Figure 3.12. Canonic simulation of an ntheorder system, m = n—1.

equations instead of a single nth-order equation. For instance, similar 1o
Example 2.6, suppose we have a second-order system described by

G = Apgi+Aug+ Bix
C}z = Ay G+ Azate ¥ Byx )]

y = Cig;+Coge

where the A’s, B’s, and C’s are constants. A direct simulation of this
system is given in Figure 3.13, which has the integrators in parallel rather
than in series. The diagram nicely brings out how the two first-order

subsystems are coupled to each other via the scalors 44, and Ag;.

Two more items remain to be mentjoned in this brief discussion. First,
there is the question of initial conditions and the zero-input response.
Although not included in Figure 3.7, analog-computer integrators ha\fe &
special input terminal for establishing the initial output .value at thg tlmie
that simulation is begun, i.e., if we start the computer at ime fo, and y(1) is

an integrator’s input, then the corresponding output is

Y0 =[50 +y =0

Figure 3.13.

Therefore, one must set the appropriate initial conditions on each and
every variable that appears at the output of an integrator.

Second, simulation diagrams such as Figures 3.12 or 3.13 cannot be
transferred directly to the analog machine. For one reason computer
components have a limited range of linearity so the variables have to be
scaled in magnitude to keep them within the linear range; for another,
the rate of change of the variables may be too fast for the machine’s
response time or too slow for convenient observation, in which case fime
scaling Is necessary. Additionally, most computer amplifiers and inte-
grators produce a sign inversion, and amplifiers have fixed gains so that
adjustable gain requires an input potentiometer. Thus, the resulting
“patching” diagram looks somewhat different from the simulation dia-
gram. Blum (1969) gives an excellent introduction to the techniques of
analog computation, and is suitable for self-study.

3.5 STATE EQUATIONS

Thus far in this chapter we have dealt exclusively with single-input-
output systems, and they will continuze to be the major subject of later

TR
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chapters. But some of the most challenging and fascinating problems of
contemporary engineering are those of multi-input-output systems of
rather high order. In view of the fact that space-age systems are being
called on to perform many functions simujtaneously, with greater acour-
acy and in less time, the move toward ever-increasing system complexity
is an understandable and inevitable consequence. By the same token, it
puts a severe burden on the engineer who designs these complicated
systems with very stringent tolerances and little opportunity to experi-
mentally check out his design as a whole.

Because of such demands, the state-space approach based on the con-
cept of state variables offers a more convenient means of analysis and
design than the straight input-output viewpoint. Here, we shall expand
upon our earlier discussion of the state of a system, and show how state
equations are related o input-output equations. As a preliminary, we
recall that the state vector of an nth-order system is any signal vector
q(#) with n components such that

q(t) = Sq[ﬂ(l‘o)‘,x(f)] r=14 (1a)
and
y () = S[q(2);x(1)] 1= 1 (1b)

which are the state and output equations, respectively.

Single-input-output systems
Consider an nth-order linear sysiem (not pecessarily fixed) with one
input x(r) and one output y(z), whose differential equation is
n m
S g, (H)yP() = 2 b ()% (2) m=n—1 {2)
i=0 k=0
We are including the time-varying case by showing the coefficients as
functions of time; if the system in question is time-invariant then the
coefficients are constants.
Introducing the state variables g,(#), ds(8)s . . - @a(2), the system can be
described by n first-order state equations of the general form

‘i’1 =AyugtAnpget + Ann+ Bix
9= Angs+Asgt - + Aon(at Bex .(33.)

q-'n == An1q1+An‘Zq2+ rot "i'Annqﬂ“'}'an

plus an output equationt

y=Cigy+Coge+- - -+ Cogy (3b)

where the new coeflicients are relate
be time-dependent if the system is notdﬁt}?e(tif.le Fysiem parameters and mey
It is lnot obvious that the state variables in (3) do, in truth, have the
prope.raes required by (1). Verifying this fact would entail s:ﬁving the
equations to obtain the explicit forms q(r) =8,[q(%); x(n)] and
y(t} = §[q{#); x(1)]. These solutions are not attempted her:e since the
go beyond our intended scope. Suffice it to say that equations like (33;
almost always are valid state equations.
To write (3) more compactly we use the column vector

q(z} = {g: (1) () -~ qu(0)]T

and define the n X n matrix consisting of the coefficients A;(t), namely

A(t) Anlt) - 4w
A A A?l(r) A?z(t} e A1) )
Au(8) An(t) - Awlt)
We also need two n X | matrices for the B and C coefficients, say
b(1) = [B,(1) B,(1) B.(0)]*
() 2 [Ci() Culr) Ca()]” v

h s ’

G(r) = Al)q(e) +b{t)x(1) (6a)

‘while the output equation is

y(#) = T {r)q(s) (6b)

r .
where ¢7(¢), being the transpose of an # X ! column matrix, isa 1 X nrow

~ matrix. If the system is fixed, then A, b, and c are simply constant matrices.

