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s-Plane analysis: Root locus

By now the reader hopefully has been convinced of the advantages of
knowing the roots of a feedback system’s characteristic equation in terms
of its open-loop parameters (poles, zeros, gains, etc.), Accordingly, we
shall proceed to establish analytic methods for finding these roots using
either the complex-frequency domain (the s-plane) or the real-frequency
domain, as covered in this and the next chapter, respectively.

The principal vehicle used in the s-plane is the root locus, which yields
the exact locations of all of the system’s roots. A less involved method,
giving only a yes-or-no answer to the question of a system’s stability, is
based upon Routh’s criterion. Both are considered here. To demonstrate
the utility of these tools and to give the reader a little practice before
turning him loose, we shall conclude by revisiting the satellite-attifude
control problem introduced in the previous chapter.

10.1 THE ROCT-LOCUS METHOD

In a nutshell, the root-locus is a plot in the s-plane of all possible locations
that the roots of a closed-loop system’s characteristic equation can have
as a specific parameter is varied, usually from zero to infinity. Because of
the central role played by the characteristic equation we shall start by
giving a variety of different forms that it can take, all of which will be use-
ful in understanding the root locus and in deriving rules for rapidly
plotting it. :

The characteristic equation

Recall from Section 9.2 that the basic single-loop feedback system re-
presented by the block diagram in Figure 10.1 has the characteristic
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Figure 10.1.

equation

Dg(s)Dg(s) + Ne(s)Ng(s) =0 1

where Ng(5)/Dg(s) £ G (s} L G.(5)G,(s) and Ny(s)/Dyls) £ H(s).
An alternate form of (1) can be obtained by dividing it by the polynomial
D (5)Dy(s), resulting in

Ne{s)Nyls)
ol €A NP Sothl. < B Sl AT 2
14 Do) Du(s) @
which can be written more compactly as

1+G(s)H(s)=0 (3)

Although (3) could perhaps have been obtained by inspection, the reader
should note that its left-hand side is not a polynomial; however, the values
of s for which it is satisfied will be the same as those for which (1) is
satisfied provided that the numerator and denominator polynomials in (2}
have no common factors.

In anticipation of the equations we shall need in constructing the root
locus, we rewrite the rational function G (s)H(s) as a ratio of factored
polynomials such that

{1 (s—2)
G(s)H(s) = K——— @
I (s—px)

h=1

F(s)
in which case the characteristic equation can be written as

14+ KF(s)=0 (5)
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where m

L (s=2)
F(s) & )
IzI (s —pw)

The parameter K is the constant necessary for the coefficients of the
highest powers of s in both numerator and denominator of F(s) to be
unity and it is necessarily real. It is referred to as the root-locus gain and
will play an important role in our development and subsequent use of the
root locus. From (6), it is apparent that F(s) has the combined poles and
zeros of the individual transfer functions of all of the dynamic elements
contained within the closed-loop. Furthermore, because of the rational-
function form of F (s} we can write

T |s—2
|Fs)|=F— o
;El ;S_pk’
and w n
arg [F(s)]= 1_2211 arg [s—z] — kgl arg {5 pi] (8

where the terms (s —z;) may be represented by vectors from the zeros z;
to the point s at which F(s) is being evaluated and likewise for the poles.
A simple example corresponding to n = m = 2 is shown in Figure 10.2.
For instance, both the magnitude and argument of (s,—2,) can be mea-
sured on the figure, giving |so—z,| = 2 and arg {5, —2z,] = 90°. Carrying
out the process for the other zero and the two poles and substituting into
(7)and (8) '
2.00%3.20

B0l = 5755565

arg [F(se)] = (90+38) — (26 +56) = 46°

= {L.778

The other forms of the characteristic equation that we shall need can be
derived from (5) and (6) and are

k}i-[l (s—p)+K }ZE {(s—z) =0 )
PG =—% (10)
1 =po+ I =20 =0 an

the last being contingent upon K # 0.

AR e T R B S S e N R L PR R S A ST

10.1 THE ROOT-LOCUS METHOD | 359



PLX —

b2 | ‘\0"{

B — =1

. (5—0.5) (542 .
Figure 10.2. Evaluating F(s) = G _f_(ls'j _j))(i’:_ 1.; 7 ats = 0.5+j2.

