 was ana-
Iyzed, and the impulse response 4(T, 7) was obtained by performing a set of simulation
rans for different values of = and cross-plotting the results for fixed 1 = 7. The results of
the simulation runs are shown in Fig. 5.11-24, and the results of the cross-plotting are
shown in Fig, 5.11-2b. Perform the same task, but for the discrete version of the same
differential equation, This method is often used to solve a time-varying differential
equation numerically by either a desk calculator or a simple digital computer routine.
A discrete version of the equation can be obtained in the following manner. Since

a2y = lim gt 4 i) — 29() + yl(e — )
Aty i

B |FEER )
dt ey h

an approximate solution can be obtained by letting & = T and ¢ = kT, and using a
“small” value for T. Thus

$ET 4 T) = 2y(kTY + kT — T)  kTWykT -+ T) — y(kT)]
Ts + T

+ y(kT) = 0

Qr
(1 ETHYT + TY + (T — kT? = DyETH + kT — T =0

'The initial conditions y(r) = 0, 4{(=) = 1 are replaced by

¥k T) =0
oD + T} — y(koT7 -1
7 =

or y€koT) = 0 and y(koT + T) »= T.
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Fig. 6.10-3a

Using a value of 7= 0.05 and &, = 0,4, 8,12, ..., 48, the points shown on Fig.
6.10-3q are obtained. Obtaining these points is a relatively simple task for a digital
computer, and the cross-plotting can also be performed by the computer. A desk
caloulator can also be used. However, care must be taken to use sufficient accuracy
in computing each point, as the round-off errors can build up rapidly. The interested
reader can consult any of the many texts written on numerical solution of differential
equations.***

As a comparison of the accuracy that can be obtained by simple pumerical methods
the results of the continuous system simulation run and the results of the approximate
numerical solution for + = k, = 0 are listed in Table 6.10-1. The numerical solution
is given to three places, while the simulation run is given to two places, this being the
accuracy of reading from the original recording. For this comparison, the discrete
simulation reproduces the results of the continuous simulation within the accuracy of the
recording of the continuous information.

A crossplot of the points at X7 == 2.0 is shown in Fig. 6.10-3. The points of Fig,
6.10-3b represent A(2.0, k,T), the unit response of the system as kT = 2,0 as a function
of the time of application of the unit input. A comparison of the cross-plot obtained by
discrete simulation and the cross-plot obtained by the continuous simulation (Fig.
5.11-2b) is shown in Table 6.10-2. This compatrison shows that the discrete simulation is
fairly good, but not within the accuracy of the continuous system:. The differences
between the continuous and discrete systems are due to the accumulation of round-off
error and the basic approximation involved. Because these effects are more noticeable
farther out along a simulation run, a cross-plotat kT == KT shows these effects more than
a cross-plot at kT" < KT,

_—
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Table 6.10-1

T =0.05
k  h(k,0) A, Q) k k0 Kt 0)
0 0 0 22 0751 075
2 0100 010 24 0766  0.76
4 0198 020 26 0711 077
6 0291 029 28 0769 077
8 0380 0.38 30 0760 076
10 0461 046 32 0746 075
12 0534  0.53 34 0727 073
i4 0597  0.60 36 0705 071
16 0651  0.65 38 0.679  0.68
18 0.695  0.69 40 0653 065

20 0.728 0.72

Figure 6.10-3b can also be obtained by a discrete simulation of the modified adjoint
differential equation. The original differential equation is § - & -+ % = 0, and the
adjoint differential equation is & ~— (dfd@)(ta) -+ « = 0 or & — ta& = 0. Making the
change in variable r = T — #,, the modified adjoint differential equation is then

d? doec
g T 1}
dry? +Te— 1) dt, 0
Q.7
1 { T
L
L d
0.6 . T=005 ]
-
L]
05— . .
L ]
g 04— -
E.?:_ Cross-plot of unit function .
g response at K7 = 2.0
E 03 v -

0.2 ]
L
0.1 ]
H i |
0 05 1.0 15 2.0
BT —
Fig. 6.10-36
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Table 6.10-2

