10.3 ADDITIONAL ROOT-LOCUS PROPERTIES

Having presented and proved the foregoing basic rules for the construc-
tion of a root locus we shall conclude the formal presentation of the topic
with a discussion of several additional features that are of particular value
in control-systems work.

intersection of branches

If two real-axis branches of a locus are approaching one another for
increasing values of K, with no intervening poles or zeros of F(s), they
will meet at some point. At this meeting both will undergo abrupt 90°
changes of direction, one moving into the upper half of the s-plane and the
other into the lower, as in Figure 10.45. Likewise, two complex branches
may come together at some point on the real axis as K increases and then
move to the right and left along the real axis for further increases in K.
While the intersection of root-locus branches is not limited to pairs of
branches or to intersections on the real-axis, these are the most common
cases in practice. Unfortunately, determining the locations of intersection
points generally requires somewhat more effort than that required by the
other construction rules. '

To gain insight into the conditions under which mulitiple branches can
intersect at a single point and to determine the general features of such an
intersection, we assume that s, is a point on the 180° Jocus and expand
F(s) in a Taylor series about s,. Since F(s}isa rational function of 5 it
will be analytic at all points in the s-plane except at its poles, s = Pz,
k=1,2,...,n Thus, within the circle of convergence (Appendix A}

F(s) = F(so) + F (80) (s— 350} +2F" (50} (s —80)*+ - -~ (1

where F'(s,) denotes dF/ds evaluated at 5 = so. Because 5o lies on the
root locus, arg [F(s,)] must satisfy the angle criterion, which is to say
that F(s,) must be real and negative. If the value of K which corresponds
to the point 5, on the root locus is denoted by K, it follows from the
magnitudé criterion that '

F(so) = = @)

Ko

For the purpose of identifying other root-locus points in the neighborhood
of 5, we consider a small circle of radius p centered at 5, and seek to deter-
mine those points on the circle which satisfy the angle criterion.

First, let us assume that F' (s,) does not vanish and write the difference
between the testpoint and s, in polar form as s~ 5, == pe’”, Then, taking p
small enough so that the constant term in (1) dominates the term which is

. linear in p which, in turn, dominates all higher-order terms, we are justified

in writing
F(s) =~ W%+ PE’ (50} & 3)

In addition to depicting the s-plane relationships in Figure 10.114, the
complex numbers in (3) can be represenied in a separate complex plane,
part (&), referred to as the F-plane, in which we show F(s) as a vector
whose magnitude and angle are functions of s, namely |F(s)| and
arg [F(s)]. As required by the angle criterion, the vector representing
F(s,) lies on the negative-real axis of the F-plane and remains fixed during
the following discussion.

if the test point s is to be on the 180° locus, F(s) must certainlybe real
and negative per the angle criterion. But we can see from either (3) or
Figure 10.115 that as a consequence pF’' (sy) e, which is the difference
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Yta a = arg [F'(sp)]
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Figure 16.11. Mapping of F(5) near s, a point on the locus. (@) s-piane. (b} F-plane.

between F(s) and F{s,), must be real if the angle criterion is to be satis-
fied. Since { goes from 0° to 360° as the test point is moved around the
circle in Figure 10.11a and both p and F' (s,) are constants, there will be
only two values of ¢ in this interval for which the angle criterion will be
satisfied. Omne of these, say v, will result in |F(s}] > [F(s;)| when
¥, +arg [F'(s,)] = 180°, which corresponds to the branch of the root
locus entering the circle at a value of K| < K.
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The other value of ¢ for which the angle criterion is satisfied will be
W, = s -+ 180°, resulting in |F (s)] < |F(so)} and corresponding to the
branch leaving the circle at a value of K, = K,. Thus, if F’{s) does not
vanish at a point that is known to lie on the root locus, there is only one
branch passing through that point, as in Figure 10.12a. In other words,
F'(s,) = 0 is a necessary condition for two branches to intersect at the
point sg.

