consist of the three exponential terms ™%, ™, and ¢, the coefficients of
which are found from a partial-fraction expansion of Y. (). Performing
the calculations, we find that for ¢ > 0

Yalt) =—teT +3e7 —fe™

which can be added to the previously calculated zero-input response to
obtain the complete response y(2).

8.4 STATE-VARIABLE EQUATIONS

Although the state-variable equations and the structure of the zero-input
response of multi-input-output (MIO) systems were derived in Chapter 3,
no attempt was made to solve these equations in any systematic fashion.
However, it is possible to use Laplace transforms, coupled with the results
of our study of single-input-output (SIO) systems, to provide insight into
both the methods of solution and some of the general properties of such
systems. Bear in mind that a definitive study of the relevant theory re-
quires an understanding of linear algebra, e.g., eigenvectors, functions of
a mafrix, etc., none of which will be attempted here. Furthermore, in
practice, calculations are usuvally carried out on a digital computer be-
cause the use of such methods is warranted only when studying systems
of at least moderate complexity. :

Transfer-function matrix

The Laplace transform of a vector function of time can be defined to be
the vector whose elements are the transforms of the elements of the time-
fanction vector.t For example, the n-vector q{(¢) and its transform, the
vector Q(s) £ p[q()], form the transform pair q(t) < Q(s), whichisa
shorthand notation for the relationship

q1(2) Qi (s)
9:(1) - Q. (s) 1

a(®)|  10a(s)

+Boldface capital letters will be used to denote the Laplace iransforms of both vectors and
matrices. The argument associated with the transform will distinguish it from a constant

matrix.

These vector transforms will be applied to the state-variable equations of
a fixed MIO system, namely the state equation '

q{z) = Aq() +Bx(1) 2)
and the output equation

y(t) = Cq{r) (3)

where q is the 7 X 1 state vector, x is the p X 1 input vector, y is the r X 1
output vector, and A, B, and C are constant matrices of appropriate
dimension.

Using Eq. (8), Sect. 8.1, with (1) it follows that £ [q()] = sQ(s) —q{0),
where q{0) is the initial state of the system and is also an nX 1 vector.
Therefore, transforming each term in (2) yields the following algebraic
equation for the transform of the state-vector:

sQ(s) —q(0) = AQ(s) +BX(s) 4

where X(s) = £[x(¢)]. The transform of the zero-state response vector
(s(t) can be fmind by setting q(0) =0 in (4) and collecting the terms
involving Q.. (s) = £[q. ()], giving

§Qus (8) ~ AQys (5] = BX(s)

Introducing the n Xz identity matrix I in order to combine the terms
involving Q.,, we have

{Si“’A)st(S) = BX(s) (5
which, when premultiplied by the inverset of (sI—A), results in
Q.s(s) = (sI—A)7'BX(s) (6)

The transform of the zero-state response of the output vector y,,{¢) is
obtained by transforming the output equation (3) and substituting (6) to
yield

st(s)
Y. (5) = C(sI—A)BX(s) Q)

Recalling that the scalar transfer function H(s) was defined so as to
satisfy Y,;(s) = H(s)X{s) for SIO systems, it is reasonable to define the

The temptation to divide matrices rather than use the inverse operator must be resisted.
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transfer-function matrix as
H{s) =C(sI—A)7B - )

which has r rows and p columns and depends only upon the sysiem
matrices A, B, and C. Having made this definition, (7) becomes

Y. (s) =H(s}X(s) &)

Characteristic values and poles

The inverse of the matrix (sI—A) used in forming H(s} in (8) can be
written in terms of its adjoint matrix —not to be confused with the
“adjoint system” of optimal-control theory — and its determinant as

(sI—A)™7 = IsT—A|

‘The denominator |sI— A| will be recognized as the system’s characteristic
polynomial, first introduced in Section 3.5 and its roots are known as the
characteristic values {eigenvalues) of the matrix A. Because (sT—A) has
the rather special form

§—dy —dyy 0 T
—dy; §=dag 7 "z

(sI—A) = : : X (11
“—lpy —~ gz S

it follows that Adj [s1— A] will be an # X n matrix, each element of which
is a polynomial in s of degree n—1 or less. Hence, the »? elements of
(s1—A)™! will be rational functions of s, each having the nth-degree
polynomial {sI— A| as its denominator.