Angle and magnitude criteria

We assume that we know the open-loop transfer function G (s)H (s) -
this will be needed in factored form — and that the root-locus gain K can
be thought of as potentially variable from 0 to < (sometimes from—=t0 0
or from — to +w). Because (10) is a valid form of the characteristic
equation in that its roots are the roots of (1), the problem of finding the
roots of the characteristic equation (closed-loop poles) is equivaient to
finding the solutions to the algebraic equation

Fis) =—-'Il'<~‘

where K is real. Expressing both F(s) and K in polar form gives yet
another version of the characteristic equation, namely

|F(s)|elarstfon = .!.m[%ejqxse" 12)
e e
F(s) —1/K

where g is an odd integer if K > 0 and an even integer fK <O
In the light of (12), any value of s thatis fo be a closed-loop pole must

simultaneously satisfy the angle criterion
arg [F(s)] = g180° (13)
and the magnitude criterion

L

!F(S)i‘—"" EKI (14)

The existence of these two requirements suggests that the roots of the
system’s closed-loop characteristic equation corresponding to specific
parameter values may be obtained by the following sequence of operations:

1. Find all values of s that satisfy the angle criterion, (13), the plotin the
s-plane of these values being the roof locus.

2. Find the specific values of 5 on the root locus that satisfy the magni-
tude criterion, (14), or, as an alternative, find the value of X that will cause
a specific point on the locus to be aroot.

Although this two-stage process seems perhaps like a roundabout way
of solving the problem, it turns out to have several important advantages
over other methods. For one thing, by breaking it into the two parts the
task of finding the roots of the characteristic equation is greatly simpli-
fied, as we shall see shortly. For another, the method has the attractive
feature that by applying the angle criterion first we are finding all of the
possible root locations for any K # 0 (the case K == 0 is easily included,
although the magnitude criterion is undefined there), Because the root-
locus gain K usually depends on a physical parameter that is readily
adjusted, e.g., an amplifier gain, we can make effective use of the root
locus as a design tool to suggest those values of gain that yield preferred
closed-loop roots. Finally, if we cannot find a value of gain that yields
satisfactory roots, e.g., stable and well damped, an examination of the
root-locus plot will usually provide insight as to how other system para-
meters should be varied or how the structure of the system should be
altered, such as by adding filters or feeding back different signals.

Example 10.1

To demonstrate the above notions with a very elementary example, we
shall draw the root locus for the system shown in Figure 10.3a for which
F(s)=1/s and locate the closed-loop root(s) for the specific value
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K = 10. Substituting for F(s) in (13) and (14), the angle and magnitude
criteria become arg [F(s)] = —arg [s] and |[F{(s)| = 1/ls|, respectively.

Considering the angle criterion with K > 0, ¢ is an odd integer. Con-
sequently those points that lie on the oot locus are those values of s for
which arg [F(s)] is an odd multiple of 180°, e.g., = 180°, 2540°, However,
this cannot happen unless arg [s] is also an odd multiple of 180°, which is
to say that s is restricted to points on the negative-real axis. Hence, the
root locus for the system with K > 0 must be as shown in Figure 10.35.

Having obtained the root locus for K > 0, we can identify the specific
closed-loop root corresponding to K =10 by applying the magnitude
criterion, obtaining ls] = 10. Since s =—10, denoted by the triangle in
Figure 10.3¢, is the only point in the entire s-plane that satisfies both the
angle and the magnitude criteria, it must be the single root of the closed-
Joop system. A glance back to Example 9.2 will substantiate the validity
of the above conclusions.

(b3 {c}

Figure 10.3. First-order system. (a) Block diagran:. () 180°locus. (c) Root
location, K == 10.

Construction of the 180° root locus

The procedure followed in the previous example of solving analytically
for |F(s)| and arg [F(s)] is not at all practical for other than trivial
problems and will not be pursued further. Rather, a number of rules exist
that allow one to skeich certain salient features of the root locus with only
4 modest effort, even for rather complex systems. Also, a device called a

“Spirule’”t has been developed which, with a bit of practice, can be used
to obtain a more accurate plor of the root locus, should it be required.
Finally, digital-computer programs { have been written for achieving high
accuracy and relieving the engineer of the plotting burden.

We shall present the rules for constructing a number of the important
features of the root locus, deferring their derivations until the following
section. Because the angle criterion requires that arg [F {s)] be an odd
multiple of 180° when K > 0, we refer to the locus corresponding to
K = 0 as the /80° locus. When K < 0 the angle criterion must yield an
even multiple of 180°, e.g., 0°, =360°; hence the designation 0° locus is
used for K = 0. In the interest of simplicity, we shall work with the 180°
locus for now and show the relatively minor medifications necessary for
the 0° locus later.

It will be assumed that the » poles and m zeros of F (s) are distinct, that
no poles coincide with zeros, and that m = n (the case of repeated poles
and/or zeros will be taken up in Section 10.3). The basic rules for the con-
struction of a 180° root locus (K = () are given below.

1. The locus has exactly » branches, where a branch is the path formed
by any one root as K is varied continuously from zero to infinity.

2. The locus is symmetric with respect to the real axis of the s-plane.

3. Any point on the real axis is on the root locus if the total number of
real poles and zeros to the right of that point is odd.