To explore this point further, suppose that F' (so) = 0 but F"(s,) = 0.
Returning to (1) and placing the appropriate restriction on o, the Taylor-
series expansion for F (s} yields

F(s) =~ t3pF s)e® @
Ky, 2
The important difference between (3) and (4) is that the latter involves
the term ¢ rather than €. As a consequence there will be four values of
¥ in the interval 0° = ¢ < 360° for which the angle criterion is satisfied as
the test point is moved around the circle in Figure 10.11a. Therefore, two
branches of the locus must enter the circle and two must ieave it. Further-
more, as ¥ is increased from 0° to 360° the values of i for which the angle
criterion is satisfied will be separated by 90°, with |F(s)| alternating
between being greater than and less than |F'(s0)]. Thus, the character of
the root locus in the vicinity of s, must be as shown in Figure 10.125.
Extending the above arguments {0 an arbitrary number of intersections,
if 5, is on the 180° locus and the first v — 1 derivatives of F(s) vanish at
5 = 5q, then » branches intersect at s, with entering and departing branches
alternating and separated by angles of (180/»)°. The case v = 3 is shown
in Figure 10.12¢,

The sitnation most‘ often encountered in practice is the intersection of
two branches, for which we have shown that

arr
ds e 0 )

Is a necessary condition, where s, is the intersection point on the root
locus. Hoyvever, the mere fact that F'(s) vanishes for some vahies of

dOf?S not 1mply that two or more branches intersect unless th i ;
which F'{s) == 0 is on the root locus. ' ©pomtat

Fn.lz%liy, provic%ed that s, does not coincide with a zero of ¥ (s}, the
condition for the intersections of loci can also be expressed as ’

i(wl._) _
AS\F(5)/ s=50 =0 ©
This form follows from the fact that

LIS

ds\F(s) F2(s) ds

:.rv;:lch va'nish:es for those values of s satisfying (5) provided F{s) = 0
& version given by (6) may be easier to apply than (5) in some cases .

Example 10.5

.?ls an i11u§tratif)n of tl_le manner in which branches intersect, we apply
the ruk?s given in Section 10.2 to construct the 180° locus for the system
shown in Figure 10.134, for which

s+1

F(s) = s(s+0.5)

SB:'se:d utpon the i{nowledge that the real-axis portions of the locus are the
twg;r;)en s—05=s=0ands S —1, we may infer that as X increases the
© branches meet at some point —0.5 < 5, < 0 and depart from the real

g0° 5 o
\ 50 63

axis for K = K, at angles of #90°. Furthermore, the two branches must
come together for some larger value of K, say K = K, at the point s, < —1

We can solve for s, and s, b i i
v finding those solutions of i
on the locus. Differentiating F (s), e o) or(0) thactie

@ ® (e 1 B (.
Figure 10,12, Intersecting branches, (gyv=1. (#)v=2. v=3 i “ T
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which vanishes for 7
I
1 = fi2af=—1
§ = ﬂ(i —-*"\75) == —{),293 and §p = (1 ‘\/5) 1.707

Because both s; and s; lie on the 180° locus, they must be t_he points at
which the two branches leave from and arrive at the real_axxs. if we had
chosen to differentiate 1/F (s) instead, we would have obtained

df 1\ _s+2s+0.5
Zz"';(f'(s)) T s+ 1)

which also vanishes for the values of s, and s, found above. The. complete
root locus is given in Figure 10.13b. The combination of a pair of Poles
and a single zero is one that arises often, and it can be shown analytically
that the branches in the upper and lower halves of the s-plane always

comprise a circle centered at the zero of F(s) — observe that the mid-point -

between s, and s, is indeed s = -1, the location of the zero {Prob. 10.18).

K=292

-2

(&)

Figure 10.13. A system whose locus has intersecting branches. {a) Block diagram.

(k) 180" locus.

By applying the magnitude criterion the values of K corresponding to
the points s, and s, can be computed. For example, at the point s, at which
the locus breaks away from the real axis,

Uv2 _
(1 + V2 (—0.5+1/VZ)

so K, = 1/|F{s;}] = 0.086.

F(s) =

—11.64

Repeated poles and zeruos of F(s}
When the basic root-locus construction rules were presented in Section
10.2, the assumption was made that all poles or zeros of F(s) were
distinct, i.e., not repeated. This restriction can be relaxed by making only
minor adjustments in the rules.