But fixed or time-varying, (6) succinctly constitutes a state-space model of

- the system.

tFor m > r—1 or some selections of the state variables, the output equation also must

* include x(1).
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Having thus disposed of notational Kabilities, one may still ask if the
state-space description is worth the effort. Indeed, from a quick compari- | .
son of (2) and (6), it might appear that the latter has little to offer in the |
way of advantages, and bas several seeming disadvantages: Where, for
instance, do the state variables come from? And why bother with n
simultaneous equations plus an output equation when the same informa-
tion is contained in one ath-order equation?

Taking these questions one at a time, we have already shown that state
variables often arise quite naturally in the course of modeling a system
from its physical description. In fact, it usually takes additional labor fo
get a single higher-order equation in terms of just the input and output,
But, as previously mentioned, the state vector is not unique; any q(f) 1§
satisfying (1) qualifies as a state vector. This means that we have consider- —a
able latitude in choosing the state variables, and that they need not even |-
correspond to physical variables in the system — although that is perhaps : :
the most appealing choice. _ B

Emphasizing this point, suppose all we have is the differential equation Figure 3.14, ‘ i
(2) instead of a physical description of the system. Several systematic | -
procedures exist for obtaining state equations therefrom, one being based b= [0 .
on the canonic simulation, Figure 3.12; that diagram is repeated here as @ 0 0---0 1] (7b)
Figure 3.14. Since the input to each integrator is the first derivative of its e=1[by by by ]” 70)
output, we can immediately write down a set of state equations by taking | which, when inserted in (6), constitat ‘
the state variables as those integrator ouipuls, 1.¢., of an STO systes. s stitutes the canonic state-variable model

a3
e —

Granted that the state equations may be easier to formulate than the
cor.responding nth-order equation, this in itself is only a minor benefit, A
magox_‘ benefit of the state-space approach is the conceptual ¢larit E;nd
notational convenience when dealing with MIO systems, a subjezt we
shall turn to momentarily. Another important benefit is t’he knowledge

one can gain about what is going on inside the : .
; systemn. This
illustrated by the following example. Y T'his aspect is

‘.Z1mfh “er*qa én——1=Q1z
o =—0o@1— 8:G2—" "~ Gn-1dnt X

Also by inspection of the diagram, the output equation is

y = boqy+ brge+ -t by 1.

Thus, for this choice of state variables, the coefficient matrices directly

display the coefficients of the differential equation: Example 3.3

Suppose a physical system corresponds to the simulation diagrammed in

0 1 g --- 0 Figure 3.15. With the state variables as indicated

Am 0 0 i -0 0 '(7'3) . .
o : and B=atx g2 = g1 3¢;
Ma —-—-a — o — -

¢ 1 dg dp—1 yﬂ__é.ql+q2
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Figure 3.15.

Thus, upon eliminating ¢, and g, the input-output relation is
v+ 3y =—%x

Judging only from the latter, one would conclude that the system is first-
order and asymptotically stable —as follows from the characteristic
equation s+3 = 0. But the simulation has two integrators, implying a
second-order system. Moreover, the first state equation can be recast as
Gy~ g, = x, which corresponds to an RHP root, namely at s = -+1; thus,
the g, mode grows as ¢** and the subsystem inside the dashed lines is, by
itself, unstable.

These seemingly contradicting conclusions are perfectly correct. The
contradiction is resolved with further study of the diagram, for such a
study will reveal that the unstable behavior is cancelled at the output
summing junction and does not appear in the output.t (The reader should
verify this for himself by taking ¢; = ¢ and solving for y.) Consequently,
insofar as input-output is concerned, the total system acts as if it were
first-order and stable.

Nonetheless, the internal variable g; may very well increase without
bound while x and y remain finite. Furthermore, a slight change in any of
the parameters voids the cancellation effect and the total system becomes
unstable. Clearly, the engineer ought to be aware of these potentially
grave circumstances. Equally clear, the necessary information may be
missing from the input-output equation and contained only in the state
equations.