4. As K increases from 0, the » branches of the root locus depart from
the poles of F (s}, one branch per pole.

5. As K — «, m of the branches of the locus approach the finite zeros of
F(s), one branch per zero.

6. If m < n, there are n—m branches of the root locus that approach
infinity as K — o; furthermore, they approach infinity asymptotic to the
n - m straight lines that intersect the real axis at the point

n m
> P 2 2
k=1 fuxl

(15)

o= n—m

tAvailable from vour bookstore or directly from The Spirule Co., 9728 El Venado,
Whittier, Calffornia. See D' Azzo and Houpis {1966, App. D.) for a description of its use.
iSee Ash and Ash (1968).

ST RO T
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and form the angles i, with the real axis where

_ 180°+7360°
n—m

i, v=0,1,...,{(n—m—1) (16)

7. The angle with which the locus departs from a complex open-loop
pole p;is given by

m 1]
b, = i§1 arg [p,—z) — z?:‘:x arg [p,—pr] +q180° (17
et
where g is an odd integer. '
8. The angle at which the locus arrives at a complex open-loop zero z; is
given by

m T
QJ‘—“W?: arg {zJ*z53+§1 arg [z, —pi] +q180° (18)
o= ] =
e
where g is an odd integer.

Having applied the above rules to a given problem, enocugh of the root
focus is usually known so that the remainder can be sketched to within a
reasonable approximation. As a further refinement, one can always select
a test point § that looks as if it should be close to the locus and evaluate
the argument of F(5). If arg [F(§)] = =180°, then $is on the locus. If
not, a nearby point is selected and the argument reevaluated until the
result is sufficiently close to =:180° to consider the test point as being on
the locus. It is in this phase of the graphical process that the Spirule is of
greatest assistance, allowing for the rapid measurement and addition or
subtraction of the angles of vectors to the test point § from the poles and
zeros of F(s).

Example 10.2
As an example that is only slightly less trivial than Example 10.1, we
shall find the root locus corresponding to

1

Fis)= s(s+2)

where 0 = K = =, As F(s) has two poles (at s = 0 and —72) and no zeros,
n="7 and m = 0. Applying rules 5 and 6, the locus has two branches, one
emanating from s =0 and the other from s= —2 for K = { and both

going to infinity as K — o, Applying rule 6, the two branches approach

infinity at angles of £90° with respect to the real axis, asymptotic to a
vertical line that intersects the real axis at

bt 0-2

S0 T 20

Only that portion of the real axis between O and —2 is on the locus
because /. there are no real poles or zeros of F(s) to the right of s =0;
2. there is a single real pole to the right of s = —2; and 3. there are two real
poles to the right of all points to the left of s = —2 (rule 3).

Drawing what we know at this point about the locus leads to the heavy
lines shown in Figure 10.4a, which accounts for high and low values of
K however, the behavior of the locus for intermediate values of K during
the transition from the real axis to the vertical asymptotes is as vet un-
known, If we select any test point 3 on the vertical asymptote (Figure
10.4a) we see that ¢, + ¢, = 180°, which means that arg [F(5)] = —~180°
and that the test point must lie on the locus. Since the angle criterion is
satisfied for any point on the vertical asymptote, the complete root locus
must appear as in part (b).

Having found the root locus, we can apply the magnitude criterion if
we wish to know the root locations for a specific nonnegative value of K.
Alternatively, suppose we desire that the point 5, =—1+ 7V3 shown in
part (c) be a root of the characteristic equation. We can use the magnitude

| [ ) ’
1
e

) ~

R} a -2 o Pzn P oo

ol

|
: sih___d~f3
] )
! 2 2
& Y / \
|
|
i
{
!
|

{a) {b) (c)

Figure 10.4. (a) Applying angle criterion ats. (§) Completelocus. (c) Applying
magnitude criterion at 5;. :
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criterion to solve for the required value of K. Constructing the vectors
from p, and p, to s;, both of which are of length two, it follows that

1 1

11
Pl = o Ts—pal  2%2 4

which, from (14), indicates that K must be equal to 4 if s, is to be a closed-
loop root. Because of the symmetry condition about the real axis,
Sp= 1 j\@ will be the other root corresponding to K = 4.

For this simple example we can verify the result by divectly computing
the roots of 1+ KF(s) =0 with K=4. Substituting for F(s) gives
1+ [4/s(s-+2)] =0 which, in polynomial form, becomes s>+ 2s+4=10
and has the reqguired roots.