Briefly, a pole of F(s) which is repeated r times will be the starting
point of r branches and should be counted » times when determining the
real-axis portion of the locus, the large-gain asymptotes, and the angles of
departure and arrival. The behavior of these branches in the vicinity of
the repeated pole for K = 0 is governed by the preceding discussion on
the intersection of branches — these happen to intersect for K =0,
Comparable relationships hold for a repeated zero of F (s).

Exampie 10.6

The adjustments in the application of the root-locus construction rules
necessitated by a repeated pole can be demonstrated by obtaining the
locus for

s+2

FO) =G 1e

By inspection, F(s) has a repeated pole at s = —1 of multiplicity r = 2,
along with a single pole at the origin and a zero at s = -2. Counting the
repeated pole twice, it follows that m = 1 and n = 3; hence the locus has
three branches. For K =~ O one branch emanates from s =0 and two
branches must start at the repeated pole. By applying the real-axis rule,
we see that all points on the real axis between s = 0 and s = —2 have an
odd number of poles and/or zeros to their right.
Because n-—m = 2 and

oy = [0+2v(;2}1— =21 _,
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there are two branches that approach infinity asymptotic to the imaginar‘y
axis. If the point at which the branches break away from the rea:E axis is
evaluated by solving dF/ds = 0, one finds that the breakaway point must
satisfy s*-+4s*+4s-+1=0 which has as its three solutions s; = .—(}.38,
53 = —1, and s, = —2.62. Because 53 does not lie on the 180° locus 1t nf:ed
not be considered further. The fact that F’(s) vanishes for s=—11s a
result of the fact that there is a repeated pole of F(s) at that point i
keeping with the discussion on intersection of branches. Thus, by the
process of elimination, 5, = —0.38 must be the breakaway point we seek.
The complete root locus is shown in Figure 10.14.

-2 -1 ¢

-2

Tigure 114, Rootlocus witha double pole.

Sum of the roots

When the number of open-loop poles exceeds the pumber of open-loop
zeros by 2 or more, i.e.,, m = n-—2, the sum of the roots of the charac-
teristic equation happens to be independent of K. This result can be
derived by considering the form of the characteristic equation given in
Eq. (9), Sect. 10.1, which becomes

St @y Ay K[5" A bpeys™ T H o] = 0

where the »'s and @’s do not depend on K. Assuming m = n—2, we col-
lect like powers of s to get

s, st A (@ K)sT b ok (ag - Kb = 0 7

Appealing to the well-known theorem that the sum of the roots of a
polynomial of degree 7 is the negative of the coefficient of the term "7, it
follows that the sum of the roots is —a,—;, which is certainly independent
of K. Furthermore, using X = 0 shows that this sum is the sum of the
poles of F(s}.

Referring to Figures 10.56 and 10.65 we see that in both cases the
pumber of poles of F(s) exceeds the number of zeros by at least 2. In
Figure 10.5b, the real parts of the roots on the two complex branches
must approach -+ as K — o at such a rate that for any given value of X
the sum of the roots is equal to —I, since p, + p, -+ p; = 1. Thus, for the
specific value of K at which the two complex roots lie on the imaginary
axis, the real root must be at s = —1. On the other hand, in Figure 10.65,
the real parts of the complex roots must remain finite as X ~> « because
the real root moves to the left only as far as — as K —> w«, Since the sum
of the open-loop poles is —I, it follows that the real part of the asymptotes
must be —%, which agrees with the value of o, computed in Example 10.4.

The root locus in Figure 10.14 is yet another situation in which the sum
of the roots is constant. On the other hand, that of Figure 10.134 is an
example in which m = n— | and the sum of the roots is not independent of
K, moving to the ieft as K increases.

The zero-degree locus

So far, our attention has been devoted to systems that are characterized
by both a minus sign at the feedback summing junction and a positive
value of the root-locus gain K. However, if the feedback summing junc-

- tion has a plus sign, the characteristic equation, as given by the block-

diagram rules in Figure 9.8, is 1 — G (s) H (s) = 0. Substituting KF (s) for
(G (5} H {s), the characteristic equation can be written as
1 {

T @®)

F{s) =+
where g is now an even integer. Likewise, if the feedback sign is negative
but the gain K is negative, (8) is applicable, with g even. It follows that the
only change to be made in the angle criterion is that in Eq. (13), Sect. 10.1,
g must be even (zero is considered to be even) and the magnitude criterion
is unaffected. Hence, the designation “0° locus™ is used to distinguish
both of these cases from the more common 180° locus.