FWe therefore say that ¢, isan unobservable state. See Zadeh and Desoer (1963, Chap. 1 1}

Multi-input-output systems

Consider an nth-order linear system with p input signals and r output
signals. To formula}te the state equations we observe that, paralleling (3a),
every element of q(z) will be a linear combination of all the state vari-
ables plus the p input signals, i.e.,

gi=Augs+*+AipGnt Baxyt -+ Bipxy
Similarly, there are r outputf equations of the form
Yi=Cuqi+ -+ Ciln

Expressing these in matrix notation we define an n X p matrix for the
B coefficients

"B(t) Bplt) -+ Bylo)
B() 2| : : (82)
| Bu(t) Bult) -+ Bu(t)
and an r X # matrix for the C coefficients
rcp(f) Cp(t) -+ Crale)
OE N : : (8b)
”Cn(f) Cra(t) -+ Cralt)

which corre.:spond to b(f) and ¢T{¢) in the S10 case. Then, with x(r} and
y{¢) as the input and output signal vectors, we have the state-space matrix
equations
q(6) = A{)q(e) +B()x(1) (92)
y(#) = C{2)q{?) (9b)

where q(z) is the state vector and A(#) is as previously defined by (4).
Corresponding to these equations, one can draw a matrix block diagram
of the system, Figure 3.16, where double flow lines mean vector signals
and boldface symbols are matrix operations.

Probably the most striking feature of (9) or Figure 3.16 is that it is not
appreciably more complicated than a first-order SI0 system. The addition
of multiple inputs or outputs changes the degree of the problem but not
the basic solution methods, all other factors being equal, In witness of this
assertion, let us outline how one could tackle the zero-input response of a

lnear, time-invariant MIO system. The details and the complete response
will be discussed in Chapter 8.
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Figure 3.16. Matrix block diagram for an MIO system.

Setting x(¢) = 0,A{¢) = Aand C(1) = Cin (9) gives

Ya{t) = Cq(r) (10a)
where q(z) must satisfy the homogeneous state equation
q(t) —Aq(r) =0 (10b)

subject to the initial condition q(ty). We begin, as before, by assuming an
exponential trial solution for (10b), say

q(f) = {Gg_eﬂ Gge“ Tt Gnest]T

in which the G’s are constants. It then follows that q(t) = sq(z) and,
hence, (10b) becomes

(s1—A)g(s) =0 (11)

where 1, the n X n identity matrix, has been introduced to permit factoring.
Discarding the trivial case q(z) =0, matrix theory says that (11)
requires the determinant of (si—A) to vanish, i.e.,

IsI—Aj =0 (a2

and it can be shown that |sI—A| is an ath-order polynomial in s having n
TOOtS, § = Py, Ds» ... Pn. Accordingly, if the roots are distinct, our trial
solution must be modified such that each element of q(¢) takes the form

CI-;(f) o Gilemt_}_ szemj'{’ R Ginepnt

Then, in principle, the G can be evaluated from the initial conditions and
q{1) inserted into (10a) to yield v.:(£). However, that is not the real point
of our investigation, since a better method for proceeding from (12) will be
given in Chapter 8. .

The important point to notice here is that (12) plays the role of the

characteristic equation; i.e., from it one can find the values of s such that
the trial solution satisfies the differential equation. Thus, we shall define
[sI—A| as the characteristic polynomial in the MIO case. Having done
that, this valuable concept and its interpretations are generalized to MIO
systems, and S10 systems become a subclass thereof.

Example 3.4

As a simple check on this last point, consider a third-order SIO system
described by y+a,y +a,y+ a,y = F,. Barlier we said its characteristic
polynomial is s°+ a,s®-+a;s-+a, which we now compare with the
generalized definition {sI—A].

Taking the canonic state-variable model, the A matrix is given by (7a) as

0 1 0 o
A=| 0 0 1 J .
—ay —d, —dy
Hence, :
s 00 0 1 0
JsEi—Al=1il0 5 OJ— 0 0 1
O 0 s @y = —ds
s —1 0
=10 s =1 |=ss+astasta
dg a; s+ay

so we have perfect agreement. Of course, the choice of A is not sacred
since the state vector is not unique; the interesting implication is that, for
agiven system, |sl— A} will be the same with any valid A.