Because the matrices B and C do not depend upon the variable s, the
# X p elements of the transfer-function matrix H(s) will also be functions
of 5, each having the polynomial |sI—A| as its denominator — at least
before any factors that are common to both numerator and denominator
are canceled. To be more explicit, substitution of (10) into (8) gives

CAdj[sI—A]B | (12

Hs) =g A

where the element H;(s) is the transfer function Y () X;(s).
Hence, all input-output transfer functions associated with the system

will have as their poles the characteristic values of A and these charac-
teristic values will be the p; in the exponential terms ¢+ comprising the
system’s response modes. If the numerator of a particular Hy(s) should
have a root that coincides with one of the characteristic values of A, then
the corresponding mode will not appear in the response of y,{z} to the
impulsive input x;(¢) = 6(¢). This fundamental relationship is just one
manifestation of the fact that once the dynamics of a fixed linear system
are put into state-variable form, the very powerful analytical methods of
linear algebra and computational capabilities of the digital computer can
be brought to bear on the problems of analysis and synthesis.

State-transition matrix

Having extended the transfer-function notion to MIO systems, we shall
consider the zero-input response of the state vector, denoted by q(#),
which results from the initial state q{0). Returning to (4) and setting
X(s) = 0 we obtain, after a slight rearrangement of terms,

(sT— A)Qui(s) = q(0) a3

where Q.;(s) = [q.:(¢)]. As before, Q,(s) may be solved for by using
the inverse of (si—A), yvielding

Qus) = (s1—A)7q(0) e
Taking the inverse Laplace transform of both sides of (14), the zero-

input response vector must be expressable in the form , %)
Q.(?) = F()q(0) =0 (15)
where
P £ e[ (s1—A)7] = e[ AL LAY (16)

In words, (15) says that in the absence of any inputs the state at =0 is
transformed into the state at any time ¢ = { according to the matrix ¥ ()
which, from (16), depends strictly on A and £,

Actually, (15} is part of a more general relationship in which the state at
any time ¢ (positive or negative) can be related to the state at any other
time 7, by

Gui (1) = P (1 —19)q{t0)

provided that all inputs are zero during the interval between f, and 1. The

—m < F <@ (17)
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matrix function ® (), which provides the connection between the states
at any two times, is known as the state-transition matrix and is equal to
the exponential function ¢* which is defined by the infinite series
® £

+A3_,,,..+...

217 23 (18)

et £ 1+ Ar+A®
The fact that

P (1) = erl (19

can be proved by showing that the infinite series given in (18) satisfies the
matrix differential equation <i)(r) = A®(z) with the initial condition
@(0) = I, which implies that ®(1)q(0) must satisfy (2) with x(7) = 0.
[See Zadeh and Desoer (1963, Chap. 5) for the proof and for the other
numerous properties of the exponential function.] The relevant point
here is that the matrix F(¢) in (15) must be the state-transition matrix

®(7) over the interval £ = 0.

Example 8.5
For illustrative purposes, we shall find the transfer function and state-
transition matrix of the second-order system discussed in Example 3.3,

although it is a bit like using a cannon to shoota humming bird. Rewriting

the state and output equations in matrix form, we have

d 31 1 O a: 1
q 1 —3lig: 0
A B
T s
=R H
C

from which the matrices A, B, and C are readily identified.

In order to find the transfer-function matrix H(s) —in this case a

scalar — we write

_[s—1 0
s A““[—I s+3]

from which
sI—A| = (s—1)(s+3)

and

Adj [sI~A] = [”3 0 ]

1 s—1

Substituting into (8) and using (10), the scalar transfer function is

[~} 1][“;3 SL]B]
(s—1)(s+3)

-1 1 1
{s—1)(s+3) 4 (s+3)

His) =

which is in agreement with the calculations in Example 3.3. As before, we
nf?te_ that H(s) has a zero which coincides with its pole at s = 1, thereby .
f:l%mmating the mode ¢’ from the impulse response of the output, although
it is present in the state variables ¢, and g,.