Because their derivations did not involve the angle criterion, rules [, 2,
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- 0.5
and 4 of Section 10.1 are unchanged. Rule 5 requires only the insertion of

“Ag K -> —” in place of “As K ~> «” and rule 3 must be modified by K= -m\ K:e—L /Kzo B e
H X i

replacing “‘odd” with “even” —a moment’s thought will indicate that all =y 3 -
points on the real axis will lic on either the 0° locus or the 180° Jocus. ) - -05 0s
In rule 6 “as K — —" should be inserted for “as K — " and Eq. (16), ‘
Sect, 10.1, should be changed to + =05
{a}
W0 o1, (aem— 1)
)
The reader may verify that there is no change needed in Eg. (15), Sect. ¢
10.1, which is the equation for the intersection of the asymptotes. Finally, 05
rules 7 and 8 need only be modified by restricting g to be even rather than
odd. K=0 | K==
Example 10.7 05 T
To demonstrate the application of the 0%locus rules, the locus for the
system of Example 10.5 with K = 0 will be constructed. With reference to --05
Figure 10.135, there will be two branches on the 0° locus that will be those
segments of the real axis not belonging to the 180°locus: —1 = o = —0.5 ()
and o = 0. In this case no other points lie on the 0° locus as there are no Figure 10.15. {a) U~ locusfor the systemin Figure 10.13. (&) Completelocus, —« < K < <,
complex poles or zeros and the real roots never merge. The (° locus is
shown in Figure 10.15a; if the 180° portion in Figure 10:135 is combined It is well known that if all the roots of
with the 0° locus, Figure 10.155 resuits. The reader should note that the
combination of the two portions forms a continuous locus as K goes from , OegS" F ey ST g =0 (1)
—oo to oo, with the change from the 0° locus to the 180° locus occurring are to be in the LHP it is necessary, bur not sufficient, that all of the
at K = 0, at which point the roots.coincide with the open-loop poles. coefficients «; be positive. However, we seek a necessary and sufficient

cqndition in the sense that if the condition is not satisfied we shall be
assured that at least one of the roots of the polynomial does not lie in the
LHE. If (1) is constructed so as to be the characteristic equation, we shall

10.4 ROUTH'S CRITERION

In the initial stages of a design the situation often arises where one only : have a test for asymptotic stability.

needs to know whether a system is stable, rather than the precise values of Such a test was presented by Routh in 1874 and an equivalent test was
all of the characteristic-equation roots. By applying Routh’s criterion we derived independently by Hurwitz in 1895; both forms are often referred
can answer this limited ‘question far more easily than by solving for the to as the Routh-Hurwitz criterion.t Here we shall present the version
roots of an open-loop system directly or by drawing a root locus in the given by Routh; the proof, which is rather involved, is omitted. Routh's
case of a feedback system. In fact, we can often use Routh’s criterion as formulation states that certain quantities, n-+1 in number and known as

one of the steps in constructing the root locus of a feedback system. One
final feature of Routh’s criterion is that it may be applied fo a system |
whose elements are expressed in literal rather than pnumerical form.

TA sirflpiiﬁcation of the Routh-Hurwitz criterion which could be useful for high-order
systems is the Liénard-Chipart test. See Lindorff (1965, App. A) for details.
$See Guillernin {1956, pp. 395-409).
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the Routh series, must all be positive if all the roots of (1) are to lie in the
LHP. Eurthermore, if all elements of the series are nonzero, the number
of roots in the RHP is equal to the number of changes in sign encountered
in going through the series in order. We shall show the manner in which
the elements of the Routh series are computed and then give several
results in a form particularly suited to the analysis of feedback systems.

In order to systematize the evaluation of the Routh series, the results of
intermediate calculations are arranged along with the elements of the
series in the Routh array which, in its general form, is

4. | B, Cu Dy

Anf—li By Cn—l Dn—l---

An——.‘!i B?zmz -
IR

. 0

A | B, 0

A4 10 0

4, 100

L

Routh series

The set Ap, Ayt - - . » Ay comprising the first column is the Routh series,
and each element of it must be positive if all of the roots of (1) are to liein
the LHP. The B’s, C’s, etc., are the results of intermediate calculations
and, with the exception of By, will be of no further use in assessing the
stability of the system. There will always be n-+1 rows in the array and
the number of columns will be {n-+2)/2 if n is even and {(n+ N2ifnis
odd. As indicated in the partial array shown above, the column of B’s will
terminate with B,, the column of C’s with Cj, etc. The reason for this
will be clear after the algorithm for computing the elements is given.