Advantages of the state-space approach

To summarize, the state-space approach has at least three major advan-
tages compared to straight input-output analysis: conceptual clarity,
greater information about the system itself, and computational con-
venience.

From the conceptual viewpoint, the state equations provide a mathe-
matical model of great generality that is readily extended to include
time-varying, nonkinear, and MIO systems. Similarly, the matrix notation
is a compact vehicle for analytic manipuiation, particularly when the
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powerful techniques of linear algebra are brought to bear on the problem.
As a matter of fact, without these features the main results of modern
systems theory would have been quite difficult to obtain.

When the state variables are chosen as directly related to internal
variables of the system, it is clear that we will get more information about
the system itself than we do just from input-output considerations, and
sometimes that additional information is critical. But regardless of how
the state variables are selected, the state equations further enhance our
intuitive grasp of the problem.

Finally, in the case of very complex systems — ¢.g., large n, nonlineari-
ties, many inputs or outputs, etc.— computer-aided solution is almost
always a necessity. For this purpose, the state equations are far better
suited to apalog simulation or digital computation than an nth-order
differential equation, whether or not one is also interested in the state
variables themselves.

Having thus expounded upon the merits of state-space analysis, the
reader may find it puzzling that the method is not fully detailed in later
chapters. There are two reasons for our stopping short on the subject.
First, solving the state equations requires a knowledge of matrix theory
above the level assumed in this book. Second, the real payoff of the state-
space approach comes when one is faced with highly complex systems —
whereas we shall have our hands full just investigating rather simple
systems with a reasonable degree of thoroughness. However, from time to
time we shall invoke the state concept as an aid to interpretation and
understanding.

Problems

3.1 Verify that Eq. (13), Sect. 3.1, gives the specified values for y and yatt= o

3.2 Show that Hq. (15), Sect. 3.1, is & solution of Eq. (7) when the roots are
repeated, and confirm that Eq. (16) yields the specified initial vaiues.

3.3 Suppose the roots of a second-order system are nearly, but not exactly
equal,sop; = pFeandp, = p—e where i¢}? << |pf®. Show that

$(8) = (By+Bost)e™
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3.4 The characteristic equation of a certain system is {s+ 1) (5*+9) = 0. Solve

fory, (1), t = 0,iff yo=10 and vy =¥, =0 at 1 =0, dnswer: ¢~ +cos 3r+
3 sin 32

3.5 Consider a third-order system having 5%+ s*+3s = 0. Find and sketch the
zero-input response when ¥, = 2 and yg = ¥, = 0.

3.6 Make a sketch similar to Figure 3.3 for the mode functions corresponding
to a repeated complex root.

3,7 Consider a fourth-order system having (s*+ s+ 2)* = 0. Plot the roots in the
s-plane and sketch a typical zero-input response.

3.8 Express i{l} and arg [ 4] in Eq. (5), Sect. 3.2, in terms of the initial conditions
y{ts) and y (5.

3.9 Classify the stability of the zero-input response for each of the following
characteristic polynomials: {(a) s*+3s;, () (%4355 (0 $*+7Ts+10;
() s?+25+5;(e) s2—25+5.

3.10 For a second-order system with repeated roots, p; = p, = p, assume the trial
solution y{1) = a, (1) e* a, (1) te” to derive the complete response

Y() = [} Fa0) (t=N)eMNdh + [ (1) %+ aa(ty) €]

3.11 Rewrite y, (1) in Bxample 3.2 in terms of ¢ and o when p,, p, = 02X je.
Simplify your result so that it contains no imaginary quantities.

312 Usmg Eq. '(16), Sect: 3.3, obtain an integral expression for y,. (¢} given that
¥+ 5y 11y 15y = x - 15x. Hint: one of the roots is ~3.

3.13 Suppose the RC circuitin Example 2.4 has y(¢) = y,at r= 0 and

0=:=T
otherwise

Y
I ==
=17
where 7' >> RC. Find and sketch v{1), identifying the transient and steady-
state components.
3.14 Draw a simulation diagram for the system in Problem 3.12,
3,15 Draw a simulation diagram for Eqgs. (17) and (18), Sect. 2.3.

316 F'%.nd the differential equation relating x and y from the simulation diagram of
Figure P3.1, Answer: 3+ 35 +y = 2%+ x+ 5x.

3.17 Devise a simulation diagram for the circuit in Figure P3.2 such that each
circuit element is represented by one and only one scalor. (These are called
isolated-parameter simulations, and have obvious advantages for experi-
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