T =005

ko h2.0,kT) K20, 7)

0 0.653 0.65

4 0.628 0.63

8 0.603 0.60
12 0.574 0.36
16 0.541 0.53
20 0.501 0.48
24 0.450 0.43
28 0.385 0.37
32 0.297 0.28
36 0.175 0.17
40 Y 0

The discrete simulation of this equation is found by the procedure used to find the
discrete simulation of the original differential equation. The resulting difference
equation is

14+ & — T+ T) 4 [~2 -~ (K — ENTR' T+ (k' T—T) =0
where KT = T, is the fixed end time. A comparison of the points obtained by th.is
simulation and those obtained from the continuous system simulation is shown in

Table 6.10-3.

Table 6.10-3

Kr=10, T=101

ko k500 By M5, 0)
0 0 0
1 0.100 -
2 0.191 0.18
3 0.276 —
4 0.350 0.33
5 0.420 -
6 0.487 0.47
7 0.550 —
8 0.612 0.60
9 0.673 —

10 0.733 0.72
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Transmission Matrices

For single input-output systeras, the fransmission matrix is sometimes
used to describe the unit response of the system. The transmission matrix
is simply an ordered array of the elements #(iT, jT), where i indicates the
row and j indicates the column where the element is located. The general
form for the transmission matrix is then

A(0, 0) 0 0 0
KT,0) KT, T) 0 e 0
Hp(kT, koT) = | 42T, 0) AQ2T, T) hQ2T,2T) --- 0
WmT,0) hmI,T) h(mT,2T) h(mT, mT)
(6.10-7)

All elements to the right of the element A(iT, iT) are zero, since the system
is assumed to be physically realizable, or nonanticipative. If the input
v(kT) is ordered into a column vector whose components are v(0), v(T),
v(2T), ..., v(mT) then the output of the system can be written as

¥k T) = kT, kT, T) (6.10-8)

It is understood that the output y(k7) is ordered into a column vector
whose components are y(0), y(T), y(2T), . .., y(mT). The ith component
of the column vector ¥(kT') is then

Y(iT) xéﬁhw, ko) TlokoT) (6.10-9)

For a fixed system, the elements of the transmission matrix are A(GiT —
JT), the argument being the difference between the time of observation and
the time of application. Thus

A(0) 0 0 )
WT) A(0) 0 ce 0
HekT)= | oy WD) R(0) e 0
WmT) h(mT — T)- ( k'(r;1T—— 27) -+ A(O)
(6.10-10)

These matrices are not very useful when dealing with systems with several
inputs and outputs, but they have some application when dealing with
single input-single output systems or systems comprised of interconnected
single input-single output systems.
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Example 6.10-3. Repeat Example 1.9-1 using the transmission matrix description.
k) k=0,1,2,...,can be written as

y(k) = Dy(k)v(k)

where
{0}
(1)
¥k = [¥(2)
and from Example 1.9-1,
— _ 0 |
o0
1
200
2
4 2 0 0 PR X
s v =
D)= g 4 2 00 an
Note that by defining .
(0} ©
o(l} =@} ©

Vo) = | @) o) »©@ O

)]
FeY)
4y = | d2)

y(k) can also be written as y(k) = Y pld(k).

Example 6.10-4. Write an expression for y(k7), k =0,1,2,..., for the system of
Example 3.13-6.
Defining the indicated transmission matrices and vectors as above,
qikT) = WkT) - GHp(kT)a(kT)

Or
qkT) = {1 + GHpk D) v(kT)

Then
YT) = Gl + GHplATH(ET)
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611 THE METHOD OF LEAST SQUARES

At this point in the presentation of the preceding chapter, the evaluation
of the mean square outputs of continuous systems was developed from the
viewpoint of the modified adjoint system. As indicated in the previous
section, the discrete modified adjoint system has limited value, because a
digital computer can be programmed to overcome the analogous difficulty
encountered with continuous systems. Thus this discussion of linear
discrete systems departs from paralleling the preceding chapter to consider
the general topic of least squares. This topic has considerable importance
in the areas of communications, control, numerical analysis, prediction,
and others, and, upon completion of this section, the reader is encouraged
to investigate the continuous analogy to this section.'®7

Suppose that the output y(k7) of a linear, stationary, discrete system is
given by a weighted sum of the present and a finite number of past values
of the input o[(k — m)T}, m=0,1,2,..., M — 1. This can be written

in terms of the weighting factors A(mT) as

y(kT) = v(kTH(0) + v[(k — DTI(T) + - -~
BM-1
+ o[k — M — DTM — DT = 2, o[(k — m)T]h(mT)
m={

In order to determine the system-weighting factors,J 2> M sets of measure-
ments of v[(k —m)T], m=0,1,..., M — 1, and the corresponding
y(kT) could be made. This would yield J equations of the form

Upalty + Urphla b b Uity =

Vgrfy b Vgnlty + -t Ugprfinr = Y

Ogrfy + Vg ot vapyh = vy
where the subscript on the ¥’s and the first subscript on the v’s denote a
particular set of measurements. The subscript on the A’s and the second
subscript on the v’s denote the argument (m + 1)7. If only M sets of
measurements are made, i.e.,J = M, unique solutions exist for the 4;, but
noise and measurement errors generally cause Eq. 6.11-1 to yield incorrect
values. Thus, in such an experimental situation, many measurements are
usually taken, and more equations than the number of unknowns are found.
Hence J > 3. Now, however, values for the A; cannot be found which
satisfy all the equations. For example, substitution of the values #,°,
hl, ..., k0 for the unknown #y, ks, . . ., &, in the left side of Eq. 6.11-1
might yield #° % ..., ¥, which differ from ¥, %5, ..., 4, bY €=
yY —wy, i=1,2,...,J. Faced with this dilernma, one might attempt

(6.11-1)
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10 determnine the &; in such a way that each of Egs. 6.11-1 is at least approxi-
mately valid, and such that some measure of the total approximation error
is as small as possible. For example, the /,° can be determined such that
the e, have the smallest possible mean square deviation, i.e.,

J 5
I'= Z ‘3@2 = Z (%‘0 — ¥
el =1

is a minimum. This is known as the method of least squares. It is, in
essence, an attempt to find the “best” values for the A;.

The preceding problem can be viewed geometrically. Let the vectors
Yy, ¥, . . . , ¥y denote the columns of

U Uy Uit
V = Vg1 Vna Vanr
Ui Ura Vit
Then the vector B
¥°
i
Y=
Ly
is given by ¥° = A%y + B"vy 4 - -0 + hpvp. The problem becomes one

of determining ,% 45, . . . , 215,%, such that [le]®* = [[%° —y[*isa minigwm,
where

mel B Myi 7
€g Y2
e=] and y=
| €7_| ¥
Thus the problem is to determine
h,°
iy°

hO

Sec. 6.11 The Method of Least Squares 459

vy, Vg, and ¥9

in horizonial piane
¥
ha!

RN

[\

‘__]/_A yowe
V2
Fig. 6.11-1

such that y° has the smallest possible deviation in norm from y. This is
represe{lted for the.cas? M = 2 in Fig. 6.11-1. In the general case, the set
of all linear combinations of vy, v;, ..., vy, forms a space R and the
ort{‘;ogjonal Rrojectz‘orz of ¥ on R? is the vector in R? which is the closest to v.
This is 2 s;mpie generalization of what is geometrically apparent for
M = 2in Fig. 6.11-1. Thus h%is to be chosen so that the linear combination
yUDw My + vy o+ oo - < gy is the orthogonal projection of y on
RO

Given a space R and a vector y, which is in general not contained in
R®, y can always be represented in the form

y=y"—e
where tl'%e vector y° belongs to R® and e is orthogonal to R% This is the
geomet.r}cal idea behind the Gram-Schmidt orthogonalization procedure
of Section 4.5, Taking ¥, ¥5, ..., ¥ as a basis in R° y° = h,%, +
he®¥® + «+ o 4 BySvyy, where B9, RS%, . . ., By, are to be determined. The

vector e = y° — y must be orthogonal to R, for which is is necessary and
sufficient that

v =" —y,v)=0 i=12...,M
Substitution for y° vields

<k10v1+h2"v2+"'+hM”vM—y,vi}=0,- ful,z,_._,M
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or
B 0v, Vo) b R ve, Vo) A A B s V) = {y, ¥1)
B%vy, Vo) + Bg™(¥y, Vo) 0 By NV Yo = (Y, Va)

B 00wy, Vary - e, Vo 0t A RV Yo = Y, Vi

The determinant of this set of equations is the Gram determinant G
defined by Eq. 4.5-11, and it is nonzero as long as v, Vi o oo Vi ar€
linearly independent. This is, in essence, an observability _coz}dmon.
Assuming this, the value of h?, as determined by least squares, is given by

" (6.11-2)

Gnv) v o M v VD (Vaa, V) o (W)
e = E_ (i, Vo) ¥ 0 Ve Ve Ve (Vo Vor 00 ¥, Vp)
ey FuvVar 0 Gen Vi) V) Fun Vg o0 VgV

{6.11-3)

fori=1,2,..., M.

The corresponding minimum value of the mean square deviation,
I = lle||?, can also be determined from geometrical consideraﬁons.‘ For
M == 2, it is the square of the magnitude of the altitude of the parallel-
epiped determined by vy, ¥;, and y. In general, it is the square of the mag-
nitude of the altitude of the hyperparallelepiped determined by ¥4, ¥a, . - .,
Y1, Y- If V, is used to denote the volume of this hyperparallelepiped, then

V, = Vl]e}, or
2

el =%
where V is the volume determioed by vy, ve, . .., Y5 But ¥ 2 is G, the
Gramian of ¥, ¥g, .. ., Yar, ¥, and Vis G, the Gramian of vy, ¥g, . . ., ¥pp.
This is readily apparent for the case in which the vectors determining the
hyperparallelepiped are orthogonal. For the nonorthogonal case, the
Gram-Schmidt orthogonalization procedure can be used to arrive at
the same conclusion. Thus
G

T = ”eﬁtanin = 2

G

is the minimum value of the mean square deviation. .
It is useful to rewrite Eq. 6.11-2 as VIVh® = VTy, Then Eq. 6.11-3 is

B = (VIV) iy Ty (6.11-4)

where the observability condition is that VTV be nonsingular. It is
interesting now to assume that one additional measurement 7 5., is made,
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which is supposed to equal v ara® A U gl e o 71,007 0%
and determine a new least squares estimate of h® based on these J -+ 1
measurements. Let — -

Uyria
Uriig
¥ o=
Vrit, a1
Then Eq. 6.11-4 becomes
CJYRNTT Ty
by = | IVE | v]|— VT | v - (6.11-5)
vE ¥ores

where the subscript on h} . ; indicates that J + 1 measurements are used.
Equation 6.11-5 provides a means of updating the least squares estimate
of B®. However, it is not satisfactory from a computational viewpoint if
the updating is to be continued, because of the matrix inversion required
for each new estimate.

In ap attempt to avoid repeated matrix inversions, let P, = (VIV)1,
Then define

V-1
PJ»iml — [VT f Y] ..... — WTV o WT]—I
vT
so that . ot
Pri=[P,7 +w'T (6.11-6)

Direct substitution of
Pro=P; — Pyw(v'P,v + 1yH7P, (6.11-7)
into Eq. 6.11-6 indicates that Eq. 6.11-7 is a valid expression for P,

Then, denoting the h° based on the first F measurements by h;% Eq. 6.11-5
can be written, after simplification, as

b7 =" + Pov(v Py + 17y — VPR, (6.11-8)
Since (¥TP;v + 1) is a scalar, repeated matrix inversions are not required
to update the estimation of h. The updated h° is the former h° plus a

weighting of the difference between the new value of y and the estimate of
¥ based on J measurements.
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