To start the process, the first two rows of the array are merely the
coefficients of the polynomial in (1), arranged so that

An=oay, B, = typ Cp==Oy_g...
Apy = Oymg Bt = Qg Cn—l = Oy e
The filling out of the first two rows continues until o is reached and it will

fall in the second row if # is odd and in the first row if # is even, in which
case the corresponding element in the second row is set to zero. All

entries to the right of the column containing «, are considered to be zeros.
At this point, the entries in the third row are calculated using the
elements in the first and second rows according to

- Ap1By -4 an-—i

- __An—iCnMAnC =1
e Ay

By = Tt @)

and so forth. The reader should be able to convince himself that the third
row will have one fewer nonzero elements than the two rows above it.
Once the third row is completed, the fourth and subsequent rows may be
computed using the generalizations of (2):

— AiBH-l “‘Ai—nBi — AiCH-l _Ai+1cz‘

Ai‘“}. Az B‘i-—l Ai (3)

and similarly for C,_;, D,_,, etc., until the process ends. With the evalua-
tion of each pair of rows the number of nonzero elements in a row is
reduced by one, thus causing the process to terminate eventually. The
next to last row will contain only the element 4, and the last row only the
element 4, In fact, it is readily shown that if the sequence of operations
given above is properly executed, the last nonzero element in each column
of the Routh array will be «.

From an inspection of (3) it is obvious that the process can not proceed
if A, =0 at any stage in the calculation. This is not generally a problem
because we know from the statement of Routh’s criterion that if one of
the A, is zero, at least one of the roots of (1) will not lie in the LHP. There
are methods for continuing the calculations when this happens; see, for
instance, Cannon (1967, Sect, 11.12). '

Having shown how to construct the Routh series we now state the
results that are of greatest utility in the study of feedback systems.

1. For all the roots of the characteristic equation o lie in the LHP,
i.e., for the system to be asymptotically stable, it is both necessary and
sufficient that each of the n+ 1 elements of the Routh series, 4, Ayr, - - -,
Ay, be positive.

2. If 4y=0 and the remaining n elements of the Routh series A,,
Apegs ... A4, are positive, then the characteristic equation has a single
root at s =0 and the remaining n— 1 roots are in the LHP (marginal
stability).

3. If A4,=0 and the remaining n elements of the Routh series,
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Aps -+ Az, Aq, are positive, then the characteristic equation has a pair of

imaginary roots at
i e 4
5= 4 /A 4

and the remaining # — 2 roots are in the LHP (marginal stability).

While these rules allow us to quickly check the system’s stability, they
also are useful in constructing root loci and in parameter selection.

In the process of constructing the root locus for a feedback system,
condition 3 can be used to locate the two points at which a pair of complex
branches cross the imaginary axis if the other roots are in the LHP for the
cross-over gain K., Because the 4, will be functions of the root-locus
gain K, we can find K, by solving the set of equations

Ai(Kco) =0
A{(Ke) >0 i=0,2,....n

Having found K., the values of 5., at which the locus crosses the imagin-
ary axis may be found by using (4) with the values of 4, and A, corre-

sponding to K = K
' e JAo(Ke)
= VA, (Keo) ®)

The above requirements also constitute a particularly useful stability
test in control-system design if the characteristic equation of the closed-
loop system is such that the 4; can be obtained in analytical form in terms
of one or two unspecified parameters, e.g., gains, time constants. Thus,
when there are two such parameters, say & and k., the designer can
construct curves in a two-dimensional parameter space corresponding to
the solutions of the n-+ 1 equations

Ai(kle k2) = 0
If a region in the ki, &k plane exists such that each of the 4;(k;, ky) 18
positive for all values of k; and k; in that region, we know that the closed-
loop system can be made asymptotically stable by selecting the &y and &,
corresponding to any point in that region (see Problem 10.26).

i=01,...,n

Example 10.8
To determine whether all the roots of

455+ 654953+ 25t -+ 55 +4 =0

lie in the LHP, we begin by writing the first two rows of the Routh array
directly from the polynomial. Using (3) to compute the remaining entries
vields

4 9 5
6 2 4
23 6x9—2x4 7 _6xX5—4x4
3 z 37 0
4 (23, 7 3 23 3
23..(3 %2 §X6)'2§ 4&(—-;)(4—9)(6)'2'}' 0
4= 17440423

~174

where the calculations leading to eaf.h entry have been included.
The Routh series, being the first column of the array, is

4 6 23/3 4123 174 4

which contains the two sign reversals 4/23 — ~174 and —174 — 4, Thus
we have ascertained that the equation has two roots that do not lie in the
LHP, but we have no idea as to their specific locations —we only know
that if the equation were a characteristic equation, the system would be
unstable.

Exampie 10.9
In Example 10.3 the root locus was drawn for a feedback system that was
stable only when a system parameter, designated as «, was within a finite
interval. Using Routh’s criterion we can readily compute the stability
range for « and the points at which the complex branches of the locus
cross into the RHP.

From an inspection of the block diagram in Figure 10.5a we can see

that when the closed-loop characteristic equation is written in the form of
Eq. (1), Sect. 10.1,itis

(s=1){(s?+2s+5)+5a=s"+s*+3s+5(a—1) =0
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The Routh array is
1 3
1 5{a—1)
8-S« 0
5(e—1) 0

and the Routh series is
1 1 8 — 5S¢ S(ax—1)

The last two terms of the series will be positive if and onlyif 1 < a <4,
which agrees with the results of the root-locus analysis in Example 10.3.
Furthermore, if @ = £ then 4, == 0and the conditions for the existence of a
pair of imaginary roots are satisfied. Using (5) with 4, 3 and 4, = |
gives 5., = #/V/3, which are the points in Figure 10.55 at which the
complex branches enter the RHP.

10.5 APPLICATION

In order to demonstrate the manner in which the analytical techniques
presented in this chapter might be applied to the design of a feedback
system, let us reconsider the satellite-attitude control system discussed in
Section 9.3. Usually, most of the system parameters are fixed before the
design of the control system begins, leaving at the discretion of the
control-system designer only the form and parameter values of the control
law; sometimes he is free to select or modify transducers also. For the
sake of argument, we shall assume the following parameters are fixed:

Angle sensor gain: K, = 0.20 volts/rad
Torque constant: K, = 0.10 ft ib/volt
Moment of inertia: [ = 10.0 slug ft*

Hence, if we use the P+1+D control law of Eq. (12), Sect. 9.3, the
amplifier gain K, (volts/volt), the derivative gain « (seconds), and the
integral gain 8 (seconds™) are to be selected, To complete the problem
statement, certain requirements will be placed on the behavior of the

closed-loop system such as specifying the locations of closed-loop poles

iy

in the s-plane and bounds upon steady-state pointing errors caused by
disturbance torgues. Since the control laws to be discussed are not
physically realizable they should be thought of as idealizations of the
_actual characteristics that can be obtained in practice, with their approxi-
mation by actual networks postponed until Chapter 11.

Proporticnai controi
It was shown in Section 9.3 that the proportional control law

Teon = KoK Kol brey— 6] W

resulted in a closed-loop system whose response to any input was
unsatisfactory because of the presence of an undamped oscillatory mode.
Before going on to more satisfactory control laws, we can use a simple
root-locus plot to verify that this will indeed be the case. Substituting the
fixed parameter values and using (1), the system’s block diagram becomes
that shown in Figure 10.164. If we restrict our interest for the moment to
a determination of the roots of the closed-loop characteristic equation, the
block diagram can be simplified by eliminating all inputs and outputs and
by reordering any blocks within the loop — recall that we are concerned
only with the properties of the product G (s)H (s}. Thus, for the con-
struction of the root locus the block diagram becomes the simiplified form

Bref 020 + V1 g i g
(rad) N (volts) (radfsec)| ¢ (rad)
ERRREIER

{volis)

(5)
Figure 10.16.  Satellite attitude system with proportional control, (g) Compilete diagram.
(b) Reduced ioop. '
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