Example 10.3

The feedback system shown in Figure 10.5a represents a control system
for which the process is unstable due to the open-loop pole at s = 1. By
plotting the root locus we can find the range of the gain « such that all
three closed-loop poiej:s lie in the LHP. From the block diagram

Sa _ i
G(HH () = T (#+ 25+ 3) ""‘9%‘3‘[(3——;)(5_«;w = 72) (s+1-€~j2)]

F(s)

Applying the basic root-locus rules with 7 = 3 and m = 0, there are three
branches emanating from the three poles of F(s) for K = § and going to
infinity as K — @« (a — «). The real-axis segment to the leftof s =1 ison
the root locus and the large-gain asymptotes intersect at

D E o Gt et 79 Il Gt B 7
Fg = = -
3 3
Using (16) with »=0, 1, and 2 we see that the large-gain asymptotes
make angles of 60°, 180°, and 300° with the real axis.
To calculate the angle of departure as the locus leaves the complex pole
at p, = —1+j2 we use (17) with g = 1 (actually, any odd integer will do)
and J = 2. Thus,

by = —{arg [p—p,] +arg [ps —pa]} +180°= —45°
135° 90°

Because of the symmetry property of the root locus, the angle of departure
from p3 IS g == = ey = ~+45°,

Figure 10.56 shows the complete 180° root locus of the system, where
the segments of the two branches leaving the complex poles have been
determined for intermediate values of « by checking the angle criterion at
several test points. For instance, §; = J\fg turns out to be the point at
which the upper branch crosses into the RHP and application of the
magnitude criterion gives

1

K R e e
bR () fsen

== 2% 1.05 X 3.80=3.00

where the lengths of the three vectors can be obtained graphically from
the root locus. Relating the “cross-over” value of the root-locus gain K to
the adjustable loop gain , oy = 8.00/5 = 1.80 since K = 3a.

For very low values of the gain there will be a root on the positive real
axis between the origin and s == 1. To find the value of K, denoted by
K, at which the real branch of the locus crosses into the LEP we apply

{b)

Figure 10.5. A third-order system without zeroes. (a) Block diagram. (&) Rootlocus,
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the magnitude criterion at the point s, = 0, obtaining

—— VE =
KZ—IF(O)l IXVixVi=35

whence a, = 1.00.

Combining the two cross-over values of « and using the root-locus plot
as the basis for inferring the range of o that will result in all three roots
being in the LHP, we see that the closed-loop system will be stable for
a, < @ < oy OT, using numerical values, for 1.00 < « < 1.80.

Example 104

As a final example and an indication of the manner in which feedback
signals can be used to improve the stability characteristics of a system, we
shall find the root locus for the system of the previous example when H (s)
is changed from unity to 25+ 1 and determine the limits on « for stability.
The alteration of H(s) is equivalent to adding a feedback signal of
—2¢(z) to the unity-feedback system of Figure 10.54, resulting in Figure
10.6a. Writing the transfer function G(s)H (s} directly from the block
diagram and then rearranging so as to identify K and F (s}, we have

_ s+0.5
Gs)H(s) = i%@[gSM D) (55 + 25+ 5)]
F(vs)

Although the poles of F(s) have not been affected, there is now a zero at
2, =—0.5 so m = 1, thereby reducing the number of large-gain asymptotes
from three to two. Applying rule 6, they make angles of =90° with the real
axis and pass through the point

I R G R 7 ol G Bt 720 il G ) N |
o= 3—1 T4

The real-axis portion of the locus lies between the pole at s = 1 and the
zero at s = —0.5. Finally, the angles of departure from the complex poles
can be computed. For example, a branch leaves py with an angle of

¢y = arg [pr—2z ] —arg [p,—pi] —arg [ps — ps] +180° = 69°
* v ) 1 . v e
114° 135° 90° .
Having the above information at our disposal, we can sketch the salient
features of the root locus, resulting in Figure 10.65, or at least a close

P2y

B
[
32

21

e B

0iF1

pay L -2

Figure 10.6. A third-order system with one zero. (@) Block diagram. (&) Rootlocus.

approximation thereof. Comparing the locus with Figure 10.5b, we see
that the complex branches emanating from p, and p; no longer enter the
RHP as « is increased. Thus, the addition of the zero — in physical terms,
the addition of the rate-feedback signal — has had the effect of keeping
the complex branches of Figure 10.5% in the LHP. Hence, the modified
system will be stable for all values of « > «; which, uﬁon applying the
magnitade criterion with s == 0 and using the relationship K = 10, turns
out to be oy = 1.00.

10.2 DERIVATION OF BASIC ROOT-LOCUS RULES

In this section the basic rules introduced in the previous section for con-
structing plots of the 180° root locus will be derived.

Number of branches (Rule 1)

From the version of the characteristic equation given in Eq. (9), Sect.
10.1, as the sum of polynomials of degree n and m, it is apparent that its
degree is n when the condition m = n is satisfiled. Hence there will be
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