As for the state-transition matrix, we can use (16) to get an analytical
resu‘lt; or, if a computer is handy and numerical values of ®(z) computed
at discrete points in time are satisfactory, (18) can be used. Pursuing the
former,

! 0
l:5+3 0 ] 51
F(ty=0eY| 1 s=1f]=g" 1 1

(s—1}(s+3) (s—1)(s+3) s5+3

Inveljting the transform matrix term by term and noting that although

F{(?) is defined only forr = 0, ®(r) = F(¢) over this interval but is defined

for—ow < f < 0, it follows that N
G-

. et 1]
Bz} = { , }
.é(et — ewat) eMEC

Having obtained the state-transition matrix, the zero-input response of
q(z) can be written in terms of the initial state from (15) as

q:(£) = q,(0) €

g2 (1) =4(ef— ™) (0} + ™%, (0)
Now, employing the output equation (3),

Yzi(t) = —3qs (1) + g2 (1) = [—4q1(0) + g (0) Je~*
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Complete response

A time-domain expression can be found for qu(f) by observing that the
matrx (sI—A)™* and the state-transition matrix form a Laplace-trans-
form pair, i.e.,

O(2) < (sI—A)7

Thus the frequency-domain multiplication in (6) becomes & time-domain
convolution of the matrices ®(t) and Bx(z), which can be written as

4us(t) = [ D(e=1)Bx(V)dr 20)

where the three matrices must appear in the sequence shown. Although
the notation used in (20) may appear to be rather overpowering at first
glance, the equation merely says that any element of the vector q..{} is
the integral of the corresponding row of the matrix product @ (7~ A)Bx(A)-

When q.,(¢} is added to the zero-input response of the state vector as
given by (15), and the output equation (3) is included, we have the com-
plete response of both the state and output vectors:

q(t) = D()q(0) + jﬂ‘ @ (t—N)Bx(A)d\ @1
y (1) = Cq(1) 22)

Exampie 8.6

To find the complete response of the system discussed in Example 8.5toa
unit step with an arbitrary initial state, we let x(¢} be the scalar u (£).
Substituting the appropriate matrices from the previous example into (21),
the state vector is

$(1)

— "

2= i Lo S]]

®(1—\) B
" s

4 : e(tf“‘“l\} 0 i
+ J; [?;—(e“““ ) e—awwn] [O]M(R)dk

In component form, the first row reduces to

G (1) = q(0)et+ et [ ehdn gy (0) +1—e™]

T
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and ¢,(z) may be found in a similar manner, the detailed calculations

being omitted, Substitutin i
. ¢ g, and g, into the output equati
plete response is found to be put eduation, the com-

y(t) = [—4q:(0) + ¢, (0) =% + (e~ —1)
v s ‘_"‘“‘—V—'—"I

Yault) Ve ()

&here t.he zero-input and zero-state components are readily identified
e notice that whenever the output variable is computed, the mode e;

b4

Problems

8.1 Der‘i':re the following transform relationships from Section 8.1: (a) Super-
position, Eq. (5); (b) Scale change, Eq. (6); (¢) Integration, Eq. (7).

8.2 Derive the transforms of the cau i i
sal functions sin wf and cos wf as gi
Eqgs. (17}and (18), Sect. 8.1. ) renty

8.3 Prove the initial-value theorem,

8.4 (a} Derive the transform relationships

ep(t} > V(s—a)

to{r) = _dVis)
ds
(b) Derive the transform pairs

Zws
(87 + w?)?

- m—
(s+a)®

£ sin wt <>

IZe—crl

8.5 i ;
5 Use Laplace transforms to derive the following expressions for the zero-

state response of a second-order s :
ystem: {a} Eq. (9b), Sect. 3.3:
Sect. 3.3. In both cases, take 7, == (. ®Ee D
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