4 /| The Performance of
Feedback Control Systems

4.1 INTRODUCTION

The ability to adjust the transient and steady-state performance is a distinct advan-
tage of feedback control systems. In order to analyze and design control systems,
we must define and measure the performance of 2 system. Then, based on the
desired performance of a control system, the parameters of the system may be
adjusted in order to provide the desired response. Since control systems are inher-
ently dynamic systems, the performance is usually specified in terms of both the
time response for a specific input signal and the resulting steady-state error.

The design specifications for control systems normally include several time-
response indices for a specified input command as well as a desired steady-state
accuracy. However, often in the course of any design, the specifications are revised
in order to effect a compromise. Therefore, specifications are seldom a rigid set of
requirements, but rather a first attempt at listing a desired performance. The effec-
tive compromise and adjustment of specifications can be graphically ilustrated by
examining Fig. 4.1. Clearly, the parameter p may minimize the performance mea-
sure M, by selecting p as a very small value. However, this results in large measure
M, an undesitable situation. Obviously, if the performance measures are egually
important, the crossover point at puny provides the best compromise. This type of
compromise is normally encountered in control system design. It is clear that if the
original specifications called for both M, and M, to be zero, the specifications could
not be simultaneously met and the specifications would have to be altered to allow
for the compromise resulting with poy,.

The specifications stated in terms of the measures of performance indicate to
the designer the quality of the system. In other words, the performance measures
are an answer to the question: How well does the system perform the task it was
designed for?

109



110 THE PERFORMANGE OF FEEDBACK CONTROL SYSTEMS

Performance

Performance measure, Mo

measure, M

t
i
| i 0
0 i 2 Pamin 3 4 5

Parameter, p

Fig. 4.1. Two perforrance measures vs. parameter p.

4.2 TIME-DOMAIN PERFORMANCE SPECIFICATIONS

The time-domain performance specifications are important indices since control
systems are inherently time-domain systems. That is, the system transient or time
performance is the response of prime interest for control systems. It is necessary to
determine initially if the system is stable by utilizing the techniques of ensuing chap-
ters. If the system is stable, then the response to a specific input signal will provide
several measures of the performance. However, since the actual input signal of the
system is usually unknown, a standard fest input signal is normally chosen. This
approach is quite useful since there is a reasonable correlation between the
response of a system to a standard test input and the system’s ability to perform
under normal operating conditions. Furthermore, using a standard input allows the
designer to compare several competing designs. Also, many control systems expe-
rience input signals very similar to the standard test signals.

The standard test input signals commonly used are (1} the step input, (2) the
ramp input, and (3) the parabolic input. These inputs are shown in Fig. 4.2. The
equations representing these test signals are given in Table 4.1, where the Laplace
transform can be obtained by using Table 2.5. The ramp signal is the integral of the
step input, and the parabola is simply the integral of the ramp input. A unit impulse

r(£) F(t) {8

0 F— { — . F
(@ (b) (¢}
Fig. 4.2. Test input signais.
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Table 4.1
Test signal r{&} R{s}
Step = 4,1t >0 R(s) = Als
=0, ¢t < {
Ramp rt) = At, t >0 R(s) = Als*
=0,t <0
Parabolic ) =Af,t>0 R(s) = 24/s°
=0,¢r<0

function is also useful for test signal purposes. The unit impulse is based on a rec-
tangular function f(#) such that

Ve, 0s1<e,

ﬁ(r)={0, o

where e > 0. As e approaches zero, the function f,(f) approaches the impulse func-
tion 8(r), which has the following properties:

f TS dr = 1,
Q
fo "5t — @)g() = gla). @.1)

The impulse input is useful when one considers the convolution integral for an out-
put ¢(¢) in terms of an input r(¢), which is written as

t
c(ty = f glt — nir(x) dr
1
= &N Gs)R(s)T. 4.2)
This relationship is shown in block diagram form in Fig. 4.3. Clearly, if the input is
an impulse function of unit amplitude, we have

et} = Lr 2(t = 7) 8(0) dr. (4.3)

The integral only has a value at v = 0, and therefore
clr) = g(t),
the impulse response of the system G{s). The impulse response test signal can often

R(s}

Gis) b (5}

Fig. 4,3. Open-loop control system.
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be used for a dynamic system by subjecting the system to a large amplitude, narrow
width pulse of area A.
The standard test signals are of the general form

M) = o, (4.4)

and the Laplace transform is
1
R(s) = ——. (4.5)
gt

Clearly, one may relate the response to one test signal to the response of another
test signal of the form of Eq. (4.4). The step input signal is the easiest to generate
and evaluate and is usnally chosen for performance tests.

Initially, let us consider a single-loop second-order system and determine its
response to a unit step input. A closed-loop feedback control system is shown in
Fig. 4.4. The closed-loop output is

G(s)
€W =156 X
K

Utilizing the generalized notation of Section 2.4, we may rewrite Eq. (4.6) as

Wl

cte) - W R(s)- @
With a unit step mPut ‘we obtain
, - 1
- = | (4.9

5(s% + 2fw,s + wl)

for which the tranment output as obtamed from the Laplace transform table in
Appendix A, is :
! .
i 1 , .
| c(ty=1-— E e~ sin (w81 + 8), ‘ 4.9
where’ ﬁ \/ 1 - .§2 !and 6 = tan“"‘ﬁ/l; ;The transient response of this second-order
system for various’ values of the damping ratio { is shown in Fig. 4.5. As {

: + Els) e
R{s} - G5y = o - {5}

Fig. 4.4. Closed-loop control system.
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Fig. 4.5. Transient response of a second-order system (Eq. 4.9) for a step input.

decreases, the closed-loop roots approach the imaginary axis and the response
becomes increasingly oscillatory.

The Laplace transform of the unit impulse is R(s) = 1, and therefore the output
for an impulse is

w

(64 I ermm——————
) 5%+ 2wgs + wf

{4.10)
which is T(s) = C(s)YR{s), the transfer function of the closed-loop system. The
transient response for an impulse function input is then

o(t) = %’i e~ sin w81, .10

which is sitaply the derivative of the response to a step input. The impulse response
of the second-order system is shown in Fig. 4.6 for several values of the damping
ratio, {. Clearly, one is able to select several altemative performance measures
from the transient response of the system for either a step or impulse input.
Standard performance measures are usually defined in terms of the step
response of a system as shown in Fig. 4.7. The swiftness of the response is mea-
sured by the rise time 7, and the peak time. For underdamped systems with an
overshoot, the 0-100% rise time is a useful index. If the system is overdamped,
then the peak time is not defined and the 10--90% rise time, T, , is normally used.
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Fig. 4.6. Response of a second-order system for an impuise function input.

The similarity with which the actual response matches the step input is mea(s)uref;
by the percent overshoot and settling time T, The percent overshoot, P.O., 1
defined as

P.0. = 2271 x 100% @12)

for a unit step input, where M, is the peak value of the time response. ’Fhe Sef;fn'i
time, Ty, is defined as the time required for the system to setile within a certal
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Fig. 4.7. Step response of a controf system (Eq. 4.9).
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percentage § of the input amplitude. This band of %8 is shown in Fig. 4.7. For the

second-order system with closed-loop damping constant {w,, the Tespoiise remains
within 2% after four time constants, or

4

Loy,

Ti=dr= (4.13)
Therefore, we will define the settling time as four time constants of the dominant
response. Finally, the steady-state error of the system may be measured on the step
response of the system as shown in Fig. 4.7,

Therefore, the transient response of the system may be described in terms of

(1) the swiftness of response, T, and Ty

(2) the closéness of the response to the desired M », and T
As nature would have it, these are contradictory requirements and a comproinise
must be obtained. In order to obtain an explicit relation for M, and T, as a function
of {, one can differentiate Fq. {4.9) and set it equal to zero. Alternatively, one may
utilize the differentiation property of the Laplace transform which may be written

as
de(t) _
0(3-{ 7 } = 5C(s)

when the initial value of (¢} is zero. Therefore, we may acquire the derivative of
c(r) by multiplying Eq. (4.8) by s and thus obtaining the right side of Eq. (4.10).
Taking the inverse transform of the right side of Eq. (4.10) we obtain Eq. (4.11),
which is equal to zero when w,87 = . Therefore we find that the peak time rela-
tionship for this second-order system is

ar
Ty = e, 3 4.14
» mn\/t-_l;—z 0 \ { )
and the peak response as WwYe
My, = 1+ ¢"mNI2, (4.15)

Therefore, the percent overshoot is
P.O. = 100e=sm VI, (4.16)

The percent overshoot vs. the damping ratio { is shown in Fig. 4.8. Also, the nor-
malized peak time, w,T,, is shown vs. the damping ratio { in Fig. 4.8. Again, we
are confronted with a necessary compromise between the swiftness of response and
the allowable overshoot.

The curves presented in Fig. 4.8 are only exact for the second-order system of
Eq. (4.8). However, they provide a remarkably good source of data, since many
systems possess a dominant pair of roots and the step response can be estimated
by utilizing Fig. 4.8. This approach, while an approximation, avoids the evaluation
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Fig. 4.8, Percent overshoot and peak time versus damping ratio {fora second-order system

(Eq. 4.8).

of the inverse Laplace transformation in order to determine the percent overs'hoot

and other performance measures. For example, for a third-order system with a

closed-loop transfer function

1
T(s) =

(s*+ 2Ls + Dlys + 1Y
the s-plane diagram is shown in Fig. 4.9. This third-order system is nor_malized with
w, = 1. It was ascertained experimentally that the performance as indicated by the
percent overshoot, M, . and the settling time, T,, was represented by the second-
order system curves when [4]

4.17

[1y] = 10Zws-

In other words, the response of a third-order system can be approximated by the
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Fig. 4.9, An s-plane diagram of a third-order system:.
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dominant roots of the second-order system as long as the real part of the dominant
roots is less than Yo of the real part of the third root.

Using a computer simulation, when { = .45 one can determine the response of
a system to a unit step input. When y = 2.25 we find that the response is over-
damped since the real part of the complex poles is —.45, while the real pole is equal
to —.444. The settling time is found via the simulation to be 12.8 seconds. If v =
.50 or My = 1.11 is compared to {w, = .45 of the complex poles we find that the
overshoot is 12% and the setiling {ime is 6.4 seconds. If the complex roots were
entirely dominant we would expect the overshoot to be 20% and the settling time to
be 4/iw, = 4.4 seconds.

Also, we must note that the performance measures of Fig. 4.8 are only correct
for a transfer function without finite zeros. If the transfer function of a system pos-
sesses finite zeros and they are located relatively near the dominant poles, then the
zeros will materially affect the transient response of the system {5].

The transient response of a system with one zero and two poles may be affected
by the location of the zero {5]. The percent overshoot for a step input as a function
of al{e., is given in Fig. 4.10 for the system transfer function

{wifa)(s + a)

T =
() 5% 4 Ziw,s + ok

The correlation of the time-domain response of a system with the s-plane loca-
tion of the poles of the closed-loop transfer function is very useful for selecting the
specifications of a system. In order to clearly illustrate the utility of the s-plane, let
us consider a simple example.
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Fig. 4.10. Percent overshoot as a function of { and », when a second-order transfer function
contains a zero.
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Fig. 4.11. Single-loop feedback control system.

le 4.1. A single-loop feedback control system is sho‘wn in Fxg'. 4.11..It is
E:sj";:?l {0 select the glain K and the parameter p so that the tzme-doma;p specifica-
tions will be satisfied. The transient response to a step should be as fastin respox‘xd-
ing as reasonable and with an overshoot of less than 5%. Fu‘rtherrrfore, the settling
time should be less than four seconds. The minimum dam_pmg r'fa.tm 'g for an over-
shoot of 4.3% is 0.707. This damping ratio is shown graphically in Fig. 4.12. Since

the settling time is

T, = _;.m = 4 sec, {4.18)

Wy
we require that the real part of the complex poles of T(s}is
{op = 1.

This region is also shown in Fig. 4.12. The region that wii_l satisfy both time-domain
requirements is shown cross-hatched on the s-plane of Fig. 4.12. If the closed-loop
roots are chosen as the limiting point, in order to provide the fastest response, as ry
and 7, then r; = —1 + jland 7, = —1 — jL Therefore, { = V2 andw, = Y =
/2. The closed-loop transfer function is

S {0 B
W) =1T6o " Frps+ K
. 4.19)
524 2Lw,s + of
r=0707 @
0707
"1
Cuy = 17 }
| 45°
Y e

Fig. 4.12. Specifications and root locations on the s-plane.
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Therefore, we require that § = of = 2 and p = 3{w, = 2. A full comprehension of
the comelation between the closed-loop root location and the system transient
response Is important to the system analyst and designer. Therefore, we shall con-
sider the matter more fully in the following section.

4.3 THE S-PLANE ROOT LOCATION AND THE TRANSIENT RESPONSE

The transient response of a closed-loop feedback control system can be described
in terms of the location of the poles of the transfer function. The closed-loop trans-
fer function is written in general as

Cls) _ SPs) Ads)
R(s) Alsy 7

where A(s) = 0 is the characteristic equation of the system. For the single-loop
system of Fig. 4.11, the characteristic equation reduces to 1 + G(s) = 0. It is the
poles and zeros of T{s) that determine the transient response. However, for a
closed-loop system, the poles of T(s) are the roots of the characteristic A(s) = 0
and the poles of ZP;(s) Ai(s). The output of a system without repeated roots and a
unit step input ¢an be formulated as a partial fraction expansion as

T(s) = (4.20)

N

C(s)=—1+§Ai T Y. @421
S o stor gor 8+ 205 4+ {0k + od) ’

where the A; and B, are the residues. The roots of the system must be either s =
—o; o complex conjugate pairs as 5 = oy * jw,. Then the inverse transform
results in the transient response as a sum of terms as follows:

M N
() =1+ 2 Ae™¢ + 3 B, (i) e~ Sin ot. 4.22)
i=1 Re=y iy,

The transient response is composed of the steady-state output, exponential terms,
and damped sinusoidal terms. Obviously, in order for the response to be stable, that
is, bounded for a step input, one must require that the real part of the roots, ¢, or
«y, be in the left-hand portion of the s-plane. The impulse response for various root
locations is shown in Fig. 4.13. The information imparted by the location of the
roots is graphic indeed and usually well worth the effort of determining the location
of the roots in the s-plane.

4.4 THE STEADY-STATE ERROR OF FEEDBACK CONTROL SYSTEMS

One of the fundamental reasons for using feedback, despite its cost and increased
complexity, is the attendant improvement in the reduction of the steady-state error
of the system. As was illustrated in Section 3.5, the steady-state error of a stable
closed-loop system is usually several orders of magnitude smaller than the error of
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the open—loep system. The system actuating signal, which is a measure of the sys-

tem error, is denoted as E,(s). However, the actual system error is E(s) = R(s) ~

C(s). Considering the closed-loop feedback system of Fig. 4.14, we “have

JE

- 1+ GH($) — G(s)]

The system error is equal to the actuating signal when H(s) = 1, which is a common
situation, and then

1
= ———— R(s).
E(s} 1+ G {s)
The steady-state error, when H(s) = 1, is then
. SR(s)
i = g = lim =, 4.24)
m e == 1T 6 ¢
5) 75!2— (s) R(s) LY L G cls)
55 H =1
H(s) |

Fig. 4.14. Closed-loop control system.
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It is useful to determine the steady-state error of the system for the three standard
test inputs for a unity feedback system (H(s} = 1.).

Step Input
The steady-state error for a step input is therefore

s(A/s) A
= lim = . 4.25
T 1+ GO (425
Clearly, it is the form of the loop transfer function GFH(s) that determines the
steady-state error. The loop transfer function is written in general form as

K[I7 s+ 29
S s+ po’

where H denotes the product of the factors. Therefore, the loop transfer function

as s approaches zero depends upon the number of integrations N. I N is greater

than zero, then G(0) approaches infinity and the steady-staie error approaches zero.

The number of integrations is often indicated by labeling a system with a type num-

ber which is simply equal to N, :
Therefore, for a type zero system, N = 0, the steady-state error is

G(s) = (4.26)

.
® 714 GO)
A
= X 4.27)
1+ ([T I po
The constant G{0) is denoted by K, the position error constant, so that
A
By = '1-—_';”1“:{":; (4.28)

Clearly, the steady-state error for a unit step input with one integration or more, N
= 1, is zero since

A

lm
0 1+ (KHstNHpk)
= lim As®

>0 sV + (KHZJHPk)

€55 =

(4.29)

Ramp Input

The steady-state error for a ramp (velocity) input is
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(AT ] .

=i = Jim = lim .

€ = O )~ oh s F 5G(s)  es0 5G(s)

Again, the steady-state error depends upon the number of integrations N. For a

type zero system, N = 0, the steady-state error is infinite. For a type one system,
N = i, the error is

(4.30)

A

£1_I’I§ s{IKT](s + z)Vsf (s + pl}

A _A (4.31)

(KHZJHPH Kv’

where K, is designated the velocity error constant. When the transfer function pos-
sesses two or more integrations, N = 2, we obtain a steady-state error of zero.

€y =

Acceleration Input
When the system input is r(£) = Ar%2, the steady-state error is then

S(Al5%
=0 1 + G{3)

A
== iy e,
e S G(5)

The steady-state efror is infinite for one integration; and for two integrations, N =
2, we obtain

€5 =

(4.32)

. A A

KHZ,'/HP x Ka,
where K, is designated the acceleration constant. Wh_en the number of integrations
equals or exceeds three, then the steady-state error of the system is zero.

™ (4.33

Table 4.2 Summary of Steady-State Errors

Input
Number of Step, Ramp, Parabola,
integrations in )= A, At, A2,
G{(s), type number R(s) = Als Als? Als®
0 Cg = A Infinite Infinite
¥ 1+ K,
A .
1 ey =0 E Infinite
A
2 €g =) 0 ‘k”‘;
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Control systems are often described in terms of their type number and the error
constants, K,, K., and K,. Definitions for the error constants and the steady-
state error for the three inputs are summarized in Table 4.2. The usefulness of the
error constants can be illustrated by considering a simple example.

Example 4.2. An automatic speed control system for an automobile was outlined
in Problem 3.6. This system is commonly called cruise control. The block diagram
of a specific speed control system is shown in Fig. 4.15. The throttle controller,
Gyls), is '

Gl(é‘) = K} + Kgf’S. (4.34)

The steady-state error of the system for a step input when K, = 0 and G(s) = K, is
therefore

A
1+ K,
where K, = K.K,;. When K, is greater than zero, we have a type one system,

Gty = Kot £ s

€ (4.35)

and the steady-state error is zero for a step input.
If the speed command was a ramp input, the steady-state error is then

A
ew = (4.36)

where

K, = lim sG,{(5)}G(s) = K, K..
8=

The transient response of the automobile to a triangular wave input when Gy(s) =
{Kis + K,)is is shown in Fig. 4.16. The transient response clearly shows the effect
of the steady-state error, which may not be objectionable if X, is sufficiently large.

The error constants, K, K,, and K, of a control system describe the ability of
a system to reduce or eliminate the steady-state error. Therefore, they are utilized
as numerical measures of the steady-state performance. The designer determines
the error constants for a given system and attempts to determine methods of

Throttle controlier Engine and vehicle
Speed
se;:ttzieng . G445) G = Ke Sgaed
Vals) - £@) Tes + 1 (s)

Fig. 4.15. An automobile speed control system.
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Fig. 4.16. Triangular wave response.

increasing the error constants while maintaining an acceptable transient response.
in the case of the auntomobile speed control system, it is desirable to increase the
gain factor KK, in order to increase K, and reduce the steady-state error. How-
ever, an increase in KK results in an attendant decrease in the damping ratio, £,
of the system and therefore a more oscillatory response to a step input. Again, a
compromise would be determined which would provide the largest K, based on the

smallest { allowable.

4.5 PERFORMANCE INDICES

An increased amount of emphasis on the mathematical formulation and measure-
ment of control system performance can be found in the recent literature on auto-
matic control. A performance index is a quantitative measure of the performatce
of a system and is chosen so that emphasis is given to the important system speci-
fications. Modern control theory assumes that the systems engineer can specify
quantitatively the required system performance. Then a performance index can be
calculated or measured and used to evaluate the system’s performance. A quanti-
tative measure of the performance of a system is necessary for the operation of
modern adaptive control systems, for automatic parameter optimization of a control

system, and for the design of optimum systems.
‘Whether the aim is to improve the design of a system or to design an adaptive

control system, a performance index must be chosen and measured. Then the sys-
tem is considered an optimum control system when the system parameters are
adjusted so that the index reaches an extremum value, commonly a minimum value.
A performance index, in order to be useful, must be a number that is always POSi-
tive or zero. Then the best system is defined as the system which minimizes this

index.
A suitable performance index is the integral of the square of the error, ISE,

which is defined as
T
I = f ¥y di. (4.37)

¢

The upper limit T is a finite time chosen somewhat arbitrarily so that the integral

4.5
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qpproaches a steady-state value. It is usually convenient to choose T as the settlin
time, T,. The step response for a specific feedback control system is shown in Figg
4.17(b); ‘and the error, in Fig. 4.17(c). The error squared is shown in Fig, 4 17({2):
and the integral of the error squared, in Fig. 4.17(e). This criterion will discriminate
betweqn_excessxvely overdamped systems and excessively underdamped systems
The minimum vah}e of the integral occurs for a compromise value of the damping.
'ijhe pcrfonna}nca ‘mdex of Eq. (4.37) is easily adapted for practical measurements'
since a squaring circuit is readily obtained. Furthermore, the squared error is math:
ematically convenient for analytical and computational purposes.

Anothf:r readily instrumented performance criterion is the integral of the abso-
hite magnitude of the error, IAE, which is written as

;
L= fo |e(z) dr. : (4.38)

This index is particularly useful for analog computer simulation studies. In order to
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Fig. 4.17. The calculation of the integral squared